Mapping mineral prospectivity through big data analytics and a deep learning algorithm
[Display omitted] •Big data analytics and a deep learning algorithm were used to map mineral prospectivity.•42 geological, geochemical and geophysical variables were involved.•A case from southwestern Fujian metalorganic zone of China was presented. Identification of anomalies related to mineralizat...
Saved in:
Published in | Ore geology reviews Vol. 102; no. C; pp. 811 - 817 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2018
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Big data analytics and a deep learning algorithm were used to map mineral prospectivity.•42 geological, geochemical and geophysical variables were involved.•A case from southwestern Fujian metalorganic zone of China was presented.
Identification of anomalies related to mineralization and integration of multi-source geoscience data are essential for mapping mineral prospectivity. In this study, we applied big data analytics and a deep learning algorithm to process geoscience data to identify and integrate anomalies related to skarn-type Iron mineralization in the southwestern Fujian metallogenic zone of China. Based on the geological setting and environment for the formation of skarn-type Iron mineralization, 42 relevant variables, including two geological, one geophysical, and 39 geochemical variables, were analyzed and integrated for detecting anomalies related to mineralization using a deep autoencoder network. The results indicate that the mapped prospectivity areas have a strong spatial relationship with the locations of known mineralization and demonstrate that big data analytics supported by deep learning methods is a potential technique to be considered for use in mineral prospectivity mapping. |
---|---|
AbstractList | [Display omitted]
•Big data analytics and a deep learning algorithm were used to map mineral prospectivity.•42 geological, geochemical and geophysical variables were involved.•A case from southwestern Fujian metalorganic zone of China was presented.
Identification of anomalies related to mineralization and integration of multi-source geoscience data are essential for mapping mineral prospectivity. In this study, we applied big data analytics and a deep learning algorithm to process geoscience data to identify and integrate anomalies related to skarn-type Iron mineralization in the southwestern Fujian metallogenic zone of China. Based on the geological setting and environment for the formation of skarn-type Iron mineralization, 42 relevant variables, including two geological, one geophysical, and 39 geochemical variables, were analyzed and integrated for detecting anomalies related to mineralization using a deep autoencoder network. The results indicate that the mapped prospectivity areas have a strong spatial relationship with the locations of known mineralization and demonstrate that big data analytics supported by deep learning methods is a potential technique to be considered for use in mineral prospectivity mapping. |
Author | Carranza, Emmanuel John M. Zuo, Renguang Xiong, Yihui |
Author_xml | – sequence: 1 givenname: Yihui surname: Xiong fullname: Xiong, Yihui organization: State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China – sequence: 2 givenname: Renguang surname: Zuo fullname: Zuo, Renguang email: zrguang@cug.edu.cn organization: State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China – sequence: 3 givenname: Emmanuel John M. surname: Carranza fullname: Carranza, Emmanuel John M. organization: University of KwaZulu-Natal, Westville Campus, Durban, South Africa |
BackLink | https://www.osti.gov/biblio/1636788$$D View this record in Osti.gov |
BookMark | eNqNkMtOwzAQRS1UJNrCN2CxT7CTNI8Fi6riJRWxAbbRxB4nrlI7ckyl_j2Oiliwgc14NL73auYsyMxYg4RccxZzxvPbXWwdthjKIU4YL8M0Ziw_I3NeFklUpDmbkXlQVhFP8_KCLMZxx4KCMT4nHy8wDNq0dK8NOujp4Ow4oPD6oP2R-s7Zz7ajjW6pBA8UDPRHr8UYOkmBSsSB9gjOTCHQt9Zp3-0vybmCfsSr73dJ3h_u3zZP0fb18Xmz3kaQ8cxHKi1EhrlMOc9YIwSWSpSiaASmVaVAJkwmK2BNo9ISqyITHLjCRq2YzJpCynRJbk65dvS6HoX2KDphjQkX1DxP86Isg-juJBLhttGhqoMOvLbGO9B9zVk9kax39Q_JeiI5fQROwV_88g9O78Ed_-Fcn5wYGBw0umlFNAKldtOG0uo_M74As9qYog |
CitedBy_id | crossref_primary_10_1016_j_oregeorev_2022_105224 crossref_primary_10_1007_s11053_021_09942_1 crossref_primary_10_1007_s11053_022_10038_7 crossref_primary_10_1016_j_oregeorev_2023_105860 crossref_primary_10_3724_j_issn_1007_2802_20240164 crossref_primary_10_1007_s11042_022_13143_0 crossref_primary_10_1016_j_oregeorev_2025_106554 crossref_primary_10_1016_j_cageo_2023_105455 crossref_primary_10_1016_j_gexplo_2023_107326 crossref_primary_10_3390_min11020148 crossref_primary_10_1007_s11053_022_10050_x crossref_primary_10_1007_s11053_023_10286_1 crossref_primary_10_1007_s11053_022_10143_7 crossref_primary_10_1016_j_chemer_2024_126155 crossref_primary_10_1016_j_cageo_2020_104484 crossref_primary_10_3390_fractalfract8040224 crossref_primary_10_1007_s12145_025_01843_8 crossref_primary_10_1016_j_apgeochem_2020_104679 crossref_primary_10_1007_s11053_021_09984_5 crossref_primary_10_1016_j_oregeorev_2021_104649 crossref_primary_10_1016_j_oregeorev_2024_106329 crossref_primary_10_3390_min12070900 crossref_primary_10_1016_j_gsme_2024_09_003 crossref_primary_10_1007_s11053_022_10089_w crossref_primary_10_1007_s11053_023_10237_w crossref_primary_10_1007_s11053_024_10424_3 crossref_primary_10_1016_j_rsase_2023_100988 crossref_primary_10_1016_j_earscirev_2019_02_023 crossref_primary_10_1016_j_oregeorev_2023_105573 crossref_primary_10_1007_s11053_020_09658_8 crossref_primary_10_1007_s11004_023_10076_8 crossref_primary_10_1007_s11053_024_10322_8 crossref_primary_10_1007_s12145_021_00614_5 crossref_primary_10_3390_rs15153708 crossref_primary_10_1007_s11004_024_10164_3 crossref_primary_10_1016_j_apgeochem_2020_104843 crossref_primary_10_1038_s41598_023_47546_2 crossref_primary_10_2113_2022_1615832 crossref_primary_10_1016_j_cageo_2022_105074 crossref_primary_10_1016_j_cageo_2022_105075 crossref_primary_10_17780_ksujes_1285080 crossref_primary_10_3233_KES_200042 crossref_primary_10_1007_s11004_022_10038_6 crossref_primary_10_1016_j_earscirev_2024_104941 crossref_primary_10_1016_j_oregeorev_2024_106133 crossref_primary_10_1016_j_oregeorev_2025_106452 crossref_primary_10_1007_s11053_022_10054_7 crossref_primary_10_1016_j_chemer_2024_126212 crossref_primary_10_1007_s11053_022_10142_8 crossref_primary_10_1016_j_cageo_2021_104817 crossref_primary_10_1515_geo_2020_0165 crossref_primary_10_1007_s11053_019_09586_2 crossref_primary_10_1016_j_gexplo_2019_106431 crossref_primary_10_3390_su15031810 crossref_primary_10_1016_j_cageo_2023_105420 crossref_primary_10_3390_min15030222 crossref_primary_10_1007_s12145_021_00709_z crossref_primary_10_1016_j_apgeochem_2023_105807 crossref_primary_10_1016_j_asr_2022_12_028 crossref_primary_10_1016_j_oregeorev_2023_105390 crossref_primary_10_1016_j_oregeorev_2024_106260 crossref_primary_10_1016_j_chemer_2024_126189 crossref_primary_10_1007_s11053_019_09598_y crossref_primary_10_1007_s11053_024_10321_9 crossref_primary_10_3390_min14020202 crossref_primary_10_1007_s11053_024_10344_2 crossref_primary_10_1007_s11053_021_09934_1 crossref_primary_10_1029_2024JH000311 crossref_primary_10_1007_s11004_024_10161_6 crossref_primary_10_1007_s11004_022_10015_z crossref_primary_10_1007_s11053_024_10433_2 crossref_primary_10_1016_j_apgeochem_2024_106010 crossref_primary_10_1016_j_oregeorev_2022_104693 crossref_primary_10_1007_s11004_023_10059_9 crossref_primary_10_1016_j_cageo_2024_105657 crossref_primary_10_32390_ksmer_2019_56_5_435 crossref_primary_10_1016_j_gexplo_2021_106839 crossref_primary_10_1016_j_oregeorev_2023_105381 crossref_primary_10_1016_j_chemer_2024_126111 crossref_primary_10_3390_min14101021 crossref_primary_10_1109_ACCESS_2022_3215957 crossref_primary_10_1016_j_chemer_2024_126197 crossref_primary_10_1016_j_mineng_2021_107020 crossref_primary_10_1007_s11004_021_09935_z crossref_primary_10_1007_s11053_019_09564_8 crossref_primary_10_1007_s11053_024_10335_3 crossref_primary_10_1007_s11004_024_10170_5 crossref_primary_10_1016_j_chemer_2024_126190 crossref_primary_10_1016_j_jafrearsci_2023_105024 crossref_primary_10_1007_s11004_024_10137_6 crossref_primary_10_1007_s11053_021_09982_7 crossref_primary_10_3233_JIFS_221987 crossref_primary_10_1016_j_oregeorev_2023_105419 crossref_primary_10_3390_min14121209 crossref_primary_10_1016_j_oregeorev_2023_105658 crossref_primary_10_2139_ssrn_4835655 crossref_primary_10_1007_s12583_020_1365_z crossref_primary_10_1016_j_oregeorev_2023_105653 crossref_primary_10_1007_s12583_020_1079_2 crossref_primary_10_1007_s11004_023_10049_x crossref_primary_10_1016_j_cageo_2024_105703 crossref_primary_10_1016_j_cageo_2024_105785 crossref_primary_10_3390_app122211433 crossref_primary_10_1007_s12145_023_00999_5 crossref_primary_10_1016_j_cageo_2019_05_011 crossref_primary_10_1016_j_apgeochem_2020_104760 crossref_primary_10_1007_s11053_024_10328_2 crossref_primary_10_1007_s11053_025_10473_2 crossref_primary_10_1016_j_geogeo_2021_100012 crossref_primary_10_3390_min14101015 crossref_primary_10_1007_s11053_021_09979_2 crossref_primary_10_1016_j_acags_2023_100119 crossref_primary_10_1016_j_oregeorev_2021_104316 crossref_primary_10_3390_min13111384 crossref_primary_10_1016_j_rsase_2024_101343 crossref_primary_10_1016_j_oregeorev_2024_106215 crossref_primary_10_1016_j_jag_2024_103746 crossref_primary_10_1177_16878132221081584 crossref_primary_10_3390_app10051657 crossref_primary_10_1007_s11053_022_10075_2 crossref_primary_10_1016_j_oregeorev_2024_106175 crossref_primary_10_3390_min9090516 crossref_primary_10_1007_s11053_022_10144_6 crossref_primary_10_3390_rs14194899 crossref_primary_10_1016_j_gsf_2023_101767 crossref_primary_10_1016_j_oregeorev_2020_103611 crossref_primary_10_3390_min10020102 crossref_primary_10_3390_rs14102472 crossref_primary_10_1016_j_chemer_2022_125898 crossref_primary_10_3390_min12050616 crossref_primary_10_1029_2020JB021047 crossref_primary_10_1038_s41597_022_01730_7 crossref_primary_10_1016_j_cageo_2023_105341 crossref_primary_10_1016_j_oregeorev_2024_105930 crossref_primary_10_3390_app9194180 crossref_primary_10_1007_s43762_022_00039_w crossref_primary_10_1038_s41598_024_73357_0 crossref_primary_10_3390_min12111382 crossref_primary_10_1016_j_cageo_2021_104974 crossref_primary_10_1016_j_mineng_2023_108433 crossref_primary_10_1016_j_cageo_2020_104667 crossref_primary_10_1016_j_oregeorev_2021_104063 crossref_primary_10_1016_j_oregeorev_2024_106060 crossref_primary_10_1007_s11053_020_09700_9 crossref_primary_10_1016_S1003_6326_20_65277_3 crossref_primary_10_1016_j_apgeochem_2024_105911 crossref_primary_10_1007_s11053_020_09789_y crossref_primary_10_1016_j_oregeorev_2023_105627 |
Cites_doi | 10.1126/science.1197962 10.1007/s12583-015-0597-9 10.1038/nature14539 10.1016/j.cageo.2005.03.018 10.1080/00206814.2012.734454 10.1002/2018GL077004 10.1080/00050348.1998.10558728 10.1016/j.cageo.2008.05.003 10.1111/j.1365-246X.2012.05429.x 10.1016/j.cageo.2014.10.004 10.1023/A:1025171803637 10.1186/s40537-014-0007-7 10.1016/j.earscirev.2016.04.006 10.1016/j.gsf.2016.05.005 10.1016/j.oregeorev.2014.09.024 10.1109/LGRS.2017.2681128 10.1007/s11053-015-9268-x 10.1080/17538940701782528 10.1007/s00531-014-1096-4 10.1007/s11430-015-5178-3 10.1007/s11053-017-9345-4 10.1126/science.1127647 10.1016/j.gexplo.2017.10.020 10.1007/s11036-013-0489-0 10.1080/07038992.1991.10855292 10.1111/rge.12070 10.1016/j.oregeorev.2013.09.009 10.1016/j.oregeorev.2006.10.002 10.1016/j.oregeorev.2015.01.001 10.1162/089976602760128018 10.1023/B:MATG.0000041180.34176.65 10.1080/13658816.2014.885527 10.1162/neco.2006.18.7.1527 10.1002/2017GL075710 10.1016/S0040-1951(00)00120-7 10.1007/BF02068587 10.1109/MGRS.2016.2540798 10.1016/j.cageo.2011.12.014 10.18814/epiiugs/2006/v29i1/004 10.1007/s11053-015-9274-z 10.1016/j.oregeorev.2016.11.014 10.1016/j.ins.2016.07.007 10.1109/JSTARS.2014.2329330 10.1109/ACCESS.2014.2332453 10.1016/j.gexplo.2012.07.007 10.1016/j.cageo.2010.09.014 10.1016/j.cageo.2017.10.005 10.1007/s12583-017-0968-5 10.1016/j.oregeorev.2014.08.010 10.1016/j.gexplo.2017.05.008 10.1016/S0375-6742(97)00029-0 10.1016/j.oregeorev.2015.12.005 10.1016/j.gexplo.2008.08.003 10.1016/j.oregeorev.2014.08.012 10.1029/2017JB015251 10.1016/j.tecto.2015.09.014 10.1023/B:NARR.0000007804.27450.e8 10.1016/j.cageo.2017.12.007 10.1007/s11053-017-9348-1 10.1016/j.cageo.2015.10.006 10.1038/srep27127 10.1007/s11053-017-9357-0 10.1007/s11053-017-9335-6 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. |
Copyright_xml | – notice: 2018 Elsevier B.V. |
DBID | AAYXX CITATION OTOTI |
DOI | 10.1016/j.oregeorev.2018.10.006 |
DatabaseName | CrossRef OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Engineering |
EISSN | 1872-7360 |
EndPage | 817 |
ExternalDocumentID | 1636788 10_1016_j_oregeorev_2018_10_006 S0169136818303901 |
GroupedDBID | --K --M .~1 0R~ 0SF 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 5VS 6OB 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HMA HVGLF HZ~ IHE IMUCA J1W KOM LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEP SES SEW SPC SPCBC SSE SSZ T5K WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH AAPBV ABPTK OTOTI |
ID | FETCH-LOGICAL-a414t-f37c4e6d31140bcce8fc8c7bce399fad20d25a0bbf38e974c1a1febf50d4b7dd3 |
IEDL.DBID | .~1 |
ISSN | 0169-1368 |
IngestDate | Thu May 18 22:29:34 EDT 2023 Tue Jul 01 04:05:31 EDT 2025 Thu Apr 24 23:06:15 EDT 2025 Fri Feb 23 02:35:49 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | C |
Keywords | Deep learning GIS Big data Mapping mineral prospectivity |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a414t-f37c4e6d31140bcce8fc8c7bce399fad20d25a0bbf38e974c1a1febf50d4b7dd3 |
Notes | USDOE Office of Electricity (OE), Advanced Grid Research & Development. Power Systems Engineering Research 2016YFC0600508 |
OpenAccessLink | https://www.sciencedirect.com/science/article/am/pii/S0169136818303901 |
PageCount | 7 |
ParticipantIDs | osti_scitechconnect_1636788 crossref_citationtrail_10_1016_j_oregeorev_2018_10_006 crossref_primary_10_1016_j_oregeorev_2018_10_006 elsevier_sciencedirect_doi_10_1016_j_oregeorev_2018_10_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2018 2018-11-00 2018-11-01 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: November 2018 |
PublicationDecade | 2010 |
PublicationTitle | Ore geology reviews |
PublicationYear | 2018 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Rodriguez-Galiano, Sanchez-Castillo, Chica-Olmo, Chica-Rivas (b0240) 2015; 71 Carranza, Laborte (b0025) 2015; 74 Hinton (b0110) 2002; 14 Hinton, Osindero, Teh (b0120) 2006; 18 Yang, Zhang, Feng, She, Li (b0320) 2008; 27 Hinton (b0115) 2012 Zuo, Xiong (b0400) 2018; 27 Porwal, Carranza, Hale (b0210) 2004; 36 Zuo (b0375) 2016; 6 Ge, Han, Zhou, Chen (b0075) 1981; 3 Rumelhart, Hinton, Williams (b0250) 1988 Xie, Mu, Ren (b0300) 1997; 60 Xiong, Zuo (b0315) 2018; 111 Zuo (b0380) 2017; 26 Hu, Wen, Chua, Li (b0130) 2014; 2 Zhang, Zuo (b0345) 2014; 57 Cheng (b0055) 2007; 32 Wang, Liu, Liu (b0270) 2015; 34 Mao (b0190) 2013 Chen, Lin, Zhao, Wang, Gu (b0045) 2014; 7 Ross, Meier, Hauksson (b0245) 2018; 123 Xiong, Zuo (b0305) 2016; 86 Carranza (b0015) 2017; 26 Harris, Zurcher, Stanley, Marlow, Pan (b0105) 2003; 12 Zhang, Zuo, Xiong (b0360) 2016; 59 Kussul, Lavreniuk, Skakun, Shelestov (b0145) 2017; 14 LeCun, Bengio, Hinton (b0160) 2015; 521 Zhang, Li, Zhang, Wang (b0325) 2012; 26 Moeini, Torab (b0200) 2017; 180 Wang, Xu, Fujita, Liu (b0275) 2016; 367 Wang, Zhang, Wu, Vatuva, Di, Yan, Feng, Ma (b0285) 2017; 8 Reddy, Bonham-Carter (b0225) 1991; 17 Xiong, Zuo (b0310) 2017; 82 Valentine, Trampert (b0260) 2012; 189 Zhou, Sun, Shen, Shu, Niu (b0370) 2006; 29 Han, Ge (b0095) 1983; 7 Porwal, Carranza, Hale (b0220) 2003; 12 Lai, Chen, Zhang, Di, Gong, Yuan, Chen (b0150) 2014; 30 Leite, Souza Filho (b0165) 2009; 35 Luo, Zhang, Song, Wang, Yang, Zhao, Liu (b0180) 2017; 36 Goodchild (b0085) 2008; 1 Hariharan, Tirodkar, Porwal, Bhattacharya, Joly (b0100) 2017; 26 Li, Shen, Yuan, Zhang, Zhang (b0170) 2017; 44 Chen, Wu (b0050) 2018 Agterberg, F.P., Bonham-Carter, G.F., 1999. Logistic regression and weights of evidence modeling in mineral exploration. In: Proceedings of the 28th International Symposium on Applications of Computer in the Mineral Industry (APCOM), Golden, Colorado, pp. 483–490. Reichman, Jones, Schildhauer (b0230) 2011; 331 Jiang, Xu, Wei (b0135) 2018; 45 Glorot, X., Bengio, Y., 2010. Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the thirteenth international conference on artificial intelligence and statistics, pp. 249–256. Zuo, Carranza (b0390) 2011; 37 Kuo, Wang, Kuo-Chen, Jin, Cai, Lin, Wu, Yen, Huang, Liang, Okaya, Brown (b0140) 2016; 692 Zhang, Zuo, Cheng (b0355) 2015; 65 Zhang, Zhang, Du (b0340) 2016; 4 Singer, Kouda (b0255) 1996; 28 Zhou, Li (b0365) 2000; 326 Zuo, Cheng, Agterberg, Xia (b0405) 2009; 101 McKay, Harris (b0185) 2016; 25 Zhang, Zuo, Cheng (b0350) 2015; 104 Deng, Di (b0065) 2009; 4 Zuo, Zhang, Zhang, Carranza, Wang (b0395) 2015; 71 Porwal, Carranza, Hale (b0215) 2006; 32 Wang, Zuo, Zhang (b0295) 2015; 26 Cheng (b0060) 2012; 122 Liu, Chen, Wang, Huang, Zhao (b0175) 2016; 37 Zhang, Wu, Di, Yu, Shi, Zhang, Wang, Huang (b0335) 2013; 55 Larochelle, Bengio, Louradour, Lamblin (b0155) 2009; 10 Rodriguez-Galiano, Chica-Olmo, Chica-Rivas (b0235) 2014; 28 Gao, Zhang, Xiong, Zuo (b0070) 2016; 75 Hinton, Salakhutdinov (b0125) 2006; 313 Zhang, Wu, Di, Wang, Yao, Zhang, Lv, Yuan, Shi (b0330) 2012; 37 Chen (b0040) 2015; 71 Mayer-Schonberger, Cukier (b0195) 2013 Wang, Zhang, Wu, Li, Gao, Vatuva, Yuan, Yu, Bai, Fang (b0290) 2018; 29 Abedi, Norouzi, Bahroudi (b0005) 2012; 46 Wang, Ma, Chen, Chen (b0265) 2018; 112 Najafabadi, Villanustre, Khoshgoftaar, Naeem, Wald, Muharemagic (b0205) 2015; 2 Carranza, Laborte (b0020) 2015; 71 Wang, Zhang, Vatuva, Yan, Ma, Feng, Yu, Bai, Di (b0280) 2015; 44 Zuo (b0385) 2018; 184 Gore (b0090) 1998; 43 Zuo, Carranza, Wang (b0410) 2016; 158 Chen, Mao, Liu (b0035) 2014; 19 Carranza, Laborte (b0030) 2016; 25 Chen (10.1016/j.oregeorev.2018.10.006_b0050) 2018 Wang (10.1016/j.oregeorev.2018.10.006_b0295) 2015; 26 Zuo (10.1016/j.oregeorev.2018.10.006_b0400) 2018; 27 Ge (10.1016/j.oregeorev.2018.10.006_b0075) 1981; 3 Jiang (10.1016/j.oregeorev.2018.10.006_b0135) 2018; 45 Mayer-Schonberger (10.1016/j.oregeorev.2018.10.006_b0195) 2013 Rodriguez-Galiano (10.1016/j.oregeorev.2018.10.006_b0240) 2015; 71 Wang (10.1016/j.oregeorev.2018.10.006_b0265) 2018; 112 Ross (10.1016/j.oregeorev.2018.10.006_b0245) 2018; 123 Singer (10.1016/j.oregeorev.2018.10.006_b0255) 1996; 28 Cheng (10.1016/j.oregeorev.2018.10.006_b0060) 2012; 122 Wang (10.1016/j.oregeorev.2018.10.006_b0290) 2018; 29 Xiong (10.1016/j.oregeorev.2018.10.006_b0305) 2016; 86 Zuo (10.1016/j.oregeorev.2018.10.006_b0410) 2016; 158 10.1016/j.oregeorev.2018.10.006_b0080 Zhang (10.1016/j.oregeorev.2018.10.006_b0345) 2014; 57 Reddy (10.1016/j.oregeorev.2018.10.006_b0225) 1991; 17 Cheng (10.1016/j.oregeorev.2018.10.006_b0055) 2007; 32 Wang (10.1016/j.oregeorev.2018.10.006_b0270) 2015; 34 Zuo (10.1016/j.oregeorev.2018.10.006_b0375) 2016; 6 Carranza (10.1016/j.oregeorev.2018.10.006_b0025) 2015; 74 Chen (10.1016/j.oregeorev.2018.10.006_b0045) 2014; 7 Rodriguez-Galiano (10.1016/j.oregeorev.2018.10.006_b0235) 2014; 28 Zhang (10.1016/j.oregeorev.2018.10.006_b0360) 2016; 59 Najafabadi (10.1016/j.oregeorev.2018.10.006_b0205) 2015; 2 Zhou (10.1016/j.oregeorev.2018.10.006_b0365) 2000; 326 Xie (10.1016/j.oregeorev.2018.10.006_b0300) 1997; 60 Hinton (10.1016/j.oregeorev.2018.10.006_b0120) 2006; 18 Deng (10.1016/j.oregeorev.2018.10.006_b0065) 2009; 4 Zuo (10.1016/j.oregeorev.2018.10.006_b0390) 2011; 37 Chen (10.1016/j.oregeorev.2018.10.006_b0035) 2014; 19 Li (10.1016/j.oregeorev.2018.10.006_b0170) 2017; 44 Hinton (10.1016/j.oregeorev.2018.10.006_b0125) 2006; 313 Yang (10.1016/j.oregeorev.2018.10.006_b0320) 2008; 27 LeCun (10.1016/j.oregeorev.2018.10.006_b0160) 2015; 521 Liu (10.1016/j.oregeorev.2018.10.006_b0175) 2016; 37 Moeini (10.1016/j.oregeorev.2018.10.006_b0200) 2017; 180 Zhang (10.1016/j.oregeorev.2018.10.006_b0340) 2016; 4 Chen (10.1016/j.oregeorev.2018.10.006_b0040) 2015; 71 Valentine (10.1016/j.oregeorev.2018.10.006_b0260) 2012; 189 Zuo (10.1016/j.oregeorev.2018.10.006_b0395) 2015; 71 Zhang (10.1016/j.oregeorev.2018.10.006_b0350) 2015; 104 Porwal (10.1016/j.oregeorev.2018.10.006_b0210) 2004; 36 Wang (10.1016/j.oregeorev.2018.10.006_b0275) 2016; 367 Wang (10.1016/j.oregeorev.2018.10.006_b0280) 2015; 44 Luo (10.1016/j.oregeorev.2018.10.006_b0180) 2017; 36 Porwal (10.1016/j.oregeorev.2018.10.006_b0215) 2006; 32 Carranza (10.1016/j.oregeorev.2018.10.006_b0015) 2017; 26 Goodchild (10.1016/j.oregeorev.2018.10.006_b0085) 2008; 1 Rumelhart (10.1016/j.oregeorev.2018.10.006_b0250) 1988 Kussul (10.1016/j.oregeorev.2018.10.006_b0145) 2017; 14 Zuo (10.1016/j.oregeorev.2018.10.006_b0385) 2018; 184 Carranza (10.1016/j.oregeorev.2018.10.006_b0030) 2016; 25 Xiong (10.1016/j.oregeorev.2018.10.006_b0315) 2018; 111 Gao (10.1016/j.oregeorev.2018.10.006_b0070) 2016; 75 Carranza (10.1016/j.oregeorev.2018.10.006_b0020) 2015; 71 Zuo (10.1016/j.oregeorev.2018.10.006_b0405) 2009; 101 Zhang (10.1016/j.oregeorev.2018.10.006_b0355) 2015; 65 Xiong (10.1016/j.oregeorev.2018.10.006_b0310) 2017; 82 Kuo (10.1016/j.oregeorev.2018.10.006_b0140) 2016; 692 Hinton (10.1016/j.oregeorev.2018.10.006_b0110) 2002; 14 Larochelle (10.1016/j.oregeorev.2018.10.006_b0155) 2009; 10 McKay (10.1016/j.oregeorev.2018.10.006_b0185) 2016; 25 Hariharan (10.1016/j.oregeorev.2018.10.006_b0100) 2017; 26 Abedi (10.1016/j.oregeorev.2018.10.006_b0005) 2012; 46 Hu (10.1016/j.oregeorev.2018.10.006_b0130) 2014; 2 Gore (10.1016/j.oregeorev.2018.10.006_b0090) 1998; 43 Reichman (10.1016/j.oregeorev.2018.10.006_b0230) 2011; 331 Zhang (10.1016/j.oregeorev.2018.10.006_b0330) 2012; 37 Mao (10.1016/j.oregeorev.2018.10.006_b0190) 2013 Zhang (10.1016/j.oregeorev.2018.10.006_b0325) 2012; 26 Hinton (10.1016/j.oregeorev.2018.10.006_b0115) 2012 Lai (10.1016/j.oregeorev.2018.10.006_b0150) 2014; 30 Wang (10.1016/j.oregeorev.2018.10.006_b0285) 2017; 8 10.1016/j.oregeorev.2018.10.006_b0010 Zhang (10.1016/j.oregeorev.2018.10.006_b0335) 2013; 55 Leite (10.1016/j.oregeorev.2018.10.006_b0165) 2009; 35 Harris (10.1016/j.oregeorev.2018.10.006_b0105) 2003; 12 Han (10.1016/j.oregeorev.2018.10.006_b0095) 1983; 7 Zuo (10.1016/j.oregeorev.2018.10.006_b0380) 2017; 26 Porwal (10.1016/j.oregeorev.2018.10.006_b0220) 2003; 12 Zhou (10.1016/j.oregeorev.2018.10.006_b0370) 2006; 29 |
References_xml | – volume: 32 start-page: 1 year: 2006 end-page: 16 ident: b0215 article-title: Bayesian network classifiers for mineral potential mapping publication-title: Comput. Geosci. – volume: 71 start-page: 777 year: 2015 end-page: 787 ident: b0020 article-title: Data-driven predictive mapping of gold prospectivity, Baguio district, Philippines: application of random forests algorithm publication-title: Ore Geol. Rev. – volume: 65 start-page: 266 year: 2015 end-page: 284 ident: b0355 article-title: Geological features and formation processes of the Makeng Fe deposit, China publication-title: Resour. Geol. – volume: 43 start-page: 89 year: 1998 end-page: 91 ident: b0090 article-title: The digital earth: understanding our planet in the 21st century publication-title: Aust. Surv. – volume: 30 start-page: 1780 year: 2014 end-page: 1792 ident: b0150 article-title: Petrogeochemical features and zircon LA-ICP-MS U-Pb ages of granite in the Pantian iron ore deposit, Fujian province and their relationship with mineralization publication-title: Acta Petrol. Sin. – volume: 104 start-page: 663 year: 2015 end-page: 682 ident: b0350 article-title: The mineralization age of the Makeng Fe deposit, South China: implications from U-Pb and Sm-Nd geochronology publication-title: Int. J. Earth Sci. – volume: 2 start-page: 1 year: 2015 ident: b0205 article-title: Deep learning applications and challenges in big data analytics publication-title: J. Big Data – volume: 692 start-page: 164 year: 2016 end-page: 180 ident: b0140 article-title: Crustal structures from the Wuyi-Yunkai orogen to the Taiwan orogen: the onshore-offshore wide-angle seismic experiments of the TAIGER and ATSEE projects publication-title: Tectonophysics – year: 2018 ident: b0050 article-title: Isolation forest as an alternative data-driven mineral prospectivity mapping method with a higher data-processing efficiency publication-title: Nat. Resour. Res. – volume: 123 year: 2018 ident: b0245 article-title: P-wave arrival picking and first-motion polarity determination with deep learning publication-title: J. Geophys. Res. Solid Earth – volume: 59 start-page: 556 year: 2016 end-page: 572 ident: b0360 article-title: A comparative study of fuzzy weights of evidence and random forests for mapping mineral prospectivity for skarn-type Fe deposits in the southwestern Fujian metallogenic belt, China publication-title: Sci. China Earth Sci. – volume: 34 start-page: 1143 year: 2015 end-page: 1154 ident: b0270 article-title: Characteristics of big geodata and its application to study of minerogenetic regularity and minerogenetic series publication-title: Miner. Deposits – volume: 71 start-page: 502 year: 2015 end-page: 515 ident: b0395 article-title: Evaluation of uncertainty in mineral prospectivity mapping due to missing evidence: a case study with skarn-type Fe deposits in Southwestern Fujian Province, China publication-title: Ore Geol. Rev. – volume: 36 start-page: 886 year: 2017 end-page: 890 ident: b0180 article-title: Application of integrated geophysical and geochemical data processing to metallogenic target zone quantitative prediction and optimization publication-title: Bull. Mineral. Petrol. Geochem. – volume: 313 start-page: 504 year: 2006 end-page: 507 ident: b0125 article-title: Reducing the dimensionality of data with neural networks publication-title: Science – year: 2013 ident: b0195 article-title: Big data: a revolution that will transform how we live, work and think – volume: 25 start-page: 125 year: 2016 end-page: 143 ident: b0185 article-title: Comparison of the data-driven Random Forests model and a knowledge-driven method for mineral prospectivity mapping: a case study for gold deposits around the Huritz Group and Nueltin Suite, Nunavut, Canada publication-title: Nat. Resour. Res. – volume: 8 start-page: 529 year: 2017 end-page: 540 ident: b0285 article-title: Late Paleozoic to Mesozoic extension in southwestern Fujian Province, South China: geochemical, geochronological and Hf isotopic constraints from basic-intermediate dykes publication-title: Geosci. Front. – volume: 158 start-page: 9 year: 2016 end-page: 18 ident: b0410 article-title: Spatial analysis and visualization of exploration geochemical data publication-title: Earth Sci. Rev. – volume: 55 start-page: 730 year: 2013 end-page: 748 ident: b0335 article-title: SHRIMP U-Pb zircon geochronology and Nd-Sr isotopic study of the Mamianshan group: implications for the Neoproterozoic tectonic development of southeast China publication-title: Int. Geol. Rev. – volume: 12 start-page: 241 year: 2003 end-page: 255 ident: b0105 article-title: A comparative analysis of favourability mappings by weights of evidence probabilistic neural networks, discriminant analysis, and logistic regression publication-title: Nat. Resour. Res. – volume: 29 start-page: 26 year: 2006 end-page: 33 ident: b0370 article-title: Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: a response to tectonic evolution publication-title: Episodes – volume: 29 start-page: 391 year: 2018 end-page: 407 ident: b0290 article-title: Late mesozoic tectonic evolution of Southwestern Fujian Province, South China: constraints from magnetic fabric, Zircon U-Pb geochronology and structural deformation publication-title: J. Earth Sci. – volume: 75 start-page: 16 year: 2016 end-page: 28 ident: b0070 article-title: Mapping mineral prospectivity for Cu polymetallic mineralization in southwest Fujian Province, China publication-title: Ore Geol. Rev. – year: 2012 ident: b0115 article-title: A practical guide to training restricted Boltzmann machines publication-title: Neural Networks: Tricks of the Trade – volume: 57 start-page: 53 year: 2014 end-page: 60 ident: b0345 article-title: Sr–Nd–Pb isotope systematics of magnetite: implications for the genesis of Makeng Fe deposit, southern China publication-title: Ore Geol. Rev. – volume: 101 start-page: 225 year: 2009 end-page: 235 ident: b0405 article-title: Application of singularity mapping technique to identify local anomalies using stream sediment geochemical data, a case study from Gangdese, Tibet, western China publication-title: J. Geochem. Explor. – reference: Agterberg, F.P., Bonham-Carter, G.F., 1999. Logistic regression and weights of evidence modeling in mineral exploration. In: Proceedings of the 28th International Symposium on Applications of Computer in the Mineral Industry (APCOM), Golden, Colorado, pp. 483–490. – volume: 74 start-page: 60 year: 2015 end-page: 70 ident: b0025 article-title: Random forest predictive modeling of mineral prospectivity with small number of prospects and data with missing values in Abra (Philippines) publication-title: Comput. Geosci. – volume: 4 start-page: 77 year: 2009 end-page: 95 ident: b0065 article-title: Building an online learning and research environment to enhance use of geospatial data publication-title: Int. J. Spatial Data Infrastruct. Res. – volume: 37 start-page: 174 year: 2016 end-page: 184 ident: b0175 article-title: The Metallogenic geomorphic rare earths ore in the eastern nanling region based on DEM data publication-title: Acta Geosci. Sin. – volume: 180 start-page: 15 year: 2017 end-page: 23 ident: b0200 article-title: Comparing compositional multivariate outliers with autoencoder networks in anomaly detection at Hamich exploration area, east of Iran publication-title: J. Geochem. Explor. – volume: 4 start-page: 22 year: 2016 end-page: 40 ident: b0340 article-title: Deep learning for remote sensing data: a technical tutorial on the state of the art publication-title: IEEE Geosci. Remote Sens. Mag. – volume: 28 start-page: 1017 year: 1996 end-page: 1023 ident: b0255 article-title: Application of a feedforward neural network in the search for Kuruko deposits in the Hokuroku district, Japan publication-title: Math. Geol. – volume: 10 start-page: 1 year: 2009 end-page: 40 ident: b0155 article-title: Exploring strategies for training deep neural networks publication-title: J. Mach. Learn. Res. – volume: 189 start-page: 1183 year: 2012 end-page: 1202 ident: b0260 article-title: Data space reduction, quality assessment and searching of seismograms: autoencoder networks for waveform data publication-title: Geophys. J. Int. – volume: 184 start-page: 150 year: 2018 end-page: 157 ident: b0385 article-title: Selection of an elemental association related to mineralization using spatial analysis publication-title: J. Geochem. Explor. – volume: 37 start-page: 1967 year: 2011 end-page: 1975 ident: b0390 article-title: Support vector machine: a tool for mapping mineral prospectivity publication-title: Comput. Geosci. – volume: 367 start-page: 747 year: 2016 end-page: 765 ident: b0275 article-title: Towards felicitous decision making: an overview on challenges and trends of Big Data publication-title: Inf. Sci. – volume: 26 start-page: 434 year: 2012 end-page: 444 ident: b0325 article-title: LA-ICP-MS Zircon U-Pb ages and Hf isotopic compositions of Dayang Granite from Longyan, Fujian Province publication-title: Geoscience – volume: 32 start-page: 314 year: 2007 end-page: 324 ident: b0055 article-title: Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China publication-title: Ore Geol. Rev. – volume: 19 start-page: 171 year: 2014 end-page: 209 ident: b0035 article-title: Big data: a survey publication-title: Mobile Networks Appl. – volume: 71 start-page: 804 year: 2015 end-page: 818 ident: b0240 article-title: Machine learning predictive models for mineral prospectivity: an evaluation of neural networks, random forest, regression trees and support vector machines publication-title: Ore Geol. Rev. – volume: 6 start-page: 27127 year: 2016 ident: b0375 article-title: A nonlinear controlling function of geological features on magmatic–hydrothermal mineralization publication-title: Sci. Rep. – volume: 26 start-page: 379 year: 2017 end-page: 410 ident: b0015 article-title: Natural Resources Research publications on geochemical anomaly and mineral potential mapping, and introduction to the special issue of papers in these fields publication-title: Nat. Resour. Res. – volume: 25 start-page: 35 year: 2016 end-page: 50 ident: b0030 article-title: Data-driven predictive modeling of mineral prospectivity using random forests: a case study in Catanduanes Island (Philippines) publication-title: Nat. Resour. Res. – volume: 36 start-page: 803 year: 2004 end-page: 826 ident: b0210 article-title: A hybrid neuro-fuzzy model for mineral potential mapping publication-title: Math. Geol. – volume: 7 start-page: 2094 year: 2014 end-page: 2107 ident: b0045 article-title: Deep learning-based classification of hyperspectral data publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 122 start-page: 55 year: 2012 end-page: 70 ident: b0060 article-title: Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas publication-title: J. Geochem. Explor. – volume: 26 start-page: 489 year: 2017 end-page: 507 ident: b0100 article-title: Random forest-based prospectivity modelling of greenfield terrains using sparse deposit data: an example from the tanami region, western Australia publication-title: Nat. Resour. Res. – volume: 28 start-page: 1336 year: 2014 end-page: 1354 ident: b0235 article-title: Predictive modelling of gold potential with the integration of multisource information based on random forest: a case study on the Rodalquilar area, Southern Spain publication-title: Int. J. Geogr. Inf. Sci. – year: 2013 ident: b0190 article-title: Mesozoic-Cenozoic Magmatism and Mineralization in South China Block (SCB) and Adjacent Region – volume: 44 start-page: 450 year: 2015 end-page: 468 ident: b0280 article-title: Zircon U-Pb geochronology, geochemistry and Hf isotope compositions of the Dayang and Juzhou granites in Longyan, Fujian and their geological implications publication-title: Geochimica – volume: 17 start-page: 191 year: 1991 end-page: 200 ident: b0225 article-title: A decision-tree approach to mineral potential mapping in Snow Lake area, Manitoba publication-title: Can. J. Remote Sens. – volume: 26 start-page: 457 year: 2017 end-page: 464 ident: b0380 article-title: Machine learning of mineralization-related geochemical anomalies: a review of potential methods publication-title: Nat. Resour. Res. – volume: 82 start-page: 1 year: 2017 end-page: 9 ident: b0310 article-title: Effects of misclassification costs on mapping mineral prospectivity publication-title: Ore Geol. Rev. – volume: 27 start-page: 329 year: 2008 end-page: 335 ident: b0320 article-title: SHRIMP zircon U-Pb dating of quartz porphyry from Zhongjia tin–polymetallic deposit in Longyan area, Fujian Province, and its geological significance publication-title: Miner. Deposits – volume: 60 start-page: 99 year: 1997 end-page: 113 ident: b0300 article-title: Geochemical mapping in China publication-title: J. Geochem. Explor. – volume: 26 start-page: 813 year: 2015 end-page: 820 ident: b0295 article-title: Spatial analysis of Fe deposits in Fujian Province, China: implications for mineral exploration publication-title: J. Earth Sci. – volume: 111 start-page: 18 year: 2018 end-page: 25 ident: b0315 article-title: GIS-based rare events logistic regression for mineral prospectivity mapping publication-title: Comput. Geosci. – volume: 2 start-page: 652 year: 2014 end-page: 687 ident: b0130 article-title: Toward scalable systems for big data analytics: a technology tutorial publication-title: IEEE Access – volume: 35 start-page: 675 year: 2009 end-page: 687 ident: b0165 article-title: Probabilistic neural networks applied to mineral potential mapping for platinum group elements in the Serra Leste region, Carajás Mineral Province, Brazil publication-title: Comput. Geosci. – volume: 46 start-page: 272 year: 2012 end-page: 283 ident: b0005 article-title: Support vector machine for multi-classification of mineral prospectivity areas publication-title: Comput. Geosci. – volume: 331 start-page: 703 year: 2011 end-page: 705 ident: b0230 article-title: Challenges and opportunities of open data in ecology publication-title: Science – volume: 326 start-page: 269 year: 2000 end-page: 287 ident: b0365 article-title: Origin of Late Mesozoic igneous rocks in Southeastern China: implications for lithosphere subduction and underplating of mafic magmas publication-title: Tectonophysics – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: b0160 article-title: Deep learning publication-title: Nature – volume: 112 start-page: 112 year: 2018 end-page: 120 ident: b0265 article-title: Information extraction and knowledge graph construction from geoscience literature publication-title: Comput. Geosci. – volume: 86 start-page: 75 year: 2016 end-page: 82 ident: b0305 article-title: Recognition of geochemical anomalies using a deep autoencoder network publication-title: Comput. Geosci. – volume: 7 start-page: 1 year: 1983 end-page: 118 ident: b0095 article-title: Geological and geochemical features of submarine volcanic hydrothermal-sedimentary mineralization of Makeng iron deposit, Fujian Province publication-title: Bull. Inst. Miner. Deposits Chin. Acad. Geol. Sci. – volume: 3 start-page: 47 year: 1981 end-page: 69 ident: b0075 article-title: Geological characteristics of the Makeng iron deposit of marine volcano-sedimentary origin publication-title: Acta Geosci. Sin. – volume: 45 start-page: 3706 year: 2018 end-page: 3716 ident: b0135 article-title: A deep learning algorithm of neural network for the parameterization of typhoon-ocean feedback in typhoon forecast models publication-title: Geophys. Res. Lett. – volume: 14 start-page: 778 year: 2017 end-page: 782 ident: b0145 article-title: Deep learning classification of land cover and crop types using remote sensing data publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 71 start-page: 749 year: 2015 end-page: 760 ident: b0040 article-title: Mineral potential mapping with a restricted Boltzmann machine publication-title: Ore Geol. Rev. – volume: 1 start-page: 31 year: 2008 end-page: 42 ident: b0085 article-title: The use cases of digital earth publication-title: Int. J. Digital Earth – volume: 14 start-page: 1771 year: 2002 end-page: 1800 ident: b0110 article-title: Training products of experts by minimizing contrastive divergence publication-title: Neural Comput. – volume: 44 start-page: 11985 year: 2017 end-page: 11993 ident: b0170 article-title: Estimating ground-level PM2. 5 by fusing satellite and station observations: a geo-intelligent deep learning approach publication-title: Geophys. Res. Lett. – volume: 37 start-page: 1217 year: 2012 end-page: 1231 ident: b0330 article-title: Geochronology of diagenesis and mineralization of the Luoyang iron deposit in Zhangping city, Fujian province and its geological significance publication-title: Earth Sci. – volume: 12 start-page: 155 year: 2003 end-page: 171 ident: b0220 article-title: Artificial neural networks for mineral potential mapping publication-title: Nat. Resour. Res. – reference: Glorot, X., Bengio, Y., 2010. Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the thirteenth international conference on artificial intelligence and statistics, pp. 249–256. – year: 1988 ident: b0250 article-title: Learning Representations by Back-propagation Errors – volume: 27 start-page: 5 year: 2018 end-page: 13 ident: b0400 article-title: Big Data Analytics of Identifying Geochemical Anomalies Supported by Machine Learning Methods publication-title: Nat. Resour. Res. – volume: 18 start-page: 1527 year: 2006 end-page: 1554 ident: b0120 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. – ident: 10.1016/j.oregeorev.2018.10.006_b0010 – year: 2012 ident: 10.1016/j.oregeorev.2018.10.006_b0115 article-title: A practical guide to training restricted Boltzmann machines – volume: 331 start-page: 703 year: 2011 ident: 10.1016/j.oregeorev.2018.10.006_b0230 article-title: Challenges and opportunities of open data in ecology publication-title: Science doi: 10.1126/science.1197962 – volume: 26 start-page: 813 year: 2015 ident: 10.1016/j.oregeorev.2018.10.006_b0295 article-title: Spatial analysis of Fe deposits in Fujian Province, China: implications for mineral exploration publication-title: J. Earth Sci. doi: 10.1007/s12583-015-0597-9 – volume: 10 start-page: 1 year: 2009 ident: 10.1016/j.oregeorev.2018.10.006_b0155 article-title: Exploring strategies for training deep neural networks publication-title: J. Mach. Learn. Res. – volume: 36 start-page: 886 year: 2017 ident: 10.1016/j.oregeorev.2018.10.006_b0180 article-title: Application of integrated geophysical and geochemical data processing to metallogenic target zone quantitative prediction and optimization publication-title: Bull. Mineral. Petrol. Geochem. – year: 1988 ident: 10.1016/j.oregeorev.2018.10.006_b0250 – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.oregeorev.2018.10.006_b0160 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – year: 2018 ident: 10.1016/j.oregeorev.2018.10.006_b0050 article-title: Isolation forest as an alternative data-driven mineral prospectivity mapping method with a higher data-processing efficiency publication-title: Nat. Resour. Res. – volume: 32 start-page: 1 year: 2006 ident: 10.1016/j.oregeorev.2018.10.006_b0215 article-title: Bayesian network classifiers for mineral potential mapping publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2005.03.018 – volume: 55 start-page: 730 year: 2013 ident: 10.1016/j.oregeorev.2018.10.006_b0335 article-title: SHRIMP U-Pb zircon geochronology and Nd-Sr isotopic study of the Mamianshan group: implications for the Neoproterozoic tectonic development of southeast China publication-title: Int. Geol. Rev. doi: 10.1080/00206814.2012.734454 – volume: 45 start-page: 3706 year: 2018 ident: 10.1016/j.oregeorev.2018.10.006_b0135 article-title: A deep learning algorithm of neural network for the parameterization of typhoon-ocean feedback in typhoon forecast models publication-title: Geophys. Res. Lett. doi: 10.1002/2018GL077004 – volume: 43 start-page: 89 year: 1998 ident: 10.1016/j.oregeorev.2018.10.006_b0090 article-title: The digital earth: understanding our planet in the 21st century publication-title: Aust. Surv. doi: 10.1080/00050348.1998.10558728 – volume: 35 start-page: 675 year: 2009 ident: 10.1016/j.oregeorev.2018.10.006_b0165 article-title: Probabilistic neural networks applied to mineral potential mapping for platinum group elements in the Serra Leste region, Carajás Mineral Province, Brazil publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2008.05.003 – volume: 189 start-page: 1183 year: 2012 ident: 10.1016/j.oregeorev.2018.10.006_b0260 article-title: Data space reduction, quality assessment and searching of seismograms: autoencoder networks for waveform data publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.2012.05429.x – volume: 74 start-page: 60 year: 2015 ident: 10.1016/j.oregeorev.2018.10.006_b0025 article-title: Random forest predictive modeling of mineral prospectivity with small number of prospects and data with missing values in Abra (Philippines) publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2014.10.004 – volume: 12 start-page: 155 year: 2003 ident: 10.1016/j.oregeorev.2018.10.006_b0220 article-title: Artificial neural networks for mineral potential mapping publication-title: Nat. Resour. Res. doi: 10.1023/A:1025171803637 – volume: 2 start-page: 1 year: 2015 ident: 10.1016/j.oregeorev.2018.10.006_b0205 article-title: Deep learning applications and challenges in big data analytics publication-title: J. Big Data doi: 10.1186/s40537-014-0007-7 – volume: 158 start-page: 9 year: 2016 ident: 10.1016/j.oregeorev.2018.10.006_b0410 article-title: Spatial analysis and visualization of exploration geochemical data publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2016.04.006 – volume: 30 start-page: 1780 year: 2014 ident: 10.1016/j.oregeorev.2018.10.006_b0150 article-title: Petrogeochemical features and zircon LA-ICP-MS U-Pb ages of granite in the Pantian iron ore deposit, Fujian province and their relationship with mineralization publication-title: Acta Petrol. Sin. – volume: 8 start-page: 529 year: 2017 ident: 10.1016/j.oregeorev.2018.10.006_b0285 article-title: Late Paleozoic to Mesozoic extension in southwestern Fujian Province, South China: geochemical, geochronological and Hf isotopic constraints from basic-intermediate dykes publication-title: Geosci. Front. doi: 10.1016/j.gsf.2016.05.005 – volume: 71 start-page: 502 year: 2015 ident: 10.1016/j.oregeorev.2018.10.006_b0395 article-title: Evaluation of uncertainty in mineral prospectivity mapping due to missing evidence: a case study with skarn-type Fe deposits in Southwestern Fujian Province, China publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2014.09.024 – volume: 14 start-page: 778 year: 2017 ident: 10.1016/j.oregeorev.2018.10.006_b0145 article-title: Deep learning classification of land cover and crop types using remote sensing data publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2017.2681128 – volume: 25 start-page: 35 year: 2016 ident: 10.1016/j.oregeorev.2018.10.006_b0030 article-title: Data-driven predictive modeling of mineral prospectivity using random forests: a case study in Catanduanes Island (Philippines) publication-title: Nat. Resour. Res. doi: 10.1007/s11053-015-9268-x – volume: 1 start-page: 31 year: 2008 ident: 10.1016/j.oregeorev.2018.10.006_b0085 article-title: The use cases of digital earth publication-title: Int. J. Digital Earth doi: 10.1080/17538940701782528 – volume: 27 start-page: 329 year: 2008 ident: 10.1016/j.oregeorev.2018.10.006_b0320 article-title: SHRIMP zircon U-Pb dating of quartz porphyry from Zhongjia tin–polymetallic deposit in Longyan area, Fujian Province, and its geological significance publication-title: Miner. Deposits – volume: 104 start-page: 663 year: 2015 ident: 10.1016/j.oregeorev.2018.10.006_b0350 article-title: The mineralization age of the Makeng Fe deposit, South China: implications from U-Pb and Sm-Nd geochronology publication-title: Int. J. Earth Sci. doi: 10.1007/s00531-014-1096-4 – volume: 59 start-page: 556 year: 2016 ident: 10.1016/j.oregeorev.2018.10.006_b0360 article-title: A comparative study of fuzzy weights of evidence and random forests for mapping mineral prospectivity for skarn-type Fe deposits in the southwestern Fujian metallogenic belt, China publication-title: Sci. China Earth Sci. doi: 10.1007/s11430-015-5178-3 – volume: 26 start-page: 457 year: 2017 ident: 10.1016/j.oregeorev.2018.10.006_b0380 article-title: Machine learning of mineralization-related geochemical anomalies: a review of potential methods publication-title: Nat. Resour. Res. doi: 10.1007/s11053-017-9345-4 – volume: 313 start-page: 504 year: 2006 ident: 10.1016/j.oregeorev.2018.10.006_b0125 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – volume: 184 start-page: 150 year: 2018 ident: 10.1016/j.oregeorev.2018.10.006_b0385 article-title: Selection of an elemental association related to mineralization using spatial analysis publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2017.10.020 – volume: 19 start-page: 171 year: 2014 ident: 10.1016/j.oregeorev.2018.10.006_b0035 article-title: Big data: a survey publication-title: Mobile Networks Appl. doi: 10.1007/s11036-013-0489-0 – volume: 17 start-page: 191 year: 1991 ident: 10.1016/j.oregeorev.2018.10.006_b0225 article-title: A decision-tree approach to mineral potential mapping in Snow Lake area, Manitoba publication-title: Can. J. Remote Sens. doi: 10.1080/07038992.1991.10855292 – volume: 65 start-page: 266 year: 2015 ident: 10.1016/j.oregeorev.2018.10.006_b0355 article-title: Geological features and formation processes of the Makeng Fe deposit, China publication-title: Resour. Geol. doi: 10.1111/rge.12070 – volume: 57 start-page: 53 year: 2014 ident: 10.1016/j.oregeorev.2018.10.006_b0345 article-title: Sr–Nd–Pb isotope systematics of magnetite: implications for the genesis of Makeng Fe deposit, southern China publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2013.09.009 – volume: 32 start-page: 314 year: 2007 ident: 10.1016/j.oregeorev.2018.10.006_b0055 article-title: Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2006.10.002 – volume: 71 start-page: 804 year: 2015 ident: 10.1016/j.oregeorev.2018.10.006_b0240 article-title: Machine learning predictive models for mineral prospectivity: an evaluation of neural networks, random forest, regression trees and support vector machines publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2015.01.001 – volume: 14 start-page: 1771 year: 2002 ident: 10.1016/j.oregeorev.2018.10.006_b0110 article-title: Training products of experts by minimizing contrastive divergence publication-title: Neural Comput. doi: 10.1162/089976602760128018 – volume: 36 start-page: 803 year: 2004 ident: 10.1016/j.oregeorev.2018.10.006_b0210 article-title: A hybrid neuro-fuzzy model for mineral potential mapping publication-title: Math. Geol. doi: 10.1023/B:MATG.0000041180.34176.65 – volume: 28 start-page: 1336 year: 2014 ident: 10.1016/j.oregeorev.2018.10.006_b0235 article-title: Predictive modelling of gold potential with the integration of multisource information based on random forest: a case study on the Rodalquilar area, Southern Spain publication-title: Int. J. Geogr. Inf. Sci. doi: 10.1080/13658816.2014.885527 – volume: 18 start-page: 1527 year: 2006 ident: 10.1016/j.oregeorev.2018.10.006_b0120 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1527 – volume: 44 start-page: 11985 year: 2017 ident: 10.1016/j.oregeorev.2018.10.006_b0170 article-title: Estimating ground-level PM2. 5 by fusing satellite and station observations: a geo-intelligent deep learning approach publication-title: Geophys. Res. Lett. doi: 10.1002/2017GL075710 – volume: 326 start-page: 269 year: 2000 ident: 10.1016/j.oregeorev.2018.10.006_b0365 article-title: Origin of Late Mesozoic igneous rocks in Southeastern China: implications for lithosphere subduction and underplating of mafic magmas publication-title: Tectonophysics doi: 10.1016/S0040-1951(00)00120-7 – year: 2013 ident: 10.1016/j.oregeorev.2018.10.006_b0190 – volume: 7 start-page: 1 year: 1983 ident: 10.1016/j.oregeorev.2018.10.006_b0095 article-title: Geological and geochemical features of submarine volcanic hydrothermal-sedimentary mineralization of Makeng iron deposit, Fujian Province publication-title: Bull. Inst. Miner. Deposits Chin. Acad. Geol. Sci. – volume: 28 start-page: 1017 year: 1996 ident: 10.1016/j.oregeorev.2018.10.006_b0255 article-title: Application of a feedforward neural network in the search for Kuruko deposits in the Hokuroku district, Japan publication-title: Math. Geol. doi: 10.1007/BF02068587 – volume: 4 start-page: 22 year: 2016 ident: 10.1016/j.oregeorev.2018.10.006_b0340 article-title: Deep learning for remote sensing data: a technical tutorial on the state of the art publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2016.2540798 – volume: 46 start-page: 272 year: 2012 ident: 10.1016/j.oregeorev.2018.10.006_b0005 article-title: Support vector machine for multi-classification of mineral prospectivity areas publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2011.12.014 – volume: 29 start-page: 26 year: 2006 ident: 10.1016/j.oregeorev.2018.10.006_b0370 article-title: Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: a response to tectonic evolution publication-title: Episodes doi: 10.18814/epiiugs/2006/v29i1/004 – volume: 25 start-page: 125 year: 2016 ident: 10.1016/j.oregeorev.2018.10.006_b0185 article-title: Comparison of the data-driven Random Forests model and a knowledge-driven method for mineral prospectivity mapping: a case study for gold deposits around the Huritz Group and Nueltin Suite, Nunavut, Canada publication-title: Nat. Resour. Res. doi: 10.1007/s11053-015-9274-z – volume: 82 start-page: 1 year: 2017 ident: 10.1016/j.oregeorev.2018.10.006_b0310 article-title: Effects of misclassification costs on mapping mineral prospectivity publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2016.11.014 – volume: 37 start-page: 1217 year: 2012 ident: 10.1016/j.oregeorev.2018.10.006_b0330 article-title: Geochronology of diagenesis and mineralization of the Luoyang iron deposit in Zhangping city, Fujian province and its geological significance publication-title: Earth Sci. – ident: 10.1016/j.oregeorev.2018.10.006_b0080 – volume: 367 start-page: 747 year: 2016 ident: 10.1016/j.oregeorev.2018.10.006_b0275 article-title: Towards felicitous decision making: an overview on challenges and trends of Big Data publication-title: Inf. Sci. doi: 10.1016/j.ins.2016.07.007 – volume: 4 start-page: 77 year: 2009 ident: 10.1016/j.oregeorev.2018.10.006_b0065 article-title: Building an online learning and research environment to enhance use of geospatial data publication-title: Int. J. Spatial Data Infrastruct. Res. – volume: 3 start-page: 47 year: 1981 ident: 10.1016/j.oregeorev.2018.10.006_b0075 article-title: Geological characteristics of the Makeng iron deposit of marine volcano-sedimentary origin publication-title: Acta Geosci. Sin. – volume: 37 start-page: 174 year: 2016 ident: 10.1016/j.oregeorev.2018.10.006_b0175 article-title: The Metallogenic geomorphic rare earths ore in the eastern nanling region based on DEM data publication-title: Acta Geosci. Sin. – volume: 7 start-page: 2094 year: 2014 ident: 10.1016/j.oregeorev.2018.10.006_b0045 article-title: Deep learning-based classification of hyperspectral data publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2014.2329330 – volume: 2 start-page: 652 year: 2014 ident: 10.1016/j.oregeorev.2018.10.006_b0130 article-title: Toward scalable systems for big data analytics: a technology tutorial publication-title: IEEE Access doi: 10.1109/ACCESS.2014.2332453 – volume: 122 start-page: 55 year: 2012 ident: 10.1016/j.oregeorev.2018.10.006_b0060 article-title: Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2012.07.007 – volume: 37 start-page: 1967 year: 2011 ident: 10.1016/j.oregeorev.2018.10.006_b0390 article-title: Support vector machine: a tool for mapping mineral prospectivity publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2010.09.014 – volume: 111 start-page: 18 year: 2018 ident: 10.1016/j.oregeorev.2018.10.006_b0315 article-title: GIS-based rare events logistic regression for mineral prospectivity mapping publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2017.10.005 – volume: 29 start-page: 391 year: 2018 ident: 10.1016/j.oregeorev.2018.10.006_b0290 article-title: Late mesozoic tectonic evolution of Southwestern Fujian Province, South China: constraints from magnetic fabric, Zircon U-Pb geochronology and structural deformation publication-title: J. Earth Sci. doi: 10.1007/s12583-017-0968-5 – volume: 71 start-page: 777 year: 2015 ident: 10.1016/j.oregeorev.2018.10.006_b0020 article-title: Data-driven predictive mapping of gold prospectivity, Baguio district, Philippines: application of random forests algorithm publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2014.08.010 – volume: 180 start-page: 15 year: 2017 ident: 10.1016/j.oregeorev.2018.10.006_b0200 article-title: Comparing compositional multivariate outliers with autoencoder networks in anomaly detection at Hamich exploration area, east of Iran publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2017.05.008 – volume: 60 start-page: 99 year: 1997 ident: 10.1016/j.oregeorev.2018.10.006_b0300 article-title: Geochemical mapping in China publication-title: J. Geochem. Explor. doi: 10.1016/S0375-6742(97)00029-0 – volume: 75 start-page: 16 year: 2016 ident: 10.1016/j.oregeorev.2018.10.006_b0070 article-title: Mapping mineral prospectivity for Cu polymetallic mineralization in southwest Fujian Province, China publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2015.12.005 – volume: 101 start-page: 225 year: 2009 ident: 10.1016/j.oregeorev.2018.10.006_b0405 article-title: Application of singularity mapping technique to identify local anomalies using stream sediment geochemical data, a case study from Gangdese, Tibet, western China publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2008.08.003 – volume: 71 start-page: 749 year: 2015 ident: 10.1016/j.oregeorev.2018.10.006_b0040 article-title: Mineral potential mapping with a restricted Boltzmann machine publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2014.08.012 – volume: 123 year: 2018 ident: 10.1016/j.oregeorev.2018.10.006_b0245 article-title: P-wave arrival picking and first-motion polarity determination with deep learning publication-title: J. Geophys. Res. Solid Earth doi: 10.1029/2017JB015251 – volume: 44 start-page: 450 year: 2015 ident: 10.1016/j.oregeorev.2018.10.006_b0280 article-title: Zircon U-Pb geochronology, geochemistry and Hf isotope compositions of the Dayang and Juzhou granites in Longyan, Fujian and their geological implications publication-title: Geochimica – year: 2013 ident: 10.1016/j.oregeorev.2018.10.006_b0195 – volume: 692 start-page: 164 year: 2016 ident: 10.1016/j.oregeorev.2018.10.006_b0140 article-title: Crustal structures from the Wuyi-Yunkai orogen to the Taiwan orogen: the onshore-offshore wide-angle seismic experiments of the TAIGER and ATSEE projects publication-title: Tectonophysics doi: 10.1016/j.tecto.2015.09.014 – volume: 26 start-page: 434 year: 2012 ident: 10.1016/j.oregeorev.2018.10.006_b0325 article-title: LA-ICP-MS Zircon U-Pb ages and Hf isotopic compositions of Dayang Granite from Longyan, Fujian Province publication-title: Geoscience – volume: 12 start-page: 241 year: 2003 ident: 10.1016/j.oregeorev.2018.10.006_b0105 article-title: A comparative analysis of favourability mappings by weights of evidence probabilistic neural networks, discriminant analysis, and logistic regression publication-title: Nat. Resour. Res. doi: 10.1023/B:NARR.0000007804.27450.e8 – volume: 112 start-page: 112 year: 2018 ident: 10.1016/j.oregeorev.2018.10.006_b0265 article-title: Information extraction and knowledge graph construction from geoscience literature publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2017.12.007 – volume: 26 start-page: 379 year: 2017 ident: 10.1016/j.oregeorev.2018.10.006_b0015 article-title: Natural Resources Research publications on geochemical anomaly and mineral potential mapping, and introduction to the special issue of papers in these fields publication-title: Nat. Resour. Res. doi: 10.1007/s11053-017-9348-1 – volume: 86 start-page: 75 year: 2016 ident: 10.1016/j.oregeorev.2018.10.006_b0305 article-title: Recognition of geochemical anomalies using a deep autoencoder network publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2015.10.006 – volume: 6 start-page: 27127 year: 2016 ident: 10.1016/j.oregeorev.2018.10.006_b0375 article-title: A nonlinear controlling function of geological features on magmatic–hydrothermal mineralization publication-title: Sci. Rep. doi: 10.1038/srep27127 – volume: 27 start-page: 5 year: 2018 ident: 10.1016/j.oregeorev.2018.10.006_b0400 article-title: Big Data Analytics of Identifying Geochemical Anomalies Supported by Machine Learning Methods publication-title: Nat. Resour. Res. doi: 10.1007/s11053-017-9357-0 – volume: 26 start-page: 489 year: 2017 ident: 10.1016/j.oregeorev.2018.10.006_b0100 article-title: Random forest-based prospectivity modelling of greenfield terrains using sparse deposit data: an example from the tanami region, western Australia publication-title: Nat. Resour. Res. doi: 10.1007/s11053-017-9335-6 – volume: 34 start-page: 1143 year: 2015 ident: 10.1016/j.oregeorev.2018.10.006_b0270 article-title: Characteristics of big geodata and its application to study of minerogenetic regularity and minerogenetic series publication-title: Miner. Deposits |
SSID | ssj0006001 |
Score | 2.5658584 |
Snippet | [Display omitted]
•Big data analytics and a deep learning algorithm were used to map mineral prospectivity.•42 geological, geochemical and geophysical... |
SourceID | osti crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 811 |
SubjectTerms | Big data Deep learning GIS Mapping mineral prospectivity |
Title | Mapping mineral prospectivity through big data analytics and a deep learning algorithm |
URI | https://dx.doi.org/10.1016/j.oregeorev.2018.10.006 https://www.osti.gov/biblio/1636788 |
Volume | 102 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8NADLaqIiQYEBQQ5aUbWEMTcnmxIUQpoHbhIbboniWobaqqDCz8duzkWmBADGxJLo4i38WfrXz3GeAktEksY8s9FenMw3oj9FKlrBfpwGQJ1hOiYrv3B3Hvkd8-R88NuFzshSFapYv9dUyvorW70nHe7EyLonNPOiJBGCPiYBjOqj1cnCe0yk8_vmgeBOi1vnfm0d0_OF7lDEvzkpq9IA6mpzXN6zeEapb40X0Dn-4mbLiskV3UL7YFDTNpwfo3LcEWrF5XPXrft-GpL0h0YcjGRSUpzTBIug2VmHIz15mHyWLIiB_KBOmSkFozHmkmmDZmylw3iSETo2E5K-Yv4x147F49XPY81z7BEzzgc8-GieIm1iGWPL5UyqRWpSqRymBSYoU-8_VZJHwpbZjivHAViMAaaSNfc5loHe5Cc1JOzB4wjQOxRDjlmeSkd6OUxC89yugfDlZobYgXLsuV0xanFhejfEEie82Xvs7J1zSAvm6DvzSc1vIaf5ucL-Yk_7FScgSBv40PaBbJkDRyFZGJ0BKTUgTtdP8_jz6ANTqr9ykeQnM-ezNHmLDM5XG1Io9h5eLmrjf4BHje7cw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV25TsNAEB2hIAQUiFOEcwtaExuvL7ooAgI5Gg7RWXsGoySOolDw98zEmwgKREFneTWWNbueNyO_eQNwEdoklrHlnop05mG9EXqpUtaLdGCyBOsJMWe79_px-5k_vEavK9Ba9MIQrdLF_iqmz6O1u9Nw3mxMiqLxSDoiQRgj4mAYzqiHa5XUqaIarDbvO-3-MiATplcS35lHBj9oXuUUq_OS5r0gFKaXFdPrN5CqlfjdfcOf223Ycokja1bvtgMrZrwLm9_kBHdh7W4-pvdzD156gnQXBmxUzFWlGcZJ11OJWTdzw3mYLAaMKKJMkDQJCTbjlWaCaWMmzA2UGDAxHJTTYvY22ofn25unVttzExQ8wQM-82yYKG5iHWLV40ulTGpVqhKpDOYlVugrX19FwpfShiluDVeBCKyRNvI1l4nW4QHUxuXYHALTuBBLRFSeSU6SN0pJ_NijjH7jYJFWh3jhslw5eXGacjHMFzyy93zp65x8TQvo6zr4S8NJpbDxt8n1Yk_yH4clRxz42_iYdpEMSSZXEZ8ILTEvRdxOj_7z6HNYbz_1unn3vt85hg1aqdoWT6A2m36YU8xfZvLMnc8vmljwfQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+mineral+prospectivity+through+big+data+analytics+and+a+deep+learning+algorithm&rft.jtitle=Ore+geology+reviews&rft.au=Xiong%2C+Yihui&rft.au=Zuo%2C+Renguang&rft.au=Carranza%2C+Emmanuel+John+M.&rft.date=2018-11-01&rft.pub=Elsevier&rft.issn=0169-1368&rft.eissn=1872-7360&rft.volume=102&rft.issue=C&rft_id=info:doi/10.1016%2Fj.oregeorev.2018.10.006&rft.externalDocID=1636788 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-1368&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-1368&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-1368&client=summon |