Mechanisms of Aqueous Fluid Infiltration and Redistribution in a Lower‐Crustal Pseudotachylyte‐Bearing Fault

Coseismic fracturing in the strong, dry, and metastable plagioclase‐rich lower‐crust is an effective mechanism for creating pathways for fluids to infiltrate the host rock, kick‐start metamorphism, and potentially lead to rheological weakening. In this study, we have characterized the damage zone fl...

Full description

Saved in:
Bibliographic Details
Published inGeochemistry, geophysics, geosystems : G3 Vol. 26; no. 2
Main Authors Michalchuk, Stephen Paul, Lueder, Mona, Gies, Nils B., Ohl, Markus, Hermann, Jörg, Plümper, Oliver, Menegon, Luca
Format Journal Article
LanguageEnglish
Published Washington John Wiley & Sons, Inc 01.02.2025
The Geochemical Society
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Coseismic fracturing in the strong, dry, and metastable plagioclase‐rich lower‐crust is an effective mechanism for creating pathways for fluids to infiltrate the host rock, kick‐start metamorphism, and potentially lead to rheological weakening. In this study, we have characterized the damage zone flanking a lower‐crustal pseudotachylyte (solidified frictional melt produced during seismic slip) within an anorthosite to determine the mechanisms of incipient aqueous fluid infiltration and redistribution in a lower‐crustal seismogenic fault. Pulverization‐style fracturing of the host anorthosite resulted in the comminution of the host plagioclase (plagioclase1) grains and the growth of very fine (<20 μm) grained secondary plagioclase neoblasts (plagioclase2) filling the fractures. Fluid‐assisted grain growth accompanied surface‐ and strain‐energy minimization grain growth in the healing and sealing of the fractures. This process was not associated with the densification nor the creation of new reaction‐induced porosity. Fourier transform infrared maps transecting the damage zones show the presence of H2O species along the plagioclase1 and plagioclase2 grain boundary regions, as well as incorporated into plagioclase2 grain interiors. Grain‐size sensitive creep of fine‐grained plagioclase localized along the pseudotachylyte margin where fracturing was most pervasive. In the absence of reaction‐induced porosity, strain localization is determined by repeated occurrences of extreme grain‐size reduction in addition to the mobilization of aqueous fluid to the grain boundary regions, to the extent in which these fine‐grained wet plagioclase2 layers are volumetrically dominant over dry, coarse plagioclase1 fragments. This forms a layer capable of deforming by grain‐size sensitive creep and sustaining the mobility of fluids. Plain Language Summary Earthquakes are effective in fracturing rocks and creating pathways for fluids to flow and infiltrate deep within an otherwise dry and strong host rock. Fluids interacting with these dry and strong rocks, especially those in the lower crust at >25 km depth, may induce chemical reactions, produce new weaker minerals, and deteriorate the overall strength of the host rock. Areas that have become weaker will localize deformation and form ductile shear zones. The mechanistic processes that produce this transformation are poorly constrained and are the subject of this study. Using specialized microscopy techniques that measure the mineral's crystallographic orientation and the H2O content within plagioclase feldspar, we document that a single‐event earthquake rupture in the lower crust can liberate and mobilize a small amount of locally sourced H2O over short distances along fractures. However, without a sustainable source of H2O, fractures will heal themselves and consume the free H2O. We determined that repeated earthquake events, which repeatedly fracture the dry host rock into increasingly smaller fragments and mobilize fluids after each event, will form volumetrically thicker sequences of wet fine‐grained layers that can easily localize strain and form ductile shear zones. Key Points Plagioclase in the damage zone of a lower‐crustal pseudotachylyte deformed via pulverization‐style fragmentation Liberated H2O as a result of the earthquake remained in grain boundary regions and facilitated neoblast growth and healing of fractures Repeated fragmentation and comminution in addition to fluid at the grain boundaries are required to facilitate viscous deformation
AbstractList Coseismic fracturing in the strong, dry, and metastable plagioclase‐rich lower‐crust is an effective mechanism for creating pathways for fluids to infiltrate the host rock, kick‐start metamorphism, and potentially lead to rheological weakening. In this study, we have characterized the damage zone flanking a lower‐crustal pseudotachylyte (solidified frictional melt produced during seismic slip) within an anorthosite to determine the mechanisms of incipient aqueous fluid infiltration and redistribution in a lower‐crustal seismogenic fault. Pulverization‐style fracturing of the host anorthosite resulted in the comminution of the host plagioclase (plagioclase1) grains and the growth of very fine (<20 μm) grained secondary plagioclase neoblasts (plagioclase2) filling the fractures. Fluid‐assisted grain growth accompanied surface‐ and strain‐energy minimization grain growth in the healing and sealing of the fractures. This process was not associated with the densification nor the creation of new reaction‐induced porosity. Fourier transform infrared maps transecting the damage zones show the presence of H2O species along the plagioclase1 and plagioclase2 grain boundary regions, as well as incorporated into plagioclase2 grain interiors. Grain‐size sensitive creep of fine‐grained plagioclase localized along the pseudotachylyte margin where fracturing was most pervasive. In the absence of reaction‐induced porosity, strain localization is determined by repeated occurrences of extreme grain‐size reduction in addition to the mobilization of aqueous fluid to the grain boundary regions, to the extent in which these fine‐grained wet plagioclase2 layers are volumetrically dominant over dry, coarse plagioclase1 fragments. This forms a layer capable of deforming by grain‐size sensitive creep and sustaining the mobility of fluids. Plain Language Summary Earthquakes are effective in fracturing rocks and creating pathways for fluids to flow and infiltrate deep within an otherwise dry and strong host rock. Fluids interacting with these dry and strong rocks, especially those in the lower crust at >25 km depth, may induce chemical reactions, produce new weaker minerals, and deteriorate the overall strength of the host rock. Areas that have become weaker will localize deformation and form ductile shear zones. The mechanistic processes that produce this transformation are poorly constrained and are the subject of this study. Using specialized microscopy techniques that measure the mineral's crystallographic orientation and the H2O content within plagioclase feldspar, we document that a single‐event earthquake rupture in the lower crust can liberate and mobilize a small amount of locally sourced H2O over short distances along fractures. However, without a sustainable source of H2O, fractures will heal themselves and consume the free H2O. We determined that repeated earthquake events, which repeatedly fracture the dry host rock into increasingly smaller fragments and mobilize fluids after each event, will form volumetrically thicker sequences of wet fine‐grained layers that can easily localize strain and form ductile shear zones. Key Points Plagioclase in the damage zone of a lower‐crustal pseudotachylyte deformed via pulverization‐style fragmentation Liberated H2O as a result of the earthquake remained in grain boundary regions and facilitated neoblast growth and healing of fractures Repeated fragmentation and comminution in addition to fluid at the grain boundaries are required to facilitate viscous deformation
Coseismic fracturing in the strong, dry, and metastable plagioclase‐rich lower‐crust is an effective mechanism for creating pathways for fluids to infiltrate the host rock, kick‐start metamorphism, and potentially lead to rheological weakening. In this study, we have characterized the damage zone flanking a lower‐crustal pseudotachylyte (solidified frictional melt produced during seismic slip) within an anorthosite to determine the mechanisms of incipient aqueous fluid infiltration and redistribution in a lower‐crustal seismogenic fault. Pulverization‐style fracturing of the host anorthosite resulted in the comminution of the host plagioclase (plagioclase 1 ) grains and the growth of very fine (<20 μm) grained secondary plagioclase neoblasts (plagioclase 2 ) filling the fractures. Fluid‐assisted grain growth accompanied surface‐ and strain‐energy minimization grain growth in the healing and sealing of the fractures. This process was not associated with the densification nor the creation of new reaction‐induced porosity. Fourier transform infrared maps transecting the damage zones show the presence of H 2 O species along the plagioclase 1 and plagioclase 2 grain boundary regions, as well as incorporated into plagioclase 2 grain interiors. Grain‐size sensitive creep of fine‐grained plagioclase localized along the pseudotachylyte margin where fracturing was most pervasive. In the absence of reaction‐induced porosity, strain localization is determined by repeated occurrences of extreme grain‐size reduction in addition to the mobilization of aqueous fluid to the grain boundary regions, to the extent in which these fine‐grained wet plagioclase 2 layers are volumetrically dominant over dry, coarse plagioclase 1 fragments. This forms a layer capable of deforming by grain‐size sensitive creep and sustaining the mobility of fluids. Earthquakes are effective in fracturing rocks and creating pathways for fluids to flow and infiltrate deep within an otherwise dry and strong host rock. Fluids interacting with these dry and strong rocks, especially those in the lower crust at >25 km depth, may induce chemical reactions, produce new weaker minerals, and deteriorate the overall strength of the host rock. Areas that have become weaker will localize deformation and form ductile shear zones. The mechanistic processes that produce this transformation are poorly constrained and are the subject of this study. Using specialized microscopy techniques that measure the mineral's crystallographic orientation and the H 2 O content within plagioclase feldspar, we document that a single‐event earthquake rupture in the lower crust can liberate and mobilize a small amount of locally sourced H 2 O over short distances along fractures. However, without a sustainable source of H 2 O, fractures will heal themselves and consume the free H 2 O. We determined that repeated earthquake events, which repeatedly fracture the dry host rock into increasingly smaller fragments and mobilize fluids after each event, will form volumetrically thicker sequences of wet fine‐grained layers that can easily localize strain and form ductile shear zones. Plagioclase in the damage zone of a lower‐crustal pseudotachylyte deformed via pulverization‐style fragmentation Liberated H 2 O as a result of the earthquake remained in grain boundary regions and facilitated neoblast growth and healing of fractures Repeated fragmentation and comminution in addition to fluid at the grain boundaries are required to facilitate viscous deformation
Coseismic fracturing in the strong, dry, and metastable plagioclase‐rich lower‐crust is an effective mechanism for creating pathways for fluids to infiltrate the host rock, kick‐start metamorphism, and potentially lead to rheological weakening. In this study, we have characterized the damage zone flanking a lower‐crustal pseudotachylyte (solidified frictional melt produced during seismic slip) within an anorthosite to determine the mechanisms of incipient aqueous fluid infiltration and redistribution in a lower‐crustal seismogenic fault. Pulverization‐style fracturing of the host anorthosite resulted in the comminution of the host plagioclase (plagioclase1) grains and the growth of very fine (<20 μm) grained secondary plagioclase neoblasts (plagioclase2) filling the fractures. Fluid‐assisted grain growth accompanied surface‐ and strain‐energy minimization grain growth in the healing and sealing of the fractures. This process was not associated with the densification nor the creation of new reaction‐induced porosity. Fourier transform infrared maps transecting the damage zones show the presence of H2O species along the plagioclase1 and plagioclase2 grain boundary regions, as well as incorporated into plagioclase2 grain interiors. Grain‐size sensitive creep of fine‐grained plagioclase localized along the pseudotachylyte margin where fracturing was most pervasive. In the absence of reaction‐induced porosity, strain localization is determined by repeated occurrences of extreme grain‐size reduction in addition to the mobilization of aqueous fluid to the grain boundary regions, to the extent in which these fine‐grained wet plagioclase2 layers are volumetrically dominant over dry, coarse plagioclase1 fragments. This forms a layer capable of deforming by grain‐size sensitive creep and sustaining the mobility of fluids.
Abstract Coseismic fracturing in the strong, dry, and metastable plagioclase‐rich lower‐crust is an effective mechanism for creating pathways for fluids to infiltrate the host rock, kick‐start metamorphism, and potentially lead to rheological weakening. In this study, we have characterized the damage zone flanking a lower‐crustal pseudotachylyte (solidified frictional melt produced during seismic slip) within an anorthosite to determine the mechanisms of incipient aqueous fluid infiltration and redistribution in a lower‐crustal seismogenic fault. Pulverization‐style fracturing of the host anorthosite resulted in the comminution of the host plagioclase (plagioclase1) grains and the growth of very fine (<20 μm) grained secondary plagioclase neoblasts (plagioclase2) filling the fractures. Fluid‐assisted grain growth accompanied surface‐ and strain‐energy minimization grain growth in the healing and sealing of the fractures. This process was not associated with the densification nor the creation of new reaction‐induced porosity. Fourier transform infrared maps transecting the damage zones show the presence of H2O species along the plagioclase1 and plagioclase2 grain boundary regions, as well as incorporated into plagioclase2 grain interiors. Grain‐size sensitive creep of fine‐grained plagioclase localized along the pseudotachylyte margin where fracturing was most pervasive. In the absence of reaction‐induced porosity, strain localization is determined by repeated occurrences of extreme grain‐size reduction in addition to the mobilization of aqueous fluid to the grain boundary regions, to the extent in which these fine‐grained wet plagioclase2 layers are volumetrically dominant over dry, coarse plagioclase1 fragments. This forms a layer capable of deforming by grain‐size sensitive creep and sustaining the mobility of fluids.
Author Menegon, Luca
Michalchuk, Stephen Paul
Plümper, Oliver
Ohl, Markus
Gies, Nils B.
Hermann, Jörg
Lueder, Mona
Author_xml – sequence: 1
  givenname: Stephen Paul
  orcidid: 0000-0003-0552-5538
  surname: Michalchuk
  fullname: Michalchuk, Stephen Paul
  email: stephen.michalchuk@geo.uio.no
  organization: University of Oslo
– sequence: 2
  givenname: Mona
  surname: Lueder
  fullname: Lueder, Mona
  organization: University of Bern
– sequence: 3
  givenname: Nils B.
  orcidid: 0000-0003-1714-1320
  surname: Gies
  fullname: Gies, Nils B.
  organization: University of Bern
– sequence: 4
  givenname: Markus
  orcidid: 0000-0002-8135-1915
  surname: Ohl
  fullname: Ohl, Markus
  organization: ThermoFisher Scientific, Eindoven NanoPort EM Facility
– sequence: 5
  givenname: Jörg
  orcidid: 0000-0001-8360-3592
  surname: Hermann
  fullname: Hermann, Jörg
  organization: University of Bern
– sequence: 6
  givenname: Oliver
  orcidid: 0000-0001-9726-0885
  surname: Plümper
  fullname: Plümper, Oliver
  organization: Utrecht University
– sequence: 7
  givenname: Luca
  orcidid: 0000-0003-0625-2762
  surname: Menegon
  fullname: Menegon, Luca
  organization: University of Oslo
BookMark eNp9kctuUzEQhi1UJHphxwNYYkvAd_ssS9QcIgVRoXZtOb60jk7tYPuoyo5H4Bl5EkwDqCtWM_rn06_5Z87AScrJA_AGo_cYkeEDQYSNS4TxINQLcIo54YuuyZNn_StwVusOIcw4V6dg_9nbe5NifagwB3j5bfZ5rnA1zdHBdQpxasW0mBM0ycGv3sXaStzOT1LsKtzkR19-fv-xLHNtZoLX1c8uN2PvD9Oh-T756E2J6Q6uzDy1C_AymKn613_qObhdXd0sPy02X8b18nKzMAwLsRgUsQTLITCvjAqcI8eCEFxI4YjlzlpqreNyIEFIZO2WSau2NhjmOLFM0nOwPvq6bHZ6X-KDKQedTdRPQi532pQW7eQ1ZWggVjLPvWMDxcpxprYeeymwogPvXvDoZUuPH5NOuRiNkeJEYywoRh15e0T2Jfcb1qZ3eS6pJ9QUyw4pgmmn3v01yrUWH_4thpH-_UL9_IUdp0f8MU7-8F9Wj-N4RSgXgv4C7MOe8w
Cites_doi 10.1007/s00410‐023‐01998‐x
10.1029/2018JB016461
10.1038/35836
10.1002/2016JB013533
10.1186/s40623‐017‐0776‐2
10.1002/2017GL073836
10.1038/35040537
10.1029/2000JB900223
10.1144/SP409.8
10.4028/www.scientific.net/SSP.160.63
10.1029/2020GC009028
10.1007/s00410‐024‐02141‐0
10.2138/am‐2004‐0413
10.1180/mgm.2021.43
10.1007/BF00372216
10.1029/1998JB900113
10.3390/min6040104
10.1029/2017JB015348
10.1107/S0021889808030112
10.1002/2017GC007189
10.1016/S0040‐1951(03)00241‐5
10.1029/2021JB022878
10.1029/2005jb003663
10.1016/0191‐8141(91)90051‐j
10.5194/se‐12‐959‐2021
10.1016/j.cageo.2024.105626
10.1016/j.jsg.2023.105029
10.2138/am‐2015‐5034
10.1029/2004JB003431
10.1007/s00410‐022‐01928‐3
10.1002/2014JB011708
10.1016/j.jsg.2023.104960
10.1016/j.jsg.2011.10.001
10.1016/0191‐8141(80)90005‐X
10.1126/sciadv.aaw0913
10.1093/petroj/39.8.1425
10.1016/j.jsg.2012.12.004
10.1016/0040‐1951(78)90101‐4
10.1007/BF00306442
10.1029/JB089iB06p04059
10.1016/j.tecto.2005.08.023
10.1144/SP478.4
10.1016/j.tecto.2021.229026
10.1111/jmg.12702
10.2138/rmg.2006.62.6
10.1016/j.jsg.2008.02.001
10.1130/g36307.1
10.1130/ges00573.1
10.2138/am‐2003‐5‐620
10.1029/95RG01302
10.1016/j.earscirev.2015.12.002
10.1007/s00410‐022‐01938‐1
10.1016/j.jsg.2018.05.021
10.1016/j.tecto.2004.01.006
10.1016/j.gca.2020.03.013
10.2138/am.2008.2657
10.1016/j.ultramic.2017.09.011
10.1130/ges00035.1
10.1130/g45632.1
10.1038/s41586‐018‐0045‐y
10.1016/j.epsl.2024.118621
10.1016/j.lithos.2016.03.011
10.1186/s40623‐019‐1117‐4
10.1007/BF00199553
10.1016/S0191‐8141(03)00081‐6
10.1016/j.tecto.2013.08.030
10.1126/sciadv.adi8533
10.1038/2091192a0
10.1029/JB091iB12p12723
10.1016/j.epsl.2005.04.009
10.1038/nature08051
10.1093/petrology/egh034
10.1016/0012‐821x(87)90158‐0
10.1098/rsta.2019.0416
10.1038/s41467‐020‐15150‐x
10.1016/S0191‐8141(01)00030‐X
10.1016/j.lithos.2021.106413
10.1029/2019JB017304
10.1007/s00410‐012‐0822‐9
10.1029/2020TC006572
10.1016/j.tecto.2007.05.005
10.1016/j.jsg.2023.105010
10.1038/ngeo3009
10.1016/j.cageo.2013.08.010
10.1029/2003TC001522
10.1016/j.epsl.2019.115886
10.1093/petrology/egab092
10.1130/b31922.1
10.1093/petrology/42.7.1349
10.1029/2018TC005297
10.1130/g33674.1
10.1016/S0191‐8141(01)00100‐6
10.1016/j.tecto.2021.229079
10.1016/j.jsg.2022.104547
10.1130/0091‐7613(1996)024<0063:Defdif>2.3.Co;2
10.1029/2018JB016559
10.1007/s005310000148
10.1029/2023JB026809
10.1002/2015JB012771
10.1029/2021JB023616
ContentType Journal Article
Copyright 2025 The Author(s). Geochemistry, Geophysics, Geosystems published by Wiley Periodicals LLC on behalf of American Geophysical Union.
2025. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
info:eu-repo/semantics/openAccess
Copyright_xml – notice: 2025 The Author(s). Geochemistry, Geophysics, Geosystems published by Wiley Periodicals LLC on behalf of American Geophysical Union.
– notice: 2025. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: info:eu-repo/semantics/openAccess
DBID 24P
AAYXX
CITATION
7TG
7TN
F1W
H96
KL.
L.G
3HK
DOA
DOI 10.1029/2024GC011968
DatabaseName Wiley Online Library Open Access
CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
NORA - Norwegian Open Research Archives
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1525-2027
EndPage n/a
ExternalDocumentID oai_doaj_org_article_34092c74e5ed49318d548be1e7618395
10852_116310
10_1029_2024GC011968
GGGE23566
Genre researchArticle
GrantInformation_xml – fundername: UNIFOR
– fundername: Norges Forskningsråd
  funderid: 295894, 334965
– fundername: Horizon 2020 Framework Programme
  funderid: 101005611
– fundername: Swiss National Science Foundation
  funderid: 200020‐196927
GroupedDBID 05W
0R~
1OC
24P
31~
50Y
5GY
8-1
88I
8CJ
8FE
8FH
8G5
8R4
8R5
AAESR
AAFWJ
AAMMB
AANHP
AAYCA
AAZKR
ABCUV
ABUWG
ACAHQ
ACBWZ
ACCMX
ACGFS
ACGOD
ACPOU
ACRPL
ACXQS
ACYXJ
ADBBV
ADEOM
ADIYS
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AENEX
AEUYN
AFBPY
AFGKR
AFKRA
AFPKN
AGQPQ
AGXDD
AIDQK
AIDYY
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
AVWKF
AZFZN
AZQEC
AZVAB
BDRZF
BENPR
BFHJK
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
CCPQU
CS3
D1J
DCZOG
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
FEDTE
G-S
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HVGLF
HZ~
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M2O
M2P
M7R
MSFUL
MSSTM
MXFUL
MXSTM
MY~
M~E
O9-
OK1
P-X
P2W
PCBAR
PHGZM
PHGZT
PQQKQ
PROAC
Q2X
R.K
ROL
SUPJJ
UB1
WBKPD
ZZTAW
~02
~OA
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
7TG
7TN
F1W
H96
KL.
L.G
WIN
3HK
3V.
A00
AFPWT
WYJ
ID FETCH-LOGICAL-a4166-982c2179f4e8a8f550d4f665676d2c5dcc3ccd5792f670ccb47c8bcfa4d52c473
IEDL.DBID 24P
ISSN 1525-2027
IngestDate Wed Aug 27 01:32:19 EDT 2025
Fri Feb 28 03:18:25 EST 2025
Wed Aug 13 11:09:29 EDT 2025
Tue Jul 01 05:06:09 EDT 2025
Sun Jul 06 04:45:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4166-982c2179f4e8a8f550d4f665676d2c5dcc3ccd5792f670ccb47c8bcfa4d52c473
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
NFR/334965
ORCID 0000-0003-1714-1320
0000-0002-8135-1915
0000-0001-8360-3592
0000-0001-9726-0885
0000-0003-0625-2762
0000-0003-0552-5538
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024GC011968
PQID 3171168213
PQPubID 54722
PageCount 26
ParticipantIDs doaj_primary_oai_doaj_org_article_34092c74e5ed49318d548be1e7618395
cristin_nora_10852_116310
proquest_journals_3171168213
crossref_primary_10_1029_2024GC011968
wiley_primary_10_1029_2024GC011968_GGGE23566
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2025
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: February 2025
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geochemistry, geophysics, geosystems : G3
PublicationYear 2025
Publisher John Wiley & Sons, Inc
The Geochemical Society
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: The Geochemical Society
– name: Wiley
References 2022; 177
1974; 59
1990; 104
1991; 13
2004; 26
1995; 33
2004; 23
2024; 189
2020; 11
2008; 30
2024
2001; 42
2000; 408
1989; 101
2023; 178
1966; 209
2016; 154
2024; 630
2016; 254–255
2021; 85
2007; 442
1986; 91
2021; 400–401
2018; 184
2019; 5
2005; 110
2005; 235
2004; 382
2004; 45
2015; 120
2015; 409
2019; 38
2024; 10
2012; 38
2009; 459
2001; 23
1999; 104
2006; 111
2011; 7
2016; 6
1998; 391
2023; 41
2021; 819
2021; 379
2000; 105
2019; 47
2018; 114
1985; 70
2020; 277
2008; 41
2020; 21
1978; 46
2021; 62
2013; 609
2001; 90
2017; 44
2015; 100
2005; 411
2018; 123
2019; 124
2013; 165
2014; 62
2018; 131
2006; 62
1987; 81
2015; 43
2018; 70
2019; 478
2020; 530
2023; 104960
2017; 122
1996; 24
2021; 40
2022; 127
2003; 88
2022; 156
2019; 71
2013; 48
2010
1984; 89
2004; 89
2013; 41
2023; 128
2016; 121
2006; 2
2008; 93
2003; 372
1998; 39
2021; 12
2018; 556
1980; 2
2017; 10
2002; 24
2024; 178
2017; 18
2024; 179
1989; 16
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_90_1
Langer K. (e_1_2_9_47_1) 1974; 59
e_1_2_9_71_1
e_1_2_9_103_1
e_1_2_9_14_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_6_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_49_1
Hofmeister A. M. (e_1_2_9_26_1) 1985; 70
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_102_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_9_1
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_101_1
e_1_2_9_105_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_28_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_97_1
e_1_2_9_93_1
e_1_2_9_70_1
e_1_2_9_100_1
e_1_2_9_104_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_25_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 372
  start-page: 215
  issue: 3
  year: 2003
  end-page: 233
  article-title: Dislocation generation, slip systems, and dynamic recrystallization in experimentally deformed plagioclase single crystals
  publication-title: Tectonophysics
– volume: 62
  start-page: 227
  year: 2014
  end-page: 240
  article-title: XMapTools: A MATLAB©‐based program for electron microprobe X‐ray image processing and geothermobarometry
  publication-title: Computers & Geosciences
– volume: 7
  start-page: 202
  issue: 1
  year: 2011
  end-page: 218
  article-title: Eclogitization and exhumation of Caledonian continental basement in Lofoten, north Norway
  publication-title: Geosphere
– volume: 105
  start-page: 26017
  issue: B11
  year: 2000
  end-page: 26036
  article-title: Dislocation and diffusion creep of synthetic anorthite aggregates
  publication-title: Journal of Geophysical Research
– volume: 16
  start-page: 334
  issue: 4
  year: 1989
  end-page: 342
  article-title: The uptake and solubility of water in quartz at elevated pressure and temperature
  publication-title: Physics and Chemistry of Minerals
– volume: 62
  start-page: 117
  issue: 1
  year: 2006
  end-page: 154
  article-title: Water in nominally anhydrous crustal minerals: Speciation, concentration, and geologic significance
  publication-title: Reviews in Mineralogy and Geochemistry
– volume: 382
  start-page: 173
  issue: 3–4
  year: 2004
  end-page: 187
  article-title: Deformation mechanism maps for feldspar rocks
  publication-title: Tectonophysics
– volume: 6
  issue: 4
  year: 2016
  article-title: Nano‐tomography of porous geological materials using focused ion beam‐scanning electron microscopy
  publication-title: Minerals
– volume: 127
  issue: 4
  year: 2022
  article-title: Time‐lapse record of an earthquake in the dry felsic lower continental crust preserved in a pseudotachylyte‐bearing fault
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 24
  start-page: 1179
  issue: 6
  year: 2002
  end-page: 1193
  article-title: Dissolution and replacement creep: A significant deformation mechanism in mid‐crustal rocks
  publication-title: Journal of Structural Geology
– volume: 177
  start-page: 61
  issue: 6
  year: 2022
  article-title: Reactive fluid flow guided by grain‐scale equilibrium reactions during eclogitization of dry crustal rocks
  publication-title: Contributions to Mineralogy and Petrology
– volume: 38
  start-page: 21
  year: 2012
  end-page: 38
  article-title: Deformation and ultrafine dynamic recrystallization of quartz in pseudotachylyte‐bearing brittle faults: A matter of a few seconds
  publication-title: Journal of Structural Geology
– volume: 41
  start-page: 449
  issue: 3
  year: 2023
  end-page: 464
  article-title: Partial melting and reaction along deformation features in plagioclase
  publication-title: Journal of Metamorphic Geology
– volume: 189
  year: 2024
  article-title: A workflow and software solution for spatially resolved spectroscopic and numerical data (SpecXY)
  publication-title: Computers & Geosciences
– volume: 131
  start-page: 403
  issue: 3–4
  year: 2018
  end-page: 425
  article-title: Evidence for deep crustal seismic rupture in a granulite‐facies, intraplate, strike‐slip shear zone, northern Saskatchewan, Canada
  publication-title: GSA Bulletin
– volume: 209
  start-page: 1192
  issue: 5029
  year: 1966
  end-page: 1193
  article-title: Extinction coefficient of water at 2.93µ and water content of black foam films
  publication-title: Nature
– volume: 154
  start-page: 1
  year: 2016
  end-page: 13
  article-title: Disequilibrium metamorphism of stressed lithosphere
  publication-title: Earth‐Science Reviews
– volume: 459
  start-page: 974
  issue: 7249
  year: 2009
  end-page: 977
  article-title: Creep cavitation can establish a dynamic granular fluid pump in ductile shear zones
  publication-title: Nature
– volume: 85
  start-page: 291
  issue: 3
  year: 2021
  end-page: 320
  article-title: IMA–CNMNC approved mineral symbols
  publication-title: Mineralogical Magazine
– volume: 42
  start-page: 1349
  issue: 7
  year: 2001
  end-page: 1372
  article-title: High‐pressure fluid–rock reactions involving Cl‐bearing fluids in lower‐crustal ductile shear zones of the Flakstadøy basic complex, Lofoten, Norway
  publication-title: Journal of Petrology
– volume: 41
  start-page: 247
  issue: 2
  year: 2013
  end-page: 250
  article-title: Very little water is necessary to make a dry solid silicate system wet
  publication-title: Geology
– volume: 90
  start-page: 136
  issue: 1
  year: 2001
  end-page: 148
  article-title: Weakening and strain localization produced by syn‐deformational reaction of plagioclase
  publication-title: International Journal of Earth Sciences
– volume: 411
  start-page: 157
  issue: 1
  year: 2005
  end-page: 167
  article-title: The misorientation index: Development of a new method for calculating the strength of lattice‐preferred orientation
  publication-title: Tectonophysics
– volume: 120
  start-page: 3119
  issue: 5
  year: 2015
  end-page: 3141
  article-title: High‐temperature fracturing and subsequent grain‐size‐sensitive creep in lower crustal gabbros: Evidence for coseismic loading followed by creep during decaying stress in the lower crust?
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 400–401
  year: 2021
  article-title: Preservation of granulite in a partially eclogitized terrane: Metastable phenomena or local pressure variations?
  publication-title: Lithos
– volume: 81
  start-page: 221
  issue: 2–3
  year: 1987
  end-page: 232
  article-title: Eclogitization of lower crustal granulites by fluid migration through shear zones
  publication-title: Earth and Planetary Science Letters
– volume: 88
  start-page: 901
  issue: 5–6
  year: 2003
  end-page: 911
  article-title: The concentration and speciation of hydrogen in feldspars using FTIR and H‐1 MAS NMR spectroscopy
  publication-title: American Mineralogist
– volume: 104
  start-page: 10483
  issue: B5
  year: 1999
  end-page: 10497
  article-title: Grain boundary diffusion creep of synthetic anorthite aggregates: The effect of water
  publication-title: Journal of Geophysical Research
– volume: 26
  start-page: 47
  issue: 1
  year: 2004
  end-page: 69
  article-title: The influence of grain boundary fluids on the microstructure of quartz‐feldspar mylonites
  publication-title: Journal of Structural Geology
– volume: 48
  start-page: 95
  year: 2013
  end-page: 112
  article-title: Transition from fracturing to viscous flow in granulite facies perthitic feldspar (Lofoten, Norway)
  publication-title: Journal of Structural Geology
– volume: 178
  year: 2024
  article-title: Rheology of hydrated plagioclase at lower crustal conditions: Cataclasis, creep and transformational plasticity
  publication-title: Journal of Structural Geology
– volume: 33
  start-page: 267
  issue: 3
  year: 1995
  end-page: 309
  article-title: Nature and composition of the continental crust: A lower crustal perspective
  publication-title: Reviews of Geophysics
– volume: 100
  start-page: 1209
  issue: 5–6
  year: 2015
  end-page: 1221
  article-title: Hydrous species in feldspars: A reassessment based on FTIR and SIMS
  publication-title: American Mineralogist
– volume: 391
  start-page: 781
  issue: 6669
  year: 1998
  end-page: 783
  article-title: Composition of fluids in the lower crust inferred from metamorphic salt in lower crustal rocks
  publication-title: Nature
– volume: 819
  year: 2021
  article-title: Evolution of fluid pathways during eclogitization and their impact on formation and deformation of eclogite: A microstructural and petrological investigation at the type locality (Koralpe, eastern alps, Austria)
  publication-title: Tectonophysics
– volume: 62
  issue: 12
  year: 2021
  article-title: Fluid–mineral interactions: Controlling coupled mechanisms of reaction, mass transfer and deformation
  publication-title: Journal of Petrology
– volume: 70
  start-page: 794
  issue: 7–8
  year: 1985
  end-page: 804
  article-title: A spectroscopic study of irradiation coloring of amazonite: Structurally hydrous, Pb‐bearing feldspar
  publication-title: American Mineralogist
– volume: 39
  start-page: 1425
  issue: 8
  year: 1998
  end-page: 1452
  article-title: The origin of anorthosites and related rocks from the Lofoten Islands, northern Norway: I. Field relations and estimation of intrinsic variables
  publication-title: Journal of Petrology
– volume: 21
  issue: 8
  year: 2020
  article-title: Evolution of brittle structures in plagioclase‐rich rocks at high‐pressure and high‐temperature conditions—Linking laboratory results to field observations
  publication-title: Geochemistry, Geophysics, Geosystems
– year: 2010
– volume: 30
  start-page: 565
  issue: 5
  year: 2008
  end-page: 579
  article-title: Dissolution‐precipitation creep of K‐feldspar in mid‐crustal granite mylonites
  publication-title: Journal of Structural Geology
– volume: 12
  start-page: 959
  issue: 4
  year: 2021
  end-page: 969
  article-title: Nanoscale earthquake records preserved in plagioclase microfractures from the lower continental crust
  publication-title: Solid Earth
– volume: 41
  start-page: 1024
  issue: 6
  year: 2008
  end-page: 1037
  article-title: A novel pole figure inversion method: Specification of the MTEX algorithm
  publication-title: Journal of Applied Crystallography
– volume: 127
  issue: 7
  year: 2022
  article-title: High stress deformation and short‐term thermal pulse preserved in pyroxene microstructures from exhumed lower crustal seismogenic faults (Lofoten, Norway)
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 235
  start-page: 361
  issue: 1–2
  year: 2005
  end-page: 374
  article-title: Gouge formation by dynamic pulverization during earthquake rupture
  publication-title: Earth and Planetary Science Letters
– volume: 89
  start-page: 586
  issue: 4
  year: 2004
  end-page: 600
  article-title: A survey of hydrous species and concentrations in igneous feldspars
  publication-title: American Mineralogist
– volume: 104960
  year: 2023
  article-title: Protracted localization of metamorphism and deformation in a heterogeneous lower‐crustal shear zone
  publication-title: Journal of Structural Geology
– volume: 47
  start-page: 151
  issue: 2
  year: 2019
  end-page: 154
  article-title: Stress orientation–dependent reactions during metamorphism
  publication-title: Geology
– volume: 93
  start-page: 751
  issue: 5–6
  year: 2008
  end-page: 764
  article-title: Quantitative absorbance spectroscopy with unpolarized light: Part I. Physical and mathematical development
  publication-title: American Mineralogist
– volume: 178
  start-page: 19
  issue: 3
  year: 2023
  article-title: Twinning and partial melting as early weakening processes in plagioclase at high pressure: Insights from Holsnøy (Scandinavian Caledonides, Norway)
  publication-title: Contributions to Mineralogy and Petrology
– volume: 110
  issue: B7
  year: 2005
  article-title: Rheology of synthetic anorthite‐diopside aggregates: Implications for ductile shear zones
  publication-title: Journal of Geophysical Research
– volume: 156
  start-page: 16
  year: 2022
  article-title: Enhancement of ductile deformation in polycrystalline anorthite due to the addition of water
  publication-title: Journal of Structural Geology
– volume: 91
  start-page: 12723
  issue: B12
  year: 1986
  end-page: 12741
  article-title: Solubility and diffusional uptake of hydrogen in quartz at high water pressures: Implications for hydrolytic weakening
  publication-title: Journal of Geophysical Research
– volume: 379
  start-page: 29
  issue: 2193
  year: 2021
  article-title: The earthquake cycle in the dry lower continental crust: Insights from two deeply exhumed terranes (Musgrave ranges, Australia and Lofoten, Norway)
  publication-title: Philosophical Transactions of the Royal Society A
– volume: 44
  start-page: 6667
  issue: 13
  year: 2017
  end-page: 6674
  article-title: The recrystallized grain size piezometer for quartz: An EBSD‐based calibration
  publication-title: Geophysical Research Letters
– volume: 45
  start-page: 1799
  issue: 9
  year: 2004
  end-page: 1819
  article-title: U–Pb age, setting and tectonic significance of the Anorthosite–Mangerite–Charnockite–granite suite, Lofoten–Vesterålen, Norway
  publication-title: Journal of Petrology
– year: 2024
– volume: 104
  start-page: 184
  issue: 2
  year: 1990
  end-page: 193
  article-title: Fluid controlled eclogitization of granulites in deep crustal shear zones, Bergen arcs, Western Norway
  publication-title: Contributions to Mineralogy and Petrology
– volume: 178
  year: 2024
  article-title: Evolution of H2O content in deforming quartz aggregates: An experimental study
  publication-title: Journal of Structural Geology
– volume: 409
  start-page: 251
  issue: 1
  year: 2015
  end-page: 271
  article-title: Descriptive tools for the analysis of texture projects with large datasets using MTEX: Strength, symmetry and components
  publication-title: Geological Society, London, Special Publications
– volume: 556
  start-page: 487
  issue: 7702
  year: 2018
  end-page: 491
  article-title: Earthquake‐induced transformation of the lower crust
  publication-title: Nature
– volume: 38
  start-page: 898
  issue: 3
  year: 2019
  end-page: 915
  article-title: The interplay of eclogitization and deformation during deep burial of the lower continental crust—A case study from the Bergen arcs (western Norway)
  publication-title: Tectonics
– volume: 184
  start-page: 310
  year: 2018
  end-page: 317
  article-title: An improved FIB sample preparation technique for site‐specific plan‐view specimens: A new cutting geometry
  publication-title: Ultramicroscopy
– volume: 2
  start-page: 439
  issue: 4
  year: 1980
  end-page: 451
  article-title: Hydrolytic weakening of experimentally deformed Westerly granite and Hale albite rock
  publication-title: Journal of Structural Geology
– volume: 121
  start-page: 3278
  issue: 5
  year: 2016
  end-page: 3299
  article-title: Dislocation creep of dry quartz
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 442
  start-page: 83
  issue: 1–4
  year: 2007
  end-page: 104
  article-title: Simulating coseismic deformation of quartz in the middle crust and fabric evolution during postseismic stress relaxation ‐: An experimental study
  publication-title: Tectonophysics
– volume: 408
  start-page: 75
  issue: 6808
  year: 2000
  end-page: 78
  article-title: Accelerated hydration of the Earth's deep crust induced by stress perturbations
  publication-title: Nature
– volume: 179
  start-page: 61
  issue: 6
  year: 2024
  article-title: Brittle initiation of dissolution–precipitation creep in plagioclase‐rich rocks: Insights from the Bergen arcs, Norway
  publication-title: Contributions to Mineralogy and Petrology
– volume: 123
  start-page: 3729
  issue: 5
  year: 2018
  end-page: 3746
  article-title: Microstructural records of earthquakes in the lower crust and associated fluid‐driven metamorphism in plagioclase‐rich granulites
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 254–255
  start-page: 84
  year: 2016
  end-page: 93
  article-title: Instantaneous healing of micro‐fractures during coseismic slip: Evidence from microstructure and Ti in quartz geochemistry within an exhumed pseudotachylyte‐bearing fault in tonalite
  publication-title: Lithos
– volume: 59
  start-page: 1249
  issue: 11–12
  year: 1974
  end-page: 1258
  article-title: Infrared spectra of Al‐Fe(III)‐epidotes and zoisites, Ca2(Al1‐p Fe3+p)Al2O(OH)[Si2O7][SiO4]
  publication-title: American Mineralogist
– volume: 10
  issue: 9
  year: 2024
  article-title: On‐fault earthquake energy density partitioning from shocked garnet in an exhumed seismic midcrustal fault
  publication-title: Science Advances
– volume: 101
  start-page: 426
  issue: 4
  year: 1989
  end-page: 437
  article-title: A TEM study of disequilibrium plagioclase breakdown at high pressure: The role of infiltrating fluid
  publication-title: Contributions to Mineralogy and Petrology
– volume: 89
  start-page: 4059
  issue: B6
  year: 1984
  end-page: 4071
  article-title: Water in minerals? A peak in the infrared
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 609
  start-page: 620
  year: 2013
  end-page: 635
  article-title: Fluid and deformation induced metamorphic processes around Moho beneath continent collision zones: Examples from the exposed root zone of the Caledonian mountain belt, W‐Norway
  publication-title: Tectonophysics
– volume: 124
  start-page: 7725
  issue: 8
  year: 2019
  end-page: 7755
  article-title: The effects of earthquakes and fluids on the metamorphism of the lower continental crust
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 478
  start-page: 39
  issue: 1
  year: 2019
  end-page: 63
  article-title: Quantitative compositional mapping of mineral phases by electron probe micro‐analyser
  publication-title: Geological Society
– volume: 177
  start-page: 72
  issue: 7
  year: 2022
  article-title: How fluid infiltrates dry crustal rocks during progressive eclogitization and shear zone formation: Insights from H2O contents in nominally anhydrous minerals
  publication-title: Contributions to Mineralogy and Petrology
– volume: 124
  start-page: 219
  issue: 1
  year: 2019
  end-page: 240
  article-title: Weak and slow, strong and fast: How shear zones evolve in a dry continental crust (Musgrave ranges, Central Australia)
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 277
  start-page: 87
  year: 2020
  end-page: 110
  article-title: Hydrogen incorporation in plagioclase
  publication-title: Geochimica et Cosmochimica Acta
– volume: 165
  start-page: 543
  issue: 3
  year: 2013
  end-page: 562
  article-title: Interaction of chemical and physical processes during deformation at fluid‐present conditions: A case study from an anorthosite–leucogabbro deformed at amphibolite facies conditions
  publication-title: Contributions to Mineralogy and Petrology
– volume: 46
  start-page: T1
  issue: 1
  year: 1978
  end-page: T6
  article-title: Hydrolytic weakening in quartz
  publication-title: Tectonophysics
– volume: 530
  start-page: 14
  year: 2020
  article-title: Mechanisms of fault mirror formation and fault healing in carbonate rocks
  publication-title: Earth and Planetary Science Letters
– volume: 114
  start-page: 95
  year: 2018
  end-page: 110
  article-title: Evolution in H2O contents during deformation of polycrystalline quartz: An experimental study
  publication-title: Journal of Structural Geology
– volume: 40
  issue: 3
  year: 2021
  article-title: Widening of hydrous shear zones during incipient eclogitization of metastable dry and rigid lower crust—Holsnøy, western Norway
  publication-title: Tectonics
– volume: 43
  start-page: 227
  issue: 3
  year: 2015
  end-page: 230
  article-title: Creep cavitation bands control porosity and fluid flow in lower crustal shear zones
  publication-title: Geology
– volume: 2
  start-page: 61
  issue: 1
  year: 2006
  end-page: 72
  article-title: Retrograded eclogite‐facies pseudotachylytes as deep‐crustal paleoseismic faults within continental basement of Lofoten, north Norway
  publication-title: Geosphere
– volume: 124
  start-page: 11771
  issue: 11
  year: 2019
  end-page: 11801
  article-title: Dynamics, radiation, and overall energy budget of earthquake rupture with coseismic off‐fault damage
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 111
  issue: B3
  year: 2006
  article-title: Influence of water fugacity and activation volume on the flow properties of fine‐grained anorthite aggregates
  publication-title: Journal of Geophysical Research
– volume: 11
  issue: 1
  year: 2020
  article-title: Earthquake nucleation in the lower crust by local stress amplification
  publication-title: Nature Communications
– volume: 23
  issue: 1
  year: 2004
  article-title: The Silurian to Permian history of a metamorphic core complex in Lofoten, northern Scandinavian Caledonides
  publication-title: Tectonics
– volume: 630
  year: 2024
  article-title: Dating fossil lower‐crustal earthquakes by in‐situ apatite U‐Pb geochronology
  publication-title: Earth and Planetary Science Letters
– volume: 122
  start-page: 866
  issue: 2
  year: 2017
  end-page: 894
  article-title: Water redistribution in experimentally deformed natural milky quartz single crystals—Implications for H2O‐weakening processes
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 70
  start-page: 3
  issue: 1
  year: 2018
  article-title: Strain localization and fabric development in polycrystalline anorthite + melt by water diffusion in an axial deformation experiment
  publication-title: Earth Planets and Space
– volume: 24
  start-page: 63
  issue: 1
  year: 1996
  end-page: 66
  article-title: Deformation‐enhanced fluid distribution in feldspar aggregates and implications for ductile shear zones
  publication-title: Geology
– volume: 128
  issue: 8
  year: 2023
  article-title: Dynamic evolution of porosity in lower‐crustal faults during the earthquake cycle
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 23
  start-page: 1781
  issue: 11
  year: 2001
  end-page: 1802
  article-title: Dynamic recrystallization processes in plagioclase porphyroclasts
  publication-title: Journal of Structural Geology
– volume: 18
  start-page: 4356
  issue: 12
  year: 2017
  end-page: 4374
  article-title: Earthquakes as precursors of ductile shear zones in the dry and strong lower crust
  publication-title: Geochemistry, Geophysics, Geosystems
– volume: 71
  start-page: 136
  issue: 1
  year: 2019
  article-title: Water distribution in quartz schists of the Sanbagawa metamorphic belt, Japan: Infrared spectroscopic mapping and comparison of the calibrations proposed for determining water contents
  publication-title: Earth Planets and Space
– volume: 10
  start-page: 685
  issue: 9
  year: 2017
  end-page: 690
  article-title: Fluid‐driven metamorphism of the continental crust governed by nanoscale fluid flow
  publication-title: Nature Geoscience
– volume: 13
  start-page: 987
  issue: 9
  year: 1991
  end-page: 1000
  article-title: Diffusion creep in feldspar aggregates: Experimental evidence
  publication-title: Journal of Structural Geology
– volume: 819
  year: 2021
  article-title: Transient weakening during the granulite to eclogite transformation within hydrous shear zones (Holsnøy, Norway)
  publication-title: Tectonophysics
– volume: 5
  issue: 7
  year: 2019
  article-title: Dynamic earthquake rupture in the lower crust
  publication-title: Science Advances
– ident: e_1_2_9_7_1
  doi: 10.1007/s00410‐023‐01998‐x
– ident: e_1_2_9_33_1
  doi: 10.1029/2018JB016461
– ident: e_1_2_9_53_1
  doi: 10.1038/35836
– ident: e_1_2_9_91_1
  doi: 10.1002/2016JB013533
– ident: e_1_2_9_19_1
  doi: 10.1186/s40623‐017‐0776‐2
– ident: e_1_2_9_15_1
  doi: 10.1002/2017GL073836
– ident: e_1_2_9_29_1
  doi: 10.1038/35040537
– ident: e_1_2_9_81_1
  doi: 10.1029/2000JB900223
– ident: e_1_2_9_50_1
  doi: 10.1144/SP409.8
– ident: e_1_2_9_5_1
  doi: 10.4028/www.scientific.net/SSP.160.63
– ident: e_1_2_9_28_1
  doi: 10.1029/2020GC009028
– ident: e_1_2_9_64_1
  doi: 10.1007/s00410‐024‐02141‐0
– ident: e_1_2_9_36_1
  doi: 10.2138/am‐2004‐0413
– ident: e_1_2_9_99_1
  doi: 10.1180/mgm.2021.43
– ident: e_1_2_9_100_1
  doi: 10.1007/BF00372216
– ident: e_1_2_9_17_1
  doi: 10.1029/1998JB900113
– ident: e_1_2_9_49_1
  doi: 10.3390/min6040104
– ident: e_1_2_9_73_1
  doi: 10.1029/2017JB015348
– ident: e_1_2_9_25_1
  doi: 10.1107/S0021889808030112
– ident: e_1_2_9_57_1
  doi: 10.1002/2017GC007189
– ident: e_1_2_9_89_1
  doi: 10.1016/S0040‐1951(03)00241‐5
– ident: e_1_2_9_51_1
  doi: 10.1029/2021JB022878
– ident: e_1_2_9_83_1
  doi: 10.1029/2005jb003663
– ident: e_1_2_9_98_1
  doi: 10.1016/0191‐8141(91)90051‐j
– ident: e_1_2_9_74_1
  doi: 10.5194/se‐12‐959‐2021
– ident: e_1_2_9_23_1
  doi: 10.1016/j.cageo.2024.105626
– ident: e_1_2_9_90_1
  doi: 10.1016/j.jsg.2023.105029
– ident: e_1_2_9_66_1
  doi: 10.2138/am‐2015‐5034
– ident: e_1_2_9_16_1
  doi: 10.1029/2004JB003431
– ident: e_1_2_9_102_1
  doi: 10.1007/s00410‐022‐01928‐3
– ident: e_1_2_9_69_1
  doi: 10.1002/2014JB011708
– ident: e_1_2_9_104_1
  doi: 10.1016/j.jsg.2023.104960
– ident: e_1_2_9_9_1
  doi: 10.1016/j.jsg.2011.10.001
– ident: e_1_2_9_97_1
  doi: 10.1016/0191‐8141(80)90005‐X
– ident: e_1_2_9_72_1
  doi: 10.1126/sciadv.aaw0913
– ident: e_1_2_9_54_1
  doi: 10.1093/petroj/39.8.1425
– ident: e_1_2_9_59_1
  doi: 10.1016/j.jsg.2012.12.004
– ident: e_1_2_9_39_1
  doi: 10.1016/0040‐1951(78)90101‐4
– ident: e_1_2_9_32_1
  doi: 10.1007/BF00306442
– ident: e_1_2_9_2_1
  doi: 10.1029/JB089iB06p04059
– ident: e_1_2_9_85_1
  doi: 10.1016/j.tecto.2005.08.023
– ident: e_1_2_9_45_1
  doi: 10.1144/SP478.4
– ident: e_1_2_9_10_1
  doi: 10.1016/j.tecto.2021.229026
– ident: e_1_2_9_27_1
  doi: 10.1111/jmg.12702
– ident: e_1_2_9_34_1
  doi: 10.2138/rmg.2006.62.6
– ident: e_1_2_9_58_1
  doi: 10.1016/j.jsg.2008.02.001
– ident: e_1_2_9_56_1
  doi: 10.1130/g36307.1
– ident: e_1_2_9_88_1
  doi: 10.1130/ges00573.1
– ident: e_1_2_9_35_1
  doi: 10.2138/am‐2003‐5‐620
– ident: e_1_2_9_80_1
  doi: 10.1029/95RG01302
– ident: e_1_2_9_30_1
  doi: 10.1016/j.earscirev.2015.12.002
– ident: e_1_2_9_37_1
  doi: 10.1007/s00410‐022‐01938‐1
– ident: e_1_2_9_71_1
  doi: 10.1016/j.jsg.2018.05.021
– ident: e_1_2_9_82_1
  doi: 10.1016/j.tecto.2004.01.006
– ident: e_1_2_9_65_1
  doi: 10.1016/j.gca.2020.03.013
– ident: e_1_2_9_84_1
  doi: 10.2138/am.2008.2657
– ident: e_1_2_9_48_1
  doi: 10.1016/j.ultramic.2017.09.011
– ident: e_1_2_9_87_1
  doi: 10.1130/ges00035.1
– ident: e_1_2_9_63_1
  doi: 10.1130/g45632.1
– ident: e_1_2_9_31_1
  doi: 10.1038/s41586‐018‐0045‐y
– ident: e_1_2_9_105_1
  doi: 10.1016/j.epsl.2024.118621
– ident: e_1_2_9_8_1
  doi: 10.1016/j.lithos.2016.03.011
– ident: e_1_2_9_20_1
  doi: 10.1186/s40623‐019‐1117‐4
– ident: e_1_2_9_22_1
  doi: 10.1007/BF00199553
– ident: e_1_2_9_52_1
  doi: 10.1016/S0191‐8141(03)00081‐6
– ident: e_1_2_9_4_1
  doi: 10.1016/j.tecto.2013.08.030
– volume: 70
  start-page: 794
  issue: 7
  year: 1985
  ident: e_1_2_9_26_1
  article-title: A spectroscopic study of irradiation coloring of amazonite: Structurally hydrous, Pb‐bearing feldspar
  publication-title: American Mineralogist
– ident: e_1_2_9_94_1
  doi: 10.1126/sciadv.adi8533
– ident: e_1_2_9_13_1
  doi: 10.1038/2091192a0
– ident: e_1_2_9_60_1
– ident: e_1_2_9_41_1
  doi: 10.1029/JB091iB12p12723
– ident: e_1_2_9_78_1
  doi: 10.1016/j.epsl.2005.04.009
– volume: 59
  start-page: 1249
  issue: 11
  year: 1974
  ident: e_1_2_9_47_1
  article-title: Infrared spectra of Al‐Fe(III)‐epidotes and zoisites, Ca2(Al1‐p Fe3+p)Al2O(OH)[Si2O7][SiO4]
  publication-title: American Mineralogist
– ident: e_1_2_9_21_1
  doi: 10.1038/nature08051
– ident: e_1_2_9_14_1
  doi: 10.1093/petrology/egh034
– ident: e_1_2_9_3_1
  doi: 10.1016/0012‐821x(87)90158‐0
– ident: e_1_2_9_55_1
  doi: 10.1098/rsta.2019.0416
– ident: e_1_2_9_12_1
  doi: 10.1038/s41467‐020‐15150‐x
– ident: e_1_2_9_44_1
– ident: e_1_2_9_42_1
  doi: 10.1016/S0191‐8141(01)00030‐X
– ident: e_1_2_9_77_1
  doi: 10.1016/j.lithos.2021.106413
– ident: e_1_2_9_68_1
  doi: 10.1029/2019JB017304
– ident: e_1_2_9_93_1
  doi: 10.1007/s00410‐012‐0822‐9
– ident: e_1_2_9_38_1
  doi: 10.1029/2020TC006572
– ident: e_1_2_9_95_1
  doi: 10.1016/j.tecto.2007.05.005
– ident: e_1_2_9_6_1
  doi: 10.1016/j.jsg.2023.105010
– ident: e_1_2_9_75_1
  doi: 10.1038/ngeo3009
– ident: e_1_2_9_46_1
  doi: 10.1016/j.cageo.2013.08.010
– ident: e_1_2_9_86_1
  doi: 10.1029/2003TC001522
– ident: e_1_2_9_67_1
  doi: 10.1016/j.epsl.2019.115886
– ident: e_1_2_9_76_1
  doi: 10.1093/petrology/egab092
– ident: e_1_2_9_70_1
  doi: 10.1130/b31922.1
– ident: e_1_2_9_43_1
  doi: 10.1093/petrology/42.7.1349
– ident: e_1_2_9_103_1
  doi: 10.1029/2018TC005297
– ident: e_1_2_9_62_1
  doi: 10.1130/g33674.1
– ident: e_1_2_9_101_1
  doi: 10.1016/S0191‐8141(01)00100‐6
– ident: e_1_2_9_79_1
  doi: 10.1016/j.tecto.2021.229079
– ident: e_1_2_9_18_1
  doi: 10.1016/j.jsg.2022.104547
– ident: e_1_2_9_96_1
  doi: 10.1130/0091‐7613(1996)024<0063:Defdif>2.3.Co;2
– ident: e_1_2_9_24_1
  doi: 10.1029/2018JB016559
– ident: e_1_2_9_92_1
  doi: 10.1007/s005310000148
– ident: e_1_2_9_61_1
  doi: 10.1029/2023JB026809
– ident: e_1_2_9_40_1
  doi: 10.1002/2015JB012771
– ident: e_1_2_9_11_1
  doi: 10.1029/2021JB023616
SSID ssj0014558
Score 2.4439478
Snippet Coseismic fracturing in the strong, dry, and metastable plagioclase‐rich lower‐crust is an effective mechanism for creating pathways for fluids to infiltrate...
Coseismic fracturing in the strong, dry, and metastable plagioclase-rich lower-crust is an effective mechanism for creating pathways for fluids to infiltrate...
Abstract Coseismic fracturing in the strong, dry, and metastable plagioclase‐rich lower‐crust is an effective mechanism for creating pathways for fluids to...
SourceID doaj
cristin
proquest
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
SubjectTerms brittle deformation
Chemical reactions
Deformation
Earthquakes
Feldspars
Fluids
fluid‐rock interaction
Fourier transform infrared spectroscopy (FTIR)
Fourier transforms
Grain boundaries
Grain growth
Infiltration
lower crust
Metamorphism
Microscopy
Plagioclase
Porosity
pseudotachylyte
Rock
Rocks
Seismic activity
Shear
Solifluction
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA4iFLyIT1xf5KA3F9s8NpujLe1WURFR8BY2LyzUVWx76M2f4G_0lzhJt6Ve9OI1u-wOmRnm-5jkG4ROstxzr6lPLdTelFFN0lJ6SDygGjq3WlofOro3t1n_kV098aelUV_hTNhMHni2cecUCAgxgjnuLJMQgRYwtnYtB_wbintUL4WaNydTdf-AcZ7Xx9ybRAaGz4pOkDcLkqoNE_On-lGKomL_D5i5DFZjteltoPUaJuKLmXmbaMVVW6hRxDG80230duPCjd3B6GWEXz2-gG8Bg8e94WRg8WXlB8NaDReXlcX34e7tYrIVHsAqvg7T0b4-PjvhzgX86W7kJkBQS_M8HU7HDp60IQegruFeORmOd9Bjr_vQ6af17IS0BIiVpTInBtiG9MzlJfiDNy3zGYA3kVliuDWGGmO5kMRnommMZsLk2viSWU4ME3QXrVavldtDWBCnNadaOpEzagGPUCFM6CSDO7SXCUrqDVUVhG2QHOUEmEUGyDFBp_MtVm8z-QwV295EqmWnJKgd9n_xThC9jgsQCqoOBfVXKCTocO49VWfiSAE-AlNy0qIJOose_dUQVRRFl1AAufv_YdIBWiNhYHA85n2IVsfvE3cEKGasj2PAfgPOh-vp
  priority: 102
  providerName: Directory of Open Access Journals
Title Mechanisms of Aqueous Fluid Infiltration and Redistribution in a Lower‐Crustal Pseudotachylyte‐Bearing Fault
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024GC011968
https://www.proquest.com/docview/3171168213
http://hdl.handle.net/10852/116310
https://doaj.org/article/34092c74e5ed49318d548be1e7618395
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbhMxFLWgCIkNanmIgbbyAnaMaPwcL9uomYIoqhCVurPGL4iUTqpOssiOT-Ab-ZLe67hRukFiO2OPLV_f8Tm277mEvFdNksnxVAdYe2vBHas7k8DxgGq4JjgTEp7onn9TZ5fiy5W8KhtuGAuz1ofYbLihZ-T_NTp454YiNoAamcDaRTtGyTLVPCZPMLoWtfOZuNicIgiZ83Niip8aSX65-A71P23XBujrs0f1DxanrOH_AHhuw9e8_kx2yfMCHOnx2tJ75FHsX5CnbU7Mu3pJbs4jxvBOh-uBzhM9hm8Bp6eT2XIa6Oc-TWdFH5d2faDfMRp3k-uKTuEp_Yr50v7-_jPGKAxo6WKIS6Csnf-1mq0WEd6cgFfASkcn3XK2eEUuJ6c_xmd1yaZQdwC6VG0a5oF_mCRi04GF5FEQSQGc0yowL4P33PsgtWFJ6SPvndC-cT51IkjmheavyU4_7-MbQjWLzknuTNSN4AEQCtfa49my4SOXTEWqMqC2h4mMIqSSAddQgCUr8uF-iO3NWlDD5oNwZuy2USpyguO_KYMy2PnB_PanLV5lObBT5rWIMgYBbTcBCJiLo6gVIj9Zkf1769nim4MFxARdadiIV-Rjtug_O2Lbtj1lHGDv2_8r_o48Y5gsOF_x3ic7i9tlPAAEs3CHeZoeZv5_Bzci590
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbhMxFLWgCMEGlZc6UMAL2DGi8XuWbdRMCklVoVbqzhq_2khhUjXJIjs-gW_kS7jXmUbpphLbGXts-fqOz_G1zyXkszJJJsdTGWDtLQV3rGyqBI4HVMOZ4KqQMKI7PlXDC_H9Ul52eU7xLsxaH2Kz4Yaekf_X6OC4Id2pDaBIJtB2UfdRs0yZx-SJUEyjZzJxtgkjCJkTdGKOnxJZfnfyHep_264N2Ndnl2rvrU5ZxP8e8tzGr3kBGuySFx1ypIdrU78kj2L7ijytc2be1WtyM454iXcy_zWns0QP4VtA6ulgupwEetKmybQTyKVNG-hPvI67SXZFJ_CUjjBh2t_ff_p4DQNaOpvHJXDWxl-vpqtFhDdH4Baw1NFBs5wu3pCLwfF5f1h26RTKBlCXKivDPBCQKoloGjCRPAgiKcBzWgXmZfCeex-krlhS-sB7J7Q3zqdGBMm80Pwt2WlnbdwjVLPonOSuitoIHgCicK09Bpcr3nOpKkjRDahtYSajCqlkQDYUgMmCfLkbYnuzVtSwORLOKrttlIIc4fhvyqAOdn4wu72ynVtZDvSUeS2ijEFA2yYAA3OxF7VC6CcLsn9nPds559wCZIKuGNbjBfmaLfpgR2xd18eMA-5993_FP5Fnw_PxyI5OTn-8J88ZZg7O5733yc7idhk_AJxZuI95yv4DT1fqVA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbhMxFLWgCMQG8RRTCngBO0Y0fozHyzZ0poW2ihCVurPGrxIpTKImWWTXT-Ab-RLuddwo3SCxnbHHlq_v-Bxf-1xCPlR1lNHyWHpYe0vBLSs7HcHxgGrY2lvtI0Z0z86r4wvx9VJe5g03vAuz1ofYbLihZ6T_NTr4zMcsNoAamcDaRTtEybKqvk8epHgfKjuL0SaKIGTKz4kpfkok-fngO9T_vF0boK9LHtXfWZyShv8d4LkNX9P60zwlTzJwpAdrSz8j90L_nDxsU2Le1QsyOwt4h3c8_zWn00gP4FvA6WkzWY49PenjeJL1cWnXe_odb-Nucl3RMTylp5gv7c_N7yHewoCWRvOwBMrauZ-ryWoR4M0heAWsdLTplpPFS3LRHP0YHpc5m0LZAeiqSl0zB_xDRxHqDiwk972IFcA5VXnmpHeOO-el0ixWat85K5SrrYud8JI5ofgrstNP-_CaUMWCtZJbHVQtuAeEwpVyGFvWfGCjLkiRB9T0MJFRhFQy4BoVYMmCfLwdYjNbC2qYFAhn2mwbpSCHOP6bMiiDnR5Mr69M9irDgZ0yp0SQwQtou_ZAwGwYBFUh8pMF2bu1nsm-OTeAmKArNRvwgnxKFv1nR0zbtkeMA-zd_b_i78mj0ZfGnJ6cf3tDHjPMG5xOe--RncX1MrwFMLOw79KM_Qv-AOmG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanisms+of+Aqueous+Fluid+Infiltration+and+Redistribution+in+a+Lower%E2%80%90Crustal+Pseudotachylyte%E2%80%90Bearing+Fault&rft.jtitle=Geochemistry%2C+geophysics%2C+geosystems+%3A+G3&rft.au=Michalchuk%2C+Stephen+Paul&rft.au=Lueder%2C+Mona&rft.au=Gies%2C+Nils+B.&rft.au=Ohl%2C+Markus&rft.date=2025-02-01&rft.issn=1525-2027&rft.eissn=1525-2027&rft.volume=26&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2024GC011968&rft.externalDBID=10.1029%252F2024GC011968&rft.externalDocID=GGGE23566
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1525-2027&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1525-2027&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1525-2027&client=summon