Hysteresis of Electronic Transport in Graphene Transistors
Graphene field effect transistors commonly comprise graphene flakes lying on SiO2 surfaces. The gate-voltage dependent conductance shows hysteresis depending on the gate sweeping rate/range. It is shown here that the transistors exhibit two different kinds of hysteresis in their electrical character...
Saved in:
Published in | ACS nano Vol. 4; no. 12; pp. 7221 - 7228 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
28.12.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Graphene field effect transistors commonly comprise graphene flakes lying on SiO2 surfaces. The gate-voltage dependent conductance shows hysteresis depending on the gate sweeping rate/range. It is shown here that the transistors exhibit two different kinds of hysteresis in their electrical characteristics. Charge transfer causes a positive shift in the gate voltage of the minimum conductance, while capacitive gating can cause the negative shift of conductance with respect to gate voltage. The positive hysteretic phenomena decay with an increase of the number of layers in graphene flakes. Self-heating in a helium atmosphere significantly removes adsorbates and reduces positive hysteresis. We also observed negative hysteresis in graphene devices at low temperature. It is also found that an ice layer on/under graphene has a much stronger dipole moment than a water layer does. Mobile ions in the electrolyte gate and a polarity switch in the ferroelectric gate could also cause negative hysteresis in graphene transistors. These findings improved our understanding of the electrical response of graphene to its surroundings. The unique sensitivity to environment and related phenomena in graphene deserve further studies on nonvolatile memory, electrostatic detection, and chemically driven applications. |
---|---|
AbstractList | Graphene field effect transistors commonly comprise graphene flakes lying on SiO2 surfaces. The gate-voltage dependent conductance shows hysteresis depending on the gate sweeping rate/range. It is shown here that the transistors exhibit two different kinds of hysteresis in their electrical characteristics. Charge transfer causes a positive shift in the gate voltage of the minimum conductance, while capacitive gating can cause the negative shift of conductance with respect to gate voltage. The positive hysteretic phenomena decay with an increase of the number of layers in graphene flakes. Self-heating in a helium atmosphere significantly removes adsorbates and reduces positive hysteresis. We also observed negative hysteresis in graphene devices at low temperature. It is also found that an ice layer on/under graphene has a much stronger dipole moment than a water layer does. Mobile ions in the electrolyte gate and a polarity switch in the ferroelectric gate could also cause negative hysteresis in graphene transistors. These findings improved our understanding of the electrical response of graphene to its surroundings. The unique sensitivity to environment and related phenomena in graphene deserve further studies on nonvolatile memory, electrostatic detection, and chemically driven applications. Graphene field effect transistors commonly comprise graphene flakes lying on SiO(2) surfaces. The gate-voltage dependent conductance shows hysteresis depending on the gate sweeping rate/range. It is shown here that the transistors exhibit two different kinds of hysteresis in their electrical characteristics. Charge transfer causes a positive shift in the gate voltage of the minimum conductance, while capacitive gating can cause the negative shift of conductance with respect to gate voltage. The positive hysteretic phenomena decay with an increase of the number of layers in graphene flakes. Self-heating in a helium atmosphere significantly removes adsorbates and reduces positive hysteresis. We also observed negative hysteresis in graphene devices at low temperature. It is also found that an ice layer on/under graphene has a much stronger dipole moment than a water layer does. Mobile ions in the electrolyte gate and a polarity switch in the ferroelectric gate could also cause negative hysteresis in graphene transistors. These findings improved our understanding of the electrical response of graphene to its surroundings. The unique sensitivity to environment and related phenomena in graphene deserve further studies on nonvolatile memory, electrostatic detection, and chemically driven applications. Graphene field effect transistors commonly comprise graphene flakes lying on SiO(2) surfaces. The gate-voltage dependent conductance shows hysteresis depending on the gate sweeping rate/range. It is shown here that the transistors exhibit two different kinds of hysteresis in their electrical characteristics. Charge transfer causes a positive shift in the gate voltage of the minimum conductance, while capacitive gating can cause the negative shift of conductance with respect to gate voltage. The positive hysteretic phenomena decay with an increase of the number of layers in graphene flakes. Self-heating in a helium atmosphere significantly removes adsorbates and reduces positive hysteresis. We also observed negative hysteresis in graphene devices at low temperature. It is also found that an ice layer on/under graphene has a much stronger dipole moment than a water layer does. Mobile ions in the electrolyte gate and a polarity switch in the ferroelectric gate could also cause negative hysteresis in graphene transistors. These findings improved our understanding of the electrical response of graphene to its surroundings. The unique sensitivity to environment and related phenomena in graphene deserve further studies on nonvolatile memory, electrostatic detection, and chemically driven applications.Graphene field effect transistors commonly comprise graphene flakes lying on SiO(2) surfaces. The gate-voltage dependent conductance shows hysteresis depending on the gate sweeping rate/range. It is shown here that the transistors exhibit two different kinds of hysteresis in their electrical characteristics. Charge transfer causes a positive shift in the gate voltage of the minimum conductance, while capacitive gating can cause the negative shift of conductance with respect to gate voltage. The positive hysteretic phenomena decay with an increase of the number of layers in graphene flakes. Self-heating in a helium atmosphere significantly removes adsorbates and reduces positive hysteresis. We also observed negative hysteresis in graphene devices at low temperature. It is also found that an ice layer on/under graphene has a much stronger dipole moment than a water layer does. Mobile ions in the electrolyte gate and a polarity switch in the ferroelectric gate could also cause negative hysteresis in graphene transistors. These findings improved our understanding of the electrical response of graphene to its surroundings. The unique sensitivity to environment and related phenomena in graphene deserve further studies on nonvolatile memory, electrostatic detection, and chemically driven applications. |
Author | Wang, Haomin Cong, Chunxiao Wu, Yihong Shang, Jingzhi Yu, Ting |
Author_xml | – sequence: 1 givenname: Haomin surname: Wang fullname: Wang, Haomin email: haomin.wang@gmail.com, yuting@ntu.edu.sg – sequence: 2 givenname: Yihong surname: Wu fullname: Wu, Yihong – sequence: 3 givenname: Chunxiao surname: Cong fullname: Cong, Chunxiao – sequence: 4 givenname: Jingzhi surname: Shang fullname: Shang, Jingzhi – sequence: 5 givenname: Ting surname: Yu fullname: Yu, Ting email: haomin.wang@gmail.com, yuting@ntu.edu.sg |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21047068$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0D1PwzAQBmALFdEPGPgDKAtCDKF2mjgOG6pKi1SJpQNbdHHOwlVqB9sZ-u8JSumAmHyynjvdvVMyMtYgIbeMPjGasLkxjLIio-aCTFix4DEV_GN0rjM2JlPv95Rmucj5FRknjKY55WJCnjdHH9Ch1z6yKlo1KIOzRsto58D41roQaROtHbSfaHD41T5Y56_JpYLG483pnZHd62q33MTb9_Xb8mUbQ8qyEINkHKpKsiRDlIAJ5AUIJWrJ65xzVMAXKk1VoZI87feTkEklBOZVjZCmixl5GMa2zn516EN50F5i04BB2_lSJCwrOE14L-9OsqsOWJet0wdwx_L32h48DkA6671DdSaMlj9Jluckezv_Y6UOELQ1wYFu_u24HzpA-nJvO2f6VP5x3wnaglM |
CitedBy_id | crossref_primary_10_1002_sstr_202100120 crossref_primary_10_1109_TED_2014_2315235 crossref_primary_10_1021_acsomega_8b02836 crossref_primary_10_1088_0957_4484_25_26_265201 crossref_primary_10_1155_2021_6689861 crossref_primary_10_1126_sciadv_1602617 crossref_primary_10_1016_j_orgel_2012_01_002 crossref_primary_10_1021_acssensors_0c01441 crossref_primary_10_1109_LED_2020_2970246 crossref_primary_10_1021_acs_jpcc_8b10804 crossref_primary_10_1063_1_3596441 crossref_primary_10_1063_1_4816475 crossref_primary_10_1038_s41598_021_89367_1 crossref_primary_10_1063_1_4897005 crossref_primary_10_1063_1_4818770 crossref_primary_10_1063_1_4946840 crossref_primary_10_1063_1_4821939 crossref_primary_10_1063_1_4968534 crossref_primary_10_1016_j_synthmet_2012_06_008 crossref_primary_10_1038_ncomms7334 crossref_primary_10_1002_smll_202311987 crossref_primary_10_1038_srep30084 crossref_primary_10_1016_j_tsf_2012_08_030 crossref_primary_10_1063_1_4953162 crossref_primary_10_1021_acs_nanolett_5b03075 crossref_primary_10_1088_1674_1056_27_3_037203 crossref_primary_10_1364_OE_22_015292 crossref_primary_10_1063_1_4958618 crossref_primary_10_1088_1361_6641_aa7ba3 crossref_primary_10_1109_JPHOT_2019_2930716 crossref_primary_10_1063_1_4872178 crossref_primary_10_1002_aelm_201800158 crossref_primary_10_1021_acs_nanolett_9b03792 crossref_primary_10_1038_ncomms9846 crossref_primary_10_1039_D0CP00298D crossref_primary_10_1016_j_apsusc_2018_03_007 crossref_primary_10_1021_acsami_3c16699 crossref_primary_10_1021_acsami_8b17869 crossref_primary_10_1002_adma_202211352 crossref_primary_10_1038_micronano_2016_18 crossref_primary_10_1063_1_5022962 crossref_primary_10_1002_aelm_202200995 crossref_primary_10_1016_j_apsusc_2019_06_157 crossref_primary_10_1088_0953_8984_28_10_103003 crossref_primary_10_1038_ncomms5376 crossref_primary_10_1088_0957_4484_22_44_445702 crossref_primary_10_1039_C4NR02164A crossref_primary_10_1063_1_3640210 crossref_primary_10_1063_1_4804288 crossref_primary_10_1016_j_carbon_2016_08_040 crossref_primary_10_1139_cjp_2015_0671 crossref_primary_10_1016_j_rinp_2021_104025 crossref_primary_10_1016_j_apsusc_2013_09_142 crossref_primary_10_1021_acsami_7b18041 crossref_primary_10_1063_5_0243814 crossref_primary_10_1016_j_orgel_2013_03_005 crossref_primary_10_1021_acs_jpcc_0c07785 crossref_primary_10_1088_0268_1242_30_10_105013 crossref_primary_10_1080_10584587_2014_956611 crossref_primary_10_1021_jp305823u crossref_primary_10_1038_s41699_021_00269_2 crossref_primary_10_1021_acsanm_9b00767 crossref_primary_10_1002_aisy_202000206 crossref_primary_10_1038_s41699_024_00461_0 crossref_primary_10_1088_1361_6528_aae17e crossref_primary_10_1088_1361_648X_aa7dbf crossref_primary_10_1038_s41699_018_0055_5 crossref_primary_10_3390_s22239341 crossref_primary_10_1088_1674_4926_35_9_094003 crossref_primary_10_1021_acsomega_0c00735 crossref_primary_10_1145_2701428 crossref_primary_10_1038_s41467_024_55293_9 crossref_primary_10_2139_ssrn_4122016 crossref_primary_10_1021_acsanm_9b00513 crossref_primary_10_1016_j_carbon_2020_11_056 crossref_primary_10_1364_AO_383462 crossref_primary_10_1109_TED_2013_2267541 crossref_primary_10_4028_p_i2s1cm crossref_primary_10_1002_adom_202102135 crossref_primary_10_1021_acs_langmuir_1c02018 crossref_primary_10_1021_acsphotonics_8b00350 crossref_primary_10_1021_acsami_9b13946 crossref_primary_10_1002_asia_201300505 crossref_primary_10_1134_S1063783418120107 crossref_primary_10_1186_1556_276X_7_285 crossref_primary_10_1088_2053_1583_abc187 crossref_primary_10_1002_aelm_201800073 crossref_primary_10_1007_s13233_020_8120_2 crossref_primary_10_1063_1_4996095 crossref_primary_10_1021_nn304930x crossref_primary_10_1039_C4NR07457B crossref_primary_10_1109_TED_2020_2965004 crossref_primary_10_1063_1_4935985 crossref_primary_10_1002_cptc_202200272 crossref_primary_10_1002_adfm_201909269 crossref_primary_10_1039_C4RA05873A crossref_primary_10_1002_smll_202105687 crossref_primary_10_1088_1361_6463_aaac6e crossref_primary_10_1103_PhysRevMaterials_3_024401 crossref_primary_10_1016_j_jhazmat_2023_132943 crossref_primary_10_1021_acsomega_1c05530 crossref_primary_10_1021_acs_nanolett_8b01926 crossref_primary_10_1021_nl301714x crossref_primary_10_1063_5_0035764 crossref_primary_10_1088_0957_4484_26_10_105701 crossref_primary_10_1021_acsaelm_0c00095 crossref_primary_10_1063_1_3630227 crossref_primary_10_1088_2053_1583_aa5c17 crossref_primary_10_1103_PhysRevLett_124_187602 crossref_primary_10_1007_s10853_013_7930_4 crossref_primary_10_1109_JFLEX_2023_3303149 crossref_primary_10_1109_TIM_2024_3398086 crossref_primary_10_1039_C6NR04607J crossref_primary_10_1016_j_molstruc_2021_130803 crossref_primary_10_1103_PhysRevX_15_011019 crossref_primary_10_3390_s21041335 crossref_primary_10_1038_s41565_018_0102_6 crossref_primary_10_1021_acs_nanolett_9b03528 crossref_primary_10_1557_adv_2019_366 crossref_primary_10_1016_j_carbon_2017_08_026 crossref_primary_10_1021_acsami_9b10698 crossref_primary_10_1039_D0NR00849D crossref_primary_10_1134_S1062873823705251 crossref_primary_10_1088_2053_1583_1_3_035005 crossref_primary_10_1021_nn5052376 crossref_primary_10_1038_srep01238 crossref_primary_10_1021_acsnano_0c04601 crossref_primary_10_1016_j_cap_2023_01_012 crossref_primary_10_1140_epjb_e2012_30407_5 crossref_primary_10_1002_adfm_202003085 crossref_primary_10_1002_smll_201202947 crossref_primary_10_1063_1_3646506 crossref_primary_10_1039_C7NR06485C crossref_primary_10_1088_1361_648X_ab3997 crossref_primary_10_1088_0957_4484_26_1_015202 crossref_primary_10_3390_chemosensors10110467 crossref_primary_10_1021_acsnano_5b03130 crossref_primary_10_1002_aelm_201800887 crossref_primary_10_1088_1361_648X_ac94af crossref_primary_10_1103_PhysRevB_97_195415 crossref_primary_10_1016_j_sse_2015_03_003 crossref_primary_10_1016_j_carbon_2014_07_078 crossref_primary_10_1063_1_5121560 crossref_primary_10_1002_adma_201101007 crossref_primary_10_1021_nl5008085 crossref_primary_10_1016_j_esci_2022_03_005 crossref_primary_10_1002_adma_201602889 crossref_primary_10_1038_s41427_022_00404_5 crossref_primary_10_1039_C9AN01962F crossref_primary_10_1038_srep22277 crossref_primary_10_1109_ACCESS_2023_3266339 crossref_primary_10_1021_acs_analchem_8b03226 crossref_primary_10_1088_1361_6528_aaa852 crossref_primary_10_1021_acs_nanolett_3c01053 crossref_primary_10_1002_admt_201900422 crossref_primary_10_1039_C7TC05695H crossref_primary_10_1038_srep02666 crossref_primary_10_1364_OME_6_001800 crossref_primary_10_15407_ujpe58_05_0472 crossref_primary_10_1016_j_carbon_2012_10_046 crossref_primary_10_1063_1_5090270 crossref_primary_10_3952_physics_v62i4_4822 crossref_primary_10_1021_acsami_3c00037 crossref_primary_10_1063_1_4903979 crossref_primary_10_1103_PhysRevB_96_245143 crossref_primary_10_2139_ssrn_3956827 crossref_primary_10_1002_admi_202100748 crossref_primary_10_1002_smll_201604128 crossref_primary_10_1021_jp210713q crossref_primary_10_1088_1468_6996_13_2_025007 crossref_primary_10_1021_acs_jpcc_8b06906 crossref_primary_10_1002_smll_201401196 crossref_primary_10_3390_nano14050422 crossref_primary_10_1021_acsami_0c09951 crossref_primary_10_1002_smll_201501206 crossref_primary_10_1021_acsami_0c15226 crossref_primary_10_1039_C5NR08065G crossref_primary_10_1016_j_apsusc_2023_157442 crossref_primary_10_1073_pnas_1916406116 crossref_primary_10_1039_C5NR02552D crossref_primary_10_1063_5_0151273 crossref_primary_10_1021_acs_nanolett_8b00572 crossref_primary_10_1021_acs_nanolett_8b02750 crossref_primary_10_1109_LED_2013_2294828 crossref_primary_10_1088_1674_4926_24080035 crossref_primary_10_1021_acsami_5b02834 crossref_primary_10_1063_1_4830226 crossref_primary_10_1021_jp507451b crossref_primary_10_1007_s12274_013_0289_7 crossref_primary_10_1109_MNANO_2014_2326969 crossref_primary_10_1021_jp3085759 crossref_primary_10_1063_1_4915513 crossref_primary_10_7567_APEX_9_045202 crossref_primary_10_1021_acsami_0c15458 crossref_primary_10_1002_smll_201102468 crossref_primary_10_1063_1_4818467 crossref_primary_10_1016_j_carbon_2014_05_046 crossref_primary_10_1016_j_sse_2012_12_008 crossref_primary_10_1088_2053_1583_ac6191 crossref_primary_10_1016_j_carbon_2013_04_060 crossref_primary_10_1007_s12274_014_0489_9 crossref_primary_10_1063_1_4817252 crossref_primary_10_5714_CL_2012_13_1_023 crossref_primary_10_1002_admi_201800812 crossref_primary_10_1063_1_4950975 crossref_primary_10_1103_PhysRevResearch_5_043147 crossref_primary_10_1016_j_apmt_2018_12_003 crossref_primary_10_1109_TED_2014_2309651 crossref_primary_10_1016_j_surfin_2022_102615 crossref_primary_10_1088_2053_1583_aa8d37 crossref_primary_10_1149_2_0171807jss crossref_primary_10_1088_0022_3727_48_29_295106 crossref_primary_10_1063_1_3562317 crossref_primary_10_1049_iet_cds_2014_0069 crossref_primary_10_3390_app6090236 crossref_primary_10_1038_srep12305 crossref_primary_10_1088_0268_1242_29_9_095006 crossref_primary_10_1039_C7TC05325H crossref_primary_10_7567_JJAP_54_031201 crossref_primary_10_1016_j_carbon_2013_11_071 crossref_primary_10_1002_advs_202105722 crossref_primary_10_1088_2053_1583_aa8683 crossref_primary_10_1103_PhysRevB_108_195411 crossref_primary_10_1557_s43581_024_00109_y crossref_primary_10_1002_pssb_201900437 crossref_primary_10_1021_acsaelm_3c00345 crossref_primary_10_1088_0953_8984_27_1_013002 crossref_primary_10_1002_smll_202408961 crossref_primary_10_1021_acs_jpcc_6b03853 crossref_primary_10_1002_pssr_202400057 crossref_primary_10_1063_1_4913209 crossref_primary_10_1116_1_4952409 crossref_primary_10_1063_1_4894082 crossref_primary_10_1021_nl300948c crossref_primary_10_1002_adfm_202201048 crossref_primary_10_1038_s41699_022_00356_y crossref_primary_10_1002_adfm_201902483 crossref_primary_10_1088_0022_3727_47_30_305103 crossref_primary_10_1039_C9MH01261C crossref_primary_10_1063_1_3626854 crossref_primary_10_1002_admt_202401157 crossref_primary_10_1103_PhysRevB_96_195423 crossref_primary_10_1021_acsnano_6b08505 crossref_primary_10_1016_j_carbon_2014_07_001 crossref_primary_10_1063_5_0040442 crossref_primary_10_1088_2053_1583_aa9ea9 crossref_primary_10_1016_j_optcom_2017_06_069 crossref_primary_10_1021_acs_nanolett_5b00493 crossref_primary_10_1016_j_carbon_2019_09_007 crossref_primary_10_1103_PhysRevLett_125_236403 crossref_primary_10_1088_1361_6528_ac1717 crossref_primary_10_1088_2053_1583_3_1_015012 crossref_primary_10_1038_s41535_022_00435_9 crossref_primary_10_1021_acsomega_8b03259 crossref_primary_10_1021_nn403248y crossref_primary_10_1039_C5TC00062A crossref_primary_10_1063_1_4883866 crossref_primary_10_1016_j_apsusc_2023_158186 crossref_primary_10_1021_nl501275p crossref_primary_10_1063_1_4928759 crossref_primary_10_1002_adma_201707547 crossref_primary_10_1021_acsanm_1c00154 crossref_primary_10_1109_JSEN_2024_3428345 crossref_primary_10_3390_cryst12020184 crossref_primary_10_3390_mi13040509 crossref_primary_10_1088_0022_3727_48_14_145303 crossref_primary_10_31857_S0367676524020132 crossref_primary_10_1002_cnma_201800567 crossref_primary_10_1063_5_0059066 crossref_primary_10_1179_1743294415Y_0000000051 crossref_primary_10_1038_s41467_023_41375_7 crossref_primary_10_1088_1361_6528_abde01 crossref_primary_10_1002_admt_202401292 crossref_primary_10_1002_adfm_202208055 crossref_primary_10_1016_j_electacta_2021_137819 crossref_primary_10_1063_1_4870656 crossref_primary_10_1063_1_4871866 crossref_primary_10_1021_nl503587z crossref_primary_10_1038_s41928_021_00684_9 crossref_primary_10_1038_ncomms2652 crossref_primary_10_1063_1_4800236 crossref_primary_10_1002_inf2_12230 crossref_primary_10_1063_1_4893468 crossref_primary_10_1109_TED_2022_3169451 crossref_primary_10_1149_2_019204esl crossref_primary_10_1038_s41699_017_0038_y crossref_primary_10_1016_j_microrel_2018_04_012 crossref_primary_10_1002_adom_202201442 crossref_primary_10_1002_adma_201600166 crossref_primary_10_1021_acsaelm_3c01511 crossref_primary_10_1002_aelm_202400791 crossref_primary_10_1002_inf2_12121 crossref_primary_10_1038_s41699_017_0025_3 crossref_primary_10_1002_aelm_202000851 crossref_primary_10_1038_s41699_021_00280_7 crossref_primary_10_1063_1_4961361 crossref_primary_10_1088_1361_6528_aa8e23 crossref_primary_10_1021_acsphotonics_7b00384 crossref_primary_10_1063_1_4963782 crossref_primary_10_1021_nn201770s crossref_primary_10_1016_j_bios_2021_113050 crossref_primary_10_1002_adma_201603488 crossref_primary_10_1186_s11671_018_2721_0 crossref_primary_10_7498_aps_69_20191344 crossref_primary_10_1002_smll_202201861 crossref_primary_10_1049_mnl_2016_0025 crossref_primary_10_1016_j_cap_2016_08_022 crossref_primary_10_1021_nn300107f crossref_primary_10_1021_acsaelm_9b00467 crossref_primary_10_1088_2053_1583_aa805e crossref_primary_10_1039_C7NR08034D crossref_primary_10_1063_1_4938114 crossref_primary_10_1021_acsnano_5b00289 crossref_primary_10_1002_smll_201203154 crossref_primary_10_1016_j_matt_2021_01_021 crossref_primary_10_1016_j_snb_2014_11_142 crossref_primary_10_1021_acs_jpcc_7b00712 crossref_primary_10_1088_1361_6528_aaa8b3 crossref_primary_10_1088_1361_6528_ab2cf6 crossref_primary_10_1016_j_physleta_2022_128444 crossref_primary_10_1186_s11671_020_03342_9 crossref_primary_10_1002_smll_201906640 crossref_primary_10_1021_acs_nanolett_7b01584 crossref_primary_10_1186_s40580_015_0042_x crossref_primary_10_1088_0957_4484_26_47_475202 crossref_primary_10_1016_j_apsusc_2016_06_192 crossref_primary_10_7567_JJAP_54_046502 crossref_primary_10_1038_s41467_020_16766_9 crossref_primary_10_1063_1_4960459 crossref_primary_10_1088_0957_4484_26_34_345202 crossref_primary_10_1016_j_carbon_2012_03_006 crossref_primary_10_1038_s41467_017_01210_2 crossref_primary_10_1063_1_3665196 crossref_primary_10_1021_acsami_6b02537 crossref_primary_10_1039_C7TC05148D crossref_primary_10_1039_C9TC00382G crossref_primary_10_1039_C9NR06407A crossref_primary_10_1038_s41928_023_01073_0 crossref_primary_10_1038_srep04886 crossref_primary_10_1063_5_0028108 crossref_primary_10_1021_acs_nanolett_6b02905 crossref_primary_10_1088_1361_6528_ab30b5 crossref_primary_10_1038_s41598_018_27237_z crossref_primary_10_1103_PhysRevB_88_161405 crossref_primary_10_1002_adma_201700071 crossref_primary_10_1021_acsami_9b15457 crossref_primary_10_1063_1_4948254 crossref_primary_10_1063_5_0080093 crossref_primary_10_1088_1361_6528_aa940c crossref_primary_10_1016_j_orgel_2022_106467 crossref_primary_10_1002_adma_202302419 crossref_primary_10_1016_j_cap_2014_03_007 crossref_primary_10_1039_c2jm32121a crossref_primary_10_1039_C8NR07133K crossref_primary_10_1002_adfm_201502034 crossref_primary_10_1007_s11082_016_0614_y crossref_primary_10_5757_vacmac_3_1_22 crossref_primary_10_1088_1361_6641_aaa224 crossref_primary_10_1088_1361_6528_ad0126 crossref_primary_10_1063_5_0156309 crossref_primary_10_1088_1674_4926_34_8_084004 crossref_primary_10_1002_adma_201204904 crossref_primary_10_1038_s42005_023_01340_8 crossref_primary_10_1088_1361_6528_aa5fbc crossref_primary_10_1002_aelm_201600400 crossref_primary_10_1021_acsaelm_9b00664 crossref_primary_10_1021_acsphotonics_8b01070 crossref_primary_10_1016_j_isci_2022_104128 crossref_primary_10_1039_C8TC03198C crossref_primary_10_1088_1674_4926_42_1_014101 crossref_primary_10_1016_j_orgel_2019_105499 crossref_primary_10_1109_JSEN_2017_2737699 crossref_primary_10_1021_nn202012m crossref_primary_10_1021_acsnano_6b06293 crossref_primary_10_1088_2053_1583_4_1_011008 crossref_primary_10_1016_j_carbon_2015_05_062 crossref_primary_10_3390_inorganics12080228 crossref_primary_10_1021_acsami_7b06918 crossref_primary_10_1063_1_4813016 crossref_primary_10_1038_s41467_020_19203_z crossref_primary_10_4028_www_scientific_net_MSF_740_742_129 crossref_primary_10_1021_la3008816 crossref_primary_10_1021_nl402204t crossref_primary_10_1007_s11664_017_6023_6 crossref_primary_10_1016_j_carbon_2015_05_064 crossref_primary_10_1109_TED_2023_3297081 crossref_primary_10_1109_TED_2015_2482823 crossref_primary_10_1038_s41598_023_36405_9 crossref_primary_10_1038_s41467_022_32078_6 crossref_primary_10_1088_0957_4484_24_17_175202 crossref_primary_10_1016_j_bios_2019_04_034 crossref_primary_10_1021_acsami_1c00551 crossref_primary_10_1002_aelm_201700020 crossref_primary_10_1039_D2NR03076D crossref_primary_10_1063_1_4916341 crossref_primary_10_1007_s12274_020_3185_y crossref_primary_10_1016_j_measurement_2023_113954 crossref_primary_10_1007_s11467_011_0239_3 crossref_primary_10_1021_acs_nanolett_3c03926 crossref_primary_10_1109_TED_2024_3440962 crossref_primary_10_1016_j_jcis_2022_07_037 crossref_primary_10_1016_j_jmrt_2019_06_035 crossref_primary_10_1063_5_0167361 crossref_primary_10_1039_C5CP06533J crossref_primary_10_1063_5_0053019 crossref_primary_10_1109_TED_2023_3262630 crossref_primary_10_3390_nano13020243 crossref_primary_10_35848_1347_4065_ad0747 crossref_primary_10_1063_1_4816426 crossref_primary_10_1021_acs_nanolett_7b04553 crossref_primary_10_1016_j_carbon_2017_07_038 crossref_primary_10_1088_1361_6463_aba70d crossref_primary_10_3390_nanomanufacturing1010005 crossref_primary_10_1002_adfm_201808606 crossref_primary_10_1016_j_cap_2022_10_007 crossref_primary_10_3390_nano6110206 crossref_primary_10_1039_C4NR03183K crossref_primary_10_1038_srep04041 crossref_primary_10_1039_D3NR03453D crossref_primary_10_1016_j_mee_2024_112230 crossref_primary_10_1021_acsami_6b15862 crossref_primary_10_1002_adma_201503340 crossref_primary_10_1109_TNS_2012_2221479 crossref_primary_10_1016_j_carbon_2017_11_026 crossref_primary_10_1021_nn201809k crossref_primary_10_1080_10408436_2021_1935212 crossref_primary_10_1364_OE_24_025189 crossref_primary_10_1039_C5NR03491D crossref_primary_10_1002_admt_202100489 crossref_primary_10_1021_acsami_9b02400 crossref_primary_10_1063_1_4851956 crossref_primary_10_1063_1_4921755 crossref_primary_10_1109_TED_2017_2742942 crossref_primary_10_1002_adfm_202211880 crossref_primary_10_1038_s41586_020_2970_9 crossref_primary_10_1002_adfm_201503789 crossref_primary_10_1021_acs_nanolett_5b03283 crossref_primary_10_1021_acsami_8b16957 crossref_primary_10_1109_LED_2016_2550600 crossref_primary_10_1002_smll_201805147 crossref_primary_10_1063_1_5084190 crossref_primary_10_1002_adma_202000250 crossref_primary_10_1021_nl5027309 crossref_primary_10_1063_1_4972398 crossref_primary_10_1063_1_4944622 crossref_primary_10_1016_j_carbon_2011_12_056 crossref_primary_10_1021_acsami_9b11132 crossref_primary_10_1063_1_4943655 crossref_primary_10_1063_1_4998643 crossref_primary_10_1007_s10854_014_1727_3 crossref_primary_10_1021_acs_nanolett_4c01755 crossref_primary_10_1016_j_snb_2018_01_244 crossref_primary_10_1016_j_carbon_2021_04_082 crossref_primary_10_1016_j_snb_2020_128432 crossref_primary_10_1007_s10854_016_5052_x crossref_primary_10_1116_1_4711128 crossref_primary_10_1002_adfm_201901971 crossref_primary_10_1116_1_4973904 crossref_primary_10_1002_aelm_201700580 crossref_primary_10_1002_adem_202100935 crossref_primary_10_1063_1_3588033 crossref_primary_10_1088_0022_3727_49_26_265301 crossref_primary_10_1021_acsnano_5b02816 crossref_primary_10_1016_j_carbon_2019_09_038 crossref_primary_10_1021_acsami_3c09679 crossref_primary_10_1063_1_4868132 crossref_primary_10_1002_smll_201403625 crossref_primary_10_1016_j_snb_2021_129704 crossref_primary_10_1063_1_4983185 crossref_primary_10_1002_aelm_202200679 crossref_primary_10_1038_s41467_023_36714_7 crossref_primary_10_1088_1361_6528_aacb6a crossref_primary_10_1039_C5NR07115A crossref_primary_10_1016_j_physe_2011_12_022 crossref_primary_10_1038_nmat3433 crossref_primary_10_1021_nn301572c crossref_primary_10_1021_nl4002052 crossref_primary_10_1038_s41928_021_00657_y crossref_primary_10_1016_j_apsusc_2016_01_115 crossref_primary_10_1039_C9RA06738H crossref_primary_10_1002_adma_201700222 crossref_primary_10_1021_acsaelm_9b00532 crossref_primary_10_1039_C4NR04713C crossref_primary_10_1039_C7RA02130E crossref_primary_10_1016_j_carbon_2017_06_035 crossref_primary_10_1016_j_diamond_2016_11_009 crossref_primary_10_1002_aelm_202000496 crossref_primary_10_1016_j_mseb_2022_115628 |
Cites_doi | 10.1063/1.1516633 10.1038/nmat1967 10.1103/PhysRevLett.101.146805 10.1021/nl025584c 10.1063/1.3119215 10.1103/RevModPhys.54.437 10.1103/PhysRevLett.97.266405 10.1063/1.2840713 10.1038/nature05545 10.1038/nphys781 10.1103/PhysRevLett.101.136804 10.1063/1.2898501 10.1063/1.3334730 10.1073/pnas.0704772104 10.1063/1.3263942 10.1063/1.2789673 10.1063/1.3291110 10.1021/nl900203n 10.1038/nmat1849 10.1021/nl801412y 10.1021/nl0259232 10.1103/PhysRevB.79.235440 10.1021/nl8033637 10.1021/nl025577o 10.1098/rsta.2007.2157 10.1103/PhysRevB.80.241412 10.1021/nl903162a 10.1021/nl803214a 10.1038/nature07094 10.1063/1.3460798 10.1103/PhysRevB.77.195409 10.1103/PhysRevLett.98.166802 10.1021/nl900725u 10.1126/science.1171245 10.1021/nl8010337 10.1103/PhysRevB.75.235433 10.1126/science.1102896 10.1103/PhysRevLett.99.246803 10.1063/1.3380616 10.1103/RevModPhys.81.109 10.1063/1.3273396 10.1103/PhysRevB.77.125416 |
ContentType | Journal Article |
Copyright | Copyright © 2010 American Chemical Society |
Copyright_xml | – notice: Copyright © 2010 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/nn101950n |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 7228 |
ExternalDocumentID | 21047068 10_1021_nn101950n c070663410 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 23M 4.4 53G 55A 5GY 5VS 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ LG6 P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV AHGAQ CITATION CUPRZ GGK NPM 7X8 |
ID | FETCH-LOGICAL-a415t-ac16abbc125eecae2a79a8f8dc6d766efa63f44f9f274787ca5cf88e7bdea443 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Fri Jul 11 00:25:05 EDT 2025 Mon Jul 21 05:37:20 EDT 2025 Tue Jul 01 03:03:51 EDT 2025 Thu Apr 24 22:58:20 EDT 2025 Thu Aug 27 13:43:13 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | conductance hysteresis graphene transistor water dipole charge transfer capacitive gating |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a415t-ac16abbc125eecae2a79a8f8dc6d766efa63f44f9f274787ca5cf88e7bdea443 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://scholarbank.nus.edu.sg/handle/10635/82488 |
PMID | 21047068 |
PQID | 821596026 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_821596026 pubmed_primary_21047068 crossref_primary_10_1021_nn101950n crossref_citationtrail_10_1021_nn101950n acs_journals_10_1021_nn101950n |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-12-28 |
PublicationDateYYYYMMDD | 2010-12-28 |
PublicationDate_xml | – month: 12 year: 2010 text: 2010-12-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2010 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Wang H. M. (ref26/cit26) 2010; 96 Kim W. (ref38/cit38) 2003; 3 Katsnelson M. I. (ref8/cit8) 2008; 366 Martin J. (ref4/cit4) 2008; 4 Farmer D. B. (ref16/cit16) 2009; 9 Geringer V. (ref18/cit18) 2010; 96 ref27/cit27 Yoo J. S. (ref44/cit44) 2010; 96 Cho S. (ref7/cit7) 2008; 77 Meyer J. C. (ref34/cit34) 2007; 446 Yan J. (ref30/cit30) 2008; 101 Yan J. (ref29/cit29) 2007; 98 Leenaerts O. (ref45/cit45) 2008; 77 Sabri S. S. (ref19/cit19) 2009; 95 Lafkioti M. (ref20/cit20) 2010; 10 Sadowski M. L. (ref32/cit32) 2006; 97 ref39/cit39 Sabio J. (ref11/cit11) 2008; 77 Wang H. M. (ref25/cit25) 2008; 92 Liao Z. (ref21/cit21) 2010; 133 Meyer J. C. (ref9/cit9) 2008; 454 Castro Neto A. H. (ref3/cit3) 2009; 81 Lohmann T. (ref13/cit13) 2009; 9 Moser J. (ref33/cit33) 2007; 91 Li X. (ref47/cit47) 2009; 324 Novoselove K. S. (ref1/cit1) 2004; 306 ref40/cit40 Schedin F. (ref12/cit12) 2007; 6 Radosavljevi M. (ref37/cit37) 2002; 2 Jang C. (ref24/cit24) 2008; 101 Booth T. J. (ref10/cit10) 2008; 8 Guinea F. (ref31/cit31) 2007; 75 Moser J. (ref41/cit41) 2008; 92 Chen F. (ref23/cit23) 2009; 9 Tan Y. W. (ref6/cit6) 2007; 99 Cui J. B. (ref35/cit35) 2002; 81 Fuhrer M. S. (ref36/cit36) 2002; 2 Leenaerts O. (ref46/cit46) 2009; 79 Dan Y. (ref15/cit15) 2009; 9 Kim K. (ref17/cit17) 2008; 8 Zheng Y. (ref43/cit43) 2009; 94 Ando T. (ref28/cit28) 1982; 54 Zhang L. (ref42/cit42) 2009; 80 Adam S. (ref5/cit5) 2007; 104 Geim A. K. (ref2/cit2) 2007; 6 Joshi P. (ref22/cit22) 2010; 22 Unarunotai S. (ref14/cit14) 2009; 95 |
References_xml | – volume: 81 start-page: 3260 year: 2002 ident: ref35/cit35 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1516633 – volume: 6 start-page: 652 year: 2007 ident: ref12/cit12 publication-title: Nat. Mater. doi: 10.1038/nmat1967 – volume: 101 start-page: 146805 year: 2008 ident: ref24/cit24 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.146805 – volume: 2 start-page: 761 year: 2002 ident: ref37/cit37 publication-title: Nano Lett. doi: 10.1021/nl025584c – volume: 94 start-page: 163505 year: 2009 ident: ref43/cit43 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3119215 – volume: 54 start-page: 437 year: 1982 ident: ref28/cit28 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.54.437 – volume: 97 start-page: 266405 year: 2006 ident: ref32/cit32 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.266405 – volume: 92 start-page: 053504 year: 2008 ident: ref25/cit25 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2840713 – volume: 446 start-page: 60 year: 2007 ident: ref34/cit34 publication-title: Nature doi: 10.1038/nature05545 – volume: 4 start-page: 144 year: 2008 ident: ref4/cit4 publication-title: Nat. Phys. doi: 10.1038/nphys781 – volume: 101 start-page: 136804 year: 2008 ident: ref30/cit30 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.136804 – volume: 92 start-page: 123507 year: 2008 ident: ref41/cit41 publication-title: App. Phys. Letts. doi: 10.1063/1.2898501 – volume: 96 start-page: 082114 year: 2010 ident: ref18/cit18 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3334730 – volume: 104 start-page: 18392 year: 2007 ident: ref5/cit5 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0704772104 – volume: 95 start-page: 202101 year: 2009 ident: ref14/cit14 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3263942 – volume: 91 start-page: 163513 year: 2007 ident: ref33/cit33 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2789673 – volume: 77 start-page: 084102(R) year: 2008 ident: ref7/cit7 publication-title: Phys. Rev. B – volume: 96 start-page: 023106 year: 2010 ident: ref26/cit26 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3291110 – volume: 9 start-page: 1973 year: 2009 ident: ref13/cit13 publication-title: Nano Lett. doi: 10.1021/nl900203n – volume: 6 start-page: 183 year: 2007 ident: ref2/cit2 publication-title: Nat. Mater. doi: 10.1038/nmat1849 – volume: 8 start-page: 2442 year: 2008 ident: ref10/cit10 publication-title: Nano Lett. doi: 10.1021/nl801412y – volume: 3 start-page: 193 year: 2003 ident: ref38/cit38 publication-title: Nano Lett. doi: 10.1021/nl0259232 – volume: 79 start-page: 235440 year: 2009 ident: ref46/cit46 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.79.235440 – volume: 9 start-page: 1472 year: 2009 ident: ref15/cit15 publication-title: Nano Lett. doi: 10.1021/nl8033637 – volume: 2 start-page: 755 year: 2002 ident: ref36/cit36 publication-title: Nano Lett. doi: 10.1021/nl025577o – volume: 366 start-page: 195 year: 2008 ident: ref8/cit8 publication-title: Phil. Trans. R. Soc. A doi: 10.1098/rsta.2007.2157 – ident: ref40/cit40 – volume: 80 start-page: 241412(R) year: 2009 ident: ref42/cit42 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.80.241412 – volume: 10 start-page: 1149 year: 2010 ident: ref20/cit20 publication-title: Nano Lett. doi: 10.1021/nl903162a – ident: ref39/cit39 – volume: 9 start-page: 388 year: 2009 ident: ref16/cit16 publication-title: Nano Lett. doi: 10.1021/nl803214a – volume: 22 start-page: 334214 year: 2010 ident: ref22/cit22 publication-title: J. Phys.: Condens. Matter – volume: 454 start-page: 319 year: 2008 ident: ref9/cit9 publication-title: Nature doi: 10.1038/nature07094 – volume: 133 start-page: 044703 year: 2010 ident: ref21/cit21 publication-title: J. Chem. Phys. doi: 10.1063/1.3460798 – volume: 77 start-page: 195409 year: 2008 ident: ref11/cit11 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.77.195409 – ident: ref27/cit27 – volume: 98 start-page: 166802 year: 2007 ident: ref29/cit29 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.166802 – volume: 9 start-page: 2571 year: 2009 ident: ref23/cit23 publication-title: Nano Lett. doi: 10.1021/nl900725u – volume: 324 start-page: 1312 year: 2009 ident: ref47/cit47 publication-title: Science doi: 10.1126/science.1171245 – volume: 8 start-page: 3092 year: 2008 ident: ref17/cit17 publication-title: Nano Lett. doi: 10.1021/nl8010337 – volume: 75 start-page: 235433 year: 2007 ident: ref31/cit31 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.75.235433 – volume: 306 start-page: 666 year: 2004 ident: ref1/cit1 publication-title: Science doi: 10.1126/science.1102896 – volume: 99 start-page: 246803 year: 2007 ident: ref6/cit6 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.246803 – volume: 96 start-page: 143112 year: 2010 ident: ref44/cit44 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3380616 – volume: 81 start-page: 109 year: 2009 ident: ref3/cit3 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.81.109 – volume: 95 start-page: 242104 year: 2009 ident: ref19/cit19 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3273396 – volume: 77 start-page: 125416 year: 2008 ident: ref45/cit45 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.77.125416 |
SSID | ssj0057876 |
Score | 2.5410526 |
Snippet | Graphene field effect transistors commonly comprise graphene flakes lying on SiO2 surfaces. The gate-voltage dependent conductance shows hysteresis depending... Graphene field effect transistors commonly comprise graphene flakes lying on SiO(2) surfaces. The gate-voltage dependent conductance shows hysteresis depending... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7221 |
Title | Hysteresis of Electronic Transport in Graphene Transistors |
URI | http://dx.doi.org/10.1021/nn101950n https://www.ncbi.nlm.nih.gov/pubmed/21047068 https://www.proquest.com/docview/821596026 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhZ07T8MwEIBPpSww8H6URxUBA0tKHo7jsFWlpWJgoUjdItvxSRUoRSRd-PXYeamIFtboHFnns-9OZ38HcKMIIhLp2z7h1CZeqGyGqAyLMAgShQbyZm5bPNPxK3maBtMWXK-p4HvuXZq65lGbk27ApkdZaDKs_uClPm6NxdGydKxTYx0_1Pig5aHG9cjsp-tZE08WfmW0Cw_165zyOslbb5GLnvz6DWv8a8p7sFPFlVa_NIR9aKn0ALaXaIOHcD821GadXs8ya47WsGmAYzWEc2uWWo8GYa1PwPJrQRHJjmAyGk4GY7tqnWBz7ZFzm0uXciGkDl-Uklx5PIw4Q5ZImoSUKuTUR0IwQpOVslDyQCJjKhSJ4oT4x9BO56k6BYtHgYj8IEFGXBIIR1A9yGFEoeQYUuxAV6s2riw_i4uitufGjQ46cFtrPZYVd9y0v3hfJXrViH6UsI1VQla9dLHeCqa-wVM1X2Qx0-FLZFpqdeCkXNLmL54hUjiUnf0323PY8qoLKx67gHb-uVCXOuzIRbcwu2_-gtJx |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NTtwwEB4BPRQOUGgLWyi1UJF6Cd04juNU6gFR6PJTLmwlbpHjzEgIlEV4VwjepK_C02HnD1pR9YTUa-SMRuPPnhnN-BuAjyiISJgoiISWgeAJBooIPRdhHBdInuTNd1scy8FPcXAan07Br_YtjFPCOkm2KuI_sAuEn8sy9G_b-mXTQHmIN9cuPbNf97-5vdzkfG93uDMImgkCgXaOaRxoE0qd58Z5cUSjkesk1YpUYWSRSImkZURCUEo-OVOJ0bEhpTDJC9RCRE7sNLxwMQ_3ed32zkl7yXucy7pg7RJyF7W0pEWPNfUOz9jfHd5fotjKm-0twF1nh6qJ5XxrMs63zO0fFJH_paFewXwTQ7PtGvSLMIXlEsw9YlZ8DV8GnqH6Cu2ZZSNiu92wH9axubOzkn33dN3utq-_Vowp9g0Mn0P3tzBTjkpcAabTOE-juCAlQhHn_Vy6n_pKIBlNiaQerDuLZ80pt1lVwOdh1pm8B5_avc5Mw7HuR31cPLV0o1t6WROLPLWItYDJ3LH3tRxd4mhiM-VCtdSPD-vBcg2kTgr37Bt9qd79S9sP8HIw_HGUHe0fH67CLG8adbhag5nx1QTfu3BrnK9XwGeQPTN-7gHHxDjf |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1bSx1BDA5eQPTBemn1WLWDtNCXtWd3Z2dnCz6Ienq8IIUq-LbMziYgyh5xzkH0v_hX_G2d2Rsqik-Cr0s2hEwySUjmC8B35ETEdeiFXAmPBzF6kggdFmEU5UgO5M1NWxyL_ik_OIvOxuC-eQtjhTCWkymb-M6rr3KqEQb8X0Xhu_dt3aIeojzE2xtbopmt_V17nj-CoLd3stP36i0CnrLBaegp7QuVZdpGckStMFBxoiTJXIs8FgJJiZA4p4RcgSZjrSJNUmKc5ag4Dy3bcZh03UFX223v_Gsuemfrompa26LcZi4NcNFjSV3Q0-Zp0Hslky0jWu8TPLS6KAdZLjZHw2xT3z2DifywypqD2TqXZtuV8c_DGBYLMPMIYXERfvcdUvU1mnPDBsT22qU_rEV1Z-cF--Ngu-2tX30tkVPMZzh5D9m_wEQxKHAZmEqiLAmjnCT3eZR1M2F_6kqOpBXFgjqwbrWe1t5u0rKRH_hpq_IO_GzOO9U11rpb-XH5EulGS3pVAYy8RMQao0mt-7uejipwMDKptClb4taIdWCpMqaWS-BQOLpCrrwl7TeY-rvbS4_2jw-_wnRQz-sEchUmhtcjXLNZ1zBbL22fQfrO5vMfFmI7Yg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hysteresis+of+Electronic+Transport+in+Graphene+Transistors&rft.jtitle=ACS+nano&rft.au=Wang%2C+Haomin&rft.au=Wu%2C+Yihong&rft.au=Cong%2C+Chunxiao&rft.au=Shang%2C+Jingzhi&rft.date=2010-12-28&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=4&rft.issue=12&rft.spage=7221&rft.epage=7228&rft_id=info:doi/10.1021%2Fnn101950n&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_nn101950n |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |