Multiple Wurtzite Twinning in CdTe Nanocrystals Induced by Methylphosphonic Acid

Branching in semiconductor nanocrystals, which leads to tetrapods and to more complex architectures, is the subject of intensive investigation. Here we support the model according to which branching in CdTe nanocrystals is driven by the formation of multiple wurtzite twins. This is in contrast to pr...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 128; no. 3; pp. 748 - 755
Main Authors Carbone, Luigi, Kudera, Stefan, Carlino, Elvio, Parak, Wolfgang J, Giannini, Cinzia, Cingolani, Roberto, Manna, Liberato
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 25.01.2006
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Branching in semiconductor nanocrystals, which leads to tetrapods and to more complex architectures, is the subject of intensive investigation. Here we support the model according to which branching in CdTe nanocrystals is driven by the formation of multiple wurtzite twins. This is in contrast to previous models for this material. We found that twinning, as well as anisotropic growth, can be triggered by the presence of suitable molecules, such as for instance methylphosphonic acid. In the case of CdTe nanocrystals, we designed a robust growth scheme in which the variation of a single parameter (the concentration of methylphosphonic acid in solution) leads to the controlled formation of nanocrystals with shapes ranging from spheres to anisotropic structures with varying level of branching, as both twinning and anisotropic growth are progressively favored. We believe that these concepts can be extended to other nanocrystal systems.
AbstractList Branching in semiconductor nanocrystals, which leads to tetrapods and to more complex architectures, is the subject of intensive investigation. Here we support the model according to which branching in CdTe nanocrystals is driven by the formation of multiple wurtzite twins. This is in contrast to previous models for this material. We found that twinning, as well as anisotropic growth, can be triggered by the presence of suitable molecules, such as for instance methylphosphonic acid. In the case of CdTe nanocrystals, we designed a robust growth scheme in which the variation of a single parameter (the concentration of methylphosphonic acid in solution) leads to the controlled formation of nanocrystals with shapes ranging from spheres to anisotropic structures with varying level of branching, as both twinning and anisotropic growth are progressively favored. We believe that these concepts can be extended to other nanocrystal systems.
Branching in semiconductor nanocrystals, which leads to tetrapods and to more complex architectures, is the subject of intensive investigation. Here we support the model according to which branching in CdTe nanocrystals is driven by the formation of multiple wurtzite twins. This is in contrast to previous models for this material. We found that twinning, as well as anisotropic growth, can be triggered by the presence of suitable molecules, such as for instance methylphosphonic acid. In the case of CdTe nanocrystals, we designed a robust growth scheme in which the variation of a single parameter (the concentration of methylphosphonic acid in solution) leads to the controlled formation of nanocrystals with shapes ranging from spheres to anisotropic structures with varying level of branching, as both twinning and anisotropic growth are progressively favored. We believe that these concepts can be extended to other nanocrystal systems.Branching in semiconductor nanocrystals, which leads to tetrapods and to more complex architectures, is the subject of intensive investigation. Here we support the model according to which branching in CdTe nanocrystals is driven by the formation of multiple wurtzite twins. This is in contrast to previous models for this material. We found that twinning, as well as anisotropic growth, can be triggered by the presence of suitable molecules, such as for instance methylphosphonic acid. In the case of CdTe nanocrystals, we designed a robust growth scheme in which the variation of a single parameter (the concentration of methylphosphonic acid in solution) leads to the controlled formation of nanocrystals with shapes ranging from spheres to anisotropic structures with varying level of branching, as both twinning and anisotropic growth are progressively favored. We believe that these concepts can be extended to other nanocrystal systems.
