Macroelectronic Integrated Circuits Using High-Performance Separated Carbon Nanotube Thin-Film Transistors

Macroelectronic integrated circuits are widely used in applications such as flat panel display and transparent electronics, as well as flexible and stretchable electronics. However, the challenge is to find the channel material that can simultaneously offer low temperature processing, high mobility,...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 4; no. 12; pp. 7123 - 7132
Main Authors Wang, Chuan, Zhang, Jialu, Zhou, Chongwu
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 28.12.2010
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Macroelectronic integrated circuits are widely used in applications such as flat panel display and transparent electronics, as well as flexible and stretchable electronics. However, the challenge is to find the channel material that can simultaneously offer low temperature processing, high mobility, transparency, and flexibility. Here in this paper, we report the application of high-performance separated nanotube thin-film transistors for macroelectronic integrated circuits. We have systematically investigated the performance of thin-film transistors using separated nanotubes with 95% and 98% semiconducting nanotubes, and high mobility transistors have been achieved. In addition, we observed that while 95% semiconducting nanotubes are ideal for applications requiring high mobility (up to 67 cm2 V−1 s−1) such as analog and radio frequency applications, 98% semiconducting nanotubes are ideal for applications requiring high on/off ratios (>104 with channel length down to 4 μm). Furthermore, integrated logic gates such as inverter, NAND, and NOR have been designed and demonstrated using 98% semiconducting nanotube devices with individual gating, and symmetric input/output behavior is achieved, which is crucial for the cascading of multiple stages of logic blocks and larger scale integration. Our approach can serve as the critical foundation for future nanotube-based thin-film macroelectronics.
AbstractList Macroelectronic integrated circuits are widely used in applications such as flat panel display and transparent electronics, as well as flexible and stretchable electronics. However, the challenge is to find the channel material that can simultaneously offer low temperature processing, high mobility, transparency, and flexibility. Here in this paper, we report the application of high-performance separated nanotube thin-film transistors for macroelectronic integrated circuits. We have systematically investigated the performance of thin-film transistors using separated nanotubes with 95% and 98% semiconducting nanotubes, and high mobility transistors have been achieved. In addition, we observed that while 95% semiconducting nanotubes are ideal for applications requiring high mobility (up to 67 cm(2) V(-1) s(-1)) such as analog and radio frequency applications, 98% semiconducting nanotubes are ideal for applications requiring high on/off ratios (>10(4) with channel length down to 4 μm). Furthermore, integrated logic gates such as inverter, NAND, and NOR have been designed and demonstrated using 98% semiconducting nanotube devices with individual gating, and symmetric input/output behavior is achieved, which is crucial for the cascading of multiple stages of logic blocks and larger scale integration. Our approach can serve as the critical foundation for future nanotube-based thin-film macroelectronics.Macroelectronic integrated circuits are widely used in applications such as flat panel display and transparent electronics, as well as flexible and stretchable electronics. However, the challenge is to find the channel material that can simultaneously offer low temperature processing, high mobility, transparency, and flexibility. Here in this paper, we report the application of high-performance separated nanotube thin-film transistors for macroelectronic integrated circuits. We have systematically investigated the performance of thin-film transistors using separated nanotubes with 95% and 98% semiconducting nanotubes, and high mobility transistors have been achieved. In addition, we observed that while 95% semiconducting nanotubes are ideal for applications requiring high mobility (up to 67 cm(2) V(-1) s(-1)) such as analog and radio frequency applications, 98% semiconducting nanotubes are ideal for applications requiring high on/off ratios (>10(4) with channel length down to 4 μm). Furthermore, integrated logic gates such as inverter, NAND, and NOR have been designed and demonstrated using 98% semiconducting nanotube devices with individual gating, and symmetric input/output behavior is achieved, which is crucial for the cascading of multiple stages of logic blocks and larger scale integration. Our approach can serve as the critical foundation for future nanotube-based thin-film macroelectronics.
