Mechanisms of Aqueous Fluid Infiltration and Redistribution in a Lower‐Crustal Pseudotachylyte‐Bearing Fault
Coseismic fracturing in the strong, dry, and metastable plagioclase‐rich lower‐crust is an effective mechanism for creating pathways for fluids to infiltrate the host rock, kick‐start metamorphism, and potentially lead to rheological weakening. In this study, we have characterized the damage zone fl...
Saved in:
Published in | Geochemistry, geophysics, geosystems : G3 Vol. 26; no. 2 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington
John Wiley & Sons, Inc
01.02.2025
The Geochemical Society Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Coseismic fracturing in the strong, dry, and metastable plagioclase‐rich lower‐crust is an effective mechanism for creating pathways for fluids to infiltrate the host rock, kick‐start metamorphism, and potentially lead to rheological weakening. In this study, we have characterized the damage zone flanking a lower‐crustal pseudotachylyte (solidified frictional melt produced during seismic slip) within an anorthosite to determine the mechanisms of incipient aqueous fluid infiltration and redistribution in a lower‐crustal seismogenic fault. Pulverization‐style fracturing of the host anorthosite resulted in the comminution of the host plagioclase (plagioclase1) grains and the growth of very fine (<20 μm) grained secondary plagioclase neoblasts (plagioclase2) filling the fractures. Fluid‐assisted grain growth accompanied surface‐ and strain‐energy minimization grain growth in the healing and sealing of the fractures. This process was not associated with the densification nor the creation of new reaction‐induced porosity. Fourier transform infrared maps transecting the damage zones show the presence of H2O species along the plagioclase1 and plagioclase2 grain boundary regions, as well as incorporated into plagioclase2 grain interiors. Grain‐size sensitive creep of fine‐grained plagioclase localized along the pseudotachylyte margin where fracturing was most pervasive. In the absence of reaction‐induced porosity, strain localization is determined by repeated occurrences of extreme grain‐size reduction in addition to the mobilization of aqueous fluid to the grain boundary regions, to the extent in which these fine‐grained wet plagioclase2 layers are volumetrically dominant over dry, coarse plagioclase1 fragments. This forms a layer capable of deforming by grain‐size sensitive creep and sustaining the mobility of fluids.
Plain Language Summary
Earthquakes are effective in fracturing rocks and creating pathways for fluids to flow and infiltrate deep within an otherwise dry and strong host rock. Fluids interacting with these dry and strong rocks, especially those in the lower crust at >25 km depth, may induce chemical reactions, produce new weaker minerals, and deteriorate the overall strength of the host rock. Areas that have become weaker will localize deformation and form ductile shear zones. The mechanistic processes that produce this transformation are poorly constrained and are the subject of this study. Using specialized microscopy techniques that measure the mineral's crystallographic orientation and the H2O content within plagioclase feldspar, we document that a single‐event earthquake rupture in the lower crust can liberate and mobilize a small amount of locally sourced H2O over short distances along fractures. However, without a sustainable source of H2O, fractures will heal themselves and consume the free H2O. We determined that repeated earthquake events, which repeatedly fracture the dry host rock into increasingly smaller fragments and mobilize fluids after each event, will form volumetrically thicker sequences of wet fine‐grained layers that can easily localize strain and form ductile shear zones.
Key Points
Plagioclase in the damage zone of a lower‐crustal pseudotachylyte deformed via pulverization‐style fragmentation
Liberated H2O as a result of the earthquake remained in grain boundary regions and facilitated neoblast growth and healing of fractures
Repeated fragmentation and comminution in addition to fluid at the grain boundaries are required to facilitate viscous deformation |
---|---|
AbstractList | Coseismic fracturing in the strong, dry, and metastable plagioclase‐rich lower‐crust is an effective mechanism for creating pathways for fluids to infiltrate the host rock, kick‐start metamorphism, and potentially lead to rheological weakening. In this study, we have characterized the damage zone flanking a lower‐crustal pseudotachylyte (solidified frictional melt produced during seismic slip) within an anorthosite to determine the mechanisms of incipient aqueous fluid infiltration and redistribution in a lower‐crustal seismogenic fault. Pulverization‐style fracturing of the host anorthosite resulted in the comminution of the host plagioclase (plagioclase1) grains and the growth of very fine (<20 μm) grained secondary plagioclase neoblasts (plagioclase2) filling the fractures. Fluid‐assisted grain growth accompanied surface‐ and strain‐energy minimization grain growth in the healing and sealing of the fractures. This process was not associated with the densification nor the creation of new reaction‐induced porosity. Fourier transform infrared maps transecting the damage zones show the presence of H2O species along the plagioclase1 and plagioclase2 grain boundary regions, as well as incorporated into plagioclase2 grain interiors. Grain‐size sensitive creep of fine‐grained plagioclase localized along the pseudotachylyte margin where fracturing was most pervasive. In the absence of reaction‐induced porosity, strain localization is determined by repeated occurrences of extreme grain‐size reduction in addition to the mobilization of aqueous fluid to the grain boundary regions, to the extent in which these fine‐grained wet plagioclase2 layers are volumetrically dominant over dry, coarse plagioclase1 fragments. This forms a layer capable of deforming by grain‐size sensitive creep and sustaining the mobility of fluids.
Plain Language Summary
Earthquakes are effective in fracturing rocks and creating pathways for fluids to flow and infiltrate deep within an otherwise dry and strong host rock. Fluids interacting with these dry and strong rocks, especially those in the lower crust at >25 km depth, may induce chemical reactions, produce new weaker minerals, and deteriorate the overall strength of the host rock. Areas that have become weaker will localize deformation and form ductile shear zones. The mechanistic processes that produce this transformation are poorly constrained and are the subject of this study. Using specialized microscopy techniques that measure the mineral's crystallographic orientation and the H2O content within plagioclase feldspar, we document that a single‐event earthquake rupture in the lower crust can liberate and mobilize a small amount of locally sourced H2O over short distances along fractures. However, without a sustainable source of H2O, fractures will heal themselves and consume the free H2O. We determined that repeated earthquake events, which repeatedly fracture the dry host rock into increasingly smaller fragments and mobilize fluids after each event, will form volumetrically thicker sequences of wet fine‐grained layers that can easily localize strain and form ductile shear zones.
Key Points
Plagioclase in the damage zone of a lower‐crustal pseudotachylyte deformed via pulverization‐style fragmentation
Liberated H2O as a result of the earthquake remained in grain boundary regions and facilitated neoblast growth and healing of fractures
Repeated fragmentation and comminution in addition to fluid at the grain boundaries are required to facilitate viscous deformation Coseismic fracturing in the strong, dry, and metastable plagioclase‐rich lower‐crust is an effective mechanism for creating pathways for fluids to infiltrate the host rock, kick‐start metamorphism, and potentially lead to rheological weakening. In this study, we have characterized the damage zone flanking a lower‐crustal pseudotachylyte (solidified frictional melt produced during seismic slip) within an anorthosite to determine the mechanisms of incipient aqueous fluid infiltration and redistribution in a lower‐crustal seismogenic fault. Pulverization‐style fracturing of the host anorthosite resulted in the comminution of the host plagioclase (plagioclase 1 ) grains and the growth of very fine (<20 μm) grained secondary plagioclase neoblasts (plagioclase 2 ) filling the fractures. Fluid‐assisted grain growth accompanied surface‐ and strain‐energy minimization grain growth in the healing and sealing of the fractures. This process was not associated with the densification nor the creation of new reaction‐induced porosity. Fourier transform infrared maps transecting the damage zones show the presence of H 2 O species along the plagioclase 1 and plagioclase 2 grain boundary regions, as well as incorporated into plagioclase 2 grain interiors. Grain‐size sensitive creep of fine‐grained plagioclase localized along the pseudotachylyte margin where fracturing was most pervasive. In the absence of reaction‐induced porosity, strain localization is determined by repeated occurrences of extreme grain‐size reduction in addition to the mobilization of aqueous fluid to the grain boundary regions, to the extent in which these fine‐grained wet plagioclase 2 layers are volumetrically dominant over dry, coarse plagioclase 1 fragments. This forms a layer capable of deforming by grain‐size sensitive creep and sustaining the mobility of fluids. Earthquakes are effective in fracturing rocks and creating pathways for fluids to flow and infiltrate deep within an otherwise dry and strong host rock. Fluids interacting with these dry and strong rocks, especially those in the lower crust at >25 km depth, may induce chemical reactions, produce new weaker minerals, and deteriorate the overall strength of the host rock. Areas that have become weaker will localize deformation and form ductile shear zones. The mechanistic processes that produce this transformation are poorly constrained and are the subject of this study. Using specialized microscopy techniques that measure the mineral's crystallographic orientation and the H 2 O content within plagioclase feldspar, we document that a single‐event earthquake rupture in the lower crust can liberate and mobilize a small amount of locally sourced H 2 O over short distances along fractures. However, without a sustainable source of H 2 O, fractures will heal themselves and consume the free H 2 O. We determined that repeated earthquake events, which repeatedly fracture the dry host rock into increasingly smaller fragments and mobilize fluids after each event, will form volumetrically thicker sequences of wet fine‐grained layers that can easily localize strain and form ductile shear zones. Plagioclase in the damage zone of a lower‐crustal pseudotachylyte deformed via pulverization‐style fragmentation Liberated H 2 O as a result of the earthquake remained in grain boundary regions and facilitated neoblast growth and healing of fractures Repeated fragmentation and comminution in addition to fluid at the grain boundaries are required to facilitate viscous deformation Coseismic fracturing in the strong, dry, and metastable plagioclase‐rich lower‐crust is an effective mechanism for creating pathways for fluids to infiltrate the host rock, kick‐start metamorphism, and potentially lead to rheological weakening. In this study, we have characterized the damage zone flanking a lower‐crustal pseudotachylyte (solidified frictional melt produced during seismic slip) within an anorthosite to determine the mechanisms of incipient aqueous fluid infiltration and redistribution in a lower‐crustal seismogenic fault. Pulverization‐style fracturing of the host anorthosite resulted in the comminution of the host plagioclase (plagioclase1) grains and the growth of very fine (<20 μm) grained secondary plagioclase neoblasts (plagioclase2) filling the fractures. Fluid‐assisted grain growth accompanied surface‐ and strain‐energy minimization grain growth in the healing and sealing of the fractures. This process was not associated with the densification nor the creation of new reaction‐induced porosity. Fourier transform infrared maps transecting the damage zones show the presence of H2O species along the plagioclase1 and plagioclase2 grain boundary regions, as well as incorporated into plagioclase2 grain interiors. Grain‐size sensitive creep of fine‐grained plagioclase localized along the pseudotachylyte margin where fracturing was most pervasive. In the absence of reaction‐induced porosity, strain localization is determined by repeated occurrences of extreme grain‐size reduction in addition to the mobilization of aqueous fluid to the grain boundary regions, to the extent in which these fine‐grained wet plagioclase2 layers are volumetrically dominant over dry, coarse plagioclase1 fragments. This forms a layer capable of deforming by grain‐size sensitive creep and sustaining the mobility of fluids. Abstract Coseismic fracturing in the strong, dry, and metastable plagioclase‐rich lower‐crust is an effective mechanism for creating pathways for fluids to infiltrate the host rock, kick‐start metamorphism, and potentially lead to rheological weakening. In this study, we have characterized the damage zone flanking a lower‐crustal pseudotachylyte (solidified frictional melt produced during seismic slip) within an anorthosite to determine the mechanisms of incipient aqueous fluid infiltration and redistribution in a lower‐crustal seismogenic fault. Pulverization‐style fracturing of the host anorthosite resulted in the comminution of the host plagioclase (plagioclase1) grains and the growth of very fine (<20 μm) grained secondary plagioclase neoblasts (plagioclase2) filling the fractures. Fluid‐assisted grain growth accompanied surface‐ and strain‐energy minimization grain growth in the healing and sealing of the fractures. This process was not associated with the densification nor the creation of new reaction‐induced porosity. Fourier transform infrared maps transecting the damage zones show the presence of H2O species along the plagioclase1 and plagioclase2 grain boundary regions, as well as incorporated into plagioclase2 grain interiors. Grain‐size sensitive creep of fine‐grained plagioclase localized along the pseudotachylyte margin where fracturing was most pervasive. In the absence of reaction‐induced porosity, strain localization is determined by repeated occurrences of extreme grain‐size reduction in addition to the mobilization of aqueous fluid to the grain boundary regions, to the extent in which these fine‐grained wet plagioclase2 layers are volumetrically dominant over dry, coarse plagioclase1 fragments. This forms a layer capable of deforming by grain‐size sensitive creep and sustaining the mobility of fluids. |
Author | Menegon, Luca Michalchuk, Stephen Paul Plümper, Oliver Ohl, Markus Gies, Nils B. Hermann, Jörg Lueder, Mona |
Author_xml | – sequence: 1 givenname: Stephen Paul orcidid: 0000-0003-0552-5538 surname: Michalchuk fullname: Michalchuk, Stephen Paul email: stephen.michalchuk@geo.uio.no organization: University of Oslo – sequence: 2 givenname: Mona surname: Lueder fullname: Lueder, Mona organization: University of Bern – sequence: 3 givenname: Nils B. orcidid: 0000-0003-1714-1320 surname: Gies fullname: Gies, Nils B. organization: University of Bern – sequence: 4 givenname: Markus orcidid: 0000-0002-8135-1915 surname: Ohl fullname: Ohl, Markus organization: ThermoFisher Scientific, Eindoven NanoPort EM Facility – sequence: 5 givenname: Jörg orcidid: 0000-0001-8360-3592 surname: Hermann fullname: Hermann, Jörg organization: University of Bern – sequence: 6 givenname: Oliver orcidid: 0000-0001-9726-0885 surname: Plümper fullname: Plümper, Oliver organization: Utrecht University – sequence: 7 givenname: Luca orcidid: 0000-0003-0625-2762 surname: Menegon fullname: Menegon, Luca organization: University of Oslo |
BookMark | eNp9kctuUzEQhi1UJHphxwNYYkvAd_ssS9QcIgVRoXZtOb60jk7tYPuoyo5H4Bl5EkwDqCtWM_rn06_5Z87AScrJA_AGo_cYkeEDQYSNS4TxINQLcIo54YuuyZNn_StwVusOIcw4V6dg_9nbe5NifagwB3j5bfZ5rnA1zdHBdQpxasW0mBM0ycGv3sXaStzOT1LsKtzkR19-fv-xLHNtZoLX1c8uN2PvD9Oh-T756E2J6Q6uzDy1C_AymKn613_qObhdXd0sPy02X8b18nKzMAwLsRgUsQTLITCvjAqcI8eCEFxI4YjlzlpqreNyIEFIZO2WSau2NhjmOLFM0nOwPvq6bHZ6X-KDKQedTdRPQi532pQW7eQ1ZWggVjLPvWMDxcpxprYeeymwogPvXvDoZUuPH5NOuRiNkeJEYywoRh15e0T2Jfcb1qZ3eS6pJ9QUyw4pgmmn3v01yrUWH_4thpH-_UL9_IUdp0f8MU7-8F9Wj-N4RSgXgv4C7MOe8w |
Cites_doi | 10.1007/s00410‐023‐01998‐x 10.1029/2018JB016461 10.1038/35836 10.1002/2016JB013533 10.1186/s40623‐017‐0776‐2 10.1002/2017GL073836 10.1038/35040537 10.1029/2000JB900223 10.1144/SP409.8 10.4028/www.scientific.net/SSP.160.63 10.1029/2020GC009028 10.1007/s00410‐024‐02141‐0 10.2138/am‐2004‐0413 10.1180/mgm.2021.43 10.1007/BF00372216 10.1029/1998JB900113 10.3390/min6040104 10.1029/2017JB015348 10.1107/S0021889808030112 10.1002/2017GC007189 10.1016/S0040‐1951(03)00241‐5 10.1029/2021JB022878 10.1029/2005jb003663 10.1016/0191‐8141(91)90051‐j 10.5194/se‐12‐959‐2021 10.1016/j.cageo.2024.105626 10.1016/j.jsg.2023.105029 10.2138/am‐2015‐5034 10.1029/2004JB003431 10.1007/s00410‐022‐01928‐3 10.1002/2014JB011708 10.1016/j.jsg.2023.104960 10.1016/j.jsg.2011.10.001 10.1016/0191‐8141(80)90005‐X 10.1126/sciadv.aaw0913 10.1093/petroj/39.8.1425 10.1016/j.jsg.2012.12.004 10.1016/0040‐1951(78)90101‐4 10.1007/BF00306442 10.1029/JB089iB06p04059 10.1016/j.tecto.2005.08.023 10.1144/SP478.4 10.1016/j.tecto.2021.229026 10.1111/jmg.12702 10.2138/rmg.2006.62.6 10.1016/j.jsg.2008.02.001 10.1130/g36307.1 10.1130/ges00573.1 10.2138/am‐2003‐5‐620 10.1029/95RG01302 10.1016/j.earscirev.2015.12.002 10.1007/s00410‐022‐01938‐1 10.1016/j.jsg.2018.05.021 10.1016/j.tecto.2004.01.006 10.1016/j.gca.2020.03.013 10.2138/am.2008.2657 10.1016/j.ultramic.2017.09.011 10.1130/ges00035.1 10.1130/g45632.1 10.1038/s41586‐018‐0045‐y 10.1016/j.epsl.2024.118621 10.1016/j.lithos.2016.03.011 10.1186/s40623‐019‐1117‐4 10.1007/BF00199553 10.1016/S0191‐8141(03)00081‐6 10.1016/j.tecto.2013.08.030 10.1126/sciadv.adi8533 10.1038/2091192a0 10.1029/JB091iB12p12723 10.1016/j.epsl.2005.04.009 10.1038/nature08051 10.1093/petrology/egh034 10.1016/0012‐821x(87)90158‐0 10.1098/rsta.2019.0416 10.1038/s41467‐020‐15150‐x 10.1016/S0191‐8141(01)00030‐X 10.1016/j.lithos.2021.106413 10.1029/2019JB017304 10.1007/s00410‐012‐0822‐9 10.1029/2020TC006572 10.1016/j.tecto.2007.05.005 10.1016/j.jsg.2023.105010 10.1038/ngeo3009 10.1016/j.cageo.2013.08.010 10.1029/2003TC001522 10.1016/j.epsl.2019.115886 10.1093/petrology/egab092 10.1130/b31922.1 10.1093/petrology/42.7.1349 10.1029/2018TC005297 10.1130/g33674.1 10.1016/S0191‐8141(01)00100‐6 10.1016/j.tecto.2021.229079 10.1016/j.jsg.2022.104547 10.1130/0091‐7613(1996)024<0063:Defdif>2.3.Co;2 10.1029/2018JB016559 10.1007/s005310000148 10.1029/2023JB026809 10.1002/2015JB012771 10.1029/2021JB023616 |
ContentType | Journal Article |
Copyright | 2025 The Author(s). Geochemistry, Geophysics, Geosystems published by Wiley Periodicals LLC on behalf of American Geophysical Union. 2025. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. info:eu-repo/semantics/openAccess |
Copyright_xml | – notice: 2025 The Author(s). Geochemistry, Geophysics, Geosystems published by Wiley Periodicals LLC on behalf of American Geophysical Union. – notice: 2025. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: info:eu-repo/semantics/openAccess |
DBID | 24P AAYXX CITATION 7TG 7TN F1W H96 KL. L.G 3HK DOA |
DOI | 10.1029/2024GC011968 |
DatabaseName | Wiley Online Library Open Access CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional NORA - Norwegian Open Research Archives DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Meteorological & Geoastrophysical Abstracts - Academic ASFA: Aquatic Sciences and Fisheries Abstracts |
DatabaseTitleList | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 1525-2027 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_34092c74e5ed49318d548be1e7618395 10852_116310 10_1029_2024GC011968 GGGE23566 |
Genre | researchArticle |
GrantInformation_xml | – fundername: UNIFOR – fundername: Norges Forskningsråd funderid: 295894, 334965 – fundername: Horizon 2020 Framework Programme funderid: 101005611 – fundername: Swiss National Science Foundation funderid: 200020‐196927 |
GroupedDBID | 05W 0R~ 1OC 24P 31~ 50Y 5GY 8-1 88I 8CJ 8FE 8FH 8G5 8R4 8R5 AAESR AAFWJ AAMMB AANHP AAYCA AAZKR ABCUV ABUWG ACAHQ ACBWZ ACCMX ACGFS ACGOD ACPOU ACRPL ACXQS ACYXJ ADBBV ADEOM ADIYS ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AENEX AEUYN AFBPY AFGKR AFKRA AFPKN AGQPQ AGXDD AIDQK AIDYY AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ASPBG AVWKF AZFZN AZQEC AZVAB BDRZF BENPR BFHJK BHPHI BKSAR BMXJE BPHCQ BRXPI CCPQU CS3 D1J DCZOG DPXWK DRFUL DRSTM DU5 DWQXO EBS EJD FEDTE G-S GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HVGLF HZ~ LATKE LEEKS LITHE LK5 LOXES LUTES LYRES M2O M2P M7R MSFUL MSSTM MXFUL MXSTM MY~ M~E O9- OK1 P-X P2W PCBAR PHGZM PHGZT PQQKQ PROAC Q2X R.K ROL SUPJJ UB1 WBKPD ZZTAW ~02 ~OA AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION 7TG 7TN F1W H96 KL. L.G WIN 3HK 3V. A00 AFPWT WYJ |
ID | FETCH-LOGICAL-a4166-982c2179f4e8a8f550d4f665676d2c5dcc3ccd5792f670ccb47c8bcfa4d52c473 |
IEDL.DBID | 24P |
ISSN | 1525-2027 |
IngestDate | Wed Aug 27 01:32:19 EDT 2025 Fri Feb 28 03:18:25 EST 2025 Wed Aug 13 11:09:29 EDT 2025 Tue Jul 01 05:06:09 EDT 2025 Sun Jul 06 04:45:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a4166-982c2179f4e8a8f550d4f665676d2c5dcc3ccd5792f670ccb47c8bcfa4d52c473 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 NFR/334965 |
ORCID | 0000-0003-1714-1320 0000-0002-8135-1915 0000-0001-8360-3592 0000-0001-9726-0885 0000-0003-0625-2762 0000-0003-0552-5538 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024GC011968 |
PQID | 3171168213 |
PQPubID | 54722 |
PageCount | 26 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_34092c74e5ed49318d548be1e7618395 cristin_nora_10852_116310 proquest_journals_3171168213 crossref_primary_10_1029_2024GC011968 wiley_primary_10_1029_2024GC011968_GGGE23566 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2025 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: February 2025 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Geochemistry, geophysics, geosystems : G3 |
PublicationYear | 2025 |
Publisher | John Wiley & Sons, Inc The Geochemical Society Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: The Geochemical Society – name: Wiley |
References | 2022; 177 1974; 59 1990; 104 1991; 13 2004; 26 1995; 33 2004; 23 2024; 189 2020; 11 2008; 30 2024 2001; 42 2000; 408 1989; 101 2023; 178 1966; 209 2016; 154 2024; 630 2016; 254–255 2021; 85 2007; 442 1986; 91 2021; 400–401 2018; 184 2019; 5 2005; 110 2005; 235 2004; 382 2004; 45 2015; 120 2015; 409 2019; 38 2024; 10 2012; 38 2009; 459 2001; 23 1999; 104 2006; 111 2011; 7 2016; 6 1998; 391 2023; 41 2021; 819 2021; 379 2000; 105 2019; 47 2018; 114 1985; 70 2020; 277 2008; 41 2020; 21 1978; 46 2021; 62 2013; 609 2001; 90 2017; 44 2015; 100 2005; 411 2018; 123 2019; 124 2013; 165 2014; 62 2018; 131 2006; 62 1987; 81 2015; 43 2018; 70 2019; 478 2020; 530 2023; 104960 2017; 122 1996; 24 2021; 40 2022; 127 2003; 88 2022; 156 2019; 71 2013; 48 2010 1984; 89 2004; 89 2013; 41 2023; 128 2016; 121 2006; 2 2008; 93 2003; 372 1998; 39 2021; 12 2018; 556 1980; 2 2017; 10 2002; 24 2024; 178 2017; 18 2024; 179 1989; 16 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 Langer K. (e_1_2_9_47_1) 1974; 59 e_1_2_9_71_1 e_1_2_9_103_1 e_1_2_9_14_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_6_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_49_1 Hofmeister A. M. (e_1_2_9_26_1) 1985; 70 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_102_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_9_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_101_1 e_1_2_9_105_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_28_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_70_1 e_1_2_9_100_1 e_1_2_9_104_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_25_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 372 start-page: 215 issue: 3 year: 2003 end-page: 233 article-title: Dislocation generation, slip systems, and dynamic recrystallization in experimentally deformed plagioclase single crystals publication-title: Tectonophysics – volume: 62 start-page: 227 year: 2014 end-page: 240 article-title: XMapTools: A MATLAB©‐based program for electron microprobe X‐ray image processing and geothermobarometry publication-title: Computers & Geosciences – volume: 7 start-page: 202 issue: 1 year: 2011 end-page: 218 article-title: Eclogitization and exhumation of Caledonian continental basement in Lofoten, north Norway publication-title: Geosphere – volume: 105 start-page: 26017 issue: B11 year: 2000 end-page: 26036 article-title: Dislocation and diffusion creep of synthetic anorthite aggregates publication-title: Journal of Geophysical Research – volume: 16 start-page: 334 issue: 4 year: 1989 end-page: 342 article-title: The uptake and solubility of water in quartz at elevated pressure and temperature publication-title: Physics and Chemistry of Minerals – volume: 62 start-page: 117 issue: 1 year: 2006 end-page: 154 article-title: Water in nominally anhydrous crustal minerals: Speciation, concentration, and geologic significance publication-title: Reviews in Mineralogy and Geochemistry – volume: 382 start-page: 173 issue: 3–4 year: 2004 end-page: 187 article-title: Deformation mechanism maps for feldspar rocks publication-title: Tectonophysics – volume: 6 issue: 4 year: 2016 article-title: Nano‐tomography of porous geological materials using focused ion beam‐scanning electron microscopy publication-title: Minerals – volume: 127 issue: 4 year: 2022 article-title: Time‐lapse record of an earthquake in the dry felsic lower continental crust preserved in a pseudotachylyte‐bearing fault publication-title: Journal of Geophysical Research: Solid Earth – volume: 24 start-page: 1179 issue: 6 year: 2002 end-page: 1193 article-title: Dissolution and replacement creep: A significant deformation mechanism in mid‐crustal rocks publication-title: Journal of Structural Geology – volume: 177 start-page: 61 issue: 6 year: 2022 article-title: Reactive fluid flow guided by grain‐scale equilibrium reactions during eclogitization of dry crustal rocks publication-title: Contributions to Mineralogy and Petrology – volume: 38 start-page: 21 year: 2012 end-page: 38 article-title: Deformation and ultrafine dynamic recrystallization of quartz in pseudotachylyte‐bearing brittle faults: A matter of a few seconds publication-title: Journal of Structural Geology – volume: 41 start-page: 449 issue: 3 year: 2023 end-page: 464 article-title: Partial melting and reaction along deformation features in plagioclase publication-title: Journal of Metamorphic Geology – volume: 189 year: 2024 article-title: A workflow and software solution for spatially resolved spectroscopic and numerical data (SpecXY) publication-title: Computers & Geosciences – volume: 131 start-page: 403 issue: 3–4 year: 2018 end-page: 425 article-title: Evidence for deep crustal seismic rupture in a granulite‐facies, intraplate, strike‐slip shear zone, northern Saskatchewan, Canada publication-title: GSA Bulletin – volume: 209 start-page: 1192 issue: 5029 year: 1966 end-page: 1193 article-title: Extinction coefficient of water at 2.93µ and water content of black foam films publication-title: Nature – volume: 154 start-page: 1 year: 2016 end-page: 13 article-title: Disequilibrium metamorphism of stressed lithosphere publication-title: Earth‐Science Reviews – volume: 459 start-page: 974 issue: 7249 year: 2009 end-page: 977 article-title: Creep cavitation can establish a dynamic granular fluid pump in ductile shear zones publication-title: Nature – volume: 85 start-page: 291 issue: 3 year: 2021 end-page: 320 article-title: IMA–CNMNC approved mineral symbols publication-title: Mineralogical Magazine – volume: 42 start-page: 1349 issue: 7 year: 2001 end-page: 1372 article-title: High‐pressure fluid–rock reactions involving Cl‐bearing fluids in lower‐crustal ductile shear zones of the Flakstadøy basic complex, Lofoten, Norway publication-title: Journal of Petrology – volume: 41 start-page: 247 issue: 2 year: 2013 end-page: 250 article-title: Very little water is necessary to make a dry solid silicate system wet publication-title: Geology – volume: 90 start-page: 136 issue: 1 year: 2001 end-page: 148 article-title: Weakening and strain localization produced by syn‐deformational reaction of plagioclase publication-title: International Journal of Earth Sciences – volume: 411 start-page: 157 issue: 1 year: 2005 end-page: 167 article-title: The misorientation index: Development of a new method for calculating the strength of lattice‐preferred orientation publication-title: Tectonophysics – volume: 120 start-page: 3119 issue: 5 year: 2015 end-page: 3141 article-title: High‐temperature fracturing and subsequent grain‐size‐sensitive creep in lower crustal gabbros: Evidence for coseismic loading followed by creep during decaying stress in the lower crust? publication-title: Journal of Geophysical Research: Solid Earth – volume: 400–401 year: 2021 article-title: Preservation of granulite in a partially eclogitized terrane: Metastable phenomena or local pressure variations? publication-title: Lithos – volume: 81 start-page: 221 issue: 2–3 year: 1987 end-page: 232 article-title: Eclogitization of lower crustal granulites by fluid migration through shear zones publication-title: Earth and Planetary Science Letters – volume: 88 start-page: 901 issue: 5–6 year: 2003 end-page: 911 article-title: The concentration and speciation of hydrogen in feldspars using FTIR and H‐1 MAS NMR spectroscopy publication-title: American Mineralogist – volume: 104 start-page: 10483 issue: B5 year: 1999 end-page: 10497 article-title: Grain boundary diffusion creep of synthetic anorthite aggregates: The effect of water publication-title: Journal of Geophysical Research – volume: 26 start-page: 47 issue: 1 year: 2004 end-page: 69 article-title: The influence of grain boundary fluids on the microstructure of quartz‐feldspar mylonites publication-title: Journal of Structural Geology – volume: 48 start-page: 95 year: 2013 end-page: 112 article-title: Transition from fracturing to viscous flow in granulite facies perthitic feldspar (Lofoten, Norway) publication-title: Journal of Structural Geology – volume: 178 year: 2024 article-title: Rheology of hydrated plagioclase at lower crustal conditions: Cataclasis, creep and transformational plasticity publication-title: Journal of Structural Geology – volume: 33 start-page: 267 issue: 3 year: 1995 end-page: 309 article-title: Nature and composition of the continental crust: A lower crustal perspective publication-title: Reviews of Geophysics – volume: 100 start-page: 1209 issue: 5–6 year: 2015 end-page: 1221 article-title: Hydrous species in feldspars: A reassessment based on FTIR and SIMS publication-title: American Mineralogist – volume: 391 start-page: 781 issue: 6669 year: 1998 end-page: 783 article-title: Composition of fluids in the lower crust inferred from metamorphic salt in lower crustal rocks publication-title: Nature – volume: 819 year: 2021 article-title: Evolution of fluid pathways during eclogitization and their impact on formation and deformation of eclogite: A microstructural and petrological investigation at the type locality (Koralpe, eastern alps, Austria) publication-title: Tectonophysics – volume: 62 issue: 12 year: 2021 article-title: Fluid–mineral interactions: Controlling coupled mechanisms of reaction, mass transfer and deformation publication-title: Journal of Petrology – volume: 70 start-page: 794 issue: 7–8 year: 1985 end-page: 804 article-title: A spectroscopic study of irradiation coloring of amazonite: Structurally hydrous, Pb‐bearing feldspar publication-title: American Mineralogist – volume: 39 start-page: 1425 issue: 8 year: 1998 end-page: 1452 article-title: The origin of anorthosites and related rocks from the Lofoten Islands, northern Norway: I. Field relations and estimation of intrinsic variables publication-title: Journal of Petrology – volume: 21 issue: 8 year: 2020 article-title: Evolution of brittle structures in plagioclase‐rich rocks at high‐pressure and high‐temperature conditions—Linking laboratory results to field observations publication-title: Geochemistry, Geophysics, Geosystems – year: 2010 – volume: 30 start-page: 565 issue: 5 year: 2008 end-page: 579 article-title: Dissolution‐precipitation creep of K‐feldspar in mid‐crustal granite mylonites publication-title: Journal of Structural Geology – volume: 12 start-page: 959 issue: 4 year: 2021 end-page: 969 article-title: Nanoscale earthquake records preserved in plagioclase microfractures from the lower continental crust publication-title: Solid Earth – volume: 41 start-page: 1024 issue: 6 year: 2008 end-page: 1037 article-title: A novel pole figure inversion method: Specification of the MTEX algorithm publication-title: Journal of Applied Crystallography – volume: 127 issue: 7 year: 2022 article-title: High stress deformation and short‐term thermal pulse preserved in pyroxene microstructures from exhumed lower crustal seismogenic faults (Lofoten, Norway) publication-title: Journal of Geophysical Research: Solid Earth – volume: 235 start-page: 361 issue: 1–2 year: 2005 end-page: 374 article-title: Gouge formation by dynamic pulverization during earthquake rupture publication-title: Earth and Planetary Science Letters – volume: 89 start-page: 586 issue: 4 year: 2004 end-page: 600 article-title: A survey of hydrous species and concentrations in igneous feldspars publication-title: American Mineralogist – volume: 104960 year: 2023 article-title: Protracted localization of metamorphism and deformation in a heterogeneous lower‐crustal shear zone publication-title: Journal of Structural Geology – volume: 47 start-page: 151 issue: 2 year: 2019 end-page: 154 article-title: Stress orientation–dependent reactions during metamorphism publication-title: Geology – volume: 93 start-page: 751 issue: 5–6 year: 2008 end-page: 764 article-title: Quantitative absorbance spectroscopy with unpolarized light: Part I. Physical and mathematical development publication-title: American Mineralogist – volume: 178 start-page: 19 issue: 3 year: 2023 article-title: Twinning and partial melting as early weakening processes in plagioclase at high pressure: Insights from Holsnøy (Scandinavian Caledonides, Norway) publication-title: Contributions to Mineralogy and Petrology – volume: 110 issue: B7 year: 2005 article-title: Rheology of synthetic anorthite‐diopside aggregates: Implications for ductile shear zones publication-title: Journal of Geophysical Research – volume: 156 start-page: 16 year: 2022 article-title: Enhancement of ductile deformation in polycrystalline anorthite due to the addition of water publication-title: Journal of Structural Geology – volume: 91 start-page: 12723 issue: B12 year: 1986 end-page: 12741 article-title: Solubility and diffusional uptake of hydrogen in quartz at high water pressures: Implications for hydrolytic weakening publication-title: Journal of Geophysical Research – volume: 379 start-page: 29 issue: 2193 year: 2021 article-title: The earthquake cycle in the dry lower continental crust: Insights from two deeply exhumed terranes (Musgrave ranges, Australia and Lofoten, Norway) publication-title: Philosophical Transactions of the Royal Society A – volume: 44 start-page: 6667 issue: 13 year: 2017 end-page: 6674 article-title: The recrystallized grain size piezometer for quartz: An EBSD‐based calibration publication-title: Geophysical Research Letters – volume: 45 start-page: 1799 issue: 9 year: 2004 end-page: 1819 article-title: U–Pb age, setting and tectonic significance of the Anorthosite–Mangerite–Charnockite–granite suite, Lofoten–Vesterålen, Norway publication-title: Journal of Petrology – year: 2024 – volume: 104 start-page: 184 issue: 2 year: 1990 end-page: 193 article-title: Fluid controlled eclogitization of granulites in deep crustal shear zones, Bergen arcs, Western Norway publication-title: Contributions to Mineralogy and Petrology – volume: 178 year: 2024 article-title: Evolution of H2O content in deforming quartz aggregates: An experimental study publication-title: Journal of Structural Geology – volume: 409 start-page: 251 issue: 1 year: 2015 end-page: 271 article-title: Descriptive tools for the analysis of texture projects with large datasets using MTEX: Strength, symmetry and components publication-title: Geological Society, London, Special Publications – volume: 556 start-page: 487 issue: 7702 year: 2018 end-page: 491 article-title: Earthquake‐induced transformation of the lower crust publication-title: Nature – volume: 38 start-page: 898 issue: 3 year: 2019 end-page: 915 article-title: The interplay of eclogitization and deformation during deep burial of the lower continental crust—A case study from the Bergen arcs (western Norway) publication-title: Tectonics – volume: 184 start-page: 310 year: 2018 end-page: 317 article-title: An improved FIB sample preparation technique for site‐specific plan‐view specimens: A new cutting geometry publication-title: Ultramicroscopy – volume: 2 start-page: 439 issue: 4 year: 1980 end-page: 451 article-title: Hydrolytic weakening of experimentally deformed Westerly granite and Hale albite rock publication-title: Journal of Structural Geology – volume: 121 start-page: 3278 issue: 5 year: 2016 end-page: 3299 article-title: Dislocation creep of dry quartz publication-title: Journal of Geophysical Research: Solid Earth – volume: 442 start-page: 83 issue: 1–4 year: 2007 end-page: 104 article-title: Simulating coseismic deformation of quartz in the middle crust and fabric evolution during postseismic stress relaxation ‐: An experimental study publication-title: Tectonophysics – volume: 408 start-page: 75 issue: 6808 year: 2000 end-page: 78 article-title: Accelerated hydration of the Earth's deep crust induced by stress perturbations publication-title: Nature – volume: 179 start-page: 61 issue: 6 year: 2024 article-title: Brittle initiation of dissolution–precipitation creep in plagioclase‐rich rocks: Insights from the Bergen arcs, Norway publication-title: Contributions to Mineralogy and Petrology – volume: 123 start-page: 3729 issue: 5 year: 2018 end-page: 3746 article-title: Microstructural records of earthquakes in the lower crust and associated fluid‐driven metamorphism in plagioclase‐rich granulites publication-title: Journal of Geophysical Research: Solid Earth – volume: 254–255 start-page: 84 year: 2016 end-page: 93 article-title: Instantaneous healing of micro‐fractures during coseismic slip: Evidence from microstructure and Ti in quartz geochemistry within an exhumed pseudotachylyte‐bearing fault in tonalite publication-title: Lithos – volume: 59 start-page: 1249 issue: 11–12 year: 1974 end-page: 1258 article-title: Infrared spectra of Al‐Fe(III)‐epidotes and zoisites, Ca2(Al1‐p Fe3+p)Al2O(OH)[Si2O7][SiO4] publication-title: American Mineralogist – volume: 10 issue: 9 year: 2024 article-title: On‐fault earthquake energy density partitioning from shocked garnet in an exhumed seismic midcrustal fault publication-title: Science Advances – volume: 101 start-page: 426 issue: 4 year: 1989 end-page: 437 article-title: A TEM study of disequilibrium plagioclase breakdown at high pressure: The role of infiltrating fluid publication-title: Contributions to Mineralogy and Petrology – volume: 89 start-page: 4059 issue: B6 year: 1984 end-page: 4071 article-title: Water in minerals? A peak in the infrared publication-title: Journal of Geophysical Research: Solid Earth – volume: 609 start-page: 620 year: 2013 end-page: 635 article-title: Fluid and deformation induced metamorphic processes around Moho beneath continent collision zones: Examples from the exposed root zone of the Caledonian mountain belt, W‐Norway publication-title: Tectonophysics – volume: 124 start-page: 7725 issue: 8 year: 2019 end-page: 7755 article-title: The effects of earthquakes and fluids on the metamorphism of the lower continental crust publication-title: Journal of Geophysical Research: Solid Earth – volume: 478 start-page: 39 issue: 1 year: 2019 end-page: 63 article-title: Quantitative compositional mapping of mineral phases by electron probe micro‐analyser publication-title: Geological Society – volume: 177 start-page: 72 issue: 7 year: 2022 article-title: How fluid infiltrates dry crustal rocks during progressive eclogitization and shear zone formation: Insights from H2O contents in nominally anhydrous minerals publication-title: Contributions to Mineralogy and Petrology – volume: 124 start-page: 219 issue: 1 year: 2019 end-page: 240 article-title: Weak and slow, strong and fast: How shear zones evolve in a dry continental crust (Musgrave ranges, Central Australia) publication-title: Journal of Geophysical Research: Solid Earth – volume: 277 start-page: 87 year: 2020 end-page: 110 article-title: Hydrogen incorporation in plagioclase publication-title: Geochimica et Cosmochimica Acta – volume: 165 start-page: 543 issue: 3 year: 2013 end-page: 562 article-title: Interaction of chemical and physical processes during deformation at fluid‐present conditions: A case study from an anorthosite–leucogabbro deformed at amphibolite facies conditions publication-title: Contributions to Mineralogy and Petrology – volume: 46 start-page: T1 issue: 1 year: 1978 end-page: T6 article-title: Hydrolytic weakening in quartz publication-title: Tectonophysics – volume: 530 start-page: 14 year: 2020 article-title: Mechanisms of fault mirror formation and fault healing in carbonate rocks publication-title: Earth and Planetary Science Letters – volume: 114 start-page: 95 year: 2018 end-page: 110 article-title: Evolution in H2O contents during deformation of polycrystalline quartz: An experimental study publication-title: Journal of Structural Geology – volume: 40 issue: 3 year: 2021 article-title: Widening of hydrous shear zones during incipient eclogitization of metastable dry and rigid lower crust—Holsnøy, western Norway publication-title: Tectonics – volume: 43 start-page: 227 issue: 3 year: 2015 end-page: 230 article-title: Creep cavitation bands control porosity and fluid flow in lower crustal shear zones publication-title: Geology – volume: 2 start-page: 61 issue: 1 year: 2006 end-page: 72 article-title: Retrograded eclogite‐facies pseudotachylytes as deep‐crustal paleoseismic faults within continental basement of Lofoten, north Norway publication-title: Geosphere – volume: 124 start-page: 11771 issue: 11 year: 2019 end-page: 11801 article-title: Dynamics, radiation, and overall energy budget of earthquake rupture with coseismic off‐fault damage publication-title: Journal of Geophysical Research: Solid Earth – volume: 111 issue: B3 year: 2006 article-title: Influence of water fugacity and activation volume on the flow properties of fine‐grained anorthite aggregates publication-title: Journal of Geophysical Research – volume: 11 issue: 1 year: 2020 article-title: Earthquake nucleation in the lower crust by local stress amplification publication-title: Nature Communications – volume: 23 issue: 1 year: 2004 article-title: The Silurian to Permian history of a metamorphic core complex in Lofoten, northern Scandinavian Caledonides publication-title: Tectonics – volume: 630 year: 2024 article-title: Dating fossil lower‐crustal earthquakes by in‐situ apatite U‐Pb geochronology publication-title: Earth and Planetary Science Letters – volume: 122 start-page: 866 issue: 2 year: 2017 end-page: 894 article-title: Water redistribution in experimentally deformed natural milky quartz single crystals—Implications for H2O‐weakening processes publication-title: Journal of Geophysical Research: Solid Earth – volume: 70 start-page: 3 issue: 1 year: 2018 article-title: Strain localization and fabric development in polycrystalline anorthite + melt by water diffusion in an axial deformation experiment publication-title: Earth Planets and Space – volume: 24 start-page: 63 issue: 1 year: 1996 end-page: 66 article-title: Deformation‐enhanced fluid distribution in feldspar aggregates and implications for ductile shear zones publication-title: Geology – volume: 128 issue: 8 year: 2023 article-title: Dynamic evolution of porosity in lower‐crustal faults during the earthquake cycle publication-title: Journal of Geophysical Research: Solid Earth – volume: 23 start-page: 1781 issue: 11 year: 2001 end-page: 1802 article-title: Dynamic recrystallization processes in plagioclase porphyroclasts publication-title: Journal of Structural Geology – volume: 18 start-page: 4356 issue: 12 year: 2017 end-page: 4374 article-title: Earthquakes as precursors of ductile shear zones in the dry and strong lower crust publication-title: Geochemistry, Geophysics, Geosystems – volume: 71 start-page: 136 issue: 1 year: 2019 article-title: Water distribution in quartz schists of the Sanbagawa metamorphic belt, Japan: Infrared spectroscopic mapping and comparison of the calibrations proposed for determining water contents publication-title: Earth Planets and Space – volume: 10 start-page: 685 issue: 9 year: 2017 end-page: 690 article-title: Fluid‐driven metamorphism of the continental crust governed by nanoscale fluid flow publication-title: Nature Geoscience – volume: 13 start-page: 987 issue: 9 year: 1991 end-page: 1000 article-title: Diffusion creep in feldspar aggregates: Experimental evidence publication-title: Journal of Structural Geology – volume: 819 year: 2021 article-title: Transient weakening during the granulite to eclogite transformation within hydrous shear zones (Holsnøy, Norway) publication-title: Tectonophysics – volume: 5 issue: 7 year: 2019 article-title: Dynamic earthquake rupture in the lower crust publication-title: Science Advances – ident: e_1_2_9_7_1 doi: 10.1007/s00410‐023‐01998‐x – ident: e_1_2_9_33_1 doi: 10.1029/2018JB016461 – ident: e_1_2_9_53_1 doi: 10.1038/35836 – ident: e_1_2_9_91_1 doi: 10.1002/2016JB013533 – ident: e_1_2_9_19_1 doi: 10.1186/s40623‐017‐0776‐2 – ident: e_1_2_9_15_1 doi: 10.1002/2017GL073836 – ident: e_1_2_9_29_1 doi: 10.1038/35040537 – ident: e_1_2_9_81_1 doi: 10.1029/2000JB900223 – ident: e_1_2_9_50_1 doi: 10.1144/SP409.8 – ident: e_1_2_9_5_1 doi: 10.4028/www.scientific.net/SSP.160.63 – ident: e_1_2_9_28_1 doi: 10.1029/2020GC009028 – ident: e_1_2_9_64_1 doi: 10.1007/s00410‐024‐02141‐0 – ident: e_1_2_9_36_1 doi: 10.2138/am‐2004‐0413 – ident: e_1_2_9_99_1 doi: 10.1180/mgm.2021.43 – ident: e_1_2_9_100_1 doi: 10.1007/BF00372216 – ident: e_1_2_9_17_1 doi: 10.1029/1998JB900113 – ident: e_1_2_9_49_1 doi: 10.3390/min6040104 – ident: e_1_2_9_73_1 doi: 10.1029/2017JB015348 – ident: e_1_2_9_25_1 doi: 10.1107/S0021889808030112 – ident: e_1_2_9_57_1 doi: 10.1002/2017GC007189 – ident: e_1_2_9_89_1 doi: 10.1016/S0040‐1951(03)00241‐5 – ident: e_1_2_9_51_1 doi: 10.1029/2021JB022878 – ident: e_1_2_9_83_1 doi: 10.1029/2005jb003663 – ident: e_1_2_9_98_1 doi: 10.1016/0191‐8141(91)90051‐j – ident: e_1_2_9_74_1 doi: 10.5194/se‐12‐959‐2021 – ident: e_1_2_9_23_1 doi: 10.1016/j.cageo.2024.105626 – ident: e_1_2_9_90_1 doi: 10.1016/j.jsg.2023.105029 – ident: e_1_2_9_66_1 doi: 10.2138/am‐2015‐5034 – ident: e_1_2_9_16_1 doi: 10.1029/2004JB003431 – ident: e_1_2_9_102_1 doi: 10.1007/s00410‐022‐01928‐3 – ident: e_1_2_9_69_1 doi: 10.1002/2014JB011708 – ident: e_1_2_9_104_1 doi: 10.1016/j.jsg.2023.104960 – ident: e_1_2_9_9_1 doi: 10.1016/j.jsg.2011.10.001 – ident: e_1_2_9_97_1 doi: 10.1016/0191‐8141(80)90005‐X – ident: e_1_2_9_72_1 doi: 10.1126/sciadv.aaw0913 – ident: e_1_2_9_54_1 doi: 10.1093/petroj/39.8.1425 – ident: e_1_2_9_59_1 doi: 10.1016/j.jsg.2012.12.004 – ident: e_1_2_9_39_1 doi: 10.1016/0040‐1951(78)90101‐4 – ident: e_1_2_9_32_1 doi: 10.1007/BF00306442 – ident: e_1_2_9_2_1 doi: 10.1029/JB089iB06p04059 – ident: e_1_2_9_85_1 doi: 10.1016/j.tecto.2005.08.023 – ident: e_1_2_9_45_1 doi: 10.1144/SP478.4 – ident: e_1_2_9_10_1 doi: 10.1016/j.tecto.2021.229026 – ident: e_1_2_9_27_1 doi: 10.1111/jmg.12702 – ident: e_1_2_9_34_1 doi: 10.2138/rmg.2006.62.6 – ident: e_1_2_9_58_1 doi: 10.1016/j.jsg.2008.02.001 – ident: e_1_2_9_56_1 doi: 10.1130/g36307.1 – ident: e_1_2_9_88_1 doi: 10.1130/ges00573.1 – ident: e_1_2_9_35_1 doi: 10.2138/am‐2003‐5‐620 – ident: e_1_2_9_80_1 doi: 10.1029/95RG01302 – ident: e_1_2_9_30_1 doi: 10.1016/j.earscirev.2015.12.002 – ident: e_1_2_9_37_1 doi: 10.1007/s00410‐022‐01938‐1 – ident: e_1_2_9_71_1 doi: 10.1016/j.jsg.2018.05.021 – ident: e_1_2_9_82_1 doi: 10.1016/j.tecto.2004.01.006 – ident: e_1_2_9_65_1 doi: 10.1016/j.gca.2020.03.013 – ident: e_1_2_9_84_1 doi: 10.2138/am.2008.2657 – ident: e_1_2_9_48_1 doi: 10.1016/j.ultramic.2017.09.011 – ident: e_1_2_9_87_1 doi: 10.1130/ges00035.1 – ident: e_1_2_9_63_1 doi: 10.1130/g45632.1 – ident: e_1_2_9_31_1 doi: 10.1038/s41586‐018‐0045‐y – ident: e_1_2_9_105_1 doi: 10.1016/j.epsl.2024.118621 – ident: e_1_2_9_8_1 doi: 10.1016/j.lithos.2016.03.011 – ident: e_1_2_9_20_1 doi: 10.1186/s40623‐019‐1117‐4 – ident: e_1_2_9_22_1 doi: 10.1007/BF00199553 – ident: e_1_2_9_52_1 doi: 10.1016/S0191‐8141(03)00081‐6 – ident: e_1_2_9_4_1 doi: 10.1016/j.tecto.2013.08.030 – volume: 70 start-page: 794 issue: 7 year: 1985 ident: e_1_2_9_26_1 article-title: A spectroscopic study of irradiation coloring of amazonite: Structurally hydrous, Pb‐bearing feldspar publication-title: American Mineralogist – ident: e_1_2_9_94_1 doi: 10.1126/sciadv.adi8533 – ident: e_1_2_9_13_1 doi: 10.1038/2091192a0 – ident: e_1_2_9_60_1 – ident: e_1_2_9_41_1 doi: 10.1029/JB091iB12p12723 – ident: e_1_2_9_78_1 doi: 10.1016/j.epsl.2005.04.009 – volume: 59 start-page: 1249 issue: 11 year: 1974 ident: e_1_2_9_47_1 article-title: Infrared spectra of Al‐Fe(III)‐epidotes and zoisites, Ca2(Al1‐p Fe3+p)Al2O(OH)[Si2O7][SiO4] publication-title: American Mineralogist – ident: e_1_2_9_21_1 doi: 10.1038/nature08051 – ident: e_1_2_9_14_1 doi: 10.1093/petrology/egh034 – ident: e_1_2_9_3_1 doi: 10.1016/0012‐821x(87)90158‐0 – ident: e_1_2_9_55_1 doi: 10.1098/rsta.2019.0416 – ident: e_1_2_9_12_1 doi: 10.1038/s41467‐020‐15150‐x – ident: e_1_2_9_44_1 – ident: e_1_2_9_42_1 doi: 10.1016/S0191‐8141(01)00030‐X – ident: e_1_2_9_77_1 doi: 10.1016/j.lithos.2021.106413 – ident: e_1_2_9_68_1 doi: 10.1029/2019JB017304 – ident: e_1_2_9_93_1 doi: 10.1007/s00410‐012‐0822‐9 – ident: e_1_2_9_38_1 doi: 10.1029/2020TC006572 – ident: e_1_2_9_95_1 doi: 10.1016/j.tecto.2007.05.005 – ident: e_1_2_9_6_1 doi: 10.1016/j.jsg.2023.105010 – ident: e_1_2_9_75_1 doi: 10.1038/ngeo3009 – ident: e_1_2_9_46_1 doi: 10.1016/j.cageo.2013.08.010 – ident: e_1_2_9_86_1 doi: 10.1029/2003TC001522 – ident: e_1_2_9_67_1 doi: 10.1016/j.epsl.2019.115886 – ident: e_1_2_9_76_1 doi: 10.1093/petrology/egab092 – ident: e_1_2_9_70_1 doi: 10.1130/b31922.1 – ident: e_1_2_9_43_1 doi: 10.1093/petrology/42.7.1349 – ident: e_1_2_9_103_1 doi: 10.1029/2018TC005297 – ident: e_1_2_9_62_1 doi: 10.1130/g33674.1 – ident: e_1_2_9_101_1 doi: 10.1016/S0191‐8141(01)00100‐6 – ident: e_1_2_9_79_1 doi: 10.1016/j.tecto.2021.229079 – ident: e_1_2_9_18_1 doi: 10.1016/j.jsg.2022.104547 – ident: e_1_2_9_96_1 doi: 10.1130/0091‐7613(1996)024<0063:Defdif>2.3.Co;2 – ident: e_1_2_9_24_1 doi: 10.1029/2018JB016559 – ident: e_1_2_9_92_1 doi: 10.1007/s005310000148 – ident: e_1_2_9_61_1 doi: 10.1029/2023JB026809 – ident: e_1_2_9_40_1 doi: 10.1002/2015JB012771 – ident: e_1_2_9_11_1 doi: 10.1029/2021JB023616 |
SSID | ssj0014558 |
Score | 2.4439478 |
Snippet | Coseismic fracturing in the strong, dry, and metastable plagioclase‐rich lower‐crust is an effective mechanism for creating pathways for fluids to infiltrate... Coseismic fracturing in the strong, dry, and metastable plagioclase-rich lower-crust is an effective mechanism for creating pathways for fluids to infiltrate... Abstract Coseismic fracturing in the strong, dry, and metastable plagioclase‐rich lower‐crust is an effective mechanism for creating pathways for fluids to... |
SourceID | doaj cristin proquest crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
SubjectTerms | brittle deformation Chemical reactions Deformation Earthquakes Feldspars Fluids fluid‐rock interaction Fourier transform infrared spectroscopy (FTIR) Fourier transforms Grain boundaries Grain growth Infiltration lower crust Metamorphism Microscopy Plagioclase Porosity pseudotachylyte Rock Rocks Seismic activity Shear Solifluction |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA4iFLyIT1xf5KA3F9s8NpujLe1WURFR8BY2LyzUVWx76M2f4G_0lzhJt6Ve9OI1u-wOmRnm-5jkG4ROstxzr6lPLdTelFFN0lJ6SDygGjq3WlofOro3t1n_kV098aelUV_hTNhMHni2cecUCAgxgjnuLJMQgRYwtnYtB_wbintUL4WaNydTdf-AcZ7Xx9ybRAaGz4pOkDcLkqoNE_On-lGKomL_D5i5DFZjteltoPUaJuKLmXmbaMVVW6hRxDG80230duPCjd3B6GWEXz2-gG8Bg8e94WRg8WXlB8NaDReXlcX34e7tYrIVHsAqvg7T0b4-PjvhzgX86W7kJkBQS_M8HU7HDp60IQegruFeORmOd9Bjr_vQ6af17IS0BIiVpTInBtiG9MzlJfiDNy3zGYA3kVliuDWGGmO5kMRnommMZsLk2viSWU4ME3QXrVavldtDWBCnNadaOpEzagGPUCFM6CSDO7SXCUrqDVUVhG2QHOUEmEUGyDFBp_MtVm8z-QwV295EqmWnJKgd9n_xThC9jgsQCqoOBfVXKCTocO49VWfiSAE-AlNy0qIJOose_dUQVRRFl1AAufv_YdIBWiNhYHA85n2IVsfvE3cEKGasj2PAfgPOh-vp priority: 102 providerName: Directory of Open Access Journals |
Title | Mechanisms of Aqueous Fluid Infiltration and Redistribution in a Lower‐Crustal Pseudotachylyte‐Bearing Fault |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024GC011968 https://www.proquest.com/docview/3171168213 http://hdl.handle.net/10852/116310 https://doaj.org/article/34092c74e5ed49318d548be1e7618395 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbhMxFLWgCIkNanmIgbbyAnaMaPwcL9uomYIoqhCVurPGL4iUTqpOssiOT-Ab-ZLe67hRukFiO2OPLV_f8Tm277mEvFdNksnxVAdYe2vBHas7k8DxgGq4JjgTEp7onn9TZ5fiy5W8KhtuGAuz1ofYbLihZ-T_NTp454YiNoAamcDaRTtGyTLVPCZPMLoWtfOZuNicIgiZ83Niip8aSX65-A71P23XBujrs0f1DxanrOH_AHhuw9e8_kx2yfMCHOnx2tJ75FHsX5CnbU7Mu3pJbs4jxvBOh-uBzhM9hm8Bp6eT2XIa6Oc-TWdFH5d2faDfMRp3k-uKTuEp_Yr50v7-_jPGKAxo6WKIS6Csnf-1mq0WEd6cgFfASkcn3XK2eEUuJ6c_xmd1yaZQdwC6VG0a5oF_mCRi04GF5FEQSQGc0yowL4P33PsgtWFJ6SPvndC-cT51IkjmheavyU4_7-MbQjWLzknuTNSN4AEQCtfa49my4SOXTEWqMqC2h4mMIqSSAddQgCUr8uF-iO3NWlDD5oNwZuy2USpyguO_KYMy2PnB_PanLV5lObBT5rWIMgYBbTcBCJiLo6gVIj9Zkf1769nim4MFxARdadiIV-Rjtug_O2Lbtj1lHGDv2_8r_o48Y5gsOF_x3ic7i9tlPAAEs3CHeZoeZv5_Bzci590 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbhMxFLWgCMEGlZc6UMAL2DGi8XuWbdRMCklVoVbqzhq_2khhUjXJIjs-gW_kS7jXmUbpphLbGXts-fqOz_G1zyXkszJJJsdTGWDtLQV3rGyqBI4HVMOZ4KqQMKI7PlXDC_H9Ul52eU7xLsxaH2Kz4Yaekf_X6OC4Id2pDaBIJtB2UfdRs0yZx-SJUEyjZzJxtgkjCJkTdGKOnxJZfnfyHep_264N2Ndnl2rvrU5ZxP8e8tzGr3kBGuySFx1ypIdrU78kj2L7ijytc2be1WtyM454iXcy_zWns0QP4VtA6ulgupwEetKmybQTyKVNG-hPvI67SXZFJ_CUjjBh2t_ff_p4DQNaOpvHJXDWxl-vpqtFhDdH4Baw1NFBs5wu3pCLwfF5f1h26RTKBlCXKivDPBCQKoloGjCRPAgiKcBzWgXmZfCeex-krlhS-sB7J7Q3zqdGBMm80Pwt2WlnbdwjVLPonOSuitoIHgCicK09Bpcr3nOpKkjRDahtYSajCqlkQDYUgMmCfLkbYnuzVtSwORLOKrttlIIc4fhvyqAOdn4wu72ynVtZDvSUeS2ijEFA2yYAA3OxF7VC6CcLsn9nPds559wCZIKuGNbjBfmaLfpgR2xd18eMA-5993_FP5Fnw_PxyI5OTn-8J88ZZg7O5733yc7idhk_AJxZuI95yv4DT1fqVA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbhMxFLWgCMQG8RRTCngBO0Y0fozHyzZ0poW2ihCVurPGrxIpTKImWWTXT-Ab-RLuddwo3SCxnbHHlq_v-Bxf-1xCPlR1lNHyWHpYe0vBLSs7HcHxgGrY2lvtI0Z0z86r4wvx9VJe5g03vAuz1ofYbLihZ6T_NTr4zMcsNoAamcDaRTtEybKqvk8epHgfKjuL0SaKIGTKz4kpfkok-fngO9T_vF0boK9LHtXfWZyShv8d4LkNX9P60zwlTzJwpAdrSz8j90L_nDxsU2Le1QsyOwt4h3c8_zWn00gP4FvA6WkzWY49PenjeJL1cWnXe_odb-Nucl3RMTylp5gv7c_N7yHewoCWRvOwBMrauZ-ryWoR4M0heAWsdLTplpPFS3LRHP0YHpc5m0LZAeiqSl0zB_xDRxHqDiwk972IFcA5VXnmpHeOO-el0ixWat85K5SrrYud8JI5ofgrstNP-_CaUMWCtZJbHVQtuAeEwpVyGFvWfGCjLkiRB9T0MJFRhFQy4BoVYMmCfLwdYjNbC2qYFAhn2mwbpSCHOP6bMiiDnR5Mr69M9irDgZ0yp0SQwQtou_ZAwGwYBFUh8pMF2bu1nsm-OTeAmKArNRvwgnxKFv1nR0zbtkeMA-zd_b_i78mj0ZfGnJ6cf3tDHjPMG5xOe--RncX1MrwFMLOw79KM_Qv-AOmG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanisms+of+Aqueous+Fluid+Infiltration+and+Redistribution+in+a+Lower%E2%80%90Crustal+Pseudotachylyte%E2%80%90Bearing+Fault&rft.jtitle=Geochemistry%2C+geophysics%2C+geosystems+%3A+G3&rft.au=Michalchuk%2C+Stephen+Paul&rft.au=Lueder%2C+Mona&rft.au=Gies%2C+Nils+B.&rft.au=Ohl%2C+Markus&rft.date=2025-02-01&rft.issn=1525-2027&rft.eissn=1525-2027&rft.volume=26&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2024GC011968&rft.externalDBID=10.1029%252F2024GC011968&rft.externalDocID=GGGE23566 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1525-2027&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1525-2027&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1525-2027&client=summon |