Author Kudera, Stefan
Carlino, Elvio
Cingolani, Roberto
Carbone, Luigi
Giannini, Cinzia
Parak, Wolfgang J
Manna, Liberato
Author_xml – sequence: 1
  givenname: Luigi
  surname: Carbone
  fullname: Carbone, Luigi
– sequence: 2
  givenname: Stefan
  surname: Kudera
  fullname: Kudera, Stefan
– sequence: 3
  givenname: Elvio
  surname: Carlino
  fullname: Carlino, Elvio
– sequence: 4
  givenname: Wolfgang J
  surname: Parak
  fullname: Parak, Wolfgang J
– sequence: 5
  givenname: Cinzia
  surname: Giannini
  fullname: Giannini, Cinzia
– sequence: 6
  givenname: Roberto
  surname: Cingolani
  fullname: Cingolani, Roberto
– sequence: 7
  givenname: Liberato
  surname: Manna
  fullname: Manna, Liberato
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17730925$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/16417364$$D View this record in MEDLINE/PubMed
BookMark eNpt0U1rGzEQBmBRUhon7SF_oOiSQg7bjD5W8h6DaT7AcQN1aclFSFptI2etdSQtifPru8FuDCUHMQieeRlmDtBe6IJD6IjAVwKUnC40lHxcMfsOjUhJoSgJFXtoBAC0kGPB9tFBSovhy-mYfED7RHAimeAjdHPdt9mvWod_9TE_--zw_NGH4MMf7AOe1HOHZzp0Nq5T1m3CV6HurauxWeNrl-_W7equS8ML3uIz6-uP6H0zOPdpWw_Rz_Nv88llMf1-cTU5mxaaE5ELXQ0hgnNRU1Nyx4FI3jhmm8qYhnBpLEhTg6WMG2oqoDWVVOqqsdxqZoAdoi-b3FXsHnqXslr6ZF3b6uC6PikJoiJAXuDnLezN0tVqFf1Sx7X6t4MBHG-BTla3TdTB-rRzUjKoaDm4k42zsUspumZHQL3cQb3eYbCn_1nrs86-Czlq377ZUWw6fMru6TVax3slJJOlmt_8ULPp7ey3nJ0r2E2tbVKLro9h2PYbuX8B3euktA
CODEN JACSAT
CitedBy_id crossref_primary_10_1016_j_molstruc_2012_11_017
crossref_primary_10_1021_acs_chemmater_0c01407
crossref_primary_10_1002_anie_201100200
crossref_primary_10_1021_nl072003g
crossref_primary_10_1007_s10895_016_2000_3
crossref_primary_10_1021_jp308921s
crossref_primary_10_1039_c001615b
crossref_primary_10_1039_c1nr10152h
crossref_primary_10_1039_b922145j
crossref_primary_10_1021_acsnano_7b06542
crossref_primary_10_1021_jp074724
crossref_primary_10_1021_jacs_9b12925
crossref_primary_10_1007_s11051_007_9277_8
crossref_primary_10_1039_c0nr00076k
crossref_primary_10_1021_nn1002584
crossref_primary_10_1590_S0100_46702008000100002
crossref_primary_10_1021_jp904480v
crossref_primary_10_1021_ja308456w
crossref_primary_10_1021_ja807874e
crossref_primary_10_1021_nl0524492
crossref_primary_10_4028_www_scientific_net_MSF_663_665_914
crossref_primary_10_1021_jp905407y
crossref_primary_10_1002_smll_200600684
crossref_primary_10_1039_C6NR05451J
crossref_primary_10_1021_ja0656696
crossref_primary_10_1039_C0CS00055H
crossref_primary_10_1016_S1452_3981_23_15241_2
crossref_primary_10_1007_s12274_013_0305_y
crossref_primary_10_1364_JOSAB_28_001374
crossref_primary_10_1016_S1452_3981_23_15152_2
crossref_primary_10_1039_b910466f
crossref_primary_10_1002_pssa_200566182
crossref_primary_10_1016_S1452_3981_23_16167_0
crossref_primary_10_1021_nn100229x
crossref_primary_10_1007_s11051_012_0789_5
crossref_primary_10_1063_1_2825425
crossref_primary_10_1016_j_jallcom_2011_07_094
crossref_primary_10_1021_la100468e
crossref_primary_10_1002_adma_201002290
crossref_primary_10_1021_nl102539a
crossref_primary_10_1007_s11172_016_1531_8
crossref_primary_10_1002_adma_200702844
crossref_primary_10_1038_s41467_019_11229_2
crossref_primary_10_1134_S1063785019080273
crossref_primary_10_1039_c0cc03485a
crossref_primary_10_1002_adma_200701518
crossref_primary_10_1039_C4NR05707D
crossref_primary_10_1021_cr900137k
crossref_primary_10_1039_B916208A
crossref_primary_10_1146_annurev_physchem_012809_103311
crossref_primary_10_1002_adma_201100923
crossref_primary_10_1063_1_2924306
crossref_primary_10_1021_nl802823d
crossref_primary_10_1016_S1452_3981_23_13245_7
crossref_primary_10_1021_ja071209g
crossref_primary_10_1021_jp0709407
crossref_primary_10_1088_0957_4484_18_19_195605
crossref_primary_10_1155_2013_146582
crossref_primary_10_1016_S1452_3981_23_15342_9
crossref_primary_10_1021_la400925y
crossref_primary_10_1021_nn405747h
crossref_primary_10_1039_c2cp41586k
crossref_primary_10_1016_j_apsusc_2019_01_013
crossref_primary_10_1021_jp0615306
crossref_primary_10_1021_ja076698z
crossref_primary_10_1021_cm901615n
crossref_primary_10_1002_pssa_200673223
crossref_primary_10_1039_c3nr03160h
crossref_primary_10_1016_j_jlumin_2019_116822
crossref_primary_10_1021_ja900191n
crossref_primary_10_1021_jp908101z
crossref_primary_10_1016_S1452_3981_23_13215_9
crossref_primary_10_1021_cm902230u
crossref_primary_10_1039_C8CC03498B
crossref_primary_10_1021_acs_nanolett_2c02975
crossref_primary_10_1021_nl103400a
crossref_primary_10_1039_c1jm11405k
crossref_primary_10_1016_j_jssc_2008_01_032
crossref_primary_10_1021_acs_chemmater_1c03432
crossref_primary_10_1016_j_jechem_2019_12_022
crossref_primary_10_1002_smll_200700787
crossref_primary_10_1021_ja805662h
crossref_primary_10_1021_acs_jpcc_9b05456
crossref_primary_10_1021_cm071440t
crossref_primary_10_1021_la903986v
crossref_primary_10_1016_j_physe_2006_06_010
crossref_primary_10_1021_jp8088897
crossref_primary_10_1021_cm201064c
crossref_primary_10_1021_jp2023346
crossref_primary_10_1063_1_2354448
crossref_primary_10_1021_nl304665y
crossref_primary_10_1002_ange_201100200
crossref_primary_10_1002_ejic_200701091
crossref_primary_10_1016_j_ultsonch_2007_05_006
crossref_primary_10_1016_j_mencom_2009_05_003
crossref_primary_10_1016_j_colsurfa_2009_09_010
crossref_primary_10_1021_jacs_9b09157
crossref_primary_10_1021_ja8082895
crossref_primary_10_1039_c3ce41264d
crossref_primary_10_1021_cm0705791
crossref_primary_10_1021_nl100669s
crossref_primary_10_1021_cm801359k
crossref_primary_10_1016_j_physe_2006_06_016
crossref_primary_10_1021_acs_chemrev_2c00410
crossref_primary_10_1021_acs_jpclett_5b01311
crossref_primary_10_1002_smll_200700120
crossref_primary_10_1021_acs_chemrev_8b00733
crossref_primary_10_1002_ppsc_201300295
crossref_primary_10_1039_c3nr05718f
crossref_primary_10_1016_j_jechem_2020_03_019
crossref_primary_10_1039_b517790c
crossref_primary_10_1002_smll_200600558
crossref_primary_10_1073_pnas_1605289113
crossref_primary_10_1039_C3TA13894A
crossref_primary_10_1021_cm702598r
crossref_primary_10_1021_acs_jpclett_9b03052
crossref_primary_10_1039_C4SM00728J
crossref_primary_10_1021_ja106777j
crossref_primary_10_1002_adbi_201800127
crossref_primary_10_1016_j_pnsc_2013_05_005
crossref_primary_10_1021_cm4006844
crossref_primary_10_1021_acs_chemmater_6b02906
crossref_primary_10_1002_cphc_202401139
crossref_primary_10_1021_ja909776g
crossref_primary_10_1021_cg0608514
crossref_primary_10_1016_j_jssc_2009_08_028
crossref_primary_10_1039_b605630j
crossref_primary_10_1021_acs_langmuir_5b03933
crossref_primary_10_1063_1_2335801
crossref_primary_10_1021_nl061112c
crossref_primary_10_1107_S2053273318004977
crossref_primary_10_1007_s11051_011_0606_6
crossref_primary_10_1002_adma_200903643
crossref_primary_10_1134_S0020168511010031
crossref_primary_10_1002_smll_200800604
crossref_primary_10_1039_D3CS01095C
crossref_primary_10_1007_s12645_010_0003_3
crossref_primary_10_1021_ja8048755
Cites_doi 10.1080/01418619408242243
10.1126/science.1069156
10.1080/01418619708214216
10.1021/nl0503072
10.1103/PhysRevB.23.5048
10.1103/PhysRev.140.A1133
10.1103/PhysRevB.71.041309
10.1039/b302294c
10.1021/cr030063a
10.1016/S0022-0248(07)80104-7
10.1021/ja003055+
10.1038/nmat902
10.1002/adma.200390092
10.1021/nl048060g
10.1016/j.jcrysgro.2005.04.036
10.1107/S056773947400057X
10.1016/0022-0248(91)90374-E
10.1103/PhysRev.136.B864
10.1016/S0022-0248(97)00403-X
10.1038/35003541
10.1002/smll.200400024
10.1016/0022-0248(93)90136-K
10.1016/0022-0248(94)90116-3
ContentType Journal Article
Copyright Copyright © 2006 American Chemical Society
2006 INIST-CNRS
Copyright_xml – notice: Copyright © 2006 American Chemical Society
– notice: 2006 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
NPM
7X8
DOI 10.1021/ja054893c
DatabaseName Istex
CrossRef
Pascal-Francis
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1520-5126
EndPage 755
ExternalDocumentID 16417364
17730925
10_1021_ja054893c
ark_67375_TPS_NLZNX7NF_0
a701197781
Genre Journal Article
GroupedDBID -
.K2
02
186
4.4
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
AFFDN
AFFNX
AFMIJ
AIDAL
ALMA_UNASSIGNED_HOLDINGS
ANTXH
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
EJD
ET
F20
F5P
GJ
GNL
IH9
IHE
JG
JG~
K2
K78
LG6
NHB
OHT
P2P
ROL
RXW
TAE
TAF
TN5
UHB
UI2
UKR
UNC
UPT
UQL
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZCG
ZE2
ZHY
---
-DZ
-ET
-~X
.DC
.GJ
6TJ
AAHBH
AAYOK
ABJNI
ABQRX
ACBEA
ACGFO
ADHLV
ADOJD
AGXLV
AHGAQ
BSCLL
CUPRZ
GGK
IH2
XOL
XSW
YQT
ZCA
~02
AAYXX
ABBLG
ABLBI
ACRPL
ADNMO
ADXHL
AEYZD
AGQPQ
AHDLI
ANPPW
CITATION
YR5
.HR
1WB
3EH
3O-
41~
AAUPJ
AAYJJ
AAYWT
ABHMW
ABWLT
ACBNA
ACKIV
AI.
D0S
IQODW
MVM
P-O
RNS
UBC
UBX
VH1
X7L
YXA
YXE
YYP
ZGI
ZY4
NPM
VXZ
YIN
7X8
ID FETCH-LOGICAL-a416t-a9ced6446d2b54e40174fe3cf9bbf147bc07bd0c234b2b902d2727a9fc4ca3b03
IEDL.DBID ACS
ISSN 0002-7863
IngestDate Thu Jul 10 17:22:31 EDT 2025
Wed Feb 19 01:42:28 EST 2025
Mon Jul 21 09:17:30 EDT 2025
Tue Jul 01 02:58:23 EDT 2025
Thu Apr 24 23:03:00 EDT 2025
Wed Oct 30 09:59:49 EDT 2024
Thu Aug 27 13:41:58 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Crystal growth
Pseudopotential methods
Theoretical study
Transition elements Compounds
Nanostructures
Experimental study
Transmission electron microscopy
II-VI semiconductors
Cadmium tellurides
Density functional method
Wurtzite structure
Colloidal crystals
Crystal nucleation
Ab initio calculations
Local density approximation
Growth twin
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a416t-a9ced6446d2b54e40174fe3cf9bbf147bc07bd0c234b2b902d2727a9fc4ca3b03
Notes istex:15B74331EF81ABB20C4E2E3738E0FEF70774BC00
ark:/67375/TPS-NLZNX7NF-0
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.openaccessrepository.it/record/74790
PMID 16417364
PQID 70691010
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_70691010
pubmed_primary_16417364
pascalfrancis_primary_17730925
crossref_primary_10_1021_ja054893c
crossref_citationtrail_10_1021_ja054893c
istex_primary_ark_67375_TPS_NLZNX7NF_0
acs_journals_10_1021_ja054893c
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ANTXH
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-01-25
PublicationDateYYYYMMDD 2006-01-25
PublicationDate_xml – month: 01
  year: 2006
  text: 2006-01-25
  day: 25
PublicationDecade 2000
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2006
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Yan Y. F. (ja054893cb00042/ja054893cb00042_1) 2005; 71
Huynh W. U. (ja054893cb00023/ja054893cb00023_1) 2002; 295
Markov I. V. (ja054893cb00049/ja054893cb00049_1) 2003
Takeuchi S. (ja054893cb00027/ja054893cb00027_1) 1984; 50
Heine (ja054893cb00039/ja054893cb00039_1) 1970; 24
Perdew J. P. (ja054893cb00041/ja054893cb00041_1) 1981; 23
Shen G. Z. (ja054893cb00016/ja054893cb00016_1) 2005; 5
Fujii M. (ja054893cb00003/ja054893cb00003_1) 1993; 128
Hohenberg P. (ja054893cb00037/ja054893cb00037_1) 1964; 136
Troullier N. (ja054893cb00040/ja054893cb00040_1) 1991; 43
Peng Z. A. (ja054893cb00047/ja054893cb00047_1) 2002; 124
ja054893cb00036/ja054893cb00036_1
Nishio K. (ja054893cb00005/ja054893cb00005_1) 1997; 76
Iwanaga H. (ja054893cb00030/ja054893cb00030_1) 1994; 141
ja054893cb00033/ja054893cb00033_1
Zhu Y. C. (ja054893cb00013/ja054893cb00013_1) 2003; 125
Cui Y. (ja054893cb00025/ja054893cb00025_1) 2005; 5
Manna L. (ja054893cb00020/ja054893cb00020_1) 2003; 2
Wang F. Z. (ja054893cb00011/ja054893cb00011_1) 2005; 274
Kohn W. (ja054893cb00038/ja054893cb00038_1) 1965; 140
Bunge S. D. (ja054893cb00019/ja054893cb00019_1) 2003; 13
Peng X. G. (ja054893cb00043/ja054893cb00043_1) 2000; 404
Kudera S. (ja054893cb00031/ja054893cb00031_1) 2005; 5
Burda C. (ja054893cb00001/ja054893cb00001_1) 2005; 105
Manna L. (ja054893cb00017/ja054893cb00017_1) 2000; 122
Teng X. (ja054893cb00022/ja054893cb00022_1) 2005; 5
Chen M. (ja054893cb00015/ja054893cb00015_1) 2002; 12
Peng X. G. (ja054893cb00048/ja054893cb00048_1) 2003; 15
Hu J. Q. (ja054893cb00012/ja054893cb00012_1) 2005; 1
Peng Z. A. (ja054893cb00046/ja054893cb00046_1) 2001; 123
Iwanaga H. (ja054893cb00029/ja054893cb00029_1) 1993; 134
Yan H. Q. (ja054893cb00008/ja054893cb00008_1) 2003; 15
Li Q. (ja054893cb00021/ja054893cb00021_1) 2003; 13
Yeh C. Y. (ja054893cb00028/ja054893cb00028_1) 1992; 46
Jun Y. W. (ja054893cb00014/ja054893cb00014_1) 2001; 123
Yu W. D. (ja054893cb00010/ja054893cb00010_1) 2005; 5
Goodman P. (ja054893cb00035/ja054893cb00035_1) 1974; 30
Iwanaga H. (ja054893cb00006/ja054893cb00006_1) 1998; 183
Li J. B. (ja054893cb00026/ja054893cb00026_1) 2003; 3
Yu W. W. (ja054893cb00018/ja054893cb00018_1) 2003; 15
Takeuchi S. (ja054893cb00004/ja054893cb00004_1) 1994; 69
Dai Y. (ja054893cb00007/ja054893cb00007_1) 2003; 126
Sun B. Q. (ja054893cb00024/ja054893cb00024_1) 2003; 3
ja054893cb00034/ja054893cb00034_1
Kitano M. (ja054893cb00002/ja054893cb00002_1) 1991; 108
Chen Z. (ja054893cb00009/ja054893cb00009_1) 2004; 15
References_xml – volume: 69
  start-page: 1129
  year: 1994
  ident: ja054893cb00004/ja054893cb00004_1
  publication-title: Philos. Mag. A
  doi: 10.1080/01418619408242243
– volume: 15
  start-page: 369
  year: 2004
  ident: ja054893cb00009/ja054893cb00009_1
  publication-title: Nanotechnology
– volume: 50
  start-page: 178
  year: 1984
  ident: ja054893cb00027/ja054893cb00027_1
  publication-title: Philos. Mag. A
– volume: 295
  start-page: 2427
  year: 2002
  ident: ja054893cb00023/ja054893cb00023_1
  publication-title: Science
  doi: 10.1126/science.1069156
– volume: 3
  start-page: 1363
  year: 2003
  ident: ja054893cb00026/ja054893cb00026_1
  publication-title: Nano Lett.
– volume: 76
  start-page: 904
  year: 1997
  ident: ja054893cb00005/ja054893cb00005_1
  publication-title: Philos. Mag. A
  doi: 10.1080/01418619708214216
– volume: 5
  start-page: 1089
  year: 2005
  ident: ja054893cb00016/ja054893cb00016_1
  publication-title: J. Cryst. Growth Des.
– volume: 5
  start-page: 891
  year: 2005
  ident: ja054893cb00022/ja054893cb00022_1
  publication-title: Nano Lett.
  doi: 10.1021/nl0503072
– volume: 123
  start-page: 1395
  year: 2001
  ident: ja054893cb00046/ja054893cb00046_1
  publication-title: J. Am. Chem. Soc.
– volume: 23
  start-page: 5079
  year: 1981
  ident: ja054893cb00041/ja054893cb00041_1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.23.5048
– volume: 140
  start-page: 1133A
  year: 1965
  ident: ja054893cb00038/ja054893cb00038_1
  publication-title: J. Phys. Rev.
  doi: 10.1103/PhysRev.140.A1133
– volume: 15
  start-page: 4308
  year: 2003
  ident: ja054893cb00018/ja054893cb00018_1
  publication-title: Chem. Mater.
– volume: 71
  start-page: 041309
  year: 2005
  ident: ja054893cb00042/ja054893cb00042_1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.71.041309
– volume: 13
  start-page: 1709
  year: 2003
  ident: ja054893cb00019/ja054893cb00019_1
  publication-title: J. Mater. Chem.
  doi: 10.1039/b302294c
– ident: ja054893cb00036/ja054893cb00036_1
– volume: 126
  start-page: 633
  year: 2003
  ident: ja054893cb00007/ja054893cb00007_1
  publication-title: Solid State Commun.
– volume: 105
  start-page: 1102
  year: 2005
  ident: ja054893cb00001/ja054893cb00001_1
  publication-title: Chem. Rev.
  doi: 10.1021/cr030063a
– volume: 128
  start-page: 1098
  year: 1993
  ident: ja054893cb00003/ja054893cb00003_1
  publication-title: J. Cryst. Growth
  doi: 10.1016/S0022-0248(07)80104-7
– volume: 122
  start-page: 12706
  year: 2000
  ident: ja054893cb00017/ja054893cb00017_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja003055+
– volume: 2
  start-page: 385
  year: 2003
  ident: ja054893cb00020/ja054893cb00020_1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat902
– volume: 12
  start-page: 753
  year: 2002
  ident: ja054893cb00015/ja054893cb00015_1
  publication-title: J. Mater. Chem.
– volume: 15
  start-page: 405
  year: 2003
  ident: ja054893cb00008/ja054893cb00008_1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200390092
– volume: 13
  start-page: 427
  year: 2003
  ident: ja054893cb00021/ja054893cb00021_1
  publication-title: J. Mater. Chem.
– volume: 24
  start-page: 36
  volume-title: Solid State Physics
  year: 1970
  ident: ja054893cb00039/ja054893cb00039_1
– volume: 5
  start-page: 449
  year: 2005
  ident: ja054893cb00031/ja054893cb00031_1
  publication-title: Nano Lett.
  doi: 10.1021/nl048060g
– volume: 274
  start-page: 452
  year: 2005
  ident: ja054893cb00011/ja054893cb00011_1
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2005.04.036
– volume-title: Crystal Growth, and Epitaxy
  year: 2003
  ident: ja054893cb00049/ja054893cb00049_1
– volume: 5
  start-page: 1523
  year: 2005
  ident: ja054893cb00025/ja054893cb00025_1
  publication-title: Nano Lett.
– volume: 125
  start-page: 16197
  year: 2003
  ident: ja054893cb00013/ja054893cb00013_1
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 155
  year: 2005
  ident: ja054893cb00010/ja054893cb00010_1
  publication-title: Cryst. Growth Des.
– volume: 3
  start-page: 963
  year: 2003
  ident: ja054893cb00024/ja054893cb00024_1
  publication-title: Nano Lett.
– volume: 30
  start-page: 290
  year: 1974
  ident: ja054893cb00035/ja054893cb00035_1
  publication-title: Acta Crystallogr., Sect. A
  doi: 10.1107/S056773947400057X
– volume: 108
  start-page: 284
  year: 1991
  ident: ja054893cb00002/ja054893cb00002_1
  publication-title: J. Cryst. Growth
  doi: 10.1016/0022-0248(91)90374-E
– ident: ja054893cb00034/ja054893cb00034_1
– volume: 124
  start-page: 3353
  year: 2002
  ident: ja054893cb00047/ja054893cb00047_1
  publication-title: J. Am. Chem. Soc.
– ident: ja054893cb00033/ja054893cb00033_1
– volume: 136
  start-page: 864B
  year: 1964
  ident: ja054893cb00037/ja054893cb00037_1
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.136.B864
– volume: 15
  start-page: 463
  year: 2003
  ident: ja054893cb00048/ja054893cb00048_1
  publication-title: Adv. Mater.
– volume: 123
  start-page: 5151
  year: 2001
  ident: ja054893cb00014/ja054893cb00014_1
  publication-title: J. Am. Chem. Soc.
– volume: 183
  start-page: 195
  year: 1998
  ident: ja054893cb00006/ja054893cb00006_1
  publication-title: J. Cryst. Growth
  doi: 10.1016/S0022-0248(97)00403-X
– volume: 404
  start-page: 61
  year: 2000
  ident: ja054893cb00043/ja054893cb00043_1
  publication-title: Nature
  doi: 10.1038/35003541
– volume: 46
  start-page: 10097
  year: 1992
  ident: ja054893cb00028/ja054893cb00028_1
  publication-title: Phys. Rev. B
– volume: 1
  start-page: 99
  year: 2005
  ident: ja054893cb00012/ja054893cb00012_1
  publication-title: Small
  doi: 10.1002/smll.200400024
– volume: 43
  start-page: 2006
  year: 1991
  ident: ja054893cb00040/ja054893cb00040_1
  publication-title: Phys. Rev. B
– volume: 134
  start-page: 280
  year: 1993
  ident: ja054893cb00029/ja054893cb00029_1
  publication-title: J. Cryst. Growth
  doi: 10.1016/0022-0248(93)90136-K
– volume: 141
  start-page: 238
  year: 1994
  ident: ja054893cb00030/ja054893cb00030_1
  publication-title: J. Cryst. Growth
  doi: 10.1016/0022-0248(94)90116-3
SSID ssj0004281
Score 2.2660067
Snippet Branching in semiconductor nanocrystals, which leads to tetrapods and to more complex architectures, is the subject of intensive investigation. Here we support...
SourceID proquest
pubmed
pascalfrancis
crossref
istex
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 748
SubjectTerms Cross-disciplinary physics: materials science; rheology
Exact sciences and technology
Growth from solutions
Materials science
Methods of crystal growth; physics of crystal growth
Physics
Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation
Title Multiple Wurtzite Twinning in CdTe Nanocrystals Induced by Methylphosphonic Acid
URI http://dx.doi.org/10.1021/ja054893c
https://api.istex.fr/ark:/67375/TPS-NLZNX7NF-0/fulltext.pdf
https://www.ncbi.nlm.nih.gov/pubmed/16417364
https://www.proquest.com/docview/70691010
Volume 128
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwEB5ROLQXaEsLS1tqQVX1EuTYjp0c0ZYVqrorJBZ11UsUPyKtQFm0yYrHr2ecBwsq0PuMFXvGnm_i8XwA30Kj4ziUNog9h7sIlQ5iwXmQO2ospdY0DUyHI3l8Jn5NoskK7D9zg898fyBEFRhVzStYYxI3r8c__dPl40cWhx3GVbHkXfugh6o-9JjyUehZ86t47UshsxJXI29oLJ7HmXW8GWzAz-7VTlNmcn6wqPSBuf23ieNLU3kL6y3eJIeNg7yDFVe8h9f9juZtE06GbUkh-bOYV7eIQMn4aloTGZFpQfp27AgewTMzv0EgeVEST_ZhnCX6hgwdmtlXt5e-wn1qyKGZ2g9wNjga94-DlmYhyBCNVUGWoBLCImmZjoTDhEuJ3HGTJ1rnoVDaUKUtNYwLzXRCmWUIerIkN8JkXFP-EVaLWeG2gRjpQpvEOAjiNGmpViLKMEmymlON-j3YRTuk7TYp0_oGnGEG0i1MD350JkpN26Tcc2VcPCW6dy962XTmeEroe23ne4lsfu5L2VSUjk9O09Hvv6OJGg1Sil_2yBGWQyo8AxMW9eBr5xkpWshfq2SFmy3KVFGJmCvEIbYah1nqSnR-LsXO_6b9Cd50v3ZY9BlWq_nCfUGwU-nd2tnvAK579rg
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swELcYPLCXDfbZjYE1TdNeghzbsZPHqlpVWBshEbRqL1b8EakCpVOTaoO_fud80DGB2Lvv5NydfT_H598h9Ck0Oo5DYYPY93DnodRBzBkLCkeMJcSalsB0lorJBT-dR_OOJse_hYFJVKCpai7xN-wCniYIwAUkV_ME7QAIoT6ah6PzzRtIGoc91JWxYD2L0N-iPgOZ6k4G2vHG_O0rIvMKjFK03SwehptN2hk_b_sXNRNuqk0uj9e1PjY3_3A5_t8X7aFnHfrEwzZc9tGWK1-g3VHf9O0lOpt1BYb4-3pV3wAexdmvRdPWCC9KPLKZw7AhL83qGmDlVYV96w_jLNbXeObA6b7WvfL17guDh2ZhX6GL8ddsNAm6pgtBDtisDvIEhAAkCUt1xB0cvyQvHDNFonURcqkNkdoSQxnXVCeEWgoQKE8Kw03ONGGv0Xa5LN1bhI1woU1iUAKoTViiJY9yODJZzYgG-QE6BLuobtFUqrkPp3Ae6Q0zQF96TynTUZb7zhlX9w39eDv0Z8vTcd-gz427b0fkq0tf2CYjlZ2dq3T6I53LdKwIzOxOPGxUStgRExoN0FEfIAo85C9Z8tIt15WSRAACC0HFmzZuNrIClgIT_N1jn32EdifZbKqmJ-m39-hp_9OHRgdou16t3QeAQbU-bOL_D8TQ_xk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfGJsFeYHxsFNhmIYR4yeTYjp08VmXVgDVUWicqXqz4I1K1KZ2aVLD99Zzz0bJpE7z7LOc-fL_Lne8Q-hAaHcehsEHsZ7jzUOog5owFuSPGEmJN08B0lIqTc_51Gk3bQNG_hYFDlLBTWSfxvVVf2bztMOBbBQHAAAdrHqEtn67zGt0fnK3fQdI47OCujAXrOgn9Teq9kClveaEtz9DfvioyK4ExeTPR4mHIWbue4TP0fXXouuLk4mhZ6SNzc6ef4_9_1Q562qJQ3G_U5jnacMUL9GTQDX97icajttAQ_1guqhvApXjya1aPN8KzAg_sxGG4mOdmcQ3w8rLEfgSIcRbrazxyIHxf8176uveZwX0zs6_Q-fB4MjgJ2uELQQYYrQqyBIgALAlLdcQdhGGS546ZPNE6D7nUhkhtiaGMa6oTQi0FKJQlueEmY5qwXbRZzAv3GmEjXGiTGDYB9CYs0ZJHGYROVjOigb6HDoA3qjWeUtV5cQpxSceYHvrUSUuZtnW5n6Bxed_S96ulV02_jvsWfaxFvlqRLS58gZuM1GR8ptLTn-lUpkNF4GS3dGK9pYSbMaFRDx12SqJAQj7ZkhVuviyVJAKQWAhb7DW6s6YVYBJM8Df_-uxD9Hj8eahOv6Tf3qLt7t8Pjd6hzWqxdPuAhip9UJvAHx51Aas
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+Wurtzite+Twinning+in+CdTe+Nanocrystals+Induced+by+Methylphosphonic+Acid&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Carbone%2C+Luigi&rft.au=Kudera%2C+Stefan&rft.au=Carlino%2C+Elvio&rft.au=Parak%2C+Wolfgang+J&rft.date=2006-01-25&rft.pub=American+Chemical+Society&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=128&rft.issue=3&rft.spage=748&rft.epage=755&rft_id=info:doi/10.1021%2Fja054893c&rft.externalDocID=a701197781
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon