Cobalt Complexes as an Emerging Class of Catalysts for Homogeneous Hydrogenations
Conspectus Catalytic hydrogenation using molecular hydrogen represents a green and practical approach for reductions of all kinds of organic chemicals. Traditionally, in the majority of these processes the presence of transition metal catalysts is required. In this regard, noble-metal-based catalyst...
Saved in:
Published in | Accounts of chemical research Vol. 51; no. 8; pp. 1858 - 1869 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
21.08.2018
|
Online Access | Get full text |
Cover
Loading…
Abstract | Conspectus Catalytic hydrogenation using molecular hydrogen represents a green and practical approach for reductions of all kinds of organic chemicals. Traditionally, in the majority of these processes the presence of transition metal catalysts is required. In this regard, noble-metal-based catalysts have largely been implemented, such as the application of iridium, palladium, rhodium, ruthenium, and others. Recently, the employment of earth-abundant 3d metals has emerged to replace the utilization of scarce noble metals because of their availability, lower cost, and often reduced toxicity. In this respect, several cobalt complexes, in the form of either molecularly well-defined or in situ-formed complexes, are receiving increasing attention from the scientific community. Importantly, the stability and reactivity of the complexes have greatly been supported by multidentate ligands under steric and/or electronic influences. For instance, tridentate or tetradentate phosphine ligands indirectly tune the reactivity of the metal center to accelerate the overall process, whereas direct participation of the ligand in pincer-type complexes through ligand–metal cooperation regulates the elementary steps in the catalytic cycle. In this Account, we emphasize specifically the advancements in cobalt-catalyzed hydrogenations using molecular hydrogen accomplished in our group. A variety of substrate classes ranging from simple molecules (e.g., carbon dioxide) to complex compounds were explored under the mild and efficient catalytic conditions. Notable examples include the reduction of carbon dioxide to afford either formates using a Co(BF4)2·6H2O/Tetraphos catalyst system or methanol employing a Co(acac)3/Triphos complex in the presence of HNTf2. As interesting examples of the synthesis of fine chemicals, cobalt-promoted hydrogenations of nitriles to primary amines and reductive alkylations of indoles using carboxylic acids as alkylating agents are highlighted. Moreover, highly selective hydrogenations of N-heteroarenes under additive-free conditions were possible by the application of specific cobalt complexes. More recently, a set of carboxylic esters could be hydrogenated to the corresponding alcohols with high efficiency by the use of a well-defined cobalt–PNP pincer catalyst. In particular, the decent reactivity of cobalt catalysts enabled high selectivity and functional group tolerance to be achieved. Throughout our studies, it was found that the pairing of a suitable cobalt precursor and an appropriate tridentate or tetradentate phosphine ligand plays a crucial role harnessing the desired reactivity, while other monodentate and bidentate phosphine ligands showed no reactivity in these investigations. Our developments could provide supervisory information for the future exploration of cobalt-catalyzed hydrogenation reactions and other types of reactions involving cobalt catalysis. Furthermore, relevant contributions from other groups, remaining challenges, and future perspectives in this research area are also presented. |
---|---|
AbstractList | Conspectus Catalytic hydrogenation using molecular hydrogen represents a green and practical approach for reductions of all kinds of organic chemicals. Traditionally, in the majority of these processes the presence of transition metal catalysts is required. In this regard, noble-metal-based catalysts have largely been implemented, such as the application of iridium, palladium, rhodium, ruthenium, and others. Recently, the employment of earth-abundant 3d metals has emerged to replace the utilization of scarce noble metals because of their availability, lower cost, and often reduced toxicity. In this respect, several cobalt complexes, in the form of either molecularly well-defined or in situ-formed complexes, are receiving increasing attention from the scientific community. Importantly, the stability and reactivity of the complexes have greatly been supported by multidentate ligands under steric and/or electronic influences. For instance, tridentate or tetradentate phosphine ligands indirectly tune the reactivity of the metal center to accelerate the overall process, whereas direct participation of the ligand in pincer-type complexes through ligand–metal cooperation regulates the elementary steps in the catalytic cycle. In this Account, we emphasize specifically the advancements in cobalt-catalyzed hydrogenations using molecular hydrogen accomplished in our group. A variety of substrate classes ranging from simple molecules (e.g., carbon dioxide) to complex compounds were explored under the mild and efficient catalytic conditions. Notable examples include the reduction of carbon dioxide to afford either formates using a Co(BF4)2·6H2O/Tetraphos catalyst system or methanol employing a Co(acac)3/Triphos complex in the presence of HNTf2. As interesting examples of the synthesis of fine chemicals, cobalt-promoted hydrogenations of nitriles to primary amines and reductive alkylations of indoles using carboxylic acids as alkylating agents are highlighted. Moreover, highly selective hydrogenations of N-heteroarenes under additive-free conditions were possible by the application of specific cobalt complexes. More recently, a set of carboxylic esters could be hydrogenated to the corresponding alcohols with high efficiency by the use of a well-defined cobalt–PNP pincer catalyst. In particular, the decent reactivity of cobalt catalysts enabled high selectivity and functional group tolerance to be achieved. Throughout our studies, it was found that the pairing of a suitable cobalt precursor and an appropriate tridentate or tetradentate phosphine ligand plays a crucial role harnessing the desired reactivity, while other monodentate and bidentate phosphine ligands showed no reactivity in these investigations. Our developments could provide supervisory information for the future exploration of cobalt-catalyzed hydrogenation reactions and other types of reactions involving cobalt catalysis. Furthermore, relevant contributions from other groups, remaining challenges, and future perspectives in this research area are also presented. Catalytic hydrogenation using molecular hydrogen represents a green and practical approach for reductions of all kinds of organic chemicals. Traditionally, in the majority of these processes the presence of transition metal catalysts is required. In this regard, noble-metal-based catalysts have largely been implemented, such as the application of iridium, palladium, rhodium, ruthenium, and others. Recently, the employment of earth-abundant 3d metals has emerged to replace the utilization of scarce noble metals because of their availability, lower cost, and often reduced toxicity. In this respect, several cobalt complexes, in the form of either molecularly well-defined or in situ-formed complexes, are receiving increasing attention from the scientific community. Importantly, the stability and reactivity of the complexes have greatly been supported by multidentate ligands under steric and/or electronic influences. For instance, tridentate or tetradentate phosphine ligands indirectly tune the reactivity of the metal center to accelerate the overall process, whereas direct participation of the ligand in pincer-type complexes through ligand-metal cooperation regulates the elementary steps in the catalytic cycle. In this Account, we emphasize specifically the advancements in cobalt-catalyzed hydrogenations using molecular hydrogen accomplished in our group. A variety of substrate classes ranging from simple molecules (e.g., carbon dioxide) to complex compounds were explored under the mild and efficient catalytic conditions. Notable examples include the reduction of carbon dioxide to afford either formates using a Co(BF4)2·6H2O/Tetraphos catalyst system or methanol employing a Co(acac)3/Triphos complex in the presence of HNTf2. As interesting examples of the synthesis of fine chemicals, cobalt-promoted hydrogenations of nitriles to primary amines and reductive alkylations of indoles using carboxylic acids as alkylating agents are highlighted. Moreover, highly selective hydrogenations of N-heteroarenes under additive-free conditions were possible by the application of specific cobalt complexes. More recently, a set of carboxylic esters could be hydrogenated to the corresponding alcohols with high efficiency by the use of a well-defined cobalt-PNP pincer catalyst. In particular, the decent reactivity of cobalt catalysts enabled high selectivity and functional group tolerance to be achieved. Throughout our studies, it was found that the pairing of a suitable cobalt precursor and an appropriate tridentate or tetradentate phosphine ligand plays a crucial role harnessing the desired reactivity, while other monodentate and bidentate phosphine ligands showed no reactivity in these investigations. Our developments could provide supervisory information for the future exploration of cobalt-catalyzed hydrogenation reactions and other types of reactions involving cobalt catalysis. Furthermore, relevant contributions from other groups, remaining challenges, and future perspectives in this research area are also presented.Catalytic hydrogenation using molecular hydrogen represents a green and practical approach for reductions of all kinds of organic chemicals. Traditionally, in the majority of these processes the presence of transition metal catalysts is required. In this regard, noble-metal-based catalysts have largely been implemented, such as the application of iridium, palladium, rhodium, ruthenium, and others. Recently, the employment of earth-abundant 3d metals has emerged to replace the utilization of scarce noble metals because of their availability, lower cost, and often reduced toxicity. In this respect, several cobalt complexes, in the form of either molecularly well-defined or in situ-formed complexes, are receiving increasing attention from the scientific community. Importantly, the stability and reactivity of the complexes have greatly been supported by multidentate ligands under steric and/or electronic influences. For instance, tridentate or tetradentate phosphine ligands indirectly tune the reactivity of the metal center to accelerate the overall process, whereas direct participation of the ligand in pincer-type complexes through ligand-metal cooperation regulates the elementary steps in the catalytic cycle. In this Account, we emphasize specifically the advancements in cobalt-catalyzed hydrogenations using molecular hydrogen accomplished in our group. A variety of substrate classes ranging from simple molecules (e.g., carbon dioxide) to complex compounds were explored under the mild and efficient catalytic conditions. Notable examples include the reduction of carbon dioxide to afford either formates using a Co(BF4)2·6H2O/Tetraphos catalyst system or methanol employing a Co(acac)3/Triphos complex in the presence of HNTf2. As interesting examples of the synthesis of fine chemicals, cobalt-promoted hydrogenations of nitriles to primary amines and reductive alkylations of indoles using carboxylic acids as alkylating agents are highlighted. Moreover, highly selective hydrogenations of N-heteroarenes under additive-free conditions were possible by the application of specific cobalt complexes. More recently, a set of carboxylic esters could be hydrogenated to the corresponding alcohols with high efficiency by the use of a well-defined cobalt-PNP pincer catalyst. In particular, the decent reactivity of cobalt catalysts enabled high selectivity and functional group tolerance to be achieved. Throughout our studies, it was found that the pairing of a suitable cobalt precursor and an appropriate tridentate or tetradentate phosphine ligand plays a crucial role harnessing the desired reactivity, while other monodentate and bidentate phosphine ligands showed no reactivity in these investigations. Our developments could provide supervisory information for the future exploration of cobalt-catalyzed hydrogenation reactions and other types of reactions involving cobalt catalysis. Furthermore, relevant contributions from other groups, remaining challenges, and future perspectives in this research area are also presented. Catalytic hydrogenation using molecular hydrogen represents a green and practical approach for reductions of all kinds of organic chemicals. Traditionally, in the majority of these processes the presence of transition metal catalysts is required. In this regard, noble-metal-based catalysts have largely been implemented, such as the application of iridium, palladium, rhodium, ruthenium, and others. Recently, the employment of earth-abundant 3d metals has emerged to replace the utilization of scarce noble metals because of their availability, lower cost, and often reduced toxicity. In this respect, several cobalt complexes, in the form of either molecularly well-defined or in situ-formed complexes, are receiving increasing attention from the scientific community. Importantly, the stability and reactivity of the complexes have greatly been supported by multidentate ligands under steric and/or electronic influences. For instance, tridentate or tetradentate phosphine ligands indirectly tune the reactivity of the metal center to accelerate the overall process, whereas direct participation of the ligand in pincer-type complexes through ligand-metal cooperation regulates the elementary steps in the catalytic cycle. In this Account, we emphasize specifically the advancements in cobalt-catalyzed hydrogenations using molecular hydrogen accomplished in our group. A variety of substrate classes ranging from simple molecules (e.g., carbon dioxide) to complex compounds were explored under the mild and efficient catalytic conditions. Notable examples include the reduction of carbon dioxide to afford either formates using a Co(BF ) ·6H O/Tetraphos catalyst system or methanol employing a Co(acac) /Triphos complex in the presence of HNTf . As interesting examples of the synthesis of fine chemicals, cobalt-promoted hydrogenations of nitriles to primary amines and reductive alkylations of indoles using carboxylic acids as alkylating agents are highlighted. Moreover, highly selective hydrogenations of N-heteroarenes under additive-free conditions were possible by the application of specific cobalt complexes. More recently, a set of carboxylic esters could be hydrogenated to the corresponding alcohols with high efficiency by the use of a well-defined cobalt-PNP pincer catalyst. In particular, the decent reactivity of cobalt catalysts enabled high selectivity and functional group tolerance to be achieved. Throughout our studies, it was found that the pairing of a suitable cobalt precursor and an appropriate tridentate or tetradentate phosphine ligand plays a crucial role harnessing the desired reactivity, while other monodentate and bidentate phosphine ligands showed no reactivity in these investigations. Our developments could provide supervisory information for the future exploration of cobalt-catalyzed hydrogenation reactions and other types of reactions involving cobalt catalysis. Furthermore, relevant contributions from other groups, remaining challenges, and future perspectives in this research area are also presented. |
Author | Beller, Matthias Sahoo, Basudev Liu, Weiping Junge, Kathrin |
Author_xml | – sequence: 1 givenname: Weiping orcidid: 0000-0002-1064-7276 surname: Liu fullname: Liu, Weiping – sequence: 2 givenname: Basudev orcidid: 0000-0002-9746-9555 surname: Sahoo fullname: Sahoo, Basudev – sequence: 3 givenname: Kathrin surname: Junge fullname: Junge, Kathrin – sequence: 4 givenname: Matthias orcidid: 0000-0001-5709-0965 surname: Beller fullname: Beller, Matthias email: matthias.beller@catalysis.de |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30091891$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkE1LxDAQhoMo7of-A5EcvXSdpF-pNymrKyyIoOcybdKlS9usSQruvzf75cGDQmAyzPMOwzMh573uFSE3DGYMOLvHys6wqvTQOzsTJQBP-BkZs5hDEIlMnJMxADD_j_iITKxd-5ZHSXpJRiFAxkTGxuQt1yW2jua627TqS1mK_vV03imzavoVzVu0luqa5uiw3Vpnaa0NXehOr1Sv9GDpYivNrkHX6N5ekYsaW6uuj3VKPp7m7_kiWL4-v-SPywAjFrmgDnktIJQizlQSq5iHGMch1qikjCXGGSt5GUksy