Macroelectronic integrated circuits are widely used in applications such as flat panel display and transparent electronics, as well as flexible and stretchable electronics. However, the challenge is to find the channel material that can simultaneously offer low temperature processing, high mobility, transparency, and flexibility. Here in this paper, we report the application of high-performance separated nanotube thin-film transistors for macroelectronic integrated circuits. We have systematically investigated the performance of thin-film transistors using separated nanotubes with 95% and 98% semiconducting nanotubes, and high mobility transistors have been achieved. In addition, we observed that while 95% semiconducting nanotubes are ideal for applications requiring high mobility (up to 67 cm2 V−1 s−1) such as analog and radio frequency applications, 98% semiconducting nanotubes are ideal for applications requiring high on/off ratios (>104 with channel length down to 4 μm). Furthermore, integrated logic gates such as inverter, NAND, and NOR have been designed and demonstrated using 98% semiconducting nanotube devices with individual gating, and symmetric input/output behavior is achieved, which is crucial for the cascading of multiple stages of logic blocks and larger scale integration. Our approach can serve as the critical foundation for future nanotube-based thin-film macroelectronics.
Macroelectronic integrated circuits are widely used in applications such as flat panel display and transparent electronics, as well as flexible and stretchable electronics. However, the challenge is to find the channel material that can simultaneously offer low temperature processing, high mobility, transparency, and flexibility. Here in this paper, we report the application of high-performance separated nanotube thin-film transistors for macroelectronic integrated circuits. We have systematically investigated the performance of thin-film transistors using separated nanotubes with 95% and 98% semiconducting nanotubes, and high mobility transistors have been achieved. In addition, we observed that while 95% semiconducting nanotubes are ideal for applications requiring high mobility (up to 67 cm(2) V(-1) s(-1)) such as analog and radio frequency applications, 98% semiconducting nanotubes are ideal for applications requiring high on/off ratios (>10(4) with channel length down to 4 μm). Furthermore, integrated logic gates such as inverter, NAND, and NOR have been designed and demonstrated using 98% semiconducting nanotube devices with individual gating, and symmetric input/output behavior is achieved, which is crucial for the cascading of multiple stages of logic blocks and larger scale integration. Our approach can serve as the critical foundation for future nanotube-based thin-film macroelectronics.
Author Zhang, Jialu
Wang, Chuan
Zhou, Chongwu
Author_xml – sequence: 1
  givenname: Chuan
  surname: Wang
  fullname: Wang, Chuan
– sequence: 2
  givenname: Jialu
  surname: Zhang
  fullname: Zhang, Jialu
– sequence: 3
  givenname: Chongwu
  surname: Zhou
  fullname: Zhou, Chongwu
  email: chongwuz@usc.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21062091$$D View this record in MEDLINE/PubMed
BookMark eNpt0DtPwzAQwHELFdEHDHwBlAUhhlA7DycZUUVppfKQaCW26OJcWleJXWxn4NuTqqUDYrobfnfDf0h6Sisk5JrRB0YDNlZqP8IkPSMDloXcpyn_7J32mPXJ0NotpXGSJvyC9ANGeUAzNiDbFxBGY43CGa2k8ObK4dqAw9KbSCNa6ay3slKtvZlcb_x3NJU2DSiB3gfu4CjBFFp5r6C0awv0lhup_KmsG29pQFlpnTb2kpxXUFu8Os4RWU2flpOZv3h7nk8eFz5ELHZ-UkUJLbMoSRHisCwhSEuoChEUWVhwVgAFFldhkMVRBVm3s6ykFHnBg5TyMglH5O7wd2f0V4vW5Y20AusaFOrW5mnA4oyzLs6I3BxlWzRY5jsjGzDf-W-eDtwfQNfIWoPViTCa75vnp_SdHf-xQjpwUitnQNb_XtweLkDYfKtbo7os_7gfvEyR3A
CitedBy_id crossref_primary_10_1007_s41683_019_00045_x
crossref_primary_10_1088_0957_4484_25_5_055208
crossref_primary_10_1039_C2CS35335K
crossref_primary_10_1016_j_apsusc_2017_04_031
crossref_primary_10_1039_C4CP05964F
crossref_primary_10_1016_j_apsusc_2018_11_101
crossref_primary_10_1155_2013_627215
crossref_primary_10_1021_nn201828y
crossref_primary_10_7567_JJAP_53_05FD01
crossref_primary_10_1038_s41928_018_0056_6
crossref_primary_10_1039_C5NR05036G
crossref_primary_10_1002_adma_201504659
crossref_primary_10_1088_0957_4484_27_29_295704
crossref_primary_10_1039_C6TC00783J
crossref_primary_10_1016_j_carbon_2018_03_058
crossref_primary_10_1021_acsami_7b03184
crossref_primary_10_1021_nl2043375
crossref_primary_10_1016_j_carbon_2016_02_099
crossref_primary_10_1021_nn200919v
crossref_primary_10_1039_C7NR00685C
crossref_primary_10_1088_2058_8585_ac4ea0
crossref_primary_10_1039_C4NR05471G
crossref_primary_10_1142_S1793292013500562
crossref_primary_10_1021_acsami_6b11302
crossref_primary_10_1021_nl403001r
crossref_primary_10_1021_ja4019429
crossref_primary_10_1039_C2CS35325C
crossref_primary_10_1039_D2RA02088B
crossref_primary_10_1007_s13391_013_0031_3
crossref_primary_10_1002_smll_201600452
crossref_primary_10_1109_JEDS_2017_2756263
crossref_primary_10_1021_nn301972j
crossref_primary_10_1002_adma_202415442
crossref_primary_10_1002_smll_201203178
crossref_primary_10_1021_nn302768h
crossref_primary_10_1007_s12274_014_0596_7
crossref_primary_10_1109_TED_2013_2264969
crossref_primary_10_1002_adfm_201808574
crossref_primary_10_1021_nn302720n
crossref_primary_10_1088_1402_4896_ace855
crossref_primary_10_1016_j_carbon_2015_07_072
crossref_primary_10_1038_ncomms5097
crossref_primary_10_1155_2017_8761064
crossref_primary_10_1088_1361_6641_aaad7e
crossref_primary_10_1063_1_3622767
crossref_primary_10_1080_00150193_2023_2300621
crossref_primary_10_1007_s12274_011_0182_1
crossref_primary_10_1039_D0NR05486K
crossref_primary_10_1088_2399_1984_ab1ebc
crossref_primary_10_1007_s41061_016_0083_6
crossref_primary_10_1021_jp406100n
crossref_primary_10_1088_2053_1591_aae01d
crossref_primary_10_1063_1_4891335
crossref_primary_10_1063_1_4871100
crossref_primary_10_1063_1_4902834
crossref_primary_10_1063_1_5100011
crossref_primary_10_1016_j_carbon_2023_118750
crossref_primary_10_1063_1_4921078
crossref_primary_10_1039_C6NR00876C
crossref_primary_10_1063_1_4752006
crossref_primary_10_1109_JSEN_2013_2265775
crossref_primary_10_1021_acs_nanolett_6b02046
crossref_primary_10_1088_0268_1242_30_7_074001
crossref_primary_10_1002_adma_201806480
crossref_primary_10_1021_am302431e
crossref_primary_10_1002_sdtp_17175
crossref_primary_10_1007_s12274_014_0623_8
crossref_primary_10_1002_smll_201200041
crossref_primary_10_1021_ja3038992
crossref_primary_10_1109_TNANO_2013_2238248
crossref_primary_10_1038_s41598_017_05653_x
crossref_primary_10_1002_adma_201603895
crossref_primary_10_1063_1_4978935
crossref_primary_10_1109_TED_2015_2504465
crossref_primary_10_1007_s41061_017_0160_5
crossref_primary_10_1021_nl202765b
crossref_primary_10_7567_JJAP_56_06GE02
crossref_primary_10_1088_0268_1242_31_10_105015
crossref_primary_10_1088_1361_6463_ab4ca4
crossref_primary_10_1021_am5013326
crossref_primary_10_1021_nl202695v
crossref_primary_10_1063_1_4991056
crossref_primary_10_1002_polb_23064
crossref_primary_10_1002_adma_201701764
crossref_primary_10_1039_C5NR02292D
crossref_primary_10_1021_nn400847r
crossref_primary_10_3740_MRSK_2017_27_11_590
crossref_primary_10_1109_TNANO_2015_2510965
crossref_primary_10_1088_0268_1242_29_7_073001
crossref_primary_10_1002_chem_202000228
crossref_primary_10_1021_nn5009935
crossref_primary_10_7567_JJAP_52_03BB09
crossref_primary_10_1186_s11671_015_0999_8
crossref_primary_10_1088_1361_6528_ac9392
crossref_primary_10_1088_2058_8585_1_4_045002
crossref_primary_10_1002_advs_202102860
crossref_primary_10_1021_acsnano_1c04194
crossref_primary_10_1088_0957_4484_22_45_455202
crossref_primary_10_1002_smll_201201237
crossref_primary_10_1021_nl203117h
crossref_primary_10_1002_admt_201900230
crossref_primary_10_1109_JSEN_2015_2404342
crossref_primary_10_1021_acsami_7b01666
crossref_primary_10_1021_acsaelm_2c01603
crossref_primary_10_1039_C5NR07329D
crossref_primary_10_1002_adma_201302265
crossref_primary_10_1007_s12274_013_0368_9
crossref_primary_10_1021_nn3026172
crossref_primary_10_1039_c1jm10399g
crossref_primary_10_1021_nn2004298
crossref_primary_10_1088_0957_4484_23_12_125201
crossref_primary_10_1021_nn503903y
crossref_primary_10_1039_c3nr33560g
crossref_primary_10_1142_S1793292016500600
crossref_primary_10_1002_pssb_201100254
crossref_primary_10_1039_c3nr06470k
crossref_primary_10_1021_nn201314t
crossref_primary_10_1039_C6NR00015K
crossref_primary_10_1039_C4NR07650H
Cites_doi 10.1109/LED.2007.898256
10.1063/1.1417516
10.1126/science.1065824
10.1007/978-3-662-04141-3
10.1021/nl015606f
10.1147/rd.451.0011
10.1103/PhysRevLett.95.146805
10.1021/nl0608543
10.1021/nl062907m
10.1126/science.275.5308.1922
10.1126/science.1156588
10.1063/1.122477
10.1109/LED.2006.889219
10.1021/nl050133o
10.1021/nl902522f
10.1038/34145
10.1038/nature01797
10.1021/nl050254o
10.1021/nl025639a
10.1038/nature07110
10.1007/BF00899734
10.1038/nature02498
10.1126/science.1122797
10.1021/nn800434d
10.1063/1.1564291
10.1109/TED.2005.844739
10.1557/mrs2002.277
10.1038/34139
10.1038/nmat1061
10.1021/nn800708w
10.1038/nnano.2006.52
10.1038/nnano.2007.77
10.1002/adma.200801995
10.1021/nl034841q
10.1021/nl025647r
10.1021/nl048435y
10.1038/29954
ContentType Journal Article
Copyright Copyright © 2010 American Chemical Society
Copyright_xml – notice: Copyright © 2010 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/nn1021378
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 7132
ExternalDocumentID 21062091
10_1021_nn1021378
a73120310
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID -
23M
4.4
53G
55A
5GY
5VS
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
LG6
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
NPM
7X8
ID FETCH-LOGICAL-a415t-7f470d9478ea53dda28dafbc2b93b61ba0a15f32954fa9a1519d00e6b62806d73
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Thu Jul 10 18:43:39 EDT 2025
Tue Aug 05 11:44:26 EDT 2025
Tue Jul 01 03:03:51 EDT 2025
Thu Apr 24 23:12:12 EDT 2025
Thu Aug 27 13:43:13 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords circuit design and optimization
purity of semiconducting nanotubes
integrated logic circuits
separated carbon nanotubes
symmetric input/output
thin-film transistors
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a415t-7f470d9478ea53dda28dafbc2b93b61ba0a15f32954fa9a1519d00e6b62806d73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://figshare.com/articles/Macroelectronic_Integrated_Circuits_Using_High_Performance_Separated_Carbon_Nanotube_Thin_Film_Transistors/2702218
PMID 21062091
PQID 821596119
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_821596119
pubmed_primary_21062091
crossref_primary_10_1021_nn1021378
crossref_citationtrail_10_1021_nn1021378
acs_journals_10_1021_nn1021378
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-12-28
PublicationDateYYYYMMDD 2010-12-28
PublicationDate_xml – month: 12
  year: 2010
  text: 2010-12-28
  day: 28
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2010
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Pimparkar N. (ref39/cit39) 2007; 28
Rosenblatt S. (ref36/cit36) 2002; 2
Zhou X. (ref8/cit8) 2005; 95
Dimitrakopoulos C. D. (ref25/cit25) 2001; 45
Gelinck G. H. (ref27/cit27) 2004; 3
Arnold M. S. (ref29/cit29) 2006; 1
Hu L. (ref17/cit17) 2004; 4
Martel R. (ref5/cit5) 1998; 73
Klauk H. (ref28/cit28) 2005; 52
Liu X. (ref11/cit11) 2001; 79
Wang C. (ref32/cit32) 2009; 9
Street R. A. (ref22/cit22) 2000
Snell A. J. (ref24/cit24) 1981; 24
Kang S. J. (ref34/cit34) 2007; 2
Odom T. (ref3/cit3) 1998; 391
Javey A. (ref12/cit12) 2002; 2
Chen Z. (ref13/cit13) 2006; 311
Kocabas C. (ref38/cit38) 2007; 7
Cao Q. (ref35/cit35) 2007; 90
Engel M. (ref31/cit31) 2008; 2
Derycke V. (ref10/cit10) 2001; 1
Forrest S. R. (ref26/cit26) 2004; 428
Bockrath M. (ref1/cit1) 1997; 275
Snow E. S. (ref14/cit14) 2003; 82
Pimparkar N. (ref37/cit37) 2007; 28
Bachtold A. (ref9/cit9) 2001; 294
Wildoer J. (ref2/cit2) 1998; 391
Ishikawa F. (ref19/cit19) 2009; 3
Javey A. (ref6/cit6) 2003; 424
Zhang D. (ref18/cit18) 2006; 6
Dulrkop T. (ref7/cit7) 2003; 4
Cao Q. (ref20/cit20) 2008; 21
Arnold M. S. (ref30/cit30) 2005; 5
LeMieux M. C. (ref33/cit33) 2008; 321
Snow E. S. (ref15/cit15) 2005; 86
Cao Q. (ref21/cit21) 2008; 454
Ucjikoga S. (ref23/cit23) 2002; 27
Artukovic E. (ref16/cit16) 2005; 5
Tans S. (ref4/cit4) 1998; 393
References_xml – volume: 28
  start-page: 593
  year: 2007
  ident: ref37/cit37
  publication-title: Electron Device Lett.
  doi: 10.1109/LED.2007.898256
– volume: 79
  start-page: 3329
  year: 2001
  ident: ref11/cit11
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1417516
– volume: 294
  start-page: 1317
  year: 2001
  ident: ref9/cit9
  publication-title: Science
  doi: 10.1126/science.1065824
– volume-title: Technology and Applications of Amorphous Silicon
  year: 2000
  ident: ref22/cit22
  doi: 10.1007/978-3-662-04141-3
– volume: 1
  start-page: 453
  year: 2001
  ident: ref10/cit10
  publication-title: Nano Lett.
  doi: 10.1021/nl015606f
– volume: 45
  start-page: 11
  year: 2001
  ident: ref25/cit25
  publication-title: IBM J. Res. Dev.
  doi: 10.1147/rd.451.0011
– volume: 95
  start-page: 146805
  year: 2005
  ident: ref8/cit8
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.146805
– volume: 90
  start-page: 023516-1−023516
  year: 2007
  ident: ref35/cit35
  publication-title: Appl. Phys. Lett.
– volume: 6
  start-page: 1880
  year: 2006
  ident: ref18/cit18
  publication-title: Nano Lett.
  doi: 10.1021/nl0608543
– volume: 7
  start-page: 1195
  year: 2007
  ident: ref38/cit38
  publication-title: Nano Lett.
  doi: 10.1021/nl062907m
– volume: 275
  start-page: 1922
  year: 1997
  ident: ref1/cit1
  publication-title: Science
  doi: 10.1126/science.275.5308.1922
– volume: 321
  start-page: 101
  year: 2008
  ident: ref33/cit33
  publication-title: Science
  doi: 10.1126/science.1156588
– volume: 73
  start-page: 2447
  year: 1998
  ident: ref5/cit5
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.122477
– volume: 28
  start-page: 157
  year: 2007
  ident: ref39/cit39
  publication-title: Electron Device Lett.
  doi: 10.1109/LED.2006.889219
– volume: 5
  start-page: 713
  year: 2005
  ident: ref30/cit30
  publication-title: Nano Lett.
  doi: 10.1021/nl050133o
– volume: 9
  start-page: 4285
  year: 2009
  ident: ref32/cit32
  publication-title: Nano Lett.
  doi: 10.1021/nl902522f
– volume: 391
  start-page: 62
  year: 1998
  ident: ref3/cit3
  publication-title: Nature
  doi: 10.1038/34145
– volume: 424
  start-page: 654
  year: 2003
  ident: ref6/cit6
  publication-title: Nature
  doi: 10.1038/nature01797
– volume: 5
  start-page: 757
  year: 2005
  ident: ref16/cit16
  publication-title: Nano Lett.
  doi: 10.1021/nl050254o
– volume: 2
  start-page: 869
  year: 2002
  ident: ref36/cit36
  publication-title: Nano Lett.
  doi: 10.1021/nl025639a
– volume: 454
  start-page: 495
  year: 2008
  ident: ref21/cit21
  publication-title: Nature
  doi: 10.1038/nature07110
– volume: 24
  start-page: 357
  year: 1981
  ident: ref24/cit24
  publication-title: Appl. Phys. A: Mater. Sci. Process.
  doi: 10.1007/BF00899734
– volume: 428
  start-page: 911
  year: 2004
  ident: ref26/cit26
  publication-title: Nature
  doi: 10.1038/nature02498
– volume: 311
  start-page: 1735
  year: 2006
  ident: ref13/cit13
  publication-title: Science
  doi: 10.1126/science.1122797
– volume: 3
  start-page: 73
  year: 2009
  ident: ref19/cit19
  publication-title: ACS Nano
  doi: 10.1021/nn800434d
– volume: 82
  start-page: 2145
  year: 2003
  ident: ref14/cit14
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1564291
– volume: 52
  start-page: 618
  year: 2005
  ident: ref28/cit28
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2005.844739
– volume: 27
  start-page: 881
  year: 2002
  ident: ref23/cit23
  publication-title: MRS Bull.
  doi: 10.1557/mrs2002.277
– volume: 391
  start-page: 59
  year: 1998
  ident: ref2/cit2
  publication-title: Nature
  doi: 10.1038/34139
– volume: 3
  start-page: 106
  year: 2004
  ident: ref27/cit27
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1061
– volume: 2
  start-page: 2445
  year: 2008
  ident: ref31/cit31
  publication-title: ACS Nano
  doi: 10.1021/nn800708w
– volume: 1
  start-page: 60
  year: 2006
  ident: ref29/cit29
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2006.52
– volume: 2
  start-page: 230
  year: 2007
  ident: ref34/cit34
  publication-title: Nature Nanotechnol.
  doi: 10.1038/nnano.2007.77
– volume: 21
  start-page: 29
  year: 2008
  ident: ref20/cit20
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200801995
– volume: 86
  start-page: 033105−1−033105
  year: 2005
  ident: ref15/cit15
  publication-title: Appl. Phys. Lett.
– volume: 4
  start-page: 35
  year: 2003
  ident: ref7/cit7
  publication-title: Nano Lett.
  doi: 10.1021/nl034841q
– volume: 2
  start-page: 929
  year: 2002
  ident: ref12/cit12
  publication-title: Nano Lett.
  doi: 10.1021/nl025647r
– volume: 4
  start-page: 2513
  year: 2004
  ident: ref17/cit17
  publication-title: Nano Lett.
  doi: 10.1021/nl048435y
– volume: 393
  start-page: 49
  year: 1998
  ident: ref4/cit4
  publication-title: Nature
  doi: 10.1038/29954
SSID ssj0057876
Score 2.4001381
Snippet Macroelectronic integrated circuits are widely used in applications such as flat panel display and transparent electronics, as well as flexible and stretchable...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7123
Title Macroelectronic Integrated Circuits Using High-Performance Separated Carbon Nanotube Thin-Film Transistors
URI http://dx.doi.org/10.1021/nn1021378
https://www.ncbi.nlm.nih.gov/pubmed/21062091
https://www.proquest.com/docview/821596119
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT8MwDLbGuMCB92M8pgg4cCk06Ss5ToNpIIGQxqTdqqRJpcHo0Npe-PUkfWwgBpzag1NZtRN_ke3PABfccIJ5klo2jx1Lx-PIYsxlVhDHyqYKK2KbBueHR78_dO9H3qgB579k8Am-ThLzcAK6AqvEp4G5YXW6g_q4NR7nl6ljfTXW-KGmD_q61ISeKP0een7Bk0Vc6W3CTd2dU5aTvF7lmbiKPn6SNf6l8hZsVLgSdUpH2IaGSnZg_Qvb4C68PHCt2GLuDbqrqSIk6o5nUT7OUlSUECBT_WE9LXoK0EAVHOFGks_ENEH6VJ5muVDIDP60euPJGyrCXsE6ku7BsHf73O1b1agFi-sInmnTuIEtmRtQxT1HSk6o5LGIiGCO8LHgNsde7JikYMyZfsdM2rbyhW8yszJw9qGZTBN1CMjQ20gslaE9dKWreEBdRTyN9GwulRu1oK1tEVZbJQ2LLDjB4fynteCyNlMYVUTlZl7GZJno2Vz0vWTnWCaEaluHeu-YhAhP1DRPQ6rxDvMxZi04KH1g_hV9E_aJxlJH_2l7DGukqnAh9ASa2SxXpxqnZKJd-OknYSPgTA
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1NT9wwEB1ROLQcCrRQlvJhVVTqJRA7nz5wQAurXWAREiBxC3bsSFsgW20SIfgp_Sv9cx17k11aUfWExCl7GHkde-L3RjN-A7AtjCZYoGLHFZnnIB6nDuc-d6Is026sqWauueDcPw27l_7RVXA1Az-buzA4iQJHKmwSf6ouQHfz3Dy8KK4LKI_1wz2GZ8Ve7wD38itjncOLdtepOwg4AoGpxH_0I1dxP4q1CDylBIuVyGTKJPdkSKVwBQ0yz-S6MsHxN-XKdXUoQ5NwVJGH476BOSQ9zAR2--3z5pQ3jh6OM9YYkSNtaVSLnk7VIF5a_Il4_6CxFs46C_BrshC2iuVmpyrlTvr4l0bk61ypRXhfs2iyP3b7JZjR-QeYf6Kt-BG-9wWux7TLD-k1whiKtAejtBqUBbEFE8TUujhn0xsU5FxbRXRjKUZymBPEoGFZSU1Mm1OnM7i9IxbkrcZKsQyXL_KyKzCbD3O9CsSI-SiqtBF59JWvRRT7mgXIa12htJ-2YBP3KKkPhiKxOX9Gk8kmteBb4x1JWsuym-4gt8-ZfpmY_hhrkTxnRBoXS_CkMOkfkethVSQxsjseUspb8GnsepNRMO4PGTLHtf_Ndgvedi_6J8lJ7_T4M7xjdW0Pi9dhthxVegMZWik37adC4PqlPe43KOhDBg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LT9wwEB5RKlXtoZQ-l_KwqlbqJRA7Tx84oIUVWwpCokjcUjt2pC2QRZtEVfkx_BX-Wme8yUIRVU9IPSWHkeOMx54ZfeNvAD4q4gSLTOr5qgg89Me5J2UovaQorJ9aboVPF5z3D-Ld4_DLSXQyB1fdXRicRIUjVQ7Ep119YYqWYYBvlCU9giRtiyj37K-fmKJVm8NtXM9PQgx2vvV3vbaLgKfQOdX41TDxjQyT1KooMEaJ1KhC50LLQMdcK1_xqAgI7yqUxHcuje_bWMcEOpokwHEfwWOCBym52-ofdSc9GXs8Ra0xK8fQpWMuuj1V8np59afX-0so61zaYAGuZ8pwlSyn602t1_PLOzyR_6-2XsDzNppmW1PzX4Q5W76EZ7c4Fl_Bj32FOrnp9sOGHUGGYf3RJG9GdcVc4QSjmhfv8OYmBTuyjhmdJNVEj0uGvmhcN9oyanfqDUZn58w5e8e1Ur2G4wf52TcwX45L-w4YkfoYbiyRPYYmtCpJQysijG99ZWyY92AV1ylrD4gqc9i_4NlskXrwubOQLG_p2alLyNl9oh9mohdTTpL7hFhnZhmeGAQDqdKOmypLMcqTMeeyB2-n5jcbBfP_WGAEufSv2a7Bk8PtQfZ1eLD3Hp6KtsRHpMswX08au4KBWq1X3W5h8P2hDe439ZJFiQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Macroelectronic+Integrated+Circuits+Using+High-Performance+Separated+Carbon+Nanotube+Thin-Film+Transistors&rft.jtitle=ACS+nano&rft.au=Wang%2C+Chuan&rft.au=Zhang%2C+Jialu&rft.au=Zhou%2C+Chongwu&rft.date=2010-12-28&rft.pub=American+Chemical+Society&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=4&rft.issue=12&rft.spage=7123&rft.epage=7132&rft_id=info:doi/10.1021%2Fnn1021378&rft.externalDocID=a73120310
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon