Comprehensive Analysis of Coupled Proline Cis–Trans States in Bradykinin Using ωBP-REMD Simulations

It is well-known that proline (Pro) cis–trans isomerization plays a decisive role in the folding and stabilization of proteins. The conformational coupling between isomerization states of different Pro residues in proteins during conformational adaptation processes is not well understood. In the pre...

Full description

Saved in:
Bibliographic Details
Published inJournal of chemical theory and computation Vol. 20; no. 6; pp. 2643 - 2654
Main Authors Kienlein, Maximilian, Zacharias, Martin, Reif, Maria M.
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 26.03.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract It is well-known that proline (Pro) cis–trans isomerization plays a decisive role in the folding and stabilization of proteins. The conformational coupling between isomerization states of different Pro residues in proteins during conformational adaptation processes is not well understood. In the present work, we investigate the coupled cis–trans isomerization of three Pro residues using bradykinin (BK), a partially unstructured nonapeptide hormone, as a model system. We use a recently developed enhanced-sampling molecular dynamics method (ω-bias potential replica exchange molecular dynamics; ωBP-REMD) that allows us to exhaustively sample all combinations of Pro isomer states and obtain converged probability densities of all eight state combinations within 885 ns ωBP-REMD simulations. In agreement with experiment, the all-trans state is seen to be the preferred isomer of zwitterionic aqueous BK. In about a third of its structures, this state presents the characteristic C-terminal β-turn conformation; however, other isomer combinations also contribute significantly to the structural ensemble. Unbiased probabilities can be projected onto the peptide bond dihedral angles of the three Pro residues. This unveils the interdependence of the individual Pro isomerization states, i.e., a possible coupling of the different Pro isomers. The cis/trans equilibrium of a Pro residue can change by up to 2.5 kcal·mol–1, depending on the isomerization state of other Pro residues. For example, for Pro7, the simulations indicate that its cis state becomes favored compared to its trans state when Pro2 is switched from the trans state to the cis state. Our findings demonstrate the efficiency of the ωBP-REMD methodology and suggest that the coupling of Pro isomerization states may play an even more decisive role in larger folded proteins subject to more conformational restraints.
AbstractList It is well-known that proline (Pro) cis-trans isomerization plays a decisive role in the folding and stabilization of proteins. The conformational coupling between isomerization states of different Pro residues in proteins during conformational adaptation processes is not well understood. In the present work, we investigate the coupled cis-trans isomerization of three Pro residues using bradykinin (BK), a partially unstructured nonapeptide hormone, as a model system. We use a recently developed enhanced-sampling molecular dynamics method (ω-bias potential replica exchange molecular dynamics; ωBP-REMD) that allows us to exhaustively sample all combinations of Pro isomer states and obtain converged probability densities of all eight state combinations within 885 ns ωBP-REMD simulations. In agreement with experiment, the all-trans state is seen to be the preferred isomer of zwitterionic aqueous BK. In about a third of its structures, this state presents the characteristic C-terminal β-turn conformation; however, other isomer combinations also contribute significantly to the structural ensemble. Unbiased probabilities can be projected onto the peptide bond dihedral angles of the three Pro residues. This unveils the interdependence of the individual Pro isomerization states, i.e., a possible coupling of the different Pro isomers. The cis/trans equilibrium of a Pro residue can change by up to 2.5 kcal·mol-1, depending on the isomerization state of other Pro residues. For example, for Pro7, the simulations indicate that its cis state becomes favored compared to its trans state when Pro2 is switched from the trans state to the cis state. Our findings demonstrate the efficiency of the ωBP-REMD methodology and suggest that the coupling of Pro isomerization states may play an even more decisive role in larger folded proteins subject to more conformational restraints.It is well-known that proline (Pro) cis-trans isomerization plays a decisive role in the folding and stabilization of proteins. The conformational coupling between isomerization states of different Pro residues in proteins during conformational adaptation processes is not well understood. In the present work, we investigate the coupled cis-trans isomerization of three Pro residues using bradykinin (BK), a partially unstructured nonapeptide hormone, as a model system. We use a recently developed enhanced-sampling molecular dynamics method (ω-bias potential replica exchange molecular dynamics; ωBP-REMD) that allows us to exhaustively sample all combinations of Pro isomer states and obtain converged probability densities of all eight state combinations within 885 ns ωBP-REMD simulations. In agreement with experiment, the all-trans state is seen to be the preferred isomer of zwitterionic aqueous BK. In about a third of its structures, this state presents the characteristic C-terminal β-turn conformation; however, other isomer combinations also contribute significantly to the structural ensemble. Unbiased probabilities can be projected onto the peptide bond dihedral angles of the three Pro residues. This unveils the interdependence of the individual Pro isomerization states, i.e., a possible coupling of the different Pro isomers. The cis/trans equilibrium of a Pro residue can change by up to 2.5 kcal·mol-1, depending on the isomerization state of other Pro residues. For example, for Pro7, the simulations indicate that its cis state becomes favored compared to its trans state when Pro2 is switched from the trans state to the cis state. Our findings demonstrate the efficiency of the ωBP-REMD methodology and suggest that the coupling of Pro isomerization states may play an even more decisive role in larger folded proteins subject to more conformational restraints.
It is well-known that proline (Pro) cis-trans isomerization plays a decisive role in the folding and stabilization of proteins. The conformational coupling between isomerization states of different Pro residues in proteins during conformational adaptation processes is not well understood. In the present work, we investigate the coupled cis-trans isomerization of three Pro residues using bradykinin (BK), a partially unstructured nonapeptide hormone, as a model system. We use a recently developed enhanced-sampling molecular dynamics method (ω-bias potential replica exchange molecular dynamics; ωBP-REMD) that allows us to exhaustively sample all combinations of Pro isomer states and obtain converged probability densities of all eight state combinations within 885 ns ωBP-REMD simulations. In agreement with experiment, the all-trans state is seen to be the preferred isomer of zwitterionic aqueous BK. In about a third of its structures, this state presents the characteristic C-terminal β-turn conformation; however, other isomer combinations also contribute significantly to the structural ensemble. Unbiased probabilities can be projected onto the peptide bond dihedral angles of the three Pro residues. This unveils the interdependence of the individual Pro isomerization states, i.e., a possible coupling of the different Pro isomers. The cis/trans equilibrium of a Pro residue can change by up to 2.5 kcal·mol , depending on the isomerization state of other Pro residues. For example, for Pro7, the simulations indicate that its cis state becomes favored compared to its trans state when Pro2 is switched from the trans state to the cis state. Our findings demonstrate the efficiency of the ωBP-REMD methodology and suggest that the coupling of Pro isomerization states may play an even more decisive role in larger folded proteins subject to more conformational restraints.
It is well-known that proline (Pro) cis–trans isomerization plays a decisive role in the folding and stabilization of proteins. The conformational coupling between isomerization states of different Pro residues in proteins during conformational adaptation processes is not well understood. In the present work, we investigate the coupled cis–trans isomerization of three Pro residues using bradykinin (BK), a partially unstructured nonapeptide hormone, as a model system. We use a recently developed enhanced-sampling molecular dynamics method (ω-bias potential replica exchange molecular dynamics; ωBP-REMD) that allows us to exhaustively sample all combinations of Pro isomer states and obtain converged probability densities of all eight state combinations within 885 ns ωBP-REMD simulations. In agreement with experiment, the all-trans state is seen to be the preferred isomer of zwitterionic aqueous BK. In about a third of its structures, this state presents the characteristic C-terminal β-turn conformation; however, other isomer combinations also contribute significantly to the structural ensemble. Unbiased probabilities can be projected onto the peptide bond dihedral angles of the three Pro residues. This unveils the interdependence of the individual Pro isomerization states, i.e., a possible coupling of the different Pro isomers. The cis/trans equilibrium of a Pro residue can change by up to 2.5 kcal·mol –1 , depending on the isomerization state of other Pro residues. For example, for Pro7, the simulations indicate that its cis state becomes favored compared to its trans state when Pro2 is switched from the trans state to the cis state. Our findings demonstrate the efficiency of the ωBP-REMD methodology and suggest that the coupling of Pro isomerization states may play an even more decisive role in larger folded proteins subject to more conformational restraints.
It is well-known that proline (Pro) cis–trans isomerization plays a decisive role in the folding and stabilization of proteins. The conformational coupling between isomerization states of different Pro residues in proteins during conformational adaptation processes is not well understood. In the present work, we investigate the coupled cis–trans isomerization of three Pro residues using bradykinin (BK), a partially unstructured nonapeptide hormone, as a model system. We use a recently developed enhanced-sampling molecular dynamics method (ω-bias potential replica exchange molecular dynamics; ωBP-REMD) that allows us to exhaustively sample all combinations of Pro isomer states and obtain converged probability densities of all eight state combinations within 885 ns ωBP-REMD simulations. In agreement with experiment, the all-trans state is seen to be the preferred isomer of zwitterionic aqueous BK. In about a third of its structures, this state presents the characteristic C-terminal β-turn conformation; however, other isomer combinations also contribute significantly to the structural ensemble. Unbiased probabilities can be projected onto the peptide bond dihedral angles of the three Pro residues. This unveils the interdependence of the individual Pro isomerization states, i.e., a possible coupling of the different Pro isomers. The cis/trans equilibrium of a Pro residue can change by up to 2.5 kcal·mol–1, depending on the isomerization state of other Pro residues. For example, for Pro7, the simulations indicate that its cis state becomes favored compared to its trans state when Pro2 is switched from the trans state to the cis state. Our findings demonstrate the efficiency of the ωBP-REMD methodology and suggest that the coupling of Pro isomerization states may play an even more decisive role in larger folded proteins subject to more conformational restraints.
Author Kienlein, Maximilian
Reif, Maria M.
Zacharias, Martin
AuthorAffiliation Center for Functional Protein Assemblies (CPA), Physics Department, Chair of Theoretical Biophysics (T38)
Technical University of Munich
AuthorAffiliation_xml – name: Center for Functional Protein Assemblies (CPA), Physics Department, Chair of Theoretical Biophysics (T38)
– name: Technical University of Munich
Author_xml – sequence: 1
  givenname: Maximilian
  surname: Kienlein
  fullname: Kienlein, Maximilian
– sequence: 2
  givenname: Martin
  orcidid: 0000-0001-5163-2663
  surname: Zacharias
  fullname: Zacharias, Martin
– sequence: 3
  givenname: Maria M.
  orcidid: 0000-0002-8171-3541
  surname: Reif
  fullname: Reif, Maria M.
  email: maria.reif@tum.de
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38465868$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1v1DAQhi1URD_gzglZ4sKBLP6IneSE2lA-pCIq2p4tx5m0XrL21pNU2htXzvww_gO_hCy7XQESJ480z7wezXNI9kIMQMhTzmacCf7KOpzN3eBm0jEulX5ADrjKq6zSQu_tal7uk0PEOWNS5kI-IvuyzLUqdXlAujoulgluIKC_A3ocbL9CjzR2tI7jsoeWnqfY-wC09vjz6_fLZAPSi8EOgNQHepJsu_riw1ReoQ_X9Me3k_Ps8-nHN_TCL8beDj4GfEwedrZHeLJ9j8jV29PL-n129undh_r4LLM5V0MG4JqqFSBAsrLlpWpFnudCt4XgClxVOSZZVzYNqE43BetUAQ660llZWAVWHpHXm9zl2CygdRCGZHuzTH5h08pE683fneBvzHW8M5xVhdZSTAkvtgkp3o6Ag1l4dND3NkAc0YhKKaGV4HJCn_-DzuOYpguikSyXcspka-rZnyvtdrl3MAFsA7gUERN0O4Qzs9ZsJs1mrdlsNU8jLzcjvzv3n_4X_wVlyq24
Cites_doi 10.1002/jrs.1250210807
10.1021/acs.jctc.5b00255
10.1021/acs.jctc.5b00846
10.1038/nsmb946
10.1111/j.1398-9995.2011.02686.x
10.1021/ja9535928
10.1016/0022-2836(81)90342-9
10.1021/jp067873l
10.1002/jcc.540140407
10.1002/jcc.26882
10.1016/0263-7855(96)00018-5
10.1063/1.445869
10.1002/anie.200704282
10.1111/j.1399-3011.1990.tb00063.x
10.1063/1.1699114
10.1021/jacs.6b04550
10.1021/ja3114505
10.1002/bip.360341102
10.1038/nrd1522
10.1063/1.464397
10.1038/nchembio.2551
10.1063/1.442716
10.1021/jp8001614
10.1002/bip.360340504
10.1063/1.448118
10.1016/0196-9781(86)90142-7
10.1002/bip.1977.360160707
10.1021/ja203895j
10.1111/j.1432-1033.1997.00471.x
10.1002/bip.1981.360201209
10.1111/j.1399-3011.1994.tb01140.x
10.1002/prot.20033
10.1021/jp046015r
10.1145/1365490.1365500
10.1021/ct400341p
10.1016/j.bbrc.2004.01.134
10.1016/0022-2836(90)90159-J
10.1161/01.HYP.36.1.132
10.1016/j.bbamem.2008.12.019
10.1021/ct5010406
10.1016/j.jmb.2008.02.010
10.1046/j.1432-1327.1999.00420.x
10.1016/j.str.2023.08.008
10.1080/07391102.2003.10506933
10.1139/o98-028
10.1016/j.jmb.2009.02.021
10.1021/acs.analchem.5b01889
10.1016/0022-5193(70)90022-6
10.1038/srep11840
10.1002/(SICI)1096-987X(19990130)20:2<217::AID-JCC4>3.0.CO;2-A
10.1007/s11033-022-07539-2
10.1016/0021-9991(77)90098-5
10.1021/la104046z
10.1002/1097-0282(2000)56:4<275::AID-BIP10024>3.0.CO;2-E
10.1002/bip.360340706
10.1063/1.4943004
10.1023/A:1020997118364
ContentType Journal Article
Copyright 2024 The Authors. Published by American Chemical Society
Copyright American Chemical Society Mar 26, 2024
2024 The Authors. Published by American Chemical Society 2024 The Authors
Copyright_xml – notice: 2024 The Authors. Published by American Chemical Society
– notice: Copyright American Chemical Society Mar 26, 2024
– notice: 2024 The Authors. Published by American Chemical Society 2024 The Authors
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
5PM
DOI 10.1021/acs.jctc.3c01356
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1549-9626
EndPage 2654
ExternalDocumentID PMC10976632
38465868
10_1021_acs_jctc_3c01356
a948978118
Genre Journal Article
GroupedDBID 4.4
53G
55A
5GY
5VS
7~N
AABXI
ABFRP
ABJNI
ABMVS
ABQRX
ABUCX
ACGFS
ACIWK
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
EBS
ED~
F5P
GGK
GNL
IH9
J9A
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
AAYXX
ABBLG
ABLBI
CITATION
CUPRZ
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
5PM
ID FETCH-LOGICAL-a415t-eecb9d2e2e308d185d244426d7215ec99c030f8bbe5f6b70f57ecef8ca37a5ea3
IEDL.DBID ACS
ISSN 1549-9618
1549-9626
IngestDate Thu Aug 21 18:35:10 EDT 2025
Fri Jul 11 11:17:50 EDT 2025
Mon Jun 30 05:47:17 EDT 2025
Mon Jul 21 06:07:07 EDT 2025
Tue Jul 01 02:03:36 EDT 2025
Wed Mar 27 03:17:47 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://creativecommons.org/licenses/by/4.0
Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a415t-eecb9d2e2e308d185d244426d7215ec99c030f8bbe5f6b70f57ecef8ca37a5ea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5163-2663
0000-0002-8171-3541
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC10976632
PMID 38465868
PQID 3043310903
PQPubID 2048741
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10976632
proquest_miscellaneous_2955265213
proquest_journals_3043310903
pubmed_primary_38465868
crossref_primary_10_1021_acs_jctc_3c01356
acs_journals_10_1021_acs_jctc_3c01356
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-26
PublicationDateYYYYMMDD 2024-03-26
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-26
  day: 26
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Journal of chemical theory and computation
PublicationTitleAlternate J. Chem. Theory Comput
PublicationYear 2024
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
Pedregosa F. (ref50/cit50) 2011; 12
ref42/cit42
ref46/cit46
ref13/cit13
ref61/cit61
ref24/cit24
ref38/cit38
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
Tuckerman M. (ref49/cit49) 2010
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref16/cit16
  doi: 10.1002/jrs.1250210807
– ident: ref39/cit39
  doi: 10.1021/acs.jctc.5b00255
– ident: ref36/cit36
  doi: 10.1021/acs.jctc.5b00846
– ident: ref3/cit3
  doi: 10.1038/nsmb946
– ident: ref31/cit31
  doi: 10.1111/j.1398-9995.2011.02686.x
– ident: ref27/cit27
  doi: 10.1021/ja9535928
– ident: ref8/cit8
  doi: 10.1016/0022-2836(81)90342-9
– ident: ref35/cit35
  doi: 10.1021/jp067873l
– ident: ref21/cit21
  doi: 10.1002/jcc.540140407
– ident: ref37/cit37
  doi: 10.1002/jcc.26882
– ident: ref56/cit56
  doi: 10.1016/0263-7855(96)00018-5
– ident: ref61/cit61
– ident: ref41/cit41
  doi: 10.1063/1.445869
– ident: ref33/cit33
  doi: 10.1002/anie.200704282
– ident: ref17/cit17
  doi: 10.1111/j.1399-3011.1990.tb00063.x
– ident: ref48/cit48
  doi: 10.1063/1.1699114
– ident: ref25/cit25
  doi: 10.1021/jacs.6b04550
– ident: ref11/cit11
  doi: 10.1021/ja3114505
– ident: ref18/cit18
  doi: 10.1002/bip.360341102
– ident: ref29/cit29
  doi: 10.1038/nrd1522
– ident: ref44/cit44
  doi: 10.1063/1.464397
– ident: ref42/cit42
  doi: 10.1038/nchembio.2551
– ident: ref46/cit46
  doi: 10.1063/1.442716
– ident: ref40/cit40
  doi: 10.1021/jp8001614
– ident: ref23/cit23
  doi: 10.1002/bip.360340504
– ident: ref43/cit43
  doi: 10.1063/1.448118
– ident: ref13/cit13
  doi: 10.1016/0196-9781(86)90142-7
– ident: ref9/cit9
  doi: 10.1002/bip.1977.360160707
– ident: ref24/cit24
  doi: 10.1021/ja203895j
– ident: ref57/cit57
  doi: 10.1111/j.1432-1033.1997.00471.x
– ident: ref10/cit10
  doi: 10.1002/bip.1981.360201209
– ident: ref20/cit20
  doi: 10.1111/j.1399-3011.1994.tb01140.x
– ident: ref54/cit54
  doi: 10.1002/prot.20033
– ident: ref26/cit26
  doi: 10.1021/jp046015r
– ident: ref38/cit38
  doi: 10.1145/1365490.1365500
– ident: ref51/cit51
  doi: 10.1021/ct400341p
– ident: ref15/cit15
  doi: 10.1016/j.bbrc.2004.01.134
– ident: ref2/cit2
  doi: 10.1016/0022-2836(90)90159-J
– ident: ref28/cit28
  doi: 10.1161/01.HYP.36.1.132
– ident: ref58/cit58
  doi: 10.1016/j.bbamem.2008.12.019
– volume-title: Statistical Mechanics: Theory and Molecular Simulation
  year: 2010
  ident: ref49/cit49
– ident: ref47/cit47
  doi: 10.1021/ct5010406
– ident: ref5/cit5
  doi: 10.1016/j.jmb.2008.02.010
– ident: ref19/cit19
  doi: 10.1046/j.1432-1327.1999.00420.x
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref50/cit50
  publication-title: J. Mach. Learn. Res.
– ident: ref7/cit7
  doi: 10.1016/j.str.2023.08.008
– ident: ref59/cit59
  doi: 10.1080/07391102.2003.10506933
– ident: ref32/cit32
  doi: 10.1139/o98-028
– ident: ref6/cit6
  doi: 10.1016/j.jmb.2009.02.021
– ident: ref34/cit34
  doi: 10.1021/acs.analchem.5b01889
– ident: ref1/cit1
  doi: 10.1016/0022-5193(70)90022-6
– ident: ref4/cit4
  doi: 10.1038/srep11840
– ident: ref55/cit55
  doi: 10.1002/(SICI)1096-987X(19990130)20:2<217::AID-JCC4>3.0.CO;2-A
– ident: ref30/cit30
  doi: 10.1007/s11033-022-07539-2
– ident: ref45/cit45
  doi: 10.1016/0021-9991(77)90098-5
– ident: ref22/cit22
  doi: 10.1021/la104046z
– ident: ref52/cit52
– ident: ref53/cit53
  doi: 10.1002/1097-0282(2000)56:4<275::AID-BIP10024>3.0.CO;2-E
– ident: ref14/cit14
  doi: 10.1002/bip.360340706
– ident: ref12/cit12
  doi: 10.1063/1.4943004
– ident: ref60/cit60
  doi: 10.1023/A:1020997118364
SSID ssj0033423
Score 2.4230738
Snippet It is well-known that proline (Pro) cis–trans isomerization plays a decisive role in the folding and stabilization of proteins. The conformational coupling...
It is well-known that proline (Pro) cis-trans isomerization plays a decisive role in the folding and stabilization of proteins. The conformational coupling...
It is well-known that proline (Pro) cis–trans isomerization plays a decisive role in the folding and stabilization of proteins. The conformational coupling...
SourceID pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 2643
SubjectTerms Biomolecular Systems
Bradykinin
Isomerization
Isomers
Molecular dynamics
Proline
Proline - chemistry
Protein Conformation
Proteins
Residues
Simulation
Thermodynamics
Title Comprehensive Analysis of Coupled Proline Cis–Trans States in Bradykinin Using ωBP-REMD Simulations
URI http://dx.doi.org/10.1021/acs.jctc.3c01356
https://www.ncbi.nlm.nih.gov/pubmed/38465868
https://www.proquest.com/docview/3043310903
https://www.proquest.com/docview/2955265213
https://pubmed.ncbi.nlm.nih.gov/PMC10976632
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwELUoHNoLLf1iW4pcqT30kO3GjvNxpCkIIVGhUiRuUWyPxRbIIpI9tCeunPlh_If-ks44ydKFCnGNLSce2_OeNZM3jH0YudJqhPUg0QkE6CUlnjmrApuk0jnyf_7fqt1v8fZBtHOoDm9kcm5H8EX4uTT18KdpzFAapCsqfsSWRJwmdNHayPd7rytJyc5ro0akOBmmXUjyfyMQEJl6HojusMvbSZL_oM7W07Z8Ue3FCinZ5Hg4bfTQ_L4r5fiACT1jyx355BvtbllhC1A9Z4_zvubbC-bIPZzDUZvVznvFEj5xPJ9Mz07A8j1f5gd4Pq7_XFx5qOMtY-XjilNo_tcxFZ3gPhmBX19-2Qu-b-5-5fvj065UWP2SHWxt_si3g64SQ1AiwDcBgNGZFSBAjlKLEG-RFSC2W7w_KjBZZtBXuFRrUC7WycipBAy41JQyKRWU8hVbrCYVrDIeSZ9aJaTNVCRCrUcyIg1_3BxA-moD9hENVHQnqS58kFyEhX-IVis6qw3Yp375irNWmOOevmv9-t4MLEm6jdJS5YC9nzWjvSliUlYwmdaFyBSVDxAh9nndbofZyyQyN5XG-MHp3EaZdSDh7vmWanzkBbwp6o9MT7x54FzfsicCbUOpbyJeY4vN-RTeIRdq9Lo_BH8BpYEGDQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6VciiX8g9LCxiJHjhk2dhxfg4cStpqS7tVRVuptxA7E3X7k62arKpy4sqZJ-BVeAHegSdh7CRbtiDEpRJX23IcezzfWP78DcDLXp5mimDdCVSADnlJQXsuk04WhCLPjf-zb6sGW35_z3u3L_dn4Gv7FoYGUVJPpb3Ev1QXcF-bskNd6a7QFLVIv-FRbuDFOZ3SyjfrK7SkS5yvre7GfadJJOCkhE-Vg6hVlHHkKHphRgiVEagRNGV0_JGoo0iTqeehUihzXwW9XAaoMQ91KoJUYiqo3xtwk2Ifbs53y_FO6-yFEdCzkqyeEbp0w-Ym9E8jNviny2n8-y2ovcrN_AXs1m7Dt8k0WY7LUXdcqa7-eEVB8r-exzsw34TabLneG3dhBot7MBe3Ge7uQ26c4Rke1Bx-1uqzsFHO4tH49Bgztm2TGiGLh-WPT18ssLM6PmfDghkiwsWRSbHBLPWCff_8dtt5vzpYYTvDkyYxWvkA9q7lNx_CbDEq8DEwT1giGRdZJD3uKtUTnslYQFsBjZpcB5ZoQZLGb5SJpQRwN7GFtEpJs0odeNVaTXJay5D8pe1ia1aXHQsjVGdIuKIDLybVNN_mfigtcDQuEx5JkyyBu9TmUW2Fk48JilNl6NOAwyn7nDQwMuXTNcXwwMqVG44DxbX8yT_-63OY6-8ONpPN9a2NBbjFaZ4M6Y_7izBbnY3xKUWBlXpm9yGDD9dtsD8BqotrKA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwELZKkYBL-YctBYxEDxyybOw4PwcOJdtVS2m1olTqLY3_1KWQXTVZVe2JK2eegVfhyjvwJMw4ycIWhLhU4ppYjmPPzDeWP39DyNOezbUEWPciGRkPoiQHn9PC01HMrcX45-5Wbe-EG3vBq32xv0C-tHdhYBAl9FS6Q3z06om2jcKA_xyfv1OV6nIFmYsIGy7lljk9gZ1a-WKzD8u6ythg_W264TXFBLwcMKryjFEy0cwww3uxBpTSAGwATxq2QMKoJFFg7jaW0ggbyqhnRWSUsbHKeZQLk3Po9xK5jKeEuMdbS3fbgM9RRM_JsgYodunHzWnon0aMGKjKeQz8LbE9z8_8BfAG18nX2VQ5nstRd1rJrjo7pyL538_lDbLUpNx0rfaRm2TBFLfI1bStdHebWAyKx-aw5vLTVqeFji1Nx9PJe6Pp0BU3MjQdld8_fnYAT-s8nY4KioSE0yMstUEdBYN--_Ry6L1Z3-7T3dGHpkBaeYfsXchv3iWLxbgw9wkNuCOUMa4TETBfyh4PsHIBuIRBVbkOWYUFyZr4UWaOGsD8zD2EVcqaVeqQZ63lZJNajuQvbVda0_rZMUfBOiTj8g55MnsN843nRHlhxtMyY4nAognMhzb3akucfYxDviriEAYcz9norAHKlc-_KUaHTrYcuQ6Q37Llf_zXx-TKsD_IXm_ubD0g1xhME3L_WLhCFqvjqXkIyWAlHzlXpOTgou31B3Bfbas
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comprehensive+Analysis+of+Coupled+Proline+Cis%E2%80%93Trans+States+in+Bradykinin+Using+%CF%89BP-REMD+Simulations&rft.jtitle=Journal+of+chemical+theory+and+computation&rft.au=Kienlein%2C+Maximilian&rft.au=Zacharias%2C+Martin&rft.au=Reif%2C+Maria+M.&rft.date=2024-03-26&rft.pub=American+Chemical+Society&rft.issn=1549-9618&rft.eissn=1549-9626&rft.volume=20&rft.issue=6&rft.spage=2643&rft.epage=2654&rft_id=info:doi/10.1021%2Facs.jctc.3c01356&rft_id=info%3Apmid%2F38465868&rft.externalDocID=PMC10976632
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9618&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9618&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9618&client=summon