Macroelectronic Integrated Circuits Using High-Performance Separated Carbon Nanotube Thin-Film Transistors
Macroelectronic integrated circuits are widely used in applications such as flat panel display and transparent electronics, as well as flexible and stretchable electronics. However, the challenge is to find the channel material that can simultaneously offer low temperature processing, high mobility,...
Saved in:
Published in | ACS nano Vol. 4; no. 12; pp. 7123 - 7132 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
28.12.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Macroelectronic integrated circuits are widely used in applications such as flat panel display and transparent electronics, as well as flexible and stretchable electronics. However, the challenge is to find the channel material that can simultaneously offer low temperature processing, high mobility, transparency, and flexibility. Here in this paper, we report the application of high-performance separated nanotube thin-film transistors for macroelectronic integrated circuits. We have systematically investigated the performance of thin-film transistors using separated nanotubes with 95% and 98% semiconducting nanotubes, and high mobility transistors have been achieved. In addition, we observed that while 95% semiconducting nanotubes are ideal for applications requiring high mobility (up to 67 cm2 V−1 s−1) such as analog and radio frequency applications, 98% semiconducting nanotubes are ideal for applications requiring high on/off ratios (>104 with channel length down to 4 μm). Furthermore, integrated logic gates such as inverter, NAND, and NOR have been designed and demonstrated using 98% semiconducting nanotube devices with individual gating, and symmetric input/output behavior is achieved, which is crucial for the cascading of multiple stages of logic blocks and larger scale integration. Our approach can serve as the critical foundation for future nanotube-based thin-film macroelectronics. |
---|---|
AbstractList | Macroelectronic integrated circuits are widely used in applications such as flat panel display and transparent electronics, as well as flexible and stretchable electronics. However, the challenge is to find the channel material that can simultaneously offer low temperature processing, high mobility, transparency, and flexibility. Here in this paper, we report the application of high-performance separated nanotube thin-film transistors for macroelectronic integrated circuits. We have systematically investigated the performance of thin-film transistors using separated nanotubes with 95% and 98% semiconducting nanotubes, and high mobility transistors have been achieved. In addition, we observed that while 95% semiconducting nanotubes are ideal for applications requiring high mobility (up to 67 cm(2) V(-1) s(-1)) such as analog and radio frequency applications, 98% semiconducting nanotubes are ideal for applications requiring high on/off ratios (>10(4) with channel length down to 4 μm). Furthermore, integrated logic gates such as inverter, NAND, and NOR have been designed and demonstrated using 98% semiconducting nanotube devices with individual gating, and symmetric input/output behavior is achieved, which is crucial for the cascading of multiple stages of logic blocks and larger scale integration. Our approach can serve as the critical foundation for future nanotube-based thin-film macroelectronics.Macroelectronic integrated circuits are widely used in applications such as flat panel display and transparent electronics, as well as flexible and stretchable electronics. However, the challenge is to find the channel material that can simultaneously offer low temperature processing, high mobility, transparency, and flexibility. Here in this paper, we report the application of high-performance separated nanotube thin-film transistors for macroelectronic integrated circuits. We have systematically investigated the performance of thin-film transistors using separated nanotubes with 95% and 98% semiconducting nanotubes, and high mobility transistors have been achieved. In addition, we observed that while 95% semiconducting nanotubes are ideal for applications requiring high mobility (up to 67 cm(2) V(-1) s(-1)) such as analog and radio frequency applications, 98% semiconducting nanotubes are ideal for applications requiring high on/off ratios (>10(4) with channel length down to 4 μm). Furthermore, integrated logic gates such as inverter, NAND, and NOR have been designed and demonstrated using 98% semiconducting nanotube devices with individual gating, and symmetric input/output behavior is achieved, which is crucial for the cascading of multiple stages of logic blocks and larger scale integration. Our approach can serve as the critical foundation for future nanotube-based thin-film macroelectronics. Macroelectronic integrated circuits are widely used in applications such as flat panel display and transparent electronics, as well as flexible and stretchable electronics. However, the challenge is to find the channel material that can simultaneously offer low temperature processing, high mobility, transparency, and flexibility. Here in this paper, we report the application of high-performance separated nanotube thin-film transistors for macroelectronic integrated circuits. We have systematically investigated the performance of thin-film transistors using separated nanotubes with 95% and 98% semiconducting nanotubes, and high mobility transistors have been achieved. In addition, we observed that while 95% semiconducting nanotubes are ideal for applications requiring high mobility (up to 67 cm2 V−1 s−1) such as analog and radio frequency applications, 98% semiconducting nanotubes are ideal for applications requiring high on/off ratios (>104 with channel length down to 4 μm). Furthermore, integrated logic gates such as inverter, NAND, and NOR have been designed and demonstrated using 98% semiconducting nanotube devices with individual gating, and symmetric input/output behavior is achieved, which is crucial for the cascading of multiple stages of logic blocks and larger scale integration. Our approach can serve as the critical foundation for future nanotube-based thin-film macroelectronics. Macroelectronic integrated circuits are widely used in applications such as flat panel display and transparent electronics, as well as flexible and stretchable electronics. However, the challenge is to find the channel material that can simultaneously offer low temperature processing, high mobility, transparency, and flexibility. Here in this paper, we report the application of high-performance separated nanotube thin-film transistors for macroelectronic integrated circuits. We have systematically investigated the performance of thin-film transistors using separated nanotubes with 95% and 98% semiconducting nanotubes, and high mobility transistors have been achieved. In addition, we observed that while 95% semiconducting nanotubes are ideal for applications requiring high mobility (up to 67 cm(2) V(-1) s(-1)) such as analog and radio frequency applications, 98% semiconducting nanotubes are ideal for applications requiring high on/off ratios (>10(4) with channel length down to 4 μm). Furthermore, integrated logic gates such as inverter, NAND, and NOR have been designed and demonstrated using 98% semiconducting nanotube devices with individual gating, and symmetric input/output behavior is achieved, which is crucial for the cascading of multiple stages of logic blocks and larger scale integration. Our approach can serve as the critical foundation for future nanotube-based thin-film macroelectronics. |
Author | Zhang, Jialu Wang, Chuan Zhou, Chongwu |
Author_xml | – sequence: 1 givenname: Chuan surname: Wang fullname: Wang, Chuan – sequence: 2 givenname: Jialu surname: Zhang fullname: Zhang, Jialu – sequence: 3 givenname: Chongwu surname: Zhou fullname: Zhou, Chongwu email: chongwuz@usc.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21062091$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0DtPwzAQwHELFdEHDHwBlAUhhlA7DycZUUVppfKQaCW26OJcWleJXWxn4NuTqqUDYrobfnfDf0h6Sisk5JrRB0YDNlZqP8IkPSMDloXcpyn_7J32mPXJ0NotpXGSJvyC9ANGeUAzNiDbFxBGY43CGa2k8ObK4dqAw9KbSCNa6ay3slKtvZlcb_x3NJU2DSiB3gfu4CjBFFp5r6C0awv0lhup_KmsG29pQFlpnTb2kpxXUFu8Os4RWU2flpOZv3h7nk8eFz5ELHZ-UkUJLbMoSRHisCwhSEuoChEUWVhwVgAFFldhkMVRBVm3s6ykFHnBg5TyMglH5O7wd2f0V4vW5Y20AusaFOrW5mnA4oyzLs6I3BxlWzRY5jsjGzDf-W-eDtwfQNfIWoPViTCa75vnp_SdHf-xQjpwUitnQNb_XtweLkDYfKtbo7os_7gfvEyR3A |
CitedBy_id | crossref_primary_10_1007_s41683_019_00045_x crossref_primary_10_1088_0957_4484_25_5_055208 crossref_primary_10_1039_C2CS35335K crossref_primary_10_1016_j_apsusc_2017_04_031 crossref_primary_10_1039_C4CP05964F crossref_primary_10_1016_j_apsusc_2018_11_101 crossref_primary_10_1155_2013_627215 crossref_primary_10_1021_nn201828y crossref_primary_10_7567_JJAP_53_05FD01 crossref_primary_10_1038_s41928_018_0056_6 crossref_primary_10_1039_C5NR05036G crossref_primary_10_1002_adma_201504659 crossref_primary_10_1088_0957_4484_27_29_295704 crossref_primary_10_1039_C6TC00783J crossref_primary_10_1016_j_carbon_2018_03_058 crossref_primary_10_1021_acsami_7b03184 crossref_primary_10_1021_nl2043375 crossref_primary_10_1016_j_carbon_2016_02_099 crossref_primary_10_1021_nn200919v crossref_primary_10_1039_C7NR00685C crossref_primary_10_1088_2058_8585_ac4ea0 crossref_primary_10_1039_C4NR05471G crossref_primary_10_1142_S1793292013500562 crossref_primary_10_1021_acsami_6b11302 crossref_primary_10_1021_nl403001r crossref_primary_10_1021_ja4019429 crossref_primary_10_1039_C2CS35325C crossref_primary_10_1039_D2RA02088B crossref_primary_10_1007_s13391_013_0031_3 crossref_primary_10_1002_smll_201600452 crossref_primary_10_1109_JEDS_2017_2756263 crossref_primary_10_1021_nn301972j crossref_primary_10_1002_adma_202415442 crossref_primary_10_1002_smll_201203178 crossref_primary_10_1021_nn302768h crossref_primary_10_1007_s12274_014_0596_7 crossref_primary_10_1109_TED_2013_2264969 crossref_primary_10_1002_adfm_201808574 crossref_primary_10_1021_nn302720n crossref_primary_10_1088_1402_4896_ace855 crossref_primary_10_1016_j_carbon_2015_07_072 crossref_primary_10_1038_ncomms5097 crossref_primary_10_1155_2017_8761064 crossref_primary_10_1088_1361_6641_aaad7e crossref_primary_10_1063_1_3622767 crossref_primary_10_1080_00150193_2023_2300621 crossref_primary_10_1007_s12274_011_0182_1 crossref_primary_10_1039_D0NR05486K crossref_primary_10_1088_2399_1984_ab1ebc crossref_primary_10_1007_s41061_016_0083_6 crossref_primary_10_1021_jp406100n crossref_primary_10_1088_2053_1591_aae01d crossref_primary_10_1063_1_4891335 crossref_primary_10_1063_1_4871100 crossref_primary_10_1063_1_4902834 crossref_primary_10_1063_1_5100011 crossref_primary_10_1016_j_carbon_2023_118750 crossref_primary_10_1063_1_4921078 crossref_primary_10_1039_C6NR00876C crossref_primary_10_1063_1_4752006 crossref_primary_10_1109_JSEN_2013_2265775 crossref_primary_10_1021_acs_nanolett_6b02046 crossref_primary_10_1088_0268_1242_30_7_074001 crossref_primary_10_1002_adma_201806480 crossref_primary_10_1021_am302431e crossref_primary_10_1002_sdtp_17175 crossref_primary_10_1007_s12274_014_0623_8 crossref_primary_10_1002_smll_201200041 crossref_primary_10_1021_ja3038992 crossref_primary_10_1109_TNANO_2013_2238248 crossref_primary_10_1038_s41598_017_05653_x crossref_primary_10_1002_adma_201603895 crossref_primary_10_1063_1_4978935 crossref_primary_10_1109_TED_2015_2504465 crossref_primary_10_1007_s41061_017_0160_5 crossref_primary_10_1021_nl202765b crossref_primary_10_7567_JJAP_56_06GE02 crossref_primary_10_1088_0268_1242_31_10_105015 crossref_primary_10_1088_1361_6463_ab4ca4 crossref_primary_10_1021_am5013326 crossref_primary_10_1021_nl202695v crossref_primary_10_1063_1_4991056 crossref_primary_10_1002_polb_23064 crossref_primary_10_1002_adma_201701764 crossref_primary_10_1039_C5NR02292D crossref_primary_10_1021_nn400847r crossref_primary_10_3740_MRSK_2017_27_11_590 crossref_primary_10_1109_TNANO_2015_2510965 crossref_primary_10_1088_0268_1242_29_7_073001 crossref_primary_10_1002_chem_202000228 crossref_primary_10_1021_nn5009935 crossref_primary_10_7567_JJAP_52_03BB09 crossref_primary_10_1186_s11671_015_0999_8 crossref_primary_10_1088_1361_6528_ac9392 crossref_primary_10_1088_2058_8585_1_4_045002 crossref_primary_10_1002_advs_202102860 crossref_primary_10_1021_acsnano_1c04194 crossref_primary_10_1088_0957_4484_22_45_455202 crossref_primary_10_1002_smll_201201237 crossref_primary_10_1021_nl203117h crossref_primary_10_1002_admt_201900230 crossref_primary_10_1109_JSEN_2015_2404342 crossref_primary_10_1021_acsami_7b01666 crossref_primary_10_1021_acsaelm_2c01603 crossref_primary_10_1039_C5NR07329D crossref_primary_10_1002_adma_201302265 crossref_primary_10_1007_s12274_013_0368_9 crossref_primary_10_1021_nn3026172 crossref_primary_10_1039_c1jm10399g crossref_primary_10_1021_nn2004298 crossref_primary_10_1088_0957_4484_23_12_125201 crossref_primary_10_1021_nn503903y crossref_primary_10_1039_c3nr33560g crossref_primary_10_1142_S1793292016500600 crossref_primary_10_1002_pssb_201100254 crossref_primary_10_1039_c3nr06470k crossref_primary_10_1021_nn201314t crossref_primary_10_1039_C6NR00015K crossref_primary_10_1039_C4NR07650H |
Cites_doi | 10.1109/LED.2007.898256 10.1063/1.1417516 10.1126/science.1065824 10.1007/978-3-662-04141-3 10.1021/nl015606f 10.1147/rd.451.0011 10.1103/PhysRevLett.95.146805 10.1021/nl0608543 10.1021/nl062907m 10.1126/science.275.5308.1922 10.1126/science.1156588 10.1063/1.122477 10.1109/LED.2006.889219 10.1021/nl050133o 10.1021/nl902522f 10.1038/34145 10.1038/nature01797 10.1021/nl050254o 10.1021/nl025639a 10.1038/nature07110 10.1007/BF00899734 10.1038/nature02498 10.1126/science.1122797 10.1021/nn800434d 10.1063/1.1564291 10.1109/TED.2005.844739 10.1557/mrs2002.277 10.1038/34139 10.1038/nmat1061 10.1021/nn800708w 10.1038/nnano.2006.52 10.1038/nnano.2007.77 10.1002/adma.200801995 10.1021/nl034841q 10.1021/nl025647r 10.1021/nl048435y 10.1038/29954 |
ContentType | Journal Article |
Copyright | Copyright © 2010 American Chemical Society |
Copyright_xml | – notice: Copyright © 2010 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/nn1021378 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 7132 |
ExternalDocumentID | 21062091 10_1021_nn1021378 a73120310 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GroupedDBID | - 23M 4.4 53G 55A 5GY 5VS 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ LG6 P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV AHGAQ CITATION CUPRZ GGK NPM 7X8 |
ID | FETCH-LOGICAL-a415t-7f470d9478ea53dda28dafbc2b93b61ba0a15f32954fa9a1519d00e6b62806d73 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Thu Jul 10 18:43:39 EDT 2025 Tue Aug 05 11:44:26 EDT 2025 Tue Jul 01 03:03:51 EDT 2025 Thu Apr 24 23:12:12 EDT 2025 Thu Aug 27 13:43:13 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | circuit design and optimization purity of semiconducting nanotubes integrated logic circuits separated carbon nanotubes symmetric input/output thin-film transistors |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a415t-7f470d9478ea53dda28dafbc2b93b61ba0a15f32954fa9a1519d00e6b62806d73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://figshare.com/articles/Macroelectronic_Integrated_Circuits_Using_High_Performance_Separated_Carbon_Nanotube_Thin_Film_Transistors/2702218 |
PMID | 21062091 |
PQID | 821596119 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_821596119 pubmed_primary_21062091 crossref_primary_10_1021_nn1021378 crossref_citationtrail_10_1021_nn1021378 acs_journals_10_1021_nn1021378 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-12-28 |
PublicationDateYYYYMMDD | 2010-12-28 |
PublicationDate_xml | – month: 12 year: 2010 text: 2010-12-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2010 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Pimparkar N. (ref39/cit39) 2007; 28 Rosenblatt S. (ref36/cit36) 2002; 2 Zhou X. (ref8/cit8) 2005; 95 Dimitrakopoulos C. D. (ref25/cit25) 2001; 45 Gelinck G. H. (ref27/cit27) 2004; 3 Arnold M. S. (ref29/cit29) 2006; 1 Hu L. (ref17/cit17) 2004; 4 Martel R. (ref5/cit5) 1998; 73 Klauk H. (ref28/cit28) 2005; 52 Liu X. (ref11/cit11) 2001; 79 Wang C. (ref32/cit32) 2009; 9 Street R. A. (ref22/cit22) 2000 Snell A. J. (ref24/cit24) 1981; 24 Kang S. J. (ref34/cit34) 2007; 2 Odom T. (ref3/cit3) 1998; 391 Javey A. (ref12/cit12) 2002; 2 Chen Z. (ref13/cit13) 2006; 311 Kocabas C. (ref38/cit38) 2007; 7 Cao Q. (ref35/cit35) 2007; 90 Engel M. (ref31/cit31) 2008; 2 Derycke V. (ref10/cit10) 2001; 1 Forrest S. R. (ref26/cit26) 2004; 428 Bockrath M. (ref1/cit1) 1997; 275 Snow E. S. (ref14/cit14) 2003; 82 Pimparkar N. (ref37/cit37) 2007; 28 Bachtold A. (ref9/cit9) 2001; 294 Wildoer J. (ref2/cit2) 1998; 391 Ishikawa F. (ref19/cit19) 2009; 3 Javey A. (ref6/cit6) 2003; 424 Zhang D. (ref18/cit18) 2006; 6 Dulrkop T. (ref7/cit7) 2003; 4 Cao Q. (ref20/cit20) 2008; 21 Arnold M. S. (ref30/cit30) 2005; 5 LeMieux M. C. (ref33/cit33) 2008; 321 Snow E. S. (ref15/cit15) 2005; 86 Cao Q. (ref21/cit21) 2008; 454 Ucjikoga S. (ref23/cit23) 2002; 27 Artukovic E. (ref16/cit16) 2005; 5 Tans S. (ref4/cit4) 1998; 393 |
References_xml | – volume: 28 start-page: 593 year: 2007 ident: ref37/cit37 publication-title: Electron Device Lett. doi: 10.1109/LED.2007.898256 – volume: 79 start-page: 3329 year: 2001 ident: ref11/cit11 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1417516 – volume: 294 start-page: 1317 year: 2001 ident: ref9/cit9 publication-title: Science doi: 10.1126/science.1065824 – volume-title: Technology and Applications of Amorphous Silicon year: 2000 ident: ref22/cit22 doi: 10.1007/978-3-662-04141-3 – volume: 1 start-page: 453 year: 2001 ident: ref10/cit10 publication-title: Nano Lett. doi: 10.1021/nl015606f – volume: 45 start-page: 11 year: 2001 ident: ref25/cit25 publication-title: IBM J. Res. Dev. doi: 10.1147/rd.451.0011 – volume: 95 start-page: 146805 year: 2005 ident: ref8/cit8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.146805 – volume: 90 start-page: 023516-1−023516 year: 2007 ident: ref35/cit35 publication-title: Appl. Phys. Lett. – volume: 6 start-page: 1880 year: 2006 ident: ref18/cit18 publication-title: Nano Lett. doi: 10.1021/nl0608543 – volume: 7 start-page: 1195 year: 2007 ident: ref38/cit38 publication-title: Nano Lett. doi: 10.1021/nl062907m – volume: 275 start-page: 1922 year: 1997 ident: ref1/cit1 publication-title: Science doi: 10.1126/science.275.5308.1922 – volume: 321 start-page: 101 year: 2008 ident: ref33/cit33 publication-title: Science doi: 10.1126/science.1156588 – volume: 73 start-page: 2447 year: 1998 ident: ref5/cit5 publication-title: Appl. Phys. Lett. doi: 10.1063/1.122477 – volume: 28 start-page: 157 year: 2007 ident: ref39/cit39 publication-title: Electron Device Lett. doi: 10.1109/LED.2006.889219 – volume: 5 start-page: 713 year: 2005 ident: ref30/cit30 publication-title: Nano Lett. doi: 10.1021/nl050133o – volume: 9 start-page: 4285 year: 2009 ident: ref32/cit32 publication-title: Nano Lett. doi: 10.1021/nl902522f – volume: 391 start-page: 62 year: 1998 ident: ref3/cit3 publication-title: Nature doi: 10.1038/34145 – volume: 424 start-page: 654 year: 2003 ident: ref6/cit6 publication-title: Nature doi: 10.1038/nature01797 – volume: 5 start-page: 757 year: 2005 ident: ref16/cit16 publication-title: Nano Lett. doi: 10.1021/nl050254o – volume: 2 start-page: 869 year: 2002 ident: ref36/cit36 publication-title: Nano Lett. doi: 10.1021/nl025639a – volume: 454 start-page: 495 year: 2008 ident: ref21/cit21 publication-title: Nature doi: 10.1038/nature07110 – volume: 24 start-page: 357 year: 1981 ident: ref24/cit24 publication-title: Appl. Phys. A: Mater. Sci. Process. doi: 10.1007/BF00899734 – volume: 428 start-page: 911 year: 2004 ident: ref26/cit26 publication-title: Nature doi: 10.1038/nature02498 – volume: 311 start-page: 1735 year: 2006 ident: ref13/cit13 publication-title: Science doi: 10.1126/science.1122797 – volume: 3 start-page: 73 year: 2009 ident: ref19/cit19 publication-title: ACS Nano doi: 10.1021/nn800434d – volume: 82 start-page: 2145 year: 2003 ident: ref14/cit14 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1564291 – volume: 52 start-page: 618 year: 2005 ident: ref28/cit28 publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2005.844739 – volume: 27 start-page: 881 year: 2002 ident: ref23/cit23 publication-title: MRS Bull. doi: 10.1557/mrs2002.277 – volume: 391 start-page: 59 year: 1998 ident: ref2/cit2 publication-title: Nature doi: 10.1038/34139 – volume: 3 start-page: 106 year: 2004 ident: ref27/cit27 publication-title: Nat. Mater. doi: 10.1038/nmat1061 – volume: 2 start-page: 2445 year: 2008 ident: ref31/cit31 publication-title: ACS Nano doi: 10.1021/nn800708w – volume: 1 start-page: 60 year: 2006 ident: ref29/cit29 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2006.52 – volume: 2 start-page: 230 year: 2007 ident: ref34/cit34 publication-title: Nature Nanotechnol. doi: 10.1038/nnano.2007.77 – volume: 21 start-page: 29 year: 2008 ident: ref20/cit20 publication-title: Adv. Mater. doi: 10.1002/adma.200801995 – volume: 86 start-page: 033105−1−033105 year: 2005 ident: ref15/cit15 publication-title: Appl. Phys. Lett. – volume: 4 start-page: 35 year: 2003 ident: ref7/cit7 publication-title: Nano Lett. doi: 10.1021/nl034841q – volume: 2 start-page: 929 year: 2002 ident: ref12/cit12 publication-title: Nano Lett. doi: 10.1021/nl025647r – volume: 4 start-page: 2513 year: 2004 ident: ref17/cit17 publication-title: Nano Lett. doi: 10.1021/nl048435y – volume: 393 start-page: 49 year: 1998 ident: ref4/cit4 publication-title: Nature doi: 10.1038/29954 |
SSID | ssj0057876 |
Score | 2.4001381 |
Snippet | Macroelectronic integrated circuits are widely used in applications such as flat panel display and transparent electronics, as well as flexible and stretchable... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7123 |
Title | Macroelectronic Integrated Circuits Using High-Performance Separated Carbon Nanotube Thin-Film Transistors |
URI | http://dx.doi.org/10.1021/nn1021378 https://www.ncbi.nlm.nih.gov/pubmed/21062091 https://www.proquest.com/docview/821596119 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT8MwDLbGuMCB92M8pgg4cCk06Ss5ToNpIIGQxqTdqqRJpcHo0Npe-PUkfWwgBpzag1NZtRN_ke3PABfccIJ5klo2jx1Lx-PIYsxlVhDHyqYKK2KbBueHR78_dO9H3qgB579k8Am-ThLzcAK6AqvEp4G5YXW6g_q4NR7nl6ljfTXW-KGmD_q61ISeKP0een7Bk0Vc6W3CTd2dU5aTvF7lmbiKPn6SNf6l8hZsVLgSdUpH2IaGSnZg_Qvb4C68PHCt2GLuDbqrqSIk6o5nUT7OUlSUECBT_WE9LXoK0EAVHOFGks_ENEH6VJ5muVDIDP60euPJGyrCXsE6ku7BsHf73O1b1agFi-sInmnTuIEtmRtQxT1HSk6o5LGIiGCO8LHgNsde7JikYMyZfsdM2rbyhW8yszJw9qGZTBN1CMjQ20gslaE9dKWreEBdRTyN9GwulRu1oK1tEVZbJQ2LLDjB4fynteCyNlMYVUTlZl7GZJno2Vz0vWTnWCaEaluHeu-YhAhP1DRPQ6rxDvMxZi04KH1g_hV9E_aJxlJH_2l7DGukqnAh9ASa2SxXpxqnZKJd-OknYSPgTA |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1NT9wwEB1ROLQcCrRQlvJhVVTqJRA7nz5wQAurXWAREiBxC3bsSFsgW20SIfgp_Sv9cx17k11aUfWExCl7GHkde-L3RjN-A7AtjCZYoGLHFZnnIB6nDuc-d6Is026sqWauueDcPw27l_7RVXA1Az-buzA4iQJHKmwSf6ouQHfz3Dy8KK4LKI_1wz2GZ8Ve7wD38itjncOLdtepOwg4AoGpxH_0I1dxP4q1CDylBIuVyGTKJPdkSKVwBQ0yz-S6MsHxN-XKdXUoQ5NwVJGH476BOSQ9zAR2--3z5pQ3jh6OM9YYkSNtaVSLnk7VIF5a_Il4_6CxFs46C_BrshC2iuVmpyrlTvr4l0bk61ypRXhfs2iyP3b7JZjR-QeYf6Kt-BG-9wWux7TLD-k1whiKtAejtBqUBbEFE8TUujhn0xsU5FxbRXRjKUZymBPEoGFZSU1Mm1OnM7i9IxbkrcZKsQyXL_KyKzCbD3O9CsSI-SiqtBF59JWvRRT7mgXIa12htJ-2YBP3KKkPhiKxOX9Gk8kmteBb4x1JWsuym-4gt8-ZfpmY_hhrkTxnRBoXS_CkMOkfkethVSQxsjseUspb8GnsepNRMO4PGTLHtf_Ndgvedi_6J8lJ7_T4M7xjdW0Pi9dhthxVegMZWik37adC4PqlPe43KOhDBg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LT9wwEB5RKlXtoZQ-l_KwqlbqJRA7Tx84oIUVWwpCokjcUjt2pC2QRZtEVfkx_BX-Wme8yUIRVU9IPSWHkeOMx54ZfeNvAD4q4gSLTOr5qgg89Me5J2UovaQorJ9aboVPF5z3D-Ld4_DLSXQyB1fdXRicRIUjVQ7Ep119YYqWYYBvlCU9giRtiyj37K-fmKJVm8NtXM9PQgx2vvV3vbaLgKfQOdX41TDxjQyT1KooMEaJ1KhC50LLQMdcK1_xqAgI7yqUxHcuje_bWMcEOpokwHEfwWOCBym52-ofdSc9GXs8Ra0xK8fQpWMuuj1V8np59afX-0so61zaYAGuZ8pwlSyn602t1_PLOzyR_6-2XsDzNppmW1PzX4Q5W76EZ7c4Fl_Bj32FOrnp9sOGHUGGYf3RJG9GdcVc4QSjmhfv8OYmBTuyjhmdJNVEj0uGvmhcN9oyanfqDUZn58w5e8e1Ur2G4wf52TcwX45L-w4YkfoYbiyRPYYmtCpJQysijG99ZWyY92AV1ylrD4gqc9i_4NlskXrwubOQLG_p2alLyNl9oh9mohdTTpL7hFhnZhmeGAQDqdKOmypLMcqTMeeyB2-n5jcbBfP_WGAEufSv2a7Bk8PtQfZ1eLD3Hp6KtsRHpMswX08au4KBWq1X3W5h8P2hDe439ZJFiQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Macroelectronic+Integrated+Circuits+Using+High-Performance+Separated+Carbon+Nanotube+Thin-Film+Transistors&rft.jtitle=ACS+nano&rft.au=Wang%2C+Chuan&rft.au=Zhang%2C+Jialu&rft.au=Zhou%2C+Chongwu&rft.date=2010-12-28&rft.pub=American+Chemical+Society&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=4&rft.issue=12&rft.spage=7123&rft.epage=7132&rft_id=info:doi/10.1021%2Fnn1021378&rft.externalDocID=a73120310 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |