Hysteresis of Electronic Transport in Graphene Transistors

Graphene field effect transistors commonly comprise graphene flakes lying on SiO2 surfaces. The gate-voltage dependent conductance shows hysteresis depending on the gate sweeping rate/range. It is shown here that the transistors exhibit two different kinds of hysteresis in their electrical character...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 4; no. 12; pp. 7221 - 7228
Main Authors Wang, Haomin, Wu, Yihong, Cong, Chunxiao, Shang, Jingzhi, Yu, Ting
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 28.12.2010
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Graphene field effect transistors commonly comprise graphene flakes lying on SiO2 surfaces. The gate-voltage dependent conductance shows hysteresis depending on the gate sweeping rate/range. It is shown here that the transistors exhibit two different kinds of hysteresis in their electrical characteristics. Charge transfer causes a positive shift in the gate voltage of the minimum conductance, while capacitive gating can cause the negative shift of conductance with respect to gate voltage. The positive hysteretic phenomena decay with an increase of the number of layers in graphene flakes. Self-heating in a helium atmosphere significantly removes adsorbates and reduces positive hysteresis. We also observed negative hysteresis in graphene devices at low temperature. It is also found that an ice layer on/under graphene has a much stronger dipole moment than a water layer does. Mobile ions in the electrolyte gate and a polarity switch in the ferroelectric gate could also cause negative hysteresis in graphene transistors. These findings improved our understanding of the electrical response of graphene to its surroundings. The unique sensitivity to environment and related phenomena in graphene deserve further studies on nonvolatile memory, electrostatic detection, and chemically driven applications.
AbstractList Graphene field effect transistors commonly comprise graphene flakes lying on SiO2 surfaces. The gate-voltage dependent conductance shows hysteresis depending on the gate sweeping rate/range. It is shown here that the transistors exhibit two different kinds of hysteresis in their electrical characteristics. Charge transfer causes a positive shift in the gate voltage of the minimum conductance, while capacitive gating can cause the negative shift of conductance with respect to gate voltage. The positive hysteretic phenomena decay with an increase of the number of layers in graphene flakes. Self-heating in a helium atmosphere significantly removes adsorbates and reduces positive hysteresis. We also observed negative hysteresis in graphene devices at low temperature. It is also found that an ice layer on/under graphene has a much stronger dipole moment than a water layer does. Mobile ions in the electrolyte gate and a polarity switch in the ferroelectric gate could also cause negative hysteresis in graphene transistors. These findings improved our understanding of the electrical response of graphene to its surroundings. The unique sensitivity to environment and related phenomena in graphene deserve further studies on nonvolatile memory, electrostatic detection, and chemically driven applications.
Graphene field effect transistors commonly comprise graphene flakes lying on SiO(2) surfaces. The gate-voltage dependent conductance shows hysteresis depending on the gate sweeping rate/range. It is shown here that the transistors exhibit two different kinds of hysteresis in their electrical characteristics. Charge transfer causes a positive shift in the gate voltage of the minimum conductance, while capacitive gating can cause the negative shift of conductance with respect to gate voltage. The positive hysteretic phenomena decay with an increase of the number of layers in graphene flakes. Self-heating in a helium atmosphere significantly removes adsorbates and reduces positive hysteresis. We also observed negative hysteresis in graphene devices at low temperature. It is also found that an ice layer on/under graphene has a much stronger dipole moment than a water layer does. Mobile ions in the electrolyte gate and a polarity switch in the ferroelectric gate could also cause negative hysteresis in graphene transistors. These findings improved our understanding of the electrical response of graphene to its surroundings. The unique sensitivity to environment and related phenomena in graphene deserve further studies on nonvolatile memory, electrostatic detection, and chemically driven applications.
Graphene field effect transistors commonly comprise graphene flakes lying on SiO(2) surfaces. The gate-voltage dependent conductance shows hysteresis depending on the gate sweeping rate/range. It is shown here that the transistors exhibit two different kinds of hysteresis in their electrical characteristics. Charge transfer causes a positive shift in the gate voltage of the minimum conductance, while capacitive gating can cause the negative shift of conductance with respect to gate voltage. The positive hysteretic phenomena decay with an increase of the number of layers in graphene flakes. Self-heating in a helium atmosphere significantly removes adsorbates and reduces positive hysteresis. We also observed negative hysteresis in graphene devices at low temperature. It is also found that an ice layer on/under graphene has a much stronger dipole moment than a water layer does. Mobile ions in the electrolyte gate and a polarity switch in the ferroelectric gate could also cause negative hysteresis in graphene transistors. These findings improved our understanding of the electrical response of graphene to its surroundings. The unique sensitivity to environment and related phenomena in graphene deserve further studies on nonvolatile memory, electrostatic detection, and chemically driven applications.Graphene field effect transistors commonly comprise graphene flakes lying on SiO(2) surfaces. The gate-voltage dependent conductance shows hysteresis depending on the gate sweeping rate/range. It is shown here that the transistors exhibit two different kinds of hysteresis in their electrical characteristics. Charge transfer causes a positive shift in the gate voltage of the minimum conductance, while capacitive gating can cause the negative shift of conductance with respect to gate voltage. The positive hysteretic phenomena decay with an increase of the number of layers in graphene flakes. Self-heating in a helium atmosphere significantly removes adsorbates and reduces positive hysteresis. We also observed negative hysteresis in graphene devices at low temperature. It is also found that an ice layer on/under graphene has a much stronger dipole moment than a water layer does. Mobile ions in the electrolyte gate and a polarity switch in the ferroelectric gate could also cause negative hysteresis in graphene transistors. These findings improved our understanding of the electrical response of graphene to its surroundings. The unique sensitivity to environment and related phenomena in graphene deserve further studies on nonvolatile memory, electrostatic detection, and chemically driven applications.
Author Wang, Haomin
Cong, Chunxiao
Wu, Yihong
Shang, Jingzhi
Yu, Ting
Author_xml – sequence: 1
  givenname: Haomin
  surname: Wang
  fullname: Wang, Haomin
  email: haomin.wang@gmail.com, yuting@ntu.edu.sg
– sequence: 2
  givenname: Yihong
  surname: Wu
  fullname: Wu, Yihong
– sequence: 3
  givenname: Chunxiao
  surname: Cong
  fullname: Cong, Chunxiao
– sequence: 4
  givenname: Jingzhi
  surname: Shang
  fullname: Shang, Jingzhi
– sequence: 5
  givenname: Ting
  surname: Yu
  fullname: Yu, Ting
  email: haomin.wang@gmail.com, yuting@ntu.edu.sg
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21047068$$D View this record in MEDLINE/PubMed
BookMark eNpt0D1PwzAQBmALFdEPGPgDKAtCDKF2mjgOG6pKi1SJpQNbdHHOwlVqB9sZ-u8JSumAmHyynjvdvVMyMtYgIbeMPjGasLkxjLIio-aCTFix4DEV_GN0rjM2JlPv95Rmucj5FRknjKY55WJCnjdHH9Ch1z6yKlo1KIOzRsto58D41roQaROtHbSfaHD41T5Y56_JpYLG483pnZHd62q33MTb9_Xb8mUbQ8qyEINkHKpKsiRDlIAJ5AUIJWrJ65xzVMAXKk1VoZI87feTkEklBOZVjZCmixl5GMa2zn516EN50F5i04BB2_lSJCwrOE14L-9OsqsOWJet0wdwx_L32h48DkA6671DdSaMlj9Jluckezv_Y6UOELQ1wYFu_u24HzpA-nJvO2f6VP5x3wnaglM
CitedBy_id crossref_primary_10_1002_sstr_202100120
crossref_primary_10_1109_TED_2014_2315235
crossref_primary_10_1021_acsomega_8b02836
crossref_primary_10_1088_0957_4484_25_26_265201
crossref_primary_10_1155_2021_6689861
crossref_primary_10_1126_sciadv_1602617
crossref_primary_10_1016_j_orgel_2012_01_002
crossref_primary_10_1021_acssensors_0c01441
crossref_primary_10_1109_LED_2020_2970246
crossref_primary_10_1021_acs_jpcc_8b10804
crossref_primary_10_1063_1_3596441
crossref_primary_10_1063_1_4816475
crossref_primary_10_1038_s41598_021_89367_1
crossref_primary_10_1063_1_4897005
crossref_primary_10_1063_1_4818770
crossref_primary_10_1063_1_4946840
crossref_primary_10_1063_1_4821939
crossref_primary_10_1063_1_4968534
crossref_primary_10_1016_j_synthmet_2012_06_008
crossref_primary_10_1038_ncomms7334
crossref_primary_10_1002_smll_202311987
crossref_primary_10_1038_srep30084
crossref_primary_10_1016_j_tsf_2012_08_030
crossref_primary_10_1063_1_4953162
crossref_primary_10_1021_acs_nanolett_5b03075
crossref_primary_10_1088_1674_1056_27_3_037203
crossref_primary_10_1364_OE_22_015292
crossref_primary_10_1063_1_4958618
crossref_primary_10_1088_1361_6641_aa7ba3
crossref_primary_10_1109_JPHOT_2019_2930716
crossref_primary_10_1063_1_4872178
crossref_primary_10_1002_aelm_201800158
crossref_primary_10_1021_acs_nanolett_9b03792
crossref_primary_10_1038_ncomms9846
crossref_primary_10_1039_D0CP00298D
crossref_primary_10_1016_j_apsusc_2018_03_007
crossref_primary_10_1021_acsami_3c16699
crossref_primary_10_1021_acsami_8b17869
crossref_primary_10_1002_adma_202211352
crossref_primary_10_1038_micronano_2016_18
crossref_primary_10_1063_1_5022962
crossref_primary_10_1002_aelm_202200995
crossref_primary_10_1016_j_apsusc_2019_06_157
crossref_primary_10_1088_0953_8984_28_10_103003
crossref_primary_10_1038_ncomms5376
crossref_primary_10_1088_0957_4484_22_44_445702
crossref_primary_10_1039_C4NR02164A
crossref_primary_10_1063_1_3640210
crossref_primary_10_1063_1_4804288
crossref_primary_10_1016_j_carbon_2016_08_040
crossref_primary_10_1139_cjp_2015_0671
crossref_primary_10_1016_j_rinp_2021_104025
crossref_primary_10_1016_j_apsusc_2013_09_142
crossref_primary_10_1021_acsami_7b18041
crossref_primary_10_1063_5_0243814
crossref_primary_10_1016_j_orgel_2013_03_005
crossref_primary_10_1021_acs_jpcc_0c07785
crossref_primary_10_1088_0268_1242_30_10_105013
crossref_primary_10_1080_10584587_2014_956611
crossref_primary_10_1021_jp305823u
crossref_primary_10_1038_s41699_021_00269_2
crossref_primary_10_1021_acsanm_9b00767
crossref_primary_10_1002_aisy_202000206
crossref_primary_10_1038_s41699_024_00461_0
crossref_primary_10_1088_1361_6528_aae17e
crossref_primary_10_1088_1361_648X_aa7dbf
crossref_primary_10_1038_s41699_018_0055_5
crossref_primary_10_3390_s22239341
crossref_primary_10_1088_1674_4926_35_9_094003
crossref_primary_10_1021_acsomega_0c00735
crossref_primary_10_1145_2701428
crossref_primary_10_1038_s41467_024_55293_9
crossref_primary_10_2139_ssrn_4122016
crossref_primary_10_1021_acsanm_9b00513
crossref_primary_10_1016_j_carbon_2020_11_056
crossref_primary_10_1364_AO_383462
crossref_primary_10_1109_TED_2013_2267541
crossref_primary_10_4028_p_i2s1cm
crossref_primary_10_1002_adom_202102135
crossref_primary_10_1021_acs_langmuir_1c02018
crossref_primary_10_1021_acsphotonics_8b00350
crossref_primary_10_1021_acsami_9b13946
crossref_primary_10_1002_asia_201300505
crossref_primary_10_1134_S1063783418120107
crossref_primary_10_1186_1556_276X_7_285
crossref_primary_10_1088_2053_1583_abc187
crossref_primary_10_1002_aelm_201800073
crossref_primary_10_1007_s13233_020_8120_2
crossref_primary_10_1063_1_4996095
crossref_primary_10_1021_nn304930x
crossref_primary_10_1039_C4NR07457B
crossref_primary_10_1109_TED_2020_2965004
crossref_primary_10_1063_1_4935985
crossref_primary_10_1002_cptc_202200272
crossref_primary_10_1002_adfm_201909269
crossref_primary_10_1039_C4RA05873A
crossref_primary_10_1002_smll_202105687
crossref_primary_10_1088_1361_6463_aaac6e
crossref_primary_10_1103_PhysRevMaterials_3_024401
crossref_primary_10_1016_j_jhazmat_2023_132943
crossref_primary_10_1021_acsomega_1c05530
crossref_primary_10_1021_acs_nanolett_8b01926
crossref_primary_10_1021_nl301714x
crossref_primary_10_1063_5_0035764
crossref_primary_10_1088_0957_4484_26_10_105701
crossref_primary_10_1021_acsaelm_0c00095
crossref_primary_10_1063_1_3630227
crossref_primary_10_1088_2053_1583_aa5c17
crossref_primary_10_1103_PhysRevLett_124_187602
crossref_primary_10_1007_s10853_013_7930_4
crossref_primary_10_1109_JFLEX_2023_3303149
crossref_primary_10_1109_TIM_2024_3398086
crossref_primary_10_1039_C6NR04607J
crossref_primary_10_1016_j_molstruc_2021_130803
crossref_primary_10_1103_PhysRevX_15_011019
crossref_primary_10_3390_s21041335
crossref_primary_10_1038_s41565_018_0102_6
crossref_primary_10_1021_acs_nanolett_9b03528
crossref_primary_10_1557_adv_2019_366
crossref_primary_10_1016_j_carbon_2017_08_026
crossref_primary_10_1021_acsami_9b10698
crossref_primary_10_1039_D0NR00849D
crossref_primary_10_1134_S1062873823705251
crossref_primary_10_1088_2053_1583_1_3_035005
crossref_primary_10_1021_nn5052376
crossref_primary_10_1038_srep01238
crossref_primary_10_1021_acsnano_0c04601
crossref_primary_10_1016_j_cap_2023_01_012
crossref_primary_10_1140_epjb_e2012_30407_5
crossref_primary_10_1002_adfm_202003085
crossref_primary_10_1002_smll_201202947
crossref_primary_10_1063_1_3646506
crossref_primary_10_1039_C7NR06485C
crossref_primary_10_1088_1361_648X_ab3997
crossref_primary_10_1088_0957_4484_26_1_015202
crossref_primary_10_3390_chemosensors10110467
crossref_primary_10_1021_acsnano_5b03130
crossref_primary_10_1002_aelm_201800887
crossref_primary_10_1088_1361_648X_ac94af
crossref_primary_10_1103_PhysRevB_97_195415
crossref_primary_10_1016_j_sse_2015_03_003
crossref_primary_10_1016_j_carbon_2014_07_078
crossref_primary_10_1063_1_5121560
crossref_primary_10_1002_adma_201101007
crossref_primary_10_1021_nl5008085
crossref_primary_10_1016_j_esci_2022_03_005
crossref_primary_10_1002_adma_201602889
crossref_primary_10_1038_s41427_022_00404_5
crossref_primary_10_1039_C9AN01962F
crossref_primary_10_1038_srep22277
crossref_primary_10_1109_ACCESS_2023_3266339
crossref_primary_10_1021_acs_analchem_8b03226
crossref_primary_10_1088_1361_6528_aaa852
crossref_primary_10_1021_acs_nanolett_3c01053
crossref_primary_10_1002_admt_201900422
crossref_primary_10_1039_C7TC05695H
crossref_primary_10_1038_srep02666
crossref_primary_10_1364_OME_6_001800
crossref_primary_10_15407_ujpe58_05_0472
crossref_primary_10_1016_j_carbon_2012_10_046
crossref_primary_10_1063_1_5090270
crossref_primary_10_3952_physics_v62i4_4822
crossref_primary_10_1021_acsami_3c00037
crossref_primary_10_1063_1_4903979
crossref_primary_10_1103_PhysRevB_96_245143
crossref_primary_10_2139_ssrn_3956827
crossref_primary_10_1002_admi_202100748
crossref_primary_10_1002_smll_201604128
crossref_primary_10_1021_jp210713q
crossref_primary_10_1088_1468_6996_13_2_025007
crossref_primary_10_1021_acs_jpcc_8b06906
crossref_primary_10_1002_smll_201401196
crossref_primary_10_3390_nano14050422
crossref_primary_10_1021_acsami_0c09951
crossref_primary_10_1002_smll_201501206
crossref_primary_10_1021_acsami_0c15226
crossref_primary_10_1039_C5NR08065G
crossref_primary_10_1016_j_apsusc_2023_157442
crossref_primary_10_1073_pnas_1916406116
crossref_primary_10_1039_C5NR02552D
crossref_primary_10_1063_5_0151273
crossref_primary_10_1021_acs_nanolett_8b00572
crossref_primary_10_1021_acs_nanolett_8b02750
crossref_primary_10_1109_LED_2013_2294828
crossref_primary_10_1088_1674_4926_24080035
crossref_primary_10_1021_acsami_5b02834
crossref_primary_10_1063_1_4830226
crossref_primary_10_1021_jp507451b
crossref_primary_10_1007_s12274_013_0289_7
crossref_primary_10_1109_MNANO_2014_2326969
crossref_primary_10_1021_jp3085759
crossref_primary_10_1063_1_4915513
crossref_primary_10_7567_APEX_9_045202
crossref_primary_10_1021_acsami_0c15458
crossref_primary_10_1002_smll_201102468
crossref_primary_10_1063_1_4818467
crossref_primary_10_1016_j_carbon_2014_05_046
crossref_primary_10_1016_j_sse_2012_12_008
crossref_primary_10_1088_2053_1583_ac6191
crossref_primary_10_1016_j_carbon_2013_04_060
crossref_primary_10_1007_s12274_014_0489_9
crossref_primary_10_1063_1_4817252
crossref_primary_10_5714_CL_2012_13_1_023
crossref_primary_10_1002_admi_201800812
crossref_primary_10_1063_1_4950975
crossref_primary_10_1103_PhysRevResearch_5_043147
crossref_primary_10_1016_j_apmt_2018_12_003
crossref_primary_10_1109_TED_2014_2309651
crossref_primary_10_1016_j_surfin_2022_102615
crossref_primary_10_1088_2053_1583_aa8d37
crossref_primary_10_1149_2_0171807jss
crossref_primary_10_1088_0022_3727_48_29_295106
crossref_primary_10_1063_1_3562317
crossref_primary_10_1049_iet_cds_2014_0069
crossref_primary_10_3390_app6090236
crossref_primary_10_1038_srep12305
crossref_primary_10_1088_0268_1242_29_9_095006
crossref_primary_10_1039_C7TC05325H
crossref_primary_10_7567_JJAP_54_031201
crossref_primary_10_1016_j_carbon_2013_11_071
crossref_primary_10_1002_advs_202105722
crossref_primary_10_1088_2053_1583_aa8683
crossref_primary_10_1103_PhysRevB_108_195411
crossref_primary_10_1557_s43581_024_00109_y
crossref_primary_10_1002_pssb_201900437
crossref_primary_10_1021_acsaelm_3c00345
crossref_primary_10_1088_0953_8984_27_1_013002
crossref_primary_10_1002_smll_202408961
crossref_primary_10_1021_acs_jpcc_6b03853
crossref_primary_10_1002_pssr_202400057
crossref_primary_10_1063_1_4913209
crossref_primary_10_1116_1_4952409
crossref_primary_10_1063_1_4894082
crossref_primary_10_1021_nl300948c
crossref_primary_10_1002_adfm_202201048
crossref_primary_10_1038_s41699_022_00356_y
crossref_primary_10_1002_adfm_201902483
crossref_primary_10_1088_0022_3727_47_30_305103
crossref_primary_10_1039_C9MH01261C
crossref_primary_10_1063_1_3626854
crossref_primary_10_1002_admt_202401157
crossref_primary_10_1103_PhysRevB_96_195423
crossref_primary_10_1021_acsnano_6b08505
crossref_primary_10_1016_j_carbon_2014_07_001
crossref_primary_10_1063_5_0040442
crossref_primary_10_1088_2053_1583_aa9ea9
crossref_primary_10_1016_j_optcom_2017_06_069
crossref_primary_10_1021_acs_nanolett_5b00493
crossref_primary_10_1016_j_carbon_2019_09_007
crossref_primary_10_1103_PhysRevLett_125_236403
crossref_primary_10_1088_1361_6528_ac1717
crossref_primary_10_1088_2053_1583_3_1_015012
crossref_primary_10_1038_s41535_022_00435_9
crossref_primary_10_1021_acsomega_8b03259
crossref_primary_10_1021_nn403248y
crossref_primary_10_1039_C5TC00062A
crossref_primary_10_1063_1_4883866
crossref_primary_10_1016_j_apsusc_2023_158186
crossref_primary_10_1021_nl501275p
crossref_primary_10_1063_1_4928759
crossref_primary_10_1002_adma_201707547
crossref_primary_10_1021_acsanm_1c00154
crossref_primary_10_1109_JSEN_2024_3428345
crossref_primary_10_3390_cryst12020184
crossref_primary_10_3390_mi13040509
crossref_primary_10_1088_0022_3727_48_14_145303
crossref_primary_10_31857_S0367676524020132
crossref_primary_10_1002_cnma_201800567
crossref_primary_10_1063_5_0059066
crossref_primary_10_1179_1743294415Y_0000000051
crossref_primary_10_1038_s41467_023_41375_7
crossref_primary_10_1088_1361_6528_abde01
crossref_primary_10_1002_admt_202401292
crossref_primary_10_1002_adfm_202208055
crossref_primary_10_1016_j_electacta_2021_137819
crossref_primary_10_1063_1_4870656
crossref_primary_10_1063_1_4871866
crossref_primary_10_1021_nl503587z
crossref_primary_10_1038_s41928_021_00684_9
crossref_primary_10_1038_ncomms2652
crossref_primary_10_1063_1_4800236
crossref_primary_10_1002_inf2_12230
crossref_primary_10_1063_1_4893468
crossref_primary_10_1109_TED_2022_3169451
crossref_primary_10_1149_2_019204esl
crossref_primary_10_1038_s41699_017_0038_y
crossref_primary_10_1016_j_microrel_2018_04_012
crossref_primary_10_1002_adom_202201442
crossref_primary_10_1002_adma_201600166
crossref_primary_10_1021_acsaelm_3c01511
crossref_primary_10_1002_aelm_202400791
crossref_primary_10_1002_inf2_12121
crossref_primary_10_1038_s41699_017_0025_3
crossref_primary_10_1002_aelm_202000851
crossref_primary_10_1038_s41699_021_00280_7
crossref_primary_10_1063_1_4961361
crossref_primary_10_1088_1361_6528_aa8e23
crossref_primary_10_1021_acsphotonics_7b00384
crossref_primary_10_1063_1_4963782
crossref_primary_10_1021_nn201770s
crossref_primary_10_1016_j_bios_2021_113050
crossref_primary_10_1002_adma_201603488
crossref_primary_10_1186_s11671_018_2721_0
crossref_primary_10_7498_aps_69_20191344
crossref_primary_10_1002_smll_202201861
crossref_primary_10_1049_mnl_2016_0025
crossref_primary_10_1016_j_cap_2016_08_022
crossref_primary_10_1021_nn300107f
crossref_primary_10_1021_acsaelm_9b00467
crossref_primary_10_1088_2053_1583_aa805e
crossref_primary_10_1039_C7NR08034D
crossref_primary_10_1063_1_4938114
crossref_primary_10_1021_acsnano_5b00289
crossref_primary_10_1002_smll_201203154
crossref_primary_10_1016_j_matt_2021_01_021
crossref_primary_10_1016_j_snb_2014_11_142
crossref_primary_10_1021_acs_jpcc_7b00712
crossref_primary_10_1088_1361_6528_aaa8b3
crossref_primary_10_1088_1361_6528_ab2cf6
crossref_primary_10_1016_j_physleta_2022_128444
crossref_primary_10_1186_s11671_020_03342_9
crossref_primary_10_1002_smll_201906640
crossref_primary_10_1021_acs_nanolett_7b01584
crossref_primary_10_1186_s40580_015_0042_x
crossref_primary_10_1088_0957_4484_26_47_475202
crossref_primary_10_1016_j_apsusc_2016_06_192
crossref_primary_10_7567_JJAP_54_046502
crossref_primary_10_1038_s41467_020_16766_9
crossref_primary_10_1063_1_4960459
crossref_primary_10_1088_0957_4484_26_34_345202
crossref_primary_10_1016_j_carbon_2012_03_006
crossref_primary_10_1038_s41467_017_01210_2
crossref_primary_10_1063_1_3665196
crossref_primary_10_1021_acsami_6b02537
crossref_primary_10_1039_C7TC05148D
crossref_primary_10_1039_C9TC00382G
crossref_primary_10_1039_C9NR06407A
crossref_primary_10_1038_s41928_023_01073_0
crossref_primary_10_1038_srep04886
crossref_primary_10_1063_5_0028108
crossref_primary_10_1021_acs_nanolett_6b02905
crossref_primary_10_1088_1361_6528_ab30b5
crossref_primary_10_1038_s41598_018_27237_z
crossref_primary_10_1103_PhysRevB_88_161405
crossref_primary_10_1002_adma_201700071
crossref_primary_10_1021_acsami_9b15457
crossref_primary_10_1063_1_4948254
crossref_primary_10_1063_5_0080093
crossref_primary_10_1088_1361_6528_aa940c
crossref_primary_10_1016_j_orgel_2022_106467
crossref_primary_10_1002_adma_202302419
crossref_primary_10_1016_j_cap_2014_03_007
crossref_primary_10_1039_c2jm32121a
crossref_primary_10_1039_C8NR07133K
crossref_primary_10_1002_adfm_201502034
crossref_primary_10_1007_s11082_016_0614_y
crossref_primary_10_5757_vacmac_3_1_22
crossref_primary_10_1088_1361_6641_aaa224
crossref_primary_10_1088_1361_6528_ad0126
crossref_primary_10_1063_5_0156309
crossref_primary_10_1088_1674_4926_34_8_084004
crossref_primary_10_1002_adma_201204904
crossref_primary_10_1038_s42005_023_01340_8
crossref_primary_10_1088_1361_6528_aa5fbc
crossref_primary_10_1002_aelm_201600400
crossref_primary_10_1021_acsaelm_9b00664
crossref_primary_10_1021_acsphotonics_8b01070
crossref_primary_10_1016_j_isci_2022_104128
crossref_primary_10_1039_C8TC03198C
crossref_primary_10_1088_1674_4926_42_1_014101
crossref_primary_10_1016_j_orgel_2019_105499
crossref_primary_10_1109_JSEN_2017_2737699
crossref_primary_10_1021_nn202012m
crossref_primary_10_1021_acsnano_6b06293
crossref_primary_10_1088_2053_1583_4_1_011008
crossref_primary_10_1016_j_carbon_2015_05_062
crossref_primary_10_3390_inorganics12080228
crossref_primary_10_1021_acsami_7b06918
crossref_primary_10_1063_1_4813016
crossref_primary_10_1038_s41467_020_19203_z
crossref_primary_10_4028_www_scientific_net_MSF_740_742_129
crossref_primary_10_1021_la3008816
crossref_primary_10_1021_nl402204t
crossref_primary_10_1007_s11664_017_6023_6
crossref_primary_10_1016_j_carbon_2015_05_064
crossref_primary_10_1109_TED_2023_3297081
crossref_primary_10_1109_TED_2015_2482823
crossref_primary_10_1038_s41598_023_36405_9
crossref_primary_10_1038_s41467_022_32078_6
crossref_primary_10_1088_0957_4484_24_17_175202
crossref_primary_10_1016_j_bios_2019_04_034
crossref_primary_10_1021_acsami_1c00551
crossref_primary_10_1002_aelm_201700020
crossref_primary_10_1039_D2NR03076D
crossref_primary_10_1063_1_4916341
crossref_primary_10_1007_s12274_020_3185_y
crossref_primary_10_1016_j_measurement_2023_113954
crossref_primary_10_1007_s11467_011_0239_3
crossref_primary_10_1021_acs_nanolett_3c03926
crossref_primary_10_1109_TED_2024_3440962
crossref_primary_10_1016_j_jcis_2022_07_037
crossref_primary_10_1016_j_jmrt_2019_06_035
crossref_primary_10_1063_5_0167361
crossref_primary_10_1039_C5CP06533J
crossref_primary_10_1063_5_0053019
crossref_primary_10_1109_TED_2023_3262630
crossref_primary_10_3390_nano13020243
crossref_primary_10_35848_1347_4065_ad0747
crossref_primary_10_1063_1_4816426
crossref_primary_10_1021_acs_nanolett_7b04553
crossref_primary_10_1016_j_carbon_2017_07_038
crossref_primary_10_1088_1361_6463_aba70d
crossref_primary_10_3390_nanomanufacturing1010005
crossref_primary_10_1002_adfm_201808606
crossref_primary_10_1016_j_cap_2022_10_007
crossref_primary_10_3390_nano6110206
crossref_primary_10_1039_C4NR03183K
crossref_primary_10_1038_srep04041
crossref_primary_10_1039_D3NR03453D
crossref_primary_10_1016_j_mee_2024_112230
crossref_primary_10_1021_acsami_6b15862
crossref_primary_10_1002_adma_201503340
crossref_primary_10_1109_TNS_2012_2221479
crossref_primary_10_1016_j_carbon_2017_11_026
crossref_primary_10_1021_nn201809k
crossref_primary_10_1080_10408436_2021_1935212
crossref_primary_10_1364_OE_24_025189
crossref_primary_10_1039_C5NR03491D
crossref_primary_10_1002_admt_202100489
crossref_primary_10_1021_acsami_9b02400
crossref_primary_10_1063_1_4851956
crossref_primary_10_1063_1_4921755
crossref_primary_10_1109_TED_2017_2742942
crossref_primary_10_1002_adfm_202211880
crossref_primary_10_1038_s41586_020_2970_9
crossref_primary_10_1002_adfm_201503789
crossref_primary_10_1021_acs_nanolett_5b03283
crossref_primary_10_1021_acsami_8b16957
crossref_primary_10_1109_LED_2016_2550600
crossref_primary_10_1002_smll_201805147
crossref_primary_10_1063_1_5084190
crossref_primary_10_1002_adma_202000250
crossref_primary_10_1021_nl5027309
crossref_primary_10_1063_1_4972398
crossref_primary_10_1063_1_4944622
crossref_primary_10_1016_j_carbon_2011_12_056
crossref_primary_10_1021_acsami_9b11132
crossref_primary_10_1063_1_4943655
crossref_primary_10_1063_1_4998643
crossref_primary_10_1007_s10854_014_1727_3
crossref_primary_10_1021_acs_nanolett_4c01755
crossref_primary_10_1016_j_snb_2018_01_244
crossref_primary_10_1016_j_carbon_2021_04_082
crossref_primary_10_1016_j_snb_2020_128432
crossref_primary_10_1007_s10854_016_5052_x
crossref_primary_10_1116_1_4711128
crossref_primary_10_1002_adfm_201901971
crossref_primary_10_1116_1_4973904
crossref_primary_10_1002_aelm_201700580
crossref_primary_10_1002_adem_202100935
crossref_primary_10_1063_1_3588033
crossref_primary_10_1088_0022_3727_49_26_265301
crossref_primary_10_1021_acsnano_5b02816
crossref_primary_10_1016_j_carbon_2019_09_038
crossref_primary_10_1021_acsami_3c09679
crossref_primary_10_1063_1_4868132
crossref_primary_10_1002_smll_201403625
crossref_primary_10_1016_j_snb_2021_129704
crossref_primary_10_1063_1_4983185
crossref_primary_10_1002_aelm_202200679
crossref_primary_10_1038_s41467_023_36714_7
crossref_primary_10_1088_1361_6528_aacb6a
crossref_primary_10_1039_C5NR07115A
crossref_primary_10_1016_j_physe_2011_12_022
crossref_primary_10_1038_nmat3433
crossref_primary_10_1021_nn301572c
crossref_primary_10_1021_nl4002052
crossref_primary_10_1038_s41928_021_00657_y
crossref_primary_10_1016_j_apsusc_2016_01_115
crossref_primary_10_1039_C9RA06738H
crossref_primary_10_1002_adma_201700222
crossref_primary_10_1021_acsaelm_9b00532
crossref_primary_10_1039_C4NR04713C
crossref_primary_10_1039_C7RA02130E
crossref_primary_10_1016_j_carbon_2017_06_035
crossref_primary_10_1016_j_diamond_2016_11_009
crossref_primary_10_1002_aelm_202000496
crossref_primary_10_1016_j_mseb_2022_115628
Cites_doi 10.1063/1.1516633
10.1038/nmat1967
10.1103/PhysRevLett.101.146805
10.1021/nl025584c
10.1063/1.3119215
10.1103/RevModPhys.54.437
10.1103/PhysRevLett.97.266405
10.1063/1.2840713
10.1038/nature05545
10.1038/nphys781
10.1103/PhysRevLett.101.136804
10.1063/1.2898501
10.1063/1.3334730
10.1073/pnas.0704772104
10.1063/1.3263942
10.1063/1.2789673
10.1063/1.3291110
10.1021/nl900203n
10.1038/nmat1849
10.1021/nl801412y
10.1021/nl0259232
10.1103/PhysRevB.79.235440
10.1021/nl8033637
10.1021/nl025577o
10.1098/rsta.2007.2157
10.1103/PhysRevB.80.241412
10.1021/nl903162a
10.1021/nl803214a
10.1038/nature07094
10.1063/1.3460798
10.1103/PhysRevB.77.195409
10.1103/PhysRevLett.98.166802
10.1021/nl900725u
10.1126/science.1171245
10.1021/nl8010337
10.1103/PhysRevB.75.235433
10.1126/science.1102896
10.1103/PhysRevLett.99.246803
10.1063/1.3380616
10.1103/RevModPhys.81.109
10.1063/1.3273396
10.1103/PhysRevB.77.125416
ContentType Journal Article
Copyright Copyright © 2010 American Chemical Society
Copyright_xml – notice: Copyright © 2010 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/nn101950n
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 7228
ExternalDocumentID 21047068
10_1021_nn101950n
c070663410
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
23M
4.4
53G
55A
5GY
5VS
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
LG6
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
NPM
7X8
ID FETCH-LOGICAL-a415t-ac16abbc125eecae2a79a8f8dc6d766efa63f44f9f274787ca5cf88e7bdea443
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Fri Jul 11 00:25:05 EDT 2025
Mon Jul 21 05:37:20 EDT 2025
Tue Jul 01 03:03:51 EDT 2025
Thu Apr 24 22:58:20 EDT 2025
Thu Aug 27 13:43:13 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords conductance hysteresis
graphene transistor
water dipole
charge transfer
capacitive gating
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a415t-ac16abbc125eecae2a79a8f8dc6d766efa63f44f9f274787ca5cf88e7bdea443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://scholarbank.nus.edu.sg/handle/10635/82488
PMID 21047068
PQID 821596026
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_821596026
pubmed_primary_21047068
crossref_primary_10_1021_nn101950n
crossref_citationtrail_10_1021_nn101950n
acs_journals_10_1021_nn101950n
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-12-28
PublicationDateYYYYMMDD 2010-12-28
PublicationDate_xml – month: 12
  year: 2010
  text: 2010-12-28
  day: 28
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2010
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Wang H. M. (ref26/cit26) 2010; 96
Kim W. (ref38/cit38) 2003; 3
Katsnelson M. I. (ref8/cit8) 2008; 366
Martin J. (ref4/cit4) 2008; 4
Farmer D. B. (ref16/cit16) 2009; 9
Geringer V. (ref18/cit18) 2010; 96
ref27/cit27
Yoo J. S. (ref44/cit44) 2010; 96
Cho S. (ref7/cit7) 2008; 77
Meyer J. C. (ref34/cit34) 2007; 446
Yan J. (ref30/cit30) 2008; 101
Yan J. (ref29/cit29) 2007; 98
Leenaerts O. (ref45/cit45) 2008; 77
Sabri S. S. (ref19/cit19) 2009; 95
Lafkioti M. (ref20/cit20) 2010; 10
Sadowski M. L. (ref32/cit32) 2006; 97
ref39/cit39
Sabio J. (ref11/cit11) 2008; 77
Wang H. M. (ref25/cit25) 2008; 92
Liao Z. (ref21/cit21) 2010; 133
Meyer J. C. (ref9/cit9) 2008; 454
Castro Neto A. H. (ref3/cit3) 2009; 81
Lohmann T. (ref13/cit13) 2009; 9
Moser J. (ref33/cit33) 2007; 91
Li X. (ref47/cit47) 2009; 324
Novoselove K. S. (ref1/cit1) 2004; 306
ref40/cit40
Schedin F. (ref12/cit12) 2007; 6
Radosavljevi M. (ref37/cit37) 2002; 2
Jang C. (ref24/cit24) 2008; 101
Booth T. J. (ref10/cit10) 2008; 8
Guinea F. (ref31/cit31) 2007; 75
Moser J. (ref41/cit41) 2008; 92
Chen F. (ref23/cit23) 2009; 9
Tan Y. W. (ref6/cit6) 2007; 99
Cui J. B. (ref35/cit35) 2002; 81
Fuhrer M. S. (ref36/cit36) 2002; 2
Leenaerts O. (ref46/cit46) 2009; 79
Dan Y. (ref15/cit15) 2009; 9
Kim K. (ref17/cit17) 2008; 8
Zheng Y. (ref43/cit43) 2009; 94
Ando T. (ref28/cit28) 1982; 54
Zhang L. (ref42/cit42) 2009; 80
Adam S. (ref5/cit5) 2007; 104
Geim A. K. (ref2/cit2) 2007; 6
Joshi P. (ref22/cit22) 2010; 22
Unarunotai S. (ref14/cit14) 2009; 95
References_xml – volume: 81
  start-page: 3260
  year: 2002
  ident: ref35/cit35
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1516633
– volume: 6
  start-page: 652
  year: 2007
  ident: ref12/cit12
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1967
– volume: 101
  start-page: 146805
  year: 2008
  ident: ref24/cit24
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.146805
– volume: 2
  start-page: 761
  year: 2002
  ident: ref37/cit37
  publication-title: Nano Lett.
  doi: 10.1021/nl025584c
– volume: 94
  start-page: 163505
  year: 2009
  ident: ref43/cit43
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3119215
– volume: 54
  start-page: 437
  year: 1982
  ident: ref28/cit28
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.54.437
– volume: 97
  start-page: 266405
  year: 2006
  ident: ref32/cit32
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.266405
– volume: 92
  start-page: 053504
  year: 2008
  ident: ref25/cit25
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2840713
– volume: 446
  start-page: 60
  year: 2007
  ident: ref34/cit34
  publication-title: Nature
  doi: 10.1038/nature05545
– volume: 4
  start-page: 144
  year: 2008
  ident: ref4/cit4
  publication-title: Nat. Phys.
  doi: 10.1038/nphys781
– volume: 101
  start-page: 136804
  year: 2008
  ident: ref30/cit30
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.136804
– volume: 92
  start-page: 123507
  year: 2008
  ident: ref41/cit41
  publication-title: App. Phys. Letts.
  doi: 10.1063/1.2898501
– volume: 96
  start-page: 082114
  year: 2010
  ident: ref18/cit18
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3334730
– volume: 104
  start-page: 18392
  year: 2007
  ident: ref5/cit5
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0704772104
– volume: 95
  start-page: 202101
  year: 2009
  ident: ref14/cit14
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3263942
– volume: 91
  start-page: 163513
  year: 2007
  ident: ref33/cit33
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2789673
– volume: 77
  start-page: 084102(R)
  year: 2008
  ident: ref7/cit7
  publication-title: Phys. Rev. B
– volume: 96
  start-page: 023106
  year: 2010
  ident: ref26/cit26
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3291110
– volume: 9
  start-page: 1973
  year: 2009
  ident: ref13/cit13
  publication-title: Nano Lett.
  doi: 10.1021/nl900203n
– volume: 6
  start-page: 183
  year: 2007
  ident: ref2/cit2
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1849
– volume: 8
  start-page: 2442
  year: 2008
  ident: ref10/cit10
  publication-title: Nano Lett.
  doi: 10.1021/nl801412y
– volume: 3
  start-page: 193
  year: 2003
  ident: ref38/cit38
  publication-title: Nano Lett.
  doi: 10.1021/nl0259232
– volume: 79
  start-page: 235440
  year: 2009
  ident: ref46/cit46
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.79.235440
– volume: 9
  start-page: 1472
  year: 2009
  ident: ref15/cit15
  publication-title: Nano Lett.
  doi: 10.1021/nl8033637
– volume: 2
  start-page: 755
  year: 2002
  ident: ref36/cit36
  publication-title: Nano Lett.
  doi: 10.1021/nl025577o
– volume: 366
  start-page: 195
  year: 2008
  ident: ref8/cit8
  publication-title: Phil. Trans. R. Soc. A
  doi: 10.1098/rsta.2007.2157
– ident: ref40/cit40
– volume: 80
  start-page: 241412(R)
  year: 2009
  ident: ref42/cit42
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.80.241412
– volume: 10
  start-page: 1149
  year: 2010
  ident: ref20/cit20
  publication-title: Nano Lett.
  doi: 10.1021/nl903162a
– ident: ref39/cit39
– volume: 9
  start-page: 388
  year: 2009
  ident: ref16/cit16
  publication-title: Nano Lett.
  doi: 10.1021/nl803214a
– volume: 22
  start-page: 334214
  year: 2010
  ident: ref22/cit22
  publication-title: J. Phys.: Condens. Matter
– volume: 454
  start-page: 319
  year: 2008
  ident: ref9/cit9
  publication-title: Nature
  doi: 10.1038/nature07094
– volume: 133
  start-page: 044703
  year: 2010
  ident: ref21/cit21
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3460798
– volume: 77
  start-page: 195409
  year: 2008
  ident: ref11/cit11
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.77.195409
– ident: ref27/cit27
– volume: 98
  start-page: 166802
  year: 2007
  ident: ref29/cit29
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.166802
– volume: 9
  start-page: 2571
  year: 2009
  ident: ref23/cit23
  publication-title: Nano Lett.
  doi: 10.1021/nl900725u
– volume: 324
  start-page: 1312
  year: 2009
  ident: ref47/cit47
  publication-title: Science
  doi: 10.1126/science.1171245
– volume: 8
  start-page: 3092
  year: 2008
  ident: ref17/cit17
  publication-title: Nano Lett.
  doi: 10.1021/nl8010337
– volume: 75
  start-page: 235433
  year: 2007
  ident: ref31/cit31
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.75.235433
– volume: 306
  start-page: 666
  year: 2004
  ident: ref1/cit1
  publication-title: Science
  doi: 10.1126/science.1102896
– volume: 99
  start-page: 246803
  year: 2007
  ident: ref6/cit6
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.246803
– volume: 96
  start-page: 143112
  year: 2010
  ident: ref44/cit44
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3380616
– volume: 81
  start-page: 109
  year: 2009
  ident: ref3/cit3
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.81.109
– volume: 95
  start-page: 242104
  year: 2009
  ident: ref19/cit19
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3273396
– volume: 77
  start-page: 125416
  year: 2008
  ident: ref45/cit45
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.77.125416
SSID ssj0057876
Score 2.5410526
Snippet Graphene field effect transistors commonly comprise graphene flakes lying on SiO2 surfaces. The gate-voltage dependent conductance shows hysteresis depending...
Graphene field effect transistors commonly comprise graphene flakes lying on SiO(2) surfaces. The gate-voltage dependent conductance shows hysteresis depending...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7221
Title Hysteresis of Electronic Transport in Graphene Transistors
URI http://dx.doi.org/10.1021/nn101950n
https://www.ncbi.nlm.nih.gov/pubmed/21047068
https://www.proquest.com/docview/821596026
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhZ07T8MwEIBPpSww8H6URxUBA0tKHo7jsFWlpWJgoUjdItvxSRUoRSRd-PXYeamIFtboHFnns-9OZ38HcKMIIhLp2z7h1CZeqGyGqAyLMAgShQbyZm5bPNPxK3maBtMWXK-p4HvuXZq65lGbk27ApkdZaDKs_uClPm6NxdGydKxTYx0_1Pig5aHG9cjsp-tZE08WfmW0Cw_165zyOslbb5GLnvz6DWv8a8p7sFPFlVa_NIR9aKn0ALaXaIOHcD821GadXs8ya47WsGmAYzWEc2uWWo8GYa1PwPJrQRHJjmAyGk4GY7tqnWBz7ZFzm0uXciGkDl-Uklx5PIw4Q5ZImoSUKuTUR0IwQpOVslDyQCJjKhSJ4oT4x9BO56k6BYtHgYj8IEFGXBIIR1A9yGFEoeQYUuxAV6s2riw_i4uitufGjQ46cFtrPZYVd9y0v3hfJXrViH6UsI1VQla9dLHeCqa-wVM1X2Qx0-FLZFpqdeCkXNLmL54hUjiUnf0323PY8qoLKx67gHb-uVCXOuzIRbcwu2_-gtJx
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NTtwwEB4BPRQOUGgLWyi1UJF6Cd04juNU6gFR6PJTLmwlbpHjzEgIlEV4VwjepK_C02HnD1pR9YTUa-SMRuPPnhnN-BuAjyiISJgoiISWgeAJBooIPRdhHBdInuTNd1scy8FPcXAan07Br_YtjFPCOkm2KuI_sAuEn8sy9G_b-mXTQHmIN9cuPbNf97-5vdzkfG93uDMImgkCgXaOaRxoE0qd58Z5cUSjkesk1YpUYWSRSImkZURCUEo-OVOJ0bEhpTDJC9RCRE7sNLxwMQ_3ed32zkl7yXucy7pg7RJyF7W0pEWPNfUOz9jfHd5fotjKm-0twF1nh6qJ5XxrMs63zO0fFJH_paFewXwTQ7PtGvSLMIXlEsw9YlZ8DV8GnqH6Cu2ZZSNiu92wH9axubOzkn33dN3utq-_Vowp9g0Mn0P3tzBTjkpcAabTOE-juCAlQhHn_Vy6n_pKIBlNiaQerDuLZ80pt1lVwOdh1pm8B5_avc5Mw7HuR31cPLV0o1t6WROLPLWItYDJ3LH3tRxd4mhiM-VCtdSPD-vBcg2kTgr37Bt9qd79S9sP8HIw_HGUHe0fH67CLG8adbhag5nx1QTfu3BrnK9XwGeQPTN-7gHHxDjf
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1bSx1BDA5eQPTBemn1WLWDtNCXtWd3Z2dnCz6Ienq8IIUq-LbMziYgyh5xzkH0v_hX_G2d2Rsqik-Cr0s2hEwySUjmC8B35ETEdeiFXAmPBzF6kggdFmEU5UgO5M1NWxyL_ik_OIvOxuC-eQtjhTCWkymb-M6rr3KqEQb8X0Xhu_dt3aIeojzE2xtbopmt_V17nj-CoLd3stP36i0CnrLBaegp7QuVZdpGckStMFBxoiTJXIs8FgJJiZA4p4RcgSZjrSJNUmKc5ag4Dy3bcZh03UFX223v_Gsuemfrompa26LcZi4NcNFjSV3Q0-Zp0Hslky0jWu8TPLS6KAdZLjZHw2xT3z2DifywypqD2TqXZtuV8c_DGBYLMPMIYXERfvcdUvU1mnPDBsT22qU_rEV1Z-cF--Ngu-2tX30tkVPMZzh5D9m_wEQxKHAZmEqiLAmjnCT3eZR1M2F_6kqOpBXFgjqwbrWe1t5u0rKRH_hpq_IO_GzOO9U11rpb-XH5EulGS3pVAYy8RMQao0mt-7uejipwMDKptClb4taIdWCpMqaWS-BQOLpCrrwl7TeY-rvbS4_2jw-_wnRQz-sEchUmhtcjXLNZ1zBbL22fQfrO5vMfFmI7Yg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hysteresis+of+Electronic+Transport+in+Graphene+Transistors&rft.jtitle=ACS+nano&rft.au=Wang%2C+Haomin&rft.au=Wu%2C+Yihong&rft.au=Cong%2C+Chunxiao&rft.au=Shang%2C+Jingzhi&rft.date=2010-12-28&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=4&rft.issue=12&rft.spage=7221&rft.epage=7228&rft_id=info:doi/10.1021%2Fnn101950n&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_nn101950n
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon