Comprehensive Analysis of Coupled Proline Cis–Trans States in Bradykinin Using ωBP-REMD Simulations
It is well-known that proline (Pro) cis–trans isomerization plays a decisive role in the folding and stabilization of proteins. The conformational coupling between isomerization states of different Pro residues in proteins during conformational adaptation processes is not well understood. In the pre...
Saved in:
Published in | Journal of chemical theory and computation Vol. 20; no. 6; pp. 2643 - 2654 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
26.03.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | It is well-known that proline (Pro) cis–trans isomerization plays a decisive role in the folding and stabilization of proteins. The conformational coupling between isomerization states of different Pro residues in proteins during conformational adaptation processes is not well understood. In the present work, we investigate the coupled cis–trans isomerization of three Pro residues using bradykinin (BK), a partially unstructured nonapeptide hormone, as a model system. We use a recently developed enhanced-sampling molecular dynamics method (ω-bias potential replica exchange molecular dynamics; ωBP-REMD) that allows us to exhaustively sample all combinations of Pro isomer states and obtain converged probability densities of all eight state combinations within 885 ns ωBP-REMD simulations. In agreement with experiment, the all-trans state is seen to be the preferred isomer of zwitterionic aqueous BK. In about a third of its structures, this state presents the characteristic C-terminal β-turn conformation; however, other isomer combinations also contribute significantly to the structural ensemble. Unbiased probabilities can be projected onto the peptide bond dihedral angles of the three Pro residues. This unveils the interdependence of the individual Pro isomerization states, i.e., a possible coupling of the different Pro isomers. The cis/trans equilibrium of a Pro residue can change by up to 2.5 kcal·mol–1, depending on the isomerization state of other Pro residues. For example, for Pro7, the simulations indicate that its cis state becomes favored compared to its trans state when Pro2 is switched from the trans state to the cis state. Our findings demonstrate the efficiency of the ωBP-REMD methodology and suggest that the coupling of Pro isomerization states may play an even more decisive role in larger folded proteins subject to more conformational restraints. |
---|---|
AbstractList | It is well-known that proline (Pro) cis-trans isomerization plays a decisive role in the folding and stabilization of proteins. The conformational coupling between isomerization states of different Pro residues in proteins during conformational adaptation processes is not well understood. In the present work, we investigate the coupled cis-trans isomerization of three Pro residues using bradykinin (BK), a partially unstructured nonapeptide hormone, as a model system. We use a recently developed enhanced-sampling molecular dynamics method (ω-bias potential replica exchange molecular dynamics; ωBP-REMD) that allows us to exhaustively sample all combinations of Pro isomer states and obtain converged probability densities of all eight state combinations within 885 ns ωBP-REMD simulations. In agreement with experiment, the all-trans state is seen to be the preferred isomer of zwitterionic aqueous BK. In about a third of its structures, this state presents the characteristic C-terminal β-turn conformation; however, other isomer combinations also contribute significantly to the structural ensemble. Unbiased probabilities can be projected onto the peptide bond dihedral angles of the three Pro residues. This unveils the interdependence of the individual Pro isomerization states, i.e., a possible coupling of the different Pro isomers. The cis/trans equilibrium of a Pro residue can change by up to 2.5 kcal·mol-1, depending on the isomerization state of other Pro residues. For example, for Pro7, the simulations indicate that its cis state becomes favored compared to its trans state when Pro2 is switched from the trans state to the cis state. Our findings demonstrate the efficiency of the ωBP-REMD methodology and suggest that the coupling of Pro isomerization states may play an even more decisive role in larger folded proteins subject to more conformational restraints.It is well-known that proline (Pro) cis-trans isomerization plays a decisive role in the folding and stabilization of proteins. The conformational coupling between isomerization states of different Pro residues in proteins during conformational adaptation processes is not well understood. In the present work, we investigate the coupled cis-trans isomerization of three Pro residues using bradykinin (BK), a partially unstructured nonapeptide hormone, as a model system. We use a recently developed enhanced-sampling molecular dynamics method (ω-bias potential replica exchange molecular dynamics; ωBP-REMD) that allows us to exhaustively sample all combinations of Pro isomer states and obtain converged probability densities of all eight state combinations within 885 ns ωBP-REMD simulations. In agreement with experiment, the all-trans state is seen to be the preferred isomer of zwitterionic aqueous BK. In about a third of its structures, this state presents the characteristic C-terminal β-turn conformation; however, other isomer combinations also contribute significantly to the structural ensemble. Unbiased probabilities can be projected onto the peptide bond dihedral angles of the three Pro residues. This unveils the interdependence of the individual Pro isomerization states, i.e., a possible coupling of the different Pro isomers. The cis/trans equilibrium of a Pro residue can change by up to 2.5 kcal·mol-1, depending on the isomerization state of other Pro residues. For example, for Pro7, the simulations indicate that its cis state becomes favored compared to its trans state when Pro2 is switched from the trans state to the cis state. Our findings demonstrate the efficiency of the ωBP-REMD methodology and suggest that the coupling of Pro isomerization states may play an even more decisive role in larger folded proteins subject to more conformational restraints. It is well-known that proline (Pro) cis-trans isomerization plays a decisive role in the folding and stabilization of proteins. The conformational coupling between isomerization states of different Pro residues in proteins during conformational adaptation processes is not well understood. In the present work, we investigate the coupled cis-trans isomerization of three Pro residues using bradykinin (BK), a partially unstructured nonapeptide hormone, as a model system. We use a recently developed enhanced-sampling molecular dynamics method (ω-bias potential replica exchange molecular dynamics; ωBP-REMD) that allows us to exhaustively sample all combinations of Pro isomer states and obtain converged probability densities of all eight state combinations within 885 ns ωBP-REMD simulations. In agreement with experiment, the all-trans state is seen to be the preferred isomer of zwitterionic aqueous BK. In about a third of its structures, this state presents the characteristic C-terminal β-turn conformation; however, other isomer combinations also contribute significantly to the structural ensemble. Unbiased probabilities can be projected onto the peptide bond dihedral angles of the three Pro residues. This unveils the interdependence of the individual Pro isomerization states, i.e., a possible coupling of the different Pro isomers. The cis/trans equilibrium of a Pro residue can change by up to 2.5 kcal·mol , depending on the isomerization state of other Pro residues. For example, for Pro7, the simulations indicate that its cis state becomes favored compared to its trans state when Pro2 is switched from the trans state to the cis state. Our findings demonstrate the efficiency of the ωBP-REMD methodology and suggest that the coupling of Pro isomerization states may play an even more decisive role in larger folded proteins subject to more conformational restraints. It is well-known that proline (Pro) cis–trans isomerization plays a decisive role in the folding and stabilization of proteins. The conformational coupling between isomerization states of different Pro residues in proteins during conformational adaptation processes is not well understood. In the present work, we investigate the coupled cis–trans isomerization of three Pro residues using bradykinin (BK), a partially unstructured nonapeptide hormone, as a model system. We use a recently developed enhanced-sampling molecular dynamics method (ω-bias potential replica exchange molecular dynamics; ωBP-REMD) that allows us to exhaustively sample all combinations of Pro isomer states and obtain converged probability densities of all eight state combinations within 885 ns ωBP-REMD simulations. In agreement with experiment, the all-trans state is seen to be the preferred isomer of zwitterionic aqueous BK. In about a third of its structures, this state presents the characteristic C-terminal β-turn conformation; however, other isomer combinations also contribute significantly to the structural ensemble. Unbiased probabilities can be projected onto the peptide bond dihedral angles of the three Pro residues. This unveils the interdependence of the individual Pro isomerization states, i.e., a possible coupling of the different Pro isomers. The cis/trans equilibrium of a Pro residue can change by up to 2.5 kcal·mol –1 , depending on the isomerization state of other Pro residues. For example, for Pro7, the simulations indicate that its cis state becomes favored compared to its trans state when Pro2 is switched from the trans state to the cis state. Our findings demonstrate the efficiency of the ωBP-REMD methodology and suggest that the coupling of Pro isomerization states may play an even more decisive role in larger folded proteins subject to more conformational restraints. It is well-known that proline (Pro) cis–trans isomerization plays a decisive role in the folding and stabilization of proteins. The conformational coupling between isomerization states of different Pro residues in proteins during conformational adaptation processes is not well understood. In the present work, we investigate the coupled cis–trans isomerization of three Pro residues using bradykinin (BK), a partially unstructured nonapeptide hormone, as a model system. We use a recently developed enhanced-sampling molecular dynamics method (ω-bias potential replica exchange molecular dynamics; ωBP-REMD) that allows us to exhaustively sample all combinations of Pro isomer states and obtain converged probability densities of all eight state combinations within 885 ns ωBP-REMD simulations. In agreement with experiment, the all-trans state is seen to be the preferred isomer of zwitterionic aqueous BK. In about a third of its structures, this state presents the characteristic C-terminal β-turn conformation; however, other isomer combinations also contribute significantly to the structural ensemble. Unbiased probabilities can be projected onto the peptide bond dihedral angles of the three Pro residues. This unveils the interdependence of the individual Pro isomerization states, i.e., a possible coupling of the different Pro isomers. The cis/trans equilibrium of a Pro residue can change by up to 2.5 kcal·mol–1, depending on the isomerization state of other Pro residues. For example, for Pro7, the simulations indicate that its cis state becomes favored compared to its trans state when Pro2 is switched from the trans state to the cis state. Our findings demonstrate the efficiency of the ωBP-REMD methodology and suggest that the coupling of Pro isomerization states may play an even more decisive role in larger folded proteins subject to more conformational restraints. |
Author | Kienlein, Maximilian Reif, Maria M. Zacharias, Martin |
AuthorAffiliation | Center for Functional Protein Assemblies (CPA), Physics Department, Chair of Theoretical Biophysics (T38) Technical University of Munich |
AuthorAffiliation_xml | – name: Center for Functional Protein Assemblies (CPA), Physics Department, Chair of Theoretical Biophysics (T38) – name: Technical University of Munich |
Author_xml | – sequence: 1 givenname: Maximilian surname: Kienlein fullname: Kienlein, Maximilian – sequence: 2 givenname: Martin orcidid: 0000-0001-5163-2663 surname: Zacharias fullname: Zacharias, Martin – sequence: 3 givenname: Maria M. orcidid: 0000-0002-8171-3541 surname: Reif fullname: Reif, Maria M. email: maria.reif@tum.de |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38465868$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU1v1DAQhi1URD_gzglZ4sKBLP6IneSE2lA-pCIq2p4tx5m0XrL21pNU2htXzvww_gO_hCy7XQESJ480z7wezXNI9kIMQMhTzmacCf7KOpzN3eBm0jEulX5ADrjKq6zSQu_tal7uk0PEOWNS5kI-IvuyzLUqdXlAujoulgluIKC_A3ocbL9CjzR2tI7jsoeWnqfY-wC09vjz6_fLZAPSi8EOgNQHepJsu_riw1ReoQ_X9Me3k_Ps8-nHN_TCL8beDj4GfEwedrZHeLJ9j8jV29PL-n129undh_r4LLM5V0MG4JqqFSBAsrLlpWpFnudCt4XgClxVOSZZVzYNqE43BetUAQ660llZWAVWHpHXm9zl2CygdRCGZHuzTH5h08pE683fneBvzHW8M5xVhdZSTAkvtgkp3o6Ag1l4dND3NkAc0YhKKaGV4HJCn_-DzuOYpguikSyXcspka-rZnyvtdrl3MAFsA7gUERN0O4Qzs9ZsJs1mrdlsNU8jLzcjvzv3n_4X_wVlyq24 |
Cites_doi | 10.1002/jrs.1250210807 10.1021/acs.jctc.5b00255 10.1021/acs.jctc.5b00846 10.1038/nsmb946 10.1111/j.1398-9995.2011.02686.x 10.1021/ja9535928 10.1016/0022-2836(81)90342-9 10.1021/jp067873l 10.1002/jcc.540140407 10.1002/jcc.26882 10.1016/0263-7855(96)00018-5 10.1063/1.445869 10.1002/anie.200704282 10.1111/j.1399-3011.1990.tb00063.x 10.1063/1.1699114 10.1021/jacs.6b04550 10.1021/ja3114505 10.1002/bip.360341102 10.1038/nrd1522 10.1063/1.464397 10.1038/nchembio.2551 10.1063/1.442716 10.1021/jp8001614 10.1002/bip.360340504 10.1063/1.448118 10.1016/0196-9781(86)90142-7 10.1002/bip.1977.360160707 10.1021/ja203895j 10.1111/j.1432-1033.1997.00471.x 10.1002/bip.1981.360201209 10.1111/j.1399-3011.1994.tb01140.x 10.1002/prot.20033 10.1021/jp046015r 10.1145/1365490.1365500 10.1021/ct400341p 10.1016/j.bbrc.2004.01.134 10.1016/0022-2836(90)90159-J 10.1161/01.HYP.36.1.132 10.1016/j.bbamem.2008.12.019 10.1021/ct5010406 10.1016/j.jmb.2008.02.010 10.1046/j.1432-1327.1999.00420.x 10.1016/j.str.2023.08.008 10.1080/07391102.2003.10506933 10.1139/o98-028 10.1016/j.jmb.2009.02.021 10.1021/acs.analchem.5b01889 10.1016/0022-5193(70)90022-6 10.1038/srep11840 10.1002/(SICI)1096-987X(19990130)20:2<217::AID-JCC4>3.0.CO;2-A 10.1007/s11033-022-07539-2 10.1016/0021-9991(77)90098-5 10.1021/la104046z 10.1002/1097-0282(2000)56:4<275::AID-BIP10024>3.0.CO;2-E 10.1002/bip.360340706 10.1063/1.4943004 10.1023/A:1020997118364 |
ContentType | Journal Article |
Copyright | 2024 The Authors. Published by American Chemical Society Copyright American Chemical Society Mar 26, 2024 2024 The Authors. Published by American Chemical Society 2024 The Authors |
Copyright_xml | – notice: 2024 The Authors. Published by American Chemical Society – notice: Copyright American Chemical Society Mar 26, 2024 – notice: 2024 The Authors. Published by American Chemical Society 2024 The Authors |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SC 7SR 7U5 8BQ 8FD JG9 JQ2 L7M L~C L~D 7X8 5PM |
DOI | 10.1021/acs.jctc.3c01356 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1549-9626 |
EndPage | 2654 |
ExternalDocumentID | PMC10976632 38465868 10_1021_acs_jctc_3c01356 a948978118 |
Genre | Journal Article |
GroupedDBID | 4.4 53G 55A 5GY 5VS 7~N AABXI ABFRP ABJNI ABMVS ABQRX ABUCX ACGFS ACIWK ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DU5 EBS ED~ F5P GGK GNL IH9 J9A JG~ P2P RNS ROL UI2 VF5 VG9 W1F AAYXX ABBLG ABLBI CITATION CUPRZ CGR CUY CVF ECM EIF NPM 7SC 7SR 7U5 8BQ 8FD JG9 JQ2 L7M L~C L~D 7X8 5PM |
ID | FETCH-LOGICAL-a415t-eecb9d2e2e308d185d244426d7215ec99c030f8bbe5f6b70f57ecef8ca37a5ea3 |
IEDL.DBID | ACS |
ISSN | 1549-9618 1549-9626 |
IngestDate | Thu Aug 21 18:35:10 EDT 2025 Fri Jul 11 11:17:50 EDT 2025 Mon Jun 30 05:47:17 EDT 2025 Mon Jul 21 06:07:07 EDT 2025 Tue Jul 01 02:03:36 EDT 2025 Wed Mar 27 03:17:47 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a415t-eecb9d2e2e308d185d244426d7215ec99c030f8bbe5f6b70f57ecef8ca37a5ea3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5163-2663 0000-0002-8171-3541 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC10976632 |
PMID | 38465868 |
PQID | 3043310903 |
PQPubID | 2048741 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10976632 proquest_miscellaneous_2955265213 proquest_journals_3043310903 pubmed_primary_38465868 crossref_primary_10_1021_acs_jctc_3c01356 acs_journals_10_1021_acs_jctc_3c01356 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-26 |
PublicationDateYYYYMMDD | 2024-03-26 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-26 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Journal of chemical theory and computation |
PublicationTitleAlternate | J. Chem. Theory Comput |
PublicationYear | 2024 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 Pedregosa F. (ref50/cit50) 2011; 12 ref42/cit42 ref46/cit46 ref13/cit13 ref61/cit61 ref24/cit24 ref38/cit38 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 Tuckerman M. (ref49/cit49) 2010 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref16/cit16 doi: 10.1002/jrs.1250210807 – ident: ref39/cit39 doi: 10.1021/acs.jctc.5b00255 – ident: ref36/cit36 doi: 10.1021/acs.jctc.5b00846 – ident: ref3/cit3 doi: 10.1038/nsmb946 – ident: ref31/cit31 doi: 10.1111/j.1398-9995.2011.02686.x – ident: ref27/cit27 doi: 10.1021/ja9535928 – ident: ref8/cit8 doi: 10.1016/0022-2836(81)90342-9 – ident: ref35/cit35 doi: 10.1021/jp067873l – ident: ref21/cit21 doi: 10.1002/jcc.540140407 – ident: ref37/cit37 doi: 10.1002/jcc.26882 – ident: ref56/cit56 doi: 10.1016/0263-7855(96)00018-5 – ident: ref61/cit61 – ident: ref41/cit41 doi: 10.1063/1.445869 – ident: ref33/cit33 doi: 10.1002/anie.200704282 – ident: ref17/cit17 doi: 10.1111/j.1399-3011.1990.tb00063.x – ident: ref48/cit48 doi: 10.1063/1.1699114 – ident: ref25/cit25 doi: 10.1021/jacs.6b04550 – ident: ref11/cit11 doi: 10.1021/ja3114505 – ident: ref18/cit18 doi: 10.1002/bip.360341102 – ident: ref29/cit29 doi: 10.1038/nrd1522 – ident: ref44/cit44 doi: 10.1063/1.464397 – ident: ref42/cit42 doi: 10.1038/nchembio.2551 – ident: ref46/cit46 doi: 10.1063/1.442716 – ident: ref40/cit40 doi: 10.1021/jp8001614 – ident: ref23/cit23 doi: 10.1002/bip.360340504 – ident: ref43/cit43 doi: 10.1063/1.448118 – ident: ref13/cit13 doi: 10.1016/0196-9781(86)90142-7 – ident: ref9/cit9 doi: 10.1002/bip.1977.360160707 – ident: ref24/cit24 doi: 10.1021/ja203895j – ident: ref57/cit57 doi: 10.1111/j.1432-1033.1997.00471.x – ident: ref10/cit10 doi: 10.1002/bip.1981.360201209 – ident: ref20/cit20 doi: 10.1111/j.1399-3011.1994.tb01140.x – ident: ref54/cit54 doi: 10.1002/prot.20033 – ident: ref26/cit26 doi: 10.1021/jp046015r – ident: ref38/cit38 doi: 10.1145/1365490.1365500 – ident: ref51/cit51 doi: 10.1021/ct400341p – ident: ref15/cit15 doi: 10.1016/j.bbrc.2004.01.134 – ident: ref2/cit2 doi: 10.1016/0022-2836(90)90159-J – ident: ref28/cit28 doi: 10.1161/01.HYP.36.1.132 – ident: ref58/cit58 doi: 10.1016/j.bbamem.2008.12.019 – volume-title: Statistical Mechanics: Theory and Molecular Simulation year: 2010 ident: ref49/cit49 – ident: ref47/cit47 doi: 10.1021/ct5010406 – ident: ref5/cit5 doi: 10.1016/j.jmb.2008.02.010 – ident: ref19/cit19 doi: 10.1046/j.1432-1327.1999.00420.x – volume: 12 start-page: 2825 year: 2011 ident: ref50/cit50 publication-title: J. Mach. Learn. Res. – ident: ref7/cit7 doi: 10.1016/j.str.2023.08.008 – ident: ref59/cit59 doi: 10.1080/07391102.2003.10506933 – ident: ref32/cit32 doi: 10.1139/o98-028 – ident: ref6/cit6 doi: 10.1016/j.jmb.2009.02.021 – ident: ref34/cit34 doi: 10.1021/acs.analchem.5b01889 – ident: ref1/cit1 doi: 10.1016/0022-5193(70)90022-6 – ident: ref4/cit4 doi: 10.1038/srep11840 – ident: ref55/cit55 doi: 10.1002/(SICI)1096-987X(19990130)20:2<217::AID-JCC4>3.0.CO;2-A – ident: ref30/cit30 doi: 10.1007/s11033-022-07539-2 – ident: ref45/cit45 doi: 10.1016/0021-9991(77)90098-5 – ident: ref22/cit22 doi: 10.1021/la104046z – ident: ref52/cit52 – ident: ref53/cit53 doi: 10.1002/1097-0282(2000)56:4<275::AID-BIP10024>3.0.CO;2-E – ident: ref14/cit14 doi: 10.1002/bip.360340706 – ident: ref12/cit12 doi: 10.1063/1.4943004 – ident: ref60/cit60 doi: 10.1023/A:1020997118364 |
SSID | ssj0033423 |
Score | 2.4230738 |
Snippet | It is well-known that proline (Pro) cis–trans isomerization plays a decisive role in the folding and stabilization of proteins. The conformational coupling... It is well-known that proline (Pro) cis-trans isomerization plays a decisive role in the folding and stabilization of proteins. The conformational coupling... It is well-known that proline (Pro) cis–trans isomerization plays a decisive role in the folding and stabilization of proteins. The conformational coupling... |
SourceID | pubmedcentral proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 2643 |
SubjectTerms | Biomolecular Systems Bradykinin Isomerization Isomers Molecular dynamics Proline Proline - chemistry Protein Conformation Proteins Residues Simulation Thermodynamics |
Title | Comprehensive Analysis of Coupled Proline Cis–Trans States in Bradykinin Using ωBP-REMD Simulations |
URI | http://dx.doi.org/10.1021/acs.jctc.3c01356 https://www.ncbi.nlm.nih.gov/pubmed/38465868 https://www.proquest.com/docview/3043310903 https://www.proquest.com/docview/2955265213 https://pubmed.ncbi.nlm.nih.gov/PMC10976632 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwELUoHNoLLf1iW4pcqT30kO3GjvNxpCkIIVGhUiRuUWyPxRbIIpI9tCeunPlh_If-ks44ydKFCnGNLSce2_OeNZM3jH0YudJqhPUg0QkE6CUlnjmrApuk0jnyf_7fqt1v8fZBtHOoDm9kcm5H8EX4uTT18KdpzFAapCsqfsSWRJwmdNHayPd7rytJyc5ro0akOBmmXUjyfyMQEJl6HojusMvbSZL_oM7W07Z8Ue3FCinZ5Hg4bfTQ_L4r5fiACT1jyx355BvtbllhC1A9Z4_zvubbC-bIPZzDUZvVznvFEj5xPJ9Mz07A8j1f5gd4Pq7_XFx5qOMtY-XjilNo_tcxFZ3gPhmBX19-2Qu-b-5-5fvj065UWP2SHWxt_si3g64SQ1AiwDcBgNGZFSBAjlKLEG-RFSC2W7w_KjBZZtBXuFRrUC7WycipBAy41JQyKRWU8hVbrCYVrDIeSZ9aJaTNVCRCrUcyIg1_3BxA-moD9hENVHQnqS58kFyEhX-IVis6qw3Yp375irNWmOOevmv9-t4MLEm6jdJS5YC9nzWjvSliUlYwmdaFyBSVDxAh9nndbofZyyQyN5XG-MHp3EaZdSDh7vmWanzkBbwp6o9MT7x54FzfsicCbUOpbyJeY4vN-RTeIRdq9Lo_BH8BpYEGDQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6VciiX8g9LCxiJHjhk2dhxfg4cStpqS7tVRVuptxA7E3X7k62arKpy4sqZJ-BVeAHegSdh7CRbtiDEpRJX23IcezzfWP78DcDLXp5mimDdCVSADnlJQXsuk04WhCLPjf-zb6sGW35_z3u3L_dn4Gv7FoYGUVJPpb3Ev1QXcF-bskNd6a7QFLVIv-FRbuDFOZ3SyjfrK7SkS5yvre7GfadJJOCkhE-Vg6hVlHHkKHphRgiVEagRNGV0_JGoo0iTqeehUihzXwW9XAaoMQ91KoJUYiqo3xtwk2Ifbs53y_FO6-yFEdCzkqyeEbp0w-Ym9E8jNviny2n8-y2ovcrN_AXs1m7Dt8k0WY7LUXdcqa7-eEVB8r-exzsw34TabLneG3dhBot7MBe3Ge7uQ26c4Rke1Bx-1uqzsFHO4tH49Bgztm2TGiGLh-WPT18ssLM6PmfDghkiwsWRSbHBLPWCff_8dtt5vzpYYTvDkyYxWvkA9q7lNx_CbDEq8DEwT1giGRdZJD3uKtUTnslYQFsBjZpcB5ZoQZLGb5SJpQRwN7GFtEpJs0odeNVaTXJay5D8pe1ia1aXHQsjVGdIuKIDLybVNN_mfigtcDQuEx5JkyyBu9TmUW2Fk48JilNl6NOAwyn7nDQwMuXTNcXwwMqVG44DxbX8yT_-63OY6-8ONpPN9a2NBbjFaZ4M6Y_7izBbnY3xKUWBlXpm9yGDD9dtsD8BqotrKA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwELZKkYBL-YctBYxEDxyybOw4PwcOJdtVS2m1olTqLY3_1KWQXTVZVe2JK2eegVfhyjvwJMw4ycIWhLhU4ppYjmPPzDeWP39DyNOezbUEWPciGRkPoiQHn9PC01HMrcX45-5Wbe-EG3vBq32xv0C-tHdhYBAl9FS6Q3z06om2jcKA_xyfv1OV6nIFmYsIGy7lljk9gZ1a-WKzD8u6ythg_W264TXFBLwcMKryjFEy0cwww3uxBpTSAGwATxq2QMKoJFFg7jaW0ggbyqhnRWSUsbHKeZQLk3Po9xK5jKeEuMdbS3fbgM9RRM_JsgYodunHzWnon0aMGKjKeQz8LbE9z8_8BfAG18nX2VQ5nstRd1rJrjo7pyL538_lDbLUpNx0rfaRm2TBFLfI1bStdHebWAyKx-aw5vLTVqeFji1Nx9PJe6Pp0BU3MjQdld8_fnYAT-s8nY4KioSE0yMstUEdBYN--_Ry6L1Z3-7T3dGHpkBaeYfsXchv3iWLxbgw9wkNuCOUMa4TETBfyh4PsHIBuIRBVbkOWYUFyZr4UWaOGsD8zD2EVcqaVeqQZ63lZJNajuQvbVda0_rZMUfBOiTj8g55MnsN843nRHlhxtMyY4nAognMhzb3akucfYxDviriEAYcz9norAHKlc-_KUaHTrYcuQ6Q37Llf_zXx-TKsD_IXm_ubD0g1xhME3L_WLhCFqvjqXkIyWAlHzlXpOTgou31B3Bfbas |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comprehensive+Analysis+of+Coupled+Proline+Cis%E2%80%93Trans+States+in+Bradykinin+Using+%CF%89BP-REMD+Simulations&rft.jtitle=Journal+of+chemical+theory+and+computation&rft.au=Kienlein%2C+Maximilian&rft.au=Zacharias%2C+Martin&rft.au=Reif%2C+Maria+M.&rft.date=2024-03-26&rft.pub=American+Chemical+Society&rft.issn=1549-9618&rft.eissn=1549-9626&rft.volume=20&rft.issue=6&rft.spage=2643&rft.epage=2654&rft_id=info:doi/10.1021%2Facs.jctc.3c01356&rft_id=info%3Apmid%2F38465868&rft.externalDocID=PMC10976632 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9618&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9618&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9618&client=summon |