Mapping mineral prospectivity through big data analytics and a deep learning algorithm

[Display omitted] •Big data analytics and a deep learning algorithm were used to map mineral prospectivity.•42 geological, geochemical and geophysical variables were involved.•A case from southwestern Fujian metalorganic zone of China was presented. Identification of anomalies related to mineralizat...

Full description

Saved in:
Bibliographic Details
Published inOre geology reviews Vol. 102; no. C; pp. 811 - 817
Main Authors Xiong, Yihui, Zuo, Renguang, Carranza, Emmanuel John M.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2018
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Big data analytics and a deep learning algorithm were used to map mineral prospectivity.•42 geological, geochemical and geophysical variables were involved.•A case from southwestern Fujian metalorganic zone of China was presented. Identification of anomalies related to mineralization and integration of multi-source geoscience data are essential for mapping mineral prospectivity. In this study, we applied big data analytics and a deep learning algorithm to process geoscience data to identify and integrate anomalies related to skarn-type Iron mineralization in the southwestern Fujian metallogenic zone of China. Based on the geological setting and environment for the formation of skarn-type Iron mineralization, 42 relevant variables, including two geological, one geophysical, and 39 geochemical variables, were analyzed and integrated for detecting anomalies related to mineralization using a deep autoencoder network. The results indicate that the mapped prospectivity areas have a strong spatial relationship with the locations of known mineralization and demonstrate that big data analytics supported by deep learning methods is a potential technique to be considered for use in mineral prospectivity mapping.
AbstractList [Display omitted] •Big data analytics and a deep learning algorithm were used to map mineral prospectivity.•42 geological, geochemical and geophysical variables were involved.•A case from southwestern Fujian metalorganic zone of China was presented. Identification of anomalies related to mineralization and integration of multi-source geoscience data are essential for mapping mineral prospectivity. In this study, we applied big data analytics and a deep learning algorithm to process geoscience data to identify and integrate anomalies related to skarn-type Iron mineralization in the southwestern Fujian metallogenic zone of China. Based on the geological setting and environment for the formation of skarn-type Iron mineralization, 42 relevant variables, including two geological, one geophysical, and 39 geochemical variables, were analyzed and integrated for detecting anomalies related to mineralization using a deep autoencoder network. The results indicate that the mapped prospectivity areas have a strong spatial relationship with the locations of known mineralization and demonstrate that big data analytics supported by deep learning methods is a potential technique to be considered for use in mineral prospectivity mapping.
Author Carranza, Emmanuel John M.
Zuo, Renguang
Xiong, Yihui
Author_xml – sequence: 1
  givenname: Yihui
  surname: Xiong
  fullname: Xiong, Yihui
  organization: State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China
– sequence: 2
  givenname: Renguang
  surname: Zuo
  fullname: Zuo, Renguang
  email: zrguang@cug.edu.cn
  organization: State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China
– sequence: 3
  givenname: Emmanuel John M.
  surname: Carranza
  fullname: Carranza, Emmanuel John M.
  organization: University of KwaZulu-Natal, Westville Campus, Durban, South Africa
BackLink https://www.osti.gov/biblio/1636788$$D View this record in Osti.gov
BookMark eNqNkMtOwzAQRS1UJNrCN2CxT7CTNI8Fi6riJRWxAbbRxB4nrlI7ckyl_j2Oiliwgc14NL73auYsyMxYg4RccxZzxvPbXWwdthjKIU4YL8M0Ziw_I3NeFklUpDmbkXlQVhFP8_KCLMZxx4KCMT4nHy8wDNq0dK8NOujp4Ow4oPD6oP2R-s7Zz7ajjW6pBA8UDPRHr8UYOkmBSsSB9gjOTCHQt9Zp3-0vybmCfsSr73dJ3h_u3zZP0fb18Xmz3kaQ8cxHKi1EhrlMOc9YIwSWSpSiaASmVaVAJkwmK2BNo9ISqyITHLjCRq2YzJpCynRJbk65dvS6HoX2KDphjQkX1DxP86Isg-juJBLhttGhqoMOvLbGO9B9zVk9kax39Q_JeiI5fQROwV_88g9O78Ed_-Fcn5wYGBw0umlFNAKldtOG0uo_M74As9qYog
CitedBy_id crossref_primary_10_1016_j_oregeorev_2022_105224
crossref_primary_10_1007_s11053_021_09942_1
crossref_primary_10_1007_s11053_022_10038_7
crossref_primary_10_1016_j_oregeorev_2023_105860
crossref_primary_10_3724_j_issn_1007_2802_20240164
crossref_primary_10_1007_s11042_022_13143_0
crossref_primary_10_1016_j_oregeorev_2025_106554
crossref_primary_10_1016_j_cageo_2023_105455
crossref_primary_10_1016_j_gexplo_2023_107326
crossref_primary_10_3390_min11020148
crossref_primary_10_1007_s11053_022_10050_x
crossref_primary_10_1007_s11053_023_10286_1
crossref_primary_10_1007_s11053_022_10143_7
crossref_primary_10_1016_j_chemer_2024_126155
crossref_primary_10_1016_j_cageo_2020_104484
crossref_primary_10_3390_fractalfract8040224
crossref_primary_10_1007_s12145_025_01843_8
crossref_primary_10_1016_j_apgeochem_2020_104679
crossref_primary_10_1007_s11053_021_09984_5
crossref_primary_10_1016_j_oregeorev_2021_104649
crossref_primary_10_1016_j_oregeorev_2024_106329
crossref_primary_10_3390_min12070900
crossref_primary_10_1016_j_gsme_2024_09_003
crossref_primary_10_1007_s11053_022_10089_w
crossref_primary_10_1007_s11053_023_10237_w
crossref_primary_10_1007_s11053_024_10424_3
crossref_primary_10_1016_j_rsase_2023_100988
crossref_primary_10_1016_j_earscirev_2019_02_023
crossref_primary_10_1016_j_oregeorev_2023_105573
crossref_primary_10_1007_s11053_020_09658_8
crossref_primary_10_1007_s11004_023_10076_8
crossref_primary_10_1007_s11053_024_10322_8
crossref_primary_10_1007_s12145_021_00614_5
crossref_primary_10_3390_rs15153708
crossref_primary_10_1007_s11004_024_10164_3
crossref_primary_10_1016_j_apgeochem_2020_104843
crossref_primary_10_1038_s41598_023_47546_2
crossref_primary_10_2113_2022_1615832
crossref_primary_10_1016_j_cageo_2022_105074
crossref_primary_10_1016_j_cageo_2022_105075
crossref_primary_10_17780_ksujes_1285080
crossref_primary_10_3233_KES_200042
crossref_primary_10_1007_s11004_022_10038_6
crossref_primary_10_1016_j_earscirev_2024_104941
crossref_primary_10_1016_j_oregeorev_2024_106133
crossref_primary_10_1016_j_oregeorev_2025_106452
crossref_primary_10_1007_s11053_022_10054_7
crossref_primary_10_1016_j_chemer_2024_126212
crossref_primary_10_1007_s11053_022_10142_8
crossref_primary_10_1016_j_cageo_2021_104817
crossref_primary_10_1515_geo_2020_0165
crossref_primary_10_1007_s11053_019_09586_2
crossref_primary_10_1016_j_gexplo_2019_106431
crossref_primary_10_3390_su15031810
crossref_primary_10_1016_j_cageo_2023_105420
crossref_primary_10_3390_min15030222
crossref_primary_10_1007_s12145_021_00709_z
crossref_primary_10_1016_j_apgeochem_2023_105807
crossref_primary_10_1016_j_asr_2022_12_028
crossref_primary_10_1016_j_oregeorev_2023_105390
crossref_primary_10_1016_j_oregeorev_2024_106260
crossref_primary_10_1016_j_chemer_2024_126189
crossref_primary_10_1007_s11053_019_09598_y
crossref_primary_10_1007_s11053_024_10321_9
crossref_primary_10_3390_min14020202
crossref_primary_10_1007_s11053_024_10344_2
crossref_primary_10_1007_s11053_021_09934_1
crossref_primary_10_1029_2024JH000311
crossref_primary_10_1007_s11004_024_10161_6
crossref_primary_10_1007_s11004_022_10015_z
crossref_primary_10_1007_s11053_024_10433_2
crossref_primary_10_1016_j_apgeochem_2024_106010
crossref_primary_10_1016_j_oregeorev_2022_104693
crossref_primary_10_1007_s11004_023_10059_9
crossref_primary_10_1016_j_cageo_2024_105657
crossref_primary_10_32390_ksmer_2019_56_5_435
crossref_primary_10_1016_j_gexplo_2021_106839
crossref_primary_10_1016_j_oregeorev_2023_105381
crossref_primary_10_1016_j_chemer_2024_126111
crossref_primary_10_3390_min14101021
crossref_primary_10_1109_ACCESS_2022_3215957
crossref_primary_10_1016_j_chemer_2024_126197
crossref_primary_10_1016_j_mineng_2021_107020
crossref_primary_10_1007_s11004_021_09935_z
crossref_primary_10_1007_s11053_019_09564_8
crossref_primary_10_1007_s11053_024_10335_3
crossref_primary_10_1007_s11004_024_10170_5
crossref_primary_10_1016_j_chemer_2024_126190
crossref_primary_10_1016_j_jafrearsci_2023_105024
crossref_primary_10_1007_s11004_024_10137_6
crossref_primary_10_1007_s11053_021_09982_7
crossref_primary_10_3233_JIFS_221987
crossref_primary_10_1016_j_oregeorev_2023_105419
crossref_primary_10_3390_min14121209
crossref_primary_10_1016_j_oregeorev_2023_105658
crossref_primary_10_2139_ssrn_4835655
crossref_primary_10_1007_s12583_020_1365_z
crossref_primary_10_1016_j_oregeorev_2023_105653
crossref_primary_10_1007_s12583_020_1079_2
crossref_primary_10_1007_s11004_023_10049_x
crossref_primary_10_1016_j_cageo_2024_105703
crossref_primary_10_1016_j_cageo_2024_105785
crossref_primary_10_3390_app122211433
crossref_primary_10_1007_s12145_023_00999_5
crossref_primary_10_1016_j_cageo_2019_05_011
crossref_primary_10_1016_j_apgeochem_2020_104760
crossref_primary_10_1007_s11053_024_10328_2
crossref_primary_10_1007_s11053_025_10473_2
crossref_primary_10_1016_j_geogeo_2021_100012
crossref_primary_10_3390_min14101015
crossref_primary_10_1007_s11053_021_09979_2
crossref_primary_10_1016_j_acags_2023_100119
crossref_primary_10_1016_j_oregeorev_2021_104316
crossref_primary_10_3390_min13111384
crossref_primary_10_1016_j_rsase_2024_101343
crossref_primary_10_1016_j_oregeorev_2024_106215
crossref_primary_10_1016_j_jag_2024_103746
crossref_primary_10_1177_16878132221081584
crossref_primary_10_3390_app10051657
crossref_primary_10_1007_s11053_022_10075_2
crossref_primary_10_1016_j_oregeorev_2024_106175
crossref_primary_10_3390_min9090516
crossref_primary_10_1007_s11053_022_10144_6
crossref_primary_10_3390_rs14194899
crossref_primary_10_1016_j_gsf_2023_101767
crossref_primary_10_1016_j_oregeorev_2020_103611
crossref_primary_10_3390_min10020102
crossref_primary_10_3390_rs14102472
crossref_primary_10_1016_j_chemer_2022_125898
crossref_primary_10_3390_min12050616
crossref_primary_10_1029_2020JB021047
crossref_primary_10_1038_s41597_022_01730_7
crossref_primary_10_1016_j_cageo_2023_105341
crossref_primary_10_1016_j_oregeorev_2024_105930
crossref_primary_10_3390_app9194180
crossref_primary_10_1007_s43762_022_00039_w
crossref_primary_10_1038_s41598_024_73357_0
crossref_primary_10_3390_min12111382
crossref_primary_10_1016_j_cageo_2021_104974
crossref_primary_10_1016_j_mineng_2023_108433
crossref_primary_10_1016_j_cageo_2020_104667
crossref_primary_10_1016_j_oregeorev_2021_104063
crossref_primary_10_1016_j_oregeorev_2024_106060
crossref_primary_10_1007_s11053_020_09700_9
crossref_primary_10_1016_S1003_6326_20_65277_3
crossref_primary_10_1016_j_apgeochem_2024_105911
crossref_primary_10_1007_s11053_020_09789_y
crossref_primary_10_1016_j_oregeorev_2023_105627
Cites_doi 10.1126/science.1197962
10.1007/s12583-015-0597-9
10.1038/nature14539
10.1016/j.cageo.2005.03.018
10.1080/00206814.2012.734454
10.1002/2018GL077004
10.1080/00050348.1998.10558728
10.1016/j.cageo.2008.05.003
10.1111/j.1365-246X.2012.05429.x
10.1016/j.cageo.2014.10.004
10.1023/A:1025171803637
10.1186/s40537-014-0007-7
10.1016/j.earscirev.2016.04.006
10.1016/j.gsf.2016.05.005
10.1016/j.oregeorev.2014.09.024
10.1109/LGRS.2017.2681128
10.1007/s11053-015-9268-x
10.1080/17538940701782528
10.1007/s00531-014-1096-4
10.1007/s11430-015-5178-3
10.1007/s11053-017-9345-4
10.1126/science.1127647
10.1016/j.gexplo.2017.10.020
10.1007/s11036-013-0489-0
10.1080/07038992.1991.10855292
10.1111/rge.12070
10.1016/j.oregeorev.2013.09.009
10.1016/j.oregeorev.2006.10.002
10.1016/j.oregeorev.2015.01.001
10.1162/089976602760128018
10.1023/B:MATG.0000041180.34176.65
10.1080/13658816.2014.885527
10.1162/neco.2006.18.7.1527
10.1002/2017GL075710
10.1016/S0040-1951(00)00120-7
10.1007/BF02068587
10.1109/MGRS.2016.2540798
10.1016/j.cageo.2011.12.014
10.18814/epiiugs/2006/v29i1/004
10.1007/s11053-015-9274-z
10.1016/j.oregeorev.2016.11.014
10.1016/j.ins.2016.07.007
10.1109/JSTARS.2014.2329330
10.1109/ACCESS.2014.2332453
10.1016/j.gexplo.2012.07.007
10.1016/j.cageo.2010.09.014
10.1016/j.cageo.2017.10.005
10.1007/s12583-017-0968-5
10.1016/j.oregeorev.2014.08.010
10.1016/j.gexplo.2017.05.008
10.1016/S0375-6742(97)00029-0
10.1016/j.oregeorev.2015.12.005
10.1016/j.gexplo.2008.08.003
10.1016/j.oregeorev.2014.08.012
10.1029/2017JB015251
10.1016/j.tecto.2015.09.014
10.1023/B:NARR.0000007804.27450.e8
10.1016/j.cageo.2017.12.007
10.1007/s11053-017-9348-1
10.1016/j.cageo.2015.10.006
10.1038/srep27127
10.1007/s11053-017-9357-0
10.1007/s11053-017-9335-6
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
OTOTI
DOI 10.1016/j.oregeorev.2018.10.006
DatabaseName CrossRef
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Engineering
EISSN 1872-7360
EndPage 817
ExternalDocumentID 1636788
10_1016_j_oregeorev_2018_10_006
S0169136818303901
GroupedDBID --K
--M
.~1
0R~
0SF
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
5VS
6OB
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SSE
SSZ
T5K
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
AAPBV
ABPTK
OTOTI
ID FETCH-LOGICAL-a414t-f37c4e6d31140bcce8fc8c7bce399fad20d25a0bbf38e974c1a1febf50d4b7dd3
IEDL.DBID .~1
ISSN 0169-1368
IngestDate Thu May 18 22:29:34 EDT 2023
Tue Jul 01 04:05:31 EDT 2025
Thu Apr 24 23:06:15 EDT 2025
Fri Feb 23 02:35:49 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords Deep learning
GIS
Big data
Mapping mineral prospectivity
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a414t-f37c4e6d31140bcce8fc8c7bce399fad20d25a0bbf38e974c1a1febf50d4b7dd3
Notes USDOE Office of Electricity (OE), Advanced Grid Research & Development. Power Systems Engineering Research
2016YFC0600508
OpenAccessLink https://www.sciencedirect.com/science/article/am/pii/S0169136818303901
PageCount 7
ParticipantIDs osti_scitechconnect_1636788
crossref_citationtrail_10_1016_j_oregeorev_2018_10_006
crossref_primary_10_1016_j_oregeorev_2018_10_006
elsevier_sciencedirect_doi_10_1016_j_oregeorev_2018_10_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2018
2018-11-00
2018-11-01
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: November 2018
PublicationDecade 2010
PublicationTitle Ore geology reviews
PublicationYear 2018
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Rodriguez-Galiano, Sanchez-Castillo, Chica-Olmo, Chica-Rivas (b0240) 2015; 71
Carranza, Laborte (b0025) 2015; 74
Hinton (b0110) 2002; 14
Hinton, Osindero, Teh (b0120) 2006; 18
Yang, Zhang, Feng, She, Li (b0320) 2008; 27
Hinton (b0115) 2012
Zuo, Xiong (b0400) 2018; 27
Porwal, Carranza, Hale (b0210) 2004; 36
Zuo (b0375) 2016; 6
Ge, Han, Zhou, Chen (b0075) 1981; 3
Rumelhart, Hinton, Williams (b0250) 1988
Xie, Mu, Ren (b0300) 1997; 60
Xiong, Zuo (b0315) 2018; 111
Zuo (b0380) 2017; 26
Hu, Wen, Chua, Li (b0130) 2014; 2
Zhang, Zuo (b0345) 2014; 57
Cheng (b0055) 2007; 32
Wang, Liu, Liu (b0270) 2015; 34
Mao (b0190) 2013
Chen, Lin, Zhao, Wang, Gu (b0045) 2014; 7
Ross, Meier, Hauksson (b0245) 2018; 123
Xiong, Zuo (b0305) 2016; 86
Carranza (b0015) 2017; 26
Harris, Zurcher, Stanley, Marlow, Pan (b0105) 2003; 12
Zhang, Zuo, Xiong (b0360) 2016; 59
Kussul, Lavreniuk, Skakun, Shelestov (b0145) 2017; 14
LeCun, Bengio, Hinton (b0160) 2015; 521
Zhang, Li, Zhang, Wang (b0325) 2012; 26
Moeini, Torab (b0200) 2017; 180
Wang, Xu, Fujita, Liu (b0275) 2016; 367
Wang, Zhang, Wu, Vatuva, Di, Yan, Feng, Ma (b0285) 2017; 8
Reddy, Bonham-Carter (b0225) 1991; 17
Xiong, Zuo (b0310) 2017; 82
Valentine, Trampert (b0260) 2012; 189
Zhou, Sun, Shen, Shu, Niu (b0370) 2006; 29
Han, Ge (b0095) 1983; 7
Porwal, Carranza, Hale (b0220) 2003; 12
Lai, Chen, Zhang, Di, Gong, Yuan, Chen (b0150) 2014; 30
Leite, Souza Filho (b0165) 2009; 35
Luo, Zhang, Song, Wang, Yang, Zhao, Liu (b0180) 2017; 36
Goodchild (b0085) 2008; 1
Hariharan, Tirodkar, Porwal, Bhattacharya, Joly (b0100) 2017; 26
Li, Shen, Yuan, Zhang, Zhang (b0170) 2017; 44
Chen, Wu (b0050) 2018
Agterberg, F.P., Bonham-Carter, G.F., 1999. Logistic regression and weights of evidence modeling in mineral exploration. In: Proceedings of the 28th International Symposium on Applications of Computer in the Mineral Industry (APCOM), Golden, Colorado, pp. 483–490.
Reichman, Jones, Schildhauer (b0230) 2011; 331
Jiang, Xu, Wei (b0135) 2018; 45
Glorot, X., Bengio, Y., 2010. Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the thirteenth international conference on artificial intelligence and statistics, pp. 249–256.
Zuo, Carranza (b0390) 2011; 37
Kuo, Wang, Kuo-Chen, Jin, Cai, Lin, Wu, Yen, Huang, Liang, Okaya, Brown (b0140) 2016; 692
Zhang, Zuo, Cheng (b0355) 2015; 65
Zhang, Zhang, Du (b0340) 2016; 4
Singer, Kouda (b0255) 1996; 28
Zhou, Li (b0365) 2000; 326
Zuo, Cheng, Agterberg, Xia (b0405) 2009; 101
McKay, Harris (b0185) 2016; 25
Zhang, Zuo, Cheng (b0350) 2015; 104
Deng, Di (b0065) 2009; 4
Zuo, Zhang, Zhang, Carranza, Wang (b0395) 2015; 71
Porwal, Carranza, Hale (b0215) 2006; 32
Wang, Zuo, Zhang (b0295) 2015; 26
Cheng (b0060) 2012; 122
Liu, Chen, Wang, Huang, Zhao (b0175) 2016; 37
Zhang, Wu, Di, Yu, Shi, Zhang, Wang, Huang (b0335) 2013; 55
Larochelle, Bengio, Louradour, Lamblin (b0155) 2009; 10
Rodriguez-Galiano, Chica-Olmo, Chica-Rivas (b0235) 2014; 28
Gao, Zhang, Xiong, Zuo (b0070) 2016; 75
Hinton, Salakhutdinov (b0125) 2006; 313
Zhang, Wu, Di, Wang, Yao, Zhang, Lv, Yuan, Shi (b0330) 2012; 37
Chen (b0040) 2015; 71
Mayer-Schonberger, Cukier (b0195) 2013
Wang, Zhang, Wu, Li, Gao, Vatuva, Yuan, Yu, Bai, Fang (b0290) 2018; 29
Abedi, Norouzi, Bahroudi (b0005) 2012; 46
Wang, Ma, Chen, Chen (b0265) 2018; 112
Najafabadi, Villanustre, Khoshgoftaar, Naeem, Wald, Muharemagic (b0205) 2015; 2
Carranza, Laborte (b0020) 2015; 71
Wang, Zhang, Vatuva, Yan, Ma, Feng, Yu, Bai, Di (b0280) 2015; 44
Zuo (b0385) 2018; 184
Gore (b0090) 1998; 43
Zuo, Carranza, Wang (b0410) 2016; 158
Chen, Mao, Liu (b0035) 2014; 19
Carranza, Laborte (b0030) 2016; 25
Chen (10.1016/j.oregeorev.2018.10.006_b0050) 2018
Wang (10.1016/j.oregeorev.2018.10.006_b0295) 2015; 26
Zuo (10.1016/j.oregeorev.2018.10.006_b0400) 2018; 27
Ge (10.1016/j.oregeorev.2018.10.006_b0075) 1981; 3
Jiang (10.1016/j.oregeorev.2018.10.006_b0135) 2018; 45
Mayer-Schonberger (10.1016/j.oregeorev.2018.10.006_b0195) 2013
Rodriguez-Galiano (10.1016/j.oregeorev.2018.10.006_b0240) 2015; 71
Wang (10.1016/j.oregeorev.2018.10.006_b0265) 2018; 112
Ross (10.1016/j.oregeorev.2018.10.006_b0245) 2018; 123
Singer (10.1016/j.oregeorev.2018.10.006_b0255) 1996; 28
Cheng (10.1016/j.oregeorev.2018.10.006_b0060) 2012; 122
Wang (10.1016/j.oregeorev.2018.10.006_b0290) 2018; 29
Xiong (10.1016/j.oregeorev.2018.10.006_b0305) 2016; 86
Zuo (10.1016/j.oregeorev.2018.10.006_b0410) 2016; 158
10.1016/j.oregeorev.2018.10.006_b0080
Zhang (10.1016/j.oregeorev.2018.10.006_b0345) 2014; 57
Reddy (10.1016/j.oregeorev.2018.10.006_b0225) 1991; 17
Cheng (10.1016/j.oregeorev.2018.10.006_b0055) 2007; 32
Wang (10.1016/j.oregeorev.2018.10.006_b0270) 2015; 34
Zuo (10.1016/j.oregeorev.2018.10.006_b0375) 2016; 6
Carranza (10.1016/j.oregeorev.2018.10.006_b0025) 2015; 74
Chen (10.1016/j.oregeorev.2018.10.006_b0045) 2014; 7
Rodriguez-Galiano (10.1016/j.oregeorev.2018.10.006_b0235) 2014; 28
Zhang (10.1016/j.oregeorev.2018.10.006_b0360) 2016; 59
Najafabadi (10.1016/j.oregeorev.2018.10.006_b0205) 2015; 2
Zhou (10.1016/j.oregeorev.2018.10.006_b0365) 2000; 326
Xie (10.1016/j.oregeorev.2018.10.006_b0300) 1997; 60
Hinton (10.1016/j.oregeorev.2018.10.006_b0120) 2006; 18
Deng (10.1016/j.oregeorev.2018.10.006_b0065) 2009; 4
Zuo (10.1016/j.oregeorev.2018.10.006_b0390) 2011; 37
Chen (10.1016/j.oregeorev.2018.10.006_b0035) 2014; 19
Li (10.1016/j.oregeorev.2018.10.006_b0170) 2017; 44
Hinton (10.1016/j.oregeorev.2018.10.006_b0125) 2006; 313
Yang (10.1016/j.oregeorev.2018.10.006_b0320) 2008; 27
LeCun (10.1016/j.oregeorev.2018.10.006_b0160) 2015; 521
Liu (10.1016/j.oregeorev.2018.10.006_b0175) 2016; 37
Moeini (10.1016/j.oregeorev.2018.10.006_b0200) 2017; 180
Zhang (10.1016/j.oregeorev.2018.10.006_b0340) 2016; 4
Chen (10.1016/j.oregeorev.2018.10.006_b0040) 2015; 71
Valentine (10.1016/j.oregeorev.2018.10.006_b0260) 2012; 189
Zuo (10.1016/j.oregeorev.2018.10.006_b0395) 2015; 71
Zhang (10.1016/j.oregeorev.2018.10.006_b0350) 2015; 104
Porwal (10.1016/j.oregeorev.2018.10.006_b0210) 2004; 36
Wang (10.1016/j.oregeorev.2018.10.006_b0275) 2016; 367
Wang (10.1016/j.oregeorev.2018.10.006_b0280) 2015; 44
Luo (10.1016/j.oregeorev.2018.10.006_b0180) 2017; 36
Porwal (10.1016/j.oregeorev.2018.10.006_b0215) 2006; 32
Carranza (10.1016/j.oregeorev.2018.10.006_b0015) 2017; 26
Goodchild (10.1016/j.oregeorev.2018.10.006_b0085) 2008; 1
Rumelhart (10.1016/j.oregeorev.2018.10.006_b0250) 1988
Kussul (10.1016/j.oregeorev.2018.10.006_b0145) 2017; 14
Zuo (10.1016/j.oregeorev.2018.10.006_b0385) 2018; 184
Carranza (10.1016/j.oregeorev.2018.10.006_b0030) 2016; 25
Xiong (10.1016/j.oregeorev.2018.10.006_b0315) 2018; 111
Gao (10.1016/j.oregeorev.2018.10.006_b0070) 2016; 75
Carranza (10.1016/j.oregeorev.2018.10.006_b0020) 2015; 71
Zuo (10.1016/j.oregeorev.2018.10.006_b0405) 2009; 101
Zhang (10.1016/j.oregeorev.2018.10.006_b0355) 2015; 65
Xiong (10.1016/j.oregeorev.2018.10.006_b0310) 2017; 82
Kuo (10.1016/j.oregeorev.2018.10.006_b0140) 2016; 692
Hinton (10.1016/j.oregeorev.2018.10.006_b0110) 2002; 14
Larochelle (10.1016/j.oregeorev.2018.10.006_b0155) 2009; 10
McKay (10.1016/j.oregeorev.2018.10.006_b0185) 2016; 25
Hariharan (10.1016/j.oregeorev.2018.10.006_b0100) 2017; 26
Abedi (10.1016/j.oregeorev.2018.10.006_b0005) 2012; 46
Hu (10.1016/j.oregeorev.2018.10.006_b0130) 2014; 2
Gore (10.1016/j.oregeorev.2018.10.006_b0090) 1998; 43
Reichman (10.1016/j.oregeorev.2018.10.006_b0230) 2011; 331
Zhang (10.1016/j.oregeorev.2018.10.006_b0330) 2012; 37
Mao (10.1016/j.oregeorev.2018.10.006_b0190) 2013
Zhang (10.1016/j.oregeorev.2018.10.006_b0325) 2012; 26
Hinton (10.1016/j.oregeorev.2018.10.006_b0115) 2012
Lai (10.1016/j.oregeorev.2018.10.006_b0150) 2014; 30
Wang (10.1016/j.oregeorev.2018.10.006_b0285) 2017; 8
10.1016/j.oregeorev.2018.10.006_b0010
Zhang (10.1016/j.oregeorev.2018.10.006_b0335) 2013; 55
Leite (10.1016/j.oregeorev.2018.10.006_b0165) 2009; 35
Harris (10.1016/j.oregeorev.2018.10.006_b0105) 2003; 12
Han (10.1016/j.oregeorev.2018.10.006_b0095) 1983; 7
Zuo (10.1016/j.oregeorev.2018.10.006_b0380) 2017; 26
Porwal (10.1016/j.oregeorev.2018.10.006_b0220) 2003; 12
Zhou (10.1016/j.oregeorev.2018.10.006_b0370) 2006; 29
References_xml – volume: 32
  start-page: 1
  year: 2006
  end-page: 16
  ident: b0215
  article-title: Bayesian network classifiers for mineral potential mapping
  publication-title: Comput. Geosci.
– volume: 71
  start-page: 777
  year: 2015
  end-page: 787
  ident: b0020
  article-title: Data-driven predictive mapping of gold prospectivity, Baguio district, Philippines: application of random forests algorithm
  publication-title: Ore Geol. Rev.
– volume: 65
  start-page: 266
  year: 2015
  end-page: 284
  ident: b0355
  article-title: Geological features and formation processes of the Makeng Fe deposit, China
  publication-title: Resour. Geol.
– volume: 43
  start-page: 89
  year: 1998
  end-page: 91
  ident: b0090
  article-title: The digital earth: understanding our planet in the 21st century
  publication-title: Aust. Surv.
– volume: 30
  start-page: 1780
  year: 2014
  end-page: 1792
  ident: b0150
  article-title: Petrogeochemical features and zircon LA-ICP-MS U-Pb ages of granite in the Pantian iron ore deposit, Fujian province and their relationship with mineralization
  publication-title: Acta Petrol. Sin.
– volume: 104
  start-page: 663
  year: 2015
  end-page: 682
  ident: b0350
  article-title: The mineralization age of the Makeng Fe deposit, South China: implications from U-Pb and Sm-Nd geochronology
  publication-title: Int. J. Earth Sci.
– volume: 2
  start-page: 1
  year: 2015
  ident: b0205
  article-title: Deep learning applications and challenges in big data analytics
  publication-title: J. Big Data
– volume: 692
  start-page: 164
  year: 2016
  end-page: 180
  ident: b0140
  article-title: Crustal structures from the Wuyi-Yunkai orogen to the Taiwan orogen: the onshore-offshore wide-angle seismic experiments of the TAIGER and ATSEE projects
  publication-title: Tectonophysics
– year: 2018
  ident: b0050
  article-title: Isolation forest as an alternative data-driven mineral prospectivity mapping method with a higher data-processing efficiency
  publication-title: Nat. Resour. Res.
– volume: 123
  year: 2018
  ident: b0245
  article-title: P-wave arrival picking and first-motion polarity determination with deep learning
  publication-title: J. Geophys. Res. Solid Earth
– volume: 59
  start-page: 556
  year: 2016
  end-page: 572
  ident: b0360
  article-title: A comparative study of fuzzy weights of evidence and random forests for mapping mineral prospectivity for skarn-type Fe deposits in the southwestern Fujian metallogenic belt, China
  publication-title: Sci. China Earth Sci.
– volume: 34
  start-page: 1143
  year: 2015
  end-page: 1154
  ident: b0270
  article-title: Characteristics of big geodata and its application to study of minerogenetic regularity and minerogenetic series
  publication-title: Miner. Deposits
– volume: 71
  start-page: 502
  year: 2015
  end-page: 515
  ident: b0395
  article-title: Evaluation of uncertainty in mineral prospectivity mapping due to missing evidence: a case study with skarn-type Fe deposits in Southwestern Fujian Province, China
  publication-title: Ore Geol. Rev.
– volume: 36
  start-page: 886
  year: 2017
  end-page: 890
  ident: b0180
  article-title: Application of integrated geophysical and geochemical data processing to metallogenic target zone quantitative prediction and optimization
  publication-title: Bull. Mineral. Petrol. Geochem.
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: b0125
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– year: 2013
  ident: b0195
  article-title: Big data: a revolution that will transform how we live, work and think
– volume: 25
  start-page: 125
  year: 2016
  end-page: 143
  ident: b0185
  article-title: Comparison of the data-driven Random Forests model and a knowledge-driven method for mineral prospectivity mapping: a case study for gold deposits around the Huritz Group and Nueltin Suite, Nunavut, Canada
  publication-title: Nat. Resour. Res.
– volume: 8
  start-page: 529
  year: 2017
  end-page: 540
  ident: b0285
  article-title: Late Paleozoic to Mesozoic extension in southwestern Fujian Province, South China: geochemical, geochronological and Hf isotopic constraints from basic-intermediate dykes
  publication-title: Geosci. Front.
– volume: 158
  start-page: 9
  year: 2016
  end-page: 18
  ident: b0410
  article-title: Spatial analysis and visualization of exploration geochemical data
  publication-title: Earth Sci. Rev.
– volume: 55
  start-page: 730
  year: 2013
  end-page: 748
  ident: b0335
  article-title: SHRIMP U-Pb zircon geochronology and Nd-Sr isotopic study of the Mamianshan group: implications for the Neoproterozoic tectonic development of southeast China
  publication-title: Int. Geol. Rev.
– volume: 12
  start-page: 241
  year: 2003
  end-page: 255
  ident: b0105
  article-title: A comparative analysis of favourability mappings by weights of evidence probabilistic neural networks, discriminant analysis, and logistic regression
  publication-title: Nat. Resour. Res.
– volume: 29
  start-page: 26
  year: 2006
  end-page: 33
  ident: b0370
  article-title: Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: a response to tectonic evolution
  publication-title: Episodes
– volume: 29
  start-page: 391
  year: 2018
  end-page: 407
  ident: b0290
  article-title: Late mesozoic tectonic evolution of Southwestern Fujian Province, South China: constraints from magnetic fabric, Zircon U-Pb geochronology and structural deformation
  publication-title: J. Earth Sci.
– volume: 75
  start-page: 16
  year: 2016
  end-page: 28
  ident: b0070
  article-title: Mapping mineral prospectivity for Cu polymetallic mineralization in southwest Fujian Province, China
  publication-title: Ore Geol. Rev.
– year: 2012
  ident: b0115
  article-title: A practical guide to training restricted Boltzmann machines
  publication-title: Neural Networks: Tricks of the Trade
– volume: 57
  start-page: 53
  year: 2014
  end-page: 60
  ident: b0345
  article-title: Sr–Nd–Pb isotope systematics of magnetite: implications for the genesis of Makeng Fe deposit, southern China
  publication-title: Ore Geol. Rev.
– volume: 101
  start-page: 225
  year: 2009
  end-page: 235
  ident: b0405
  article-title: Application of singularity mapping technique to identify local anomalies using stream sediment geochemical data, a case study from Gangdese, Tibet, western China
  publication-title: J. Geochem. Explor.
– reference: Agterberg, F.P., Bonham-Carter, G.F., 1999. Logistic regression and weights of evidence modeling in mineral exploration. In: Proceedings of the 28th International Symposium on Applications of Computer in the Mineral Industry (APCOM), Golden, Colorado, pp. 483–490.
– volume: 74
  start-page: 60
  year: 2015
  end-page: 70
  ident: b0025
  article-title: Random forest predictive modeling of mineral prospectivity with small number of prospects and data with missing values in Abra (Philippines)
  publication-title: Comput. Geosci.
– volume: 4
  start-page: 77
  year: 2009
  end-page: 95
  ident: b0065
  article-title: Building an online learning and research environment to enhance use of geospatial data
  publication-title: Int. J. Spatial Data Infrastruct. Res.
– volume: 37
  start-page: 174
  year: 2016
  end-page: 184
  ident: b0175
  article-title: The Metallogenic geomorphic rare earths ore in the eastern nanling region based on DEM data
  publication-title: Acta Geosci. Sin.
– volume: 180
  start-page: 15
  year: 2017
  end-page: 23
  ident: b0200
  article-title: Comparing compositional multivariate outliers with autoencoder networks in anomaly detection at Hamich exploration area, east of Iran
  publication-title: J. Geochem. Explor.
– volume: 4
  start-page: 22
  year: 2016
  end-page: 40
  ident: b0340
  article-title: Deep learning for remote sensing data: a technical tutorial on the state of the art
  publication-title: IEEE Geosci. Remote Sens. Mag.
– volume: 28
  start-page: 1017
  year: 1996
  end-page: 1023
  ident: b0255
  article-title: Application of a feedforward neural network in the search for Kuruko deposits in the Hokuroku district, Japan
  publication-title: Math. Geol.
– volume: 10
  start-page: 1
  year: 2009
  end-page: 40
  ident: b0155
  article-title: Exploring strategies for training deep neural networks
  publication-title: J. Mach. Learn. Res.
– volume: 189
  start-page: 1183
  year: 2012
  end-page: 1202
  ident: b0260
  article-title: Data space reduction, quality assessment and searching of seismograms: autoencoder networks for waveform data
  publication-title: Geophys. J. Int.
– volume: 184
  start-page: 150
  year: 2018
  end-page: 157
  ident: b0385
  article-title: Selection of an elemental association related to mineralization using spatial analysis
  publication-title: J. Geochem. Explor.
– volume: 37
  start-page: 1967
  year: 2011
  end-page: 1975
  ident: b0390
  article-title: Support vector machine: a tool for mapping mineral prospectivity
  publication-title: Comput. Geosci.
– volume: 367
  start-page: 747
  year: 2016
  end-page: 765
  ident: b0275
  article-title: Towards felicitous decision making: an overview on challenges and trends of Big Data
  publication-title: Inf. Sci.
– volume: 26
  start-page: 434
  year: 2012
  end-page: 444
  ident: b0325
  article-title: LA-ICP-MS Zircon U-Pb ages and Hf isotopic compositions of Dayang Granite from Longyan, Fujian Province
  publication-title: Geoscience
– volume: 32
  start-page: 314
  year: 2007
  end-page: 324
  ident: b0055
  article-title: Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China
  publication-title: Ore Geol. Rev.
– volume: 19
  start-page: 171
  year: 2014
  end-page: 209
  ident: b0035
  article-title: Big data: a survey
  publication-title: Mobile Networks Appl.
– volume: 71
  start-page: 804
  year: 2015
  end-page: 818
  ident: b0240
  article-title: Machine learning predictive models for mineral prospectivity: an evaluation of neural networks, random forest, regression trees and support vector machines
  publication-title: Ore Geol. Rev.
– volume: 6
  start-page: 27127
  year: 2016
  ident: b0375
  article-title: A nonlinear controlling function of geological features on magmatic–hydrothermal mineralization
  publication-title: Sci. Rep.
– volume: 26
  start-page: 379
  year: 2017
  end-page: 410
  ident: b0015
  article-title: Natural Resources Research publications on geochemical anomaly and mineral potential mapping, and introduction to the special issue of papers in these fields
  publication-title: Nat. Resour. Res.
– volume: 25
  start-page: 35
  year: 2016
  end-page: 50
  ident: b0030
  article-title: Data-driven predictive modeling of mineral prospectivity using random forests: a case study in Catanduanes Island (Philippines)
  publication-title: Nat. Resour. Res.
– volume: 36
  start-page: 803
  year: 2004
  end-page: 826
  ident: b0210
  article-title: A hybrid neuro-fuzzy model for mineral potential mapping
  publication-title: Math. Geol.
– volume: 7
  start-page: 2094
  year: 2014
  end-page: 2107
  ident: b0045
  article-title: Deep learning-based classification of hyperspectral data
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 122
  start-page: 55
  year: 2012
  end-page: 70
  ident: b0060
  article-title: Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas
  publication-title: J. Geochem. Explor.
– volume: 26
  start-page: 489
  year: 2017
  end-page: 507
  ident: b0100
  article-title: Random forest-based prospectivity modelling of greenfield terrains using sparse deposit data: an example from the tanami region, western Australia
  publication-title: Nat. Resour. Res.
– volume: 28
  start-page: 1336
  year: 2014
  end-page: 1354
  ident: b0235
  article-title: Predictive modelling of gold potential with the integration of multisource information based on random forest: a case study on the Rodalquilar area, Southern Spain
  publication-title: Int. J. Geogr. Inf. Sci.
– year: 2013
  ident: b0190
  article-title: Mesozoic-Cenozoic Magmatism and Mineralization in South China Block (SCB) and Adjacent Region
– volume: 44
  start-page: 450
  year: 2015
  end-page: 468
  ident: b0280
  article-title: Zircon U-Pb geochronology, geochemistry and Hf isotope compositions of the Dayang and Juzhou granites in Longyan, Fujian and their geological implications
  publication-title: Geochimica
– volume: 17
  start-page: 191
  year: 1991
  end-page: 200
  ident: b0225
  article-title: A decision-tree approach to mineral potential mapping in Snow Lake area, Manitoba
  publication-title: Can. J. Remote Sens.
– volume: 26
  start-page: 457
  year: 2017
  end-page: 464
  ident: b0380
  article-title: Machine learning of mineralization-related geochemical anomalies: a review of potential methods
  publication-title: Nat. Resour. Res.
– volume: 82
  start-page: 1
  year: 2017
  end-page: 9
  ident: b0310
  article-title: Effects of misclassification costs on mapping mineral prospectivity
  publication-title: Ore Geol. Rev.
– volume: 27
  start-page: 329
  year: 2008
  end-page: 335
  ident: b0320
  article-title: SHRIMP zircon U-Pb dating of quartz porphyry from Zhongjia tin–polymetallic deposit in Longyan area, Fujian Province, and its geological significance
  publication-title: Miner. Deposits
– volume: 60
  start-page: 99
  year: 1997
  end-page: 113
  ident: b0300
  article-title: Geochemical mapping in China
  publication-title: J. Geochem. Explor.
– volume: 26
  start-page: 813
  year: 2015
  end-page: 820
  ident: b0295
  article-title: Spatial analysis of Fe deposits in Fujian Province, China: implications for mineral exploration
  publication-title: J. Earth Sci.
– volume: 111
  start-page: 18
  year: 2018
  end-page: 25
  ident: b0315
  article-title: GIS-based rare events logistic regression for mineral prospectivity mapping
  publication-title: Comput. Geosci.
– volume: 2
  start-page: 652
  year: 2014
  end-page: 687
  ident: b0130
  article-title: Toward scalable systems for big data analytics: a technology tutorial
  publication-title: IEEE Access
– volume: 35
  start-page: 675
  year: 2009
  end-page: 687
  ident: b0165
  article-title: Probabilistic neural networks applied to mineral potential mapping for platinum group elements in the Serra Leste region, Carajás Mineral Province, Brazil
  publication-title: Comput. Geosci.
– volume: 46
  start-page: 272
  year: 2012
  end-page: 283
  ident: b0005
  article-title: Support vector machine for multi-classification of mineral prospectivity areas
  publication-title: Comput. Geosci.
– volume: 331
  start-page: 703
  year: 2011
  end-page: 705
  ident: b0230
  article-title: Challenges and opportunities of open data in ecology
  publication-title: Science
– volume: 326
  start-page: 269
  year: 2000
  end-page: 287
  ident: b0365
  article-title: Origin of Late Mesozoic igneous rocks in Southeastern China: implications for lithosphere subduction and underplating of mafic magmas
  publication-title: Tectonophysics
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b0160
  article-title: Deep learning
  publication-title: Nature
– volume: 112
  start-page: 112
  year: 2018
  end-page: 120
  ident: b0265
  article-title: Information extraction and knowledge graph construction from geoscience literature
  publication-title: Comput. Geosci.
– volume: 86
  start-page: 75
  year: 2016
  end-page: 82
  ident: b0305
  article-title: Recognition of geochemical anomalies using a deep autoencoder network
  publication-title: Comput. Geosci.
– volume: 7
  start-page: 1
  year: 1983
  end-page: 118
  ident: b0095
  article-title: Geological and geochemical features of submarine volcanic hydrothermal-sedimentary mineralization of Makeng iron deposit, Fujian Province
  publication-title: Bull. Inst. Miner. Deposits Chin. Acad. Geol. Sci.
– volume: 3
  start-page: 47
  year: 1981
  end-page: 69
  ident: b0075
  article-title: Geological characteristics of the Makeng iron deposit of marine volcano-sedimentary origin
  publication-title: Acta Geosci. Sin.
– volume: 45
  start-page: 3706
  year: 2018
  end-page: 3716
  ident: b0135
  article-title: A deep learning algorithm of neural network for the parameterization of typhoon-ocean feedback in typhoon forecast models
  publication-title: Geophys. Res. Lett.
– volume: 14
  start-page: 778
  year: 2017
  end-page: 782
  ident: b0145
  article-title: Deep learning classification of land cover and crop types using remote sensing data
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 71
  start-page: 749
  year: 2015
  end-page: 760
  ident: b0040
  article-title: Mineral potential mapping with a restricted Boltzmann machine
  publication-title: Ore Geol. Rev.
– volume: 1
  start-page: 31
  year: 2008
  end-page: 42
  ident: b0085
  article-title: The use cases of digital earth
  publication-title: Int. J. Digital Earth
– volume: 14
  start-page: 1771
  year: 2002
  end-page: 1800
  ident: b0110
  article-title: Training products of experts by minimizing contrastive divergence
  publication-title: Neural Comput.
– volume: 44
  start-page: 11985
  year: 2017
  end-page: 11993
  ident: b0170
  article-title: Estimating ground-level PM2. 5 by fusing satellite and station observations: a geo-intelligent deep learning approach
  publication-title: Geophys. Res. Lett.
– volume: 37
  start-page: 1217
  year: 2012
  end-page: 1231
  ident: b0330
  article-title: Geochronology of diagenesis and mineralization of the Luoyang iron deposit in Zhangping city, Fujian province and its geological significance
  publication-title: Earth Sci.
– volume: 12
  start-page: 155
  year: 2003
  end-page: 171
  ident: b0220
  article-title: Artificial neural networks for mineral potential mapping
  publication-title: Nat. Resour. Res.
– reference: Glorot, X., Bengio, Y., 2010. Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the thirteenth international conference on artificial intelligence and statistics, pp. 249–256.
– year: 1988
  ident: b0250
  article-title: Learning Representations by Back-propagation Errors
– volume: 27
  start-page: 5
  year: 2018
  end-page: 13
  ident: b0400
  article-title: Big Data Analytics of Identifying Geochemical Anomalies Supported by Machine Learning Methods
  publication-title: Nat. Resour. Res.
– volume: 18
  start-page: 1527
  year: 2006
  end-page: 1554
  ident: b0120
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
– ident: 10.1016/j.oregeorev.2018.10.006_b0010
– year: 2012
  ident: 10.1016/j.oregeorev.2018.10.006_b0115
  article-title: A practical guide to training restricted Boltzmann machines
– volume: 331
  start-page: 703
  year: 2011
  ident: 10.1016/j.oregeorev.2018.10.006_b0230
  article-title: Challenges and opportunities of open data in ecology
  publication-title: Science
  doi: 10.1126/science.1197962
– volume: 26
  start-page: 813
  year: 2015
  ident: 10.1016/j.oregeorev.2018.10.006_b0295
  article-title: Spatial analysis of Fe deposits in Fujian Province, China: implications for mineral exploration
  publication-title: J. Earth Sci.
  doi: 10.1007/s12583-015-0597-9
– volume: 10
  start-page: 1
  year: 2009
  ident: 10.1016/j.oregeorev.2018.10.006_b0155
  article-title: Exploring strategies for training deep neural networks
  publication-title: J. Mach. Learn. Res.
– volume: 36
  start-page: 886
  year: 2017
  ident: 10.1016/j.oregeorev.2018.10.006_b0180
  article-title: Application of integrated geophysical and geochemical data processing to metallogenic target zone quantitative prediction and optimization
  publication-title: Bull. Mineral. Petrol. Geochem.
– year: 1988
  ident: 10.1016/j.oregeorev.2018.10.006_b0250
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.oregeorev.2018.10.006_b0160
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– year: 2018
  ident: 10.1016/j.oregeorev.2018.10.006_b0050
  article-title: Isolation forest as an alternative data-driven mineral prospectivity mapping method with a higher data-processing efficiency
  publication-title: Nat. Resour. Res.
– volume: 32
  start-page: 1
  year: 2006
  ident: 10.1016/j.oregeorev.2018.10.006_b0215
  article-title: Bayesian network classifiers for mineral potential mapping
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2005.03.018
– volume: 55
  start-page: 730
  year: 2013
  ident: 10.1016/j.oregeorev.2018.10.006_b0335
  article-title: SHRIMP U-Pb zircon geochronology and Nd-Sr isotopic study of the Mamianshan group: implications for the Neoproterozoic tectonic development of southeast China
  publication-title: Int. Geol. Rev.
  doi: 10.1080/00206814.2012.734454
– volume: 45
  start-page: 3706
  year: 2018
  ident: 10.1016/j.oregeorev.2018.10.006_b0135
  article-title: A deep learning algorithm of neural network for the parameterization of typhoon-ocean feedback in typhoon forecast models
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2018GL077004
– volume: 43
  start-page: 89
  year: 1998
  ident: 10.1016/j.oregeorev.2018.10.006_b0090
  article-title: The digital earth: understanding our planet in the 21st century
  publication-title: Aust. Surv.
  doi: 10.1080/00050348.1998.10558728
– volume: 35
  start-page: 675
  year: 2009
  ident: 10.1016/j.oregeorev.2018.10.006_b0165
  article-title: Probabilistic neural networks applied to mineral potential mapping for platinum group elements in the Serra Leste region, Carajás Mineral Province, Brazil
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2008.05.003
– volume: 189
  start-page: 1183
  year: 2012
  ident: 10.1016/j.oregeorev.2018.10.006_b0260
  article-title: Data space reduction, quality assessment and searching of seismograms: autoencoder networks for waveform data
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.2012.05429.x
– volume: 74
  start-page: 60
  year: 2015
  ident: 10.1016/j.oregeorev.2018.10.006_b0025
  article-title: Random forest predictive modeling of mineral prospectivity with small number of prospects and data with missing values in Abra (Philippines)
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2014.10.004
– volume: 12
  start-page: 155
  year: 2003
  ident: 10.1016/j.oregeorev.2018.10.006_b0220
  article-title: Artificial neural networks for mineral potential mapping
  publication-title: Nat. Resour. Res.
  doi: 10.1023/A:1025171803637
– volume: 2
  start-page: 1
  year: 2015
  ident: 10.1016/j.oregeorev.2018.10.006_b0205
  article-title: Deep learning applications and challenges in big data analytics
  publication-title: J. Big Data
  doi: 10.1186/s40537-014-0007-7
– volume: 158
  start-page: 9
  year: 2016
  ident: 10.1016/j.oregeorev.2018.10.006_b0410
  article-title: Spatial analysis and visualization of exploration geochemical data
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2016.04.006
– volume: 30
  start-page: 1780
  year: 2014
  ident: 10.1016/j.oregeorev.2018.10.006_b0150
  article-title: Petrogeochemical features and zircon LA-ICP-MS U-Pb ages of granite in the Pantian iron ore deposit, Fujian province and their relationship with mineralization
  publication-title: Acta Petrol. Sin.
– volume: 8
  start-page: 529
  year: 2017
  ident: 10.1016/j.oregeorev.2018.10.006_b0285
  article-title: Late Paleozoic to Mesozoic extension in southwestern Fujian Province, South China: geochemical, geochronological and Hf isotopic constraints from basic-intermediate dykes
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2016.05.005
– volume: 71
  start-page: 502
  year: 2015
  ident: 10.1016/j.oregeorev.2018.10.006_b0395
  article-title: Evaluation of uncertainty in mineral prospectivity mapping due to missing evidence: a case study with skarn-type Fe deposits in Southwestern Fujian Province, China
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2014.09.024
– volume: 14
  start-page: 778
  year: 2017
  ident: 10.1016/j.oregeorev.2018.10.006_b0145
  article-title: Deep learning classification of land cover and crop types using remote sensing data
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2017.2681128
– volume: 25
  start-page: 35
  year: 2016
  ident: 10.1016/j.oregeorev.2018.10.006_b0030
  article-title: Data-driven predictive modeling of mineral prospectivity using random forests: a case study in Catanduanes Island (Philippines)
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-015-9268-x
– volume: 1
  start-page: 31
  year: 2008
  ident: 10.1016/j.oregeorev.2018.10.006_b0085
  article-title: The use cases of digital earth
  publication-title: Int. J. Digital Earth
  doi: 10.1080/17538940701782528
– volume: 27
  start-page: 329
  year: 2008
  ident: 10.1016/j.oregeorev.2018.10.006_b0320
  article-title: SHRIMP zircon U-Pb dating of quartz porphyry from Zhongjia tin–polymetallic deposit in Longyan area, Fujian Province, and its geological significance
  publication-title: Miner. Deposits
– volume: 104
  start-page: 663
  year: 2015
  ident: 10.1016/j.oregeorev.2018.10.006_b0350
  article-title: The mineralization age of the Makeng Fe deposit, South China: implications from U-Pb and Sm-Nd geochronology
  publication-title: Int. J. Earth Sci.
  doi: 10.1007/s00531-014-1096-4
– volume: 59
  start-page: 556
  year: 2016
  ident: 10.1016/j.oregeorev.2018.10.006_b0360
  article-title: A comparative study of fuzzy weights of evidence and random forests for mapping mineral prospectivity for skarn-type Fe deposits in the southwestern Fujian metallogenic belt, China
  publication-title: Sci. China Earth Sci.
  doi: 10.1007/s11430-015-5178-3
– volume: 26
  start-page: 457
  year: 2017
  ident: 10.1016/j.oregeorev.2018.10.006_b0380
  article-title: Machine learning of mineralization-related geochemical anomalies: a review of potential methods
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-017-9345-4
– volume: 313
  start-page: 504
  year: 2006
  ident: 10.1016/j.oregeorev.2018.10.006_b0125
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 184
  start-page: 150
  year: 2018
  ident: 10.1016/j.oregeorev.2018.10.006_b0385
  article-title: Selection of an elemental association related to mineralization using spatial analysis
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2017.10.020
– volume: 19
  start-page: 171
  year: 2014
  ident: 10.1016/j.oregeorev.2018.10.006_b0035
  article-title: Big data: a survey
  publication-title: Mobile Networks Appl.
  doi: 10.1007/s11036-013-0489-0
– volume: 17
  start-page: 191
  year: 1991
  ident: 10.1016/j.oregeorev.2018.10.006_b0225
  article-title: A decision-tree approach to mineral potential mapping in Snow Lake area, Manitoba
  publication-title: Can. J. Remote Sens.
  doi: 10.1080/07038992.1991.10855292
– volume: 65
  start-page: 266
  year: 2015
  ident: 10.1016/j.oregeorev.2018.10.006_b0355
  article-title: Geological features and formation processes of the Makeng Fe deposit, China
  publication-title: Resour. Geol.
  doi: 10.1111/rge.12070
– volume: 57
  start-page: 53
  year: 2014
  ident: 10.1016/j.oregeorev.2018.10.006_b0345
  article-title: Sr–Nd–Pb isotope systematics of magnetite: implications for the genesis of Makeng Fe deposit, southern China
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2013.09.009
– volume: 32
  start-page: 314
  year: 2007
  ident: 10.1016/j.oregeorev.2018.10.006_b0055
  article-title: Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2006.10.002
– volume: 71
  start-page: 804
  year: 2015
  ident: 10.1016/j.oregeorev.2018.10.006_b0240
  article-title: Machine learning predictive models for mineral prospectivity: an evaluation of neural networks, random forest, regression trees and support vector machines
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2015.01.001
– volume: 14
  start-page: 1771
  year: 2002
  ident: 10.1016/j.oregeorev.2018.10.006_b0110
  article-title: Training products of experts by minimizing contrastive divergence
  publication-title: Neural Comput.
  doi: 10.1162/089976602760128018
– volume: 36
  start-page: 803
  year: 2004
  ident: 10.1016/j.oregeorev.2018.10.006_b0210
  article-title: A hybrid neuro-fuzzy model for mineral potential mapping
  publication-title: Math. Geol.
  doi: 10.1023/B:MATG.0000041180.34176.65
– volume: 28
  start-page: 1336
  year: 2014
  ident: 10.1016/j.oregeorev.2018.10.006_b0235
  article-title: Predictive modelling of gold potential with the integration of multisource information based on random forest: a case study on the Rodalquilar area, Southern Spain
  publication-title: Int. J. Geogr. Inf. Sci.
  doi: 10.1080/13658816.2014.885527
– volume: 18
  start-page: 1527
  year: 2006
  ident: 10.1016/j.oregeorev.2018.10.006_b0120
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– volume: 44
  start-page: 11985
  year: 2017
  ident: 10.1016/j.oregeorev.2018.10.006_b0170
  article-title: Estimating ground-level PM2. 5 by fusing satellite and station observations: a geo-intelligent deep learning approach
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2017GL075710
– volume: 326
  start-page: 269
  year: 2000
  ident: 10.1016/j.oregeorev.2018.10.006_b0365
  article-title: Origin of Late Mesozoic igneous rocks in Southeastern China: implications for lithosphere subduction and underplating of mafic magmas
  publication-title: Tectonophysics
  doi: 10.1016/S0040-1951(00)00120-7
– year: 2013
  ident: 10.1016/j.oregeorev.2018.10.006_b0190
– volume: 7
  start-page: 1
  year: 1983
  ident: 10.1016/j.oregeorev.2018.10.006_b0095
  article-title: Geological and geochemical features of submarine volcanic hydrothermal-sedimentary mineralization of Makeng iron deposit, Fujian Province
  publication-title: Bull. Inst. Miner. Deposits Chin. Acad. Geol. Sci.
– volume: 28
  start-page: 1017
  year: 1996
  ident: 10.1016/j.oregeorev.2018.10.006_b0255
  article-title: Application of a feedforward neural network in the search for Kuruko deposits in the Hokuroku district, Japan
  publication-title: Math. Geol.
  doi: 10.1007/BF02068587
– volume: 4
  start-page: 22
  year: 2016
  ident: 10.1016/j.oregeorev.2018.10.006_b0340
  article-title: Deep learning for remote sensing data: a technical tutorial on the state of the art
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2016.2540798
– volume: 46
  start-page: 272
  year: 2012
  ident: 10.1016/j.oregeorev.2018.10.006_b0005
  article-title: Support vector machine for multi-classification of mineral prospectivity areas
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2011.12.014
– volume: 29
  start-page: 26
  year: 2006
  ident: 10.1016/j.oregeorev.2018.10.006_b0370
  article-title: Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: a response to tectonic evolution
  publication-title: Episodes
  doi: 10.18814/epiiugs/2006/v29i1/004
– volume: 25
  start-page: 125
  year: 2016
  ident: 10.1016/j.oregeorev.2018.10.006_b0185
  article-title: Comparison of the data-driven Random Forests model and a knowledge-driven method for mineral prospectivity mapping: a case study for gold deposits around the Huritz Group and Nueltin Suite, Nunavut, Canada
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-015-9274-z
– volume: 82
  start-page: 1
  year: 2017
  ident: 10.1016/j.oregeorev.2018.10.006_b0310
  article-title: Effects of misclassification costs on mapping mineral prospectivity
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2016.11.014
– volume: 37
  start-page: 1217
  year: 2012
  ident: 10.1016/j.oregeorev.2018.10.006_b0330
  article-title: Geochronology of diagenesis and mineralization of the Luoyang iron deposit in Zhangping city, Fujian province and its geological significance
  publication-title: Earth Sci.
– ident: 10.1016/j.oregeorev.2018.10.006_b0080
– volume: 367
  start-page: 747
  year: 2016
  ident: 10.1016/j.oregeorev.2018.10.006_b0275
  article-title: Towards felicitous decision making: an overview on challenges and trends of Big Data
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2016.07.007
– volume: 4
  start-page: 77
  year: 2009
  ident: 10.1016/j.oregeorev.2018.10.006_b0065
  article-title: Building an online learning and research environment to enhance use of geospatial data
  publication-title: Int. J. Spatial Data Infrastruct. Res.
– volume: 3
  start-page: 47
  year: 1981
  ident: 10.1016/j.oregeorev.2018.10.006_b0075
  article-title: Geological characteristics of the Makeng iron deposit of marine volcano-sedimentary origin
  publication-title: Acta Geosci. Sin.
– volume: 37
  start-page: 174
  year: 2016
  ident: 10.1016/j.oregeorev.2018.10.006_b0175
  article-title: The Metallogenic geomorphic rare earths ore in the eastern nanling region based on DEM data
  publication-title: Acta Geosci. Sin.
– volume: 7
  start-page: 2094
  year: 2014
  ident: 10.1016/j.oregeorev.2018.10.006_b0045
  article-title: Deep learning-based classification of hyperspectral data
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2014.2329330
– volume: 2
  start-page: 652
  year: 2014
  ident: 10.1016/j.oregeorev.2018.10.006_b0130
  article-title: Toward scalable systems for big data analytics: a technology tutorial
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2014.2332453
– volume: 122
  start-page: 55
  year: 2012
  ident: 10.1016/j.oregeorev.2018.10.006_b0060
  article-title: Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2012.07.007
– volume: 37
  start-page: 1967
  year: 2011
  ident: 10.1016/j.oregeorev.2018.10.006_b0390
  article-title: Support vector machine: a tool for mapping mineral prospectivity
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2010.09.014
– volume: 111
  start-page: 18
  year: 2018
  ident: 10.1016/j.oregeorev.2018.10.006_b0315
  article-title: GIS-based rare events logistic regression for mineral prospectivity mapping
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2017.10.005
– volume: 29
  start-page: 391
  year: 2018
  ident: 10.1016/j.oregeorev.2018.10.006_b0290
  article-title: Late mesozoic tectonic evolution of Southwestern Fujian Province, South China: constraints from magnetic fabric, Zircon U-Pb geochronology and structural deformation
  publication-title: J. Earth Sci.
  doi: 10.1007/s12583-017-0968-5
– volume: 71
  start-page: 777
  year: 2015
  ident: 10.1016/j.oregeorev.2018.10.006_b0020
  article-title: Data-driven predictive mapping of gold prospectivity, Baguio district, Philippines: application of random forests algorithm
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2014.08.010
– volume: 180
  start-page: 15
  year: 2017
  ident: 10.1016/j.oregeorev.2018.10.006_b0200
  article-title: Comparing compositional multivariate outliers with autoencoder networks in anomaly detection at Hamich exploration area, east of Iran
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2017.05.008
– volume: 60
  start-page: 99
  year: 1997
  ident: 10.1016/j.oregeorev.2018.10.006_b0300
  article-title: Geochemical mapping in China
  publication-title: J. Geochem. Explor.
  doi: 10.1016/S0375-6742(97)00029-0
– volume: 75
  start-page: 16
  year: 2016
  ident: 10.1016/j.oregeorev.2018.10.006_b0070
  article-title: Mapping mineral prospectivity for Cu polymetallic mineralization in southwest Fujian Province, China
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2015.12.005
– volume: 101
  start-page: 225
  year: 2009
  ident: 10.1016/j.oregeorev.2018.10.006_b0405
  article-title: Application of singularity mapping technique to identify local anomalies using stream sediment geochemical data, a case study from Gangdese, Tibet, western China
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2008.08.003
– volume: 71
  start-page: 749
  year: 2015
  ident: 10.1016/j.oregeorev.2018.10.006_b0040
  article-title: Mineral potential mapping with a restricted Boltzmann machine
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2014.08.012
– volume: 123
  year: 2018
  ident: 10.1016/j.oregeorev.2018.10.006_b0245
  article-title: P-wave arrival picking and first-motion polarity determination with deep learning
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1029/2017JB015251
– volume: 44
  start-page: 450
  year: 2015
  ident: 10.1016/j.oregeorev.2018.10.006_b0280
  article-title: Zircon U-Pb geochronology, geochemistry and Hf isotope compositions of the Dayang and Juzhou granites in Longyan, Fujian and their geological implications
  publication-title: Geochimica
– year: 2013
  ident: 10.1016/j.oregeorev.2018.10.006_b0195
– volume: 692
  start-page: 164
  year: 2016
  ident: 10.1016/j.oregeorev.2018.10.006_b0140
  article-title: Crustal structures from the Wuyi-Yunkai orogen to the Taiwan orogen: the onshore-offshore wide-angle seismic experiments of the TAIGER and ATSEE projects
  publication-title: Tectonophysics
  doi: 10.1016/j.tecto.2015.09.014
– volume: 26
  start-page: 434
  year: 2012
  ident: 10.1016/j.oregeorev.2018.10.006_b0325
  article-title: LA-ICP-MS Zircon U-Pb ages and Hf isotopic compositions of Dayang Granite from Longyan, Fujian Province
  publication-title: Geoscience
– volume: 12
  start-page: 241
  year: 2003
  ident: 10.1016/j.oregeorev.2018.10.006_b0105
  article-title: A comparative analysis of favourability mappings by weights of evidence probabilistic neural networks, discriminant analysis, and logistic regression
  publication-title: Nat. Resour. Res.
  doi: 10.1023/B:NARR.0000007804.27450.e8
– volume: 112
  start-page: 112
  year: 2018
  ident: 10.1016/j.oregeorev.2018.10.006_b0265
  article-title: Information extraction and knowledge graph construction from geoscience literature
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2017.12.007
– volume: 26
  start-page: 379
  year: 2017
  ident: 10.1016/j.oregeorev.2018.10.006_b0015
  article-title: Natural Resources Research publications on geochemical anomaly and mineral potential mapping, and introduction to the special issue of papers in these fields
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-017-9348-1
– volume: 86
  start-page: 75
  year: 2016
  ident: 10.1016/j.oregeorev.2018.10.006_b0305
  article-title: Recognition of geochemical anomalies using a deep autoencoder network
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2015.10.006
– volume: 6
  start-page: 27127
  year: 2016
  ident: 10.1016/j.oregeorev.2018.10.006_b0375
  article-title: A nonlinear controlling function of geological features on magmatic–hydrothermal mineralization
  publication-title: Sci. Rep.
  doi: 10.1038/srep27127
– volume: 27
  start-page: 5
  year: 2018
  ident: 10.1016/j.oregeorev.2018.10.006_b0400
  article-title: Big Data Analytics of Identifying Geochemical Anomalies Supported by Machine Learning Methods
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-017-9357-0
– volume: 26
  start-page: 489
  year: 2017
  ident: 10.1016/j.oregeorev.2018.10.006_b0100
  article-title: Random forest-based prospectivity modelling of greenfield terrains using sparse deposit data: an example from the tanami region, western Australia
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-017-9335-6
– volume: 34
  start-page: 1143
  year: 2015
  ident: 10.1016/j.oregeorev.2018.10.006_b0270
  article-title: Characteristics of big geodata and its application to study of minerogenetic regularity and minerogenetic series
  publication-title: Miner. Deposits
SSID ssj0006001
Score 2.5658584
Snippet [Display omitted] •Big data analytics and a deep learning algorithm were used to map mineral prospectivity.•42 geological, geochemical and geophysical...
SourceID osti
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 811
SubjectTerms Big data
Deep learning
GIS
Mapping mineral prospectivity
Title Mapping mineral prospectivity through big data analytics and a deep learning algorithm
URI https://dx.doi.org/10.1016/j.oregeorev.2018.10.006
https://www.osti.gov/biblio/1636788
Volume 102
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8NADLaqIiQYEBQQ5aUbWEMTcnmxIUQpoHbhIbboniWobaqqDCz8duzkWmBADGxJLo4i38WfrXz3GeAktEksY8s9FenMw3oj9FKlrBfpwGQJ1hOiYrv3B3Hvkd8-R88NuFzshSFapYv9dUyvorW70nHe7EyLonNPOiJBGCPiYBjOqj1cnCe0yk8_vmgeBOi1vnfm0d0_OF7lDEvzkpq9IA6mpzXN6zeEapb40X0Dn-4mbLiskV3UL7YFDTNpwfo3LcEWrF5XPXrft-GpL0h0YcjGRSUpzTBIug2VmHIz15mHyWLIiB_KBOmSkFozHmkmmDZmylw3iSETo2E5K-Yv4x147F49XPY81z7BEzzgc8-GieIm1iGWPL5UyqRWpSqRymBSYoU-8_VZJHwpbZjivHAViMAaaSNfc5loHe5Cc1JOzB4wjQOxRDjlmeSkd6OUxC89yugfDlZobYgXLsuV0xanFhejfEEie82Xvs7J1zSAvm6DvzSc1vIaf5ucL-Yk_7FScgSBv40PaBbJkDRyFZGJ0BKTUgTtdP8_jz6ANTqr9ykeQnM-ezNHmLDM5XG1Io9h5eLmrjf4BHje7cw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV25TsNAEB2hIAQUiFOEcwtaExuvL7ooAgI5Gg7RWXsGoySOolDw98zEmwgKREFneTWWNbueNyO_eQNwEdoklrHlnop05mG9EXqpUtaLdGCyBOsJMWe79_px-5k_vEavK9Ba9MIQrdLF_iqmz6O1u9Nw3mxMiqLxSDoiQRgj4mAYzqiHa5XUqaIarDbvO-3-MiATplcS35lHBj9oXuUUq_OS5r0gFKaXFdPrN5CqlfjdfcOf223Ycokja1bvtgMrZrwLm9_kBHdh7W4-pvdzD156gnQXBmxUzFWlGcZJ11OJWTdzw3mYLAaMKKJMkDQJCTbjlWaCaWMmzA2UGDAxHJTTYvY22ofn25unVttzExQ8wQM-82yYKG5iHWLV40ulTGpVqhKpDOYlVugrX19FwpfShiluDVeBCKyRNvI1l4nW4QHUxuXYHALTuBBLRFSeSU6SN0pJ_NijjH7jYJFWh3jhslw5eXGacjHMFzyy93zp65x8TQvo6zr4S8NJpbDxt8n1Yk_yH4clRxz42_iYdpEMSSZXEZ8ILTEvRdxOj_7z6HNYbz_1unn3vt85hg1aqdoWT6A2m36YU8xfZvLMnc8vmljwfQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+mineral+prospectivity+through+big+data+analytics+and+a+deep+learning+algorithm&rft.jtitle=Ore+geology+reviews&rft.au=Xiong%2C+Yihui&rft.au=Zuo%2C+Renguang&rft.au=Carranza%2C+Emmanuel+John+M.&rft.date=2018-11-01&rft.pub=Elsevier&rft.issn=0169-1368&rft.eissn=1872-7360&rft.volume=102&rft.issue=C&rft_id=info:doi/10.1016%2Fj.oregeorev.2018.10.006&rft.externalDocID=1636788
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-1368&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-1368&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-1368&client=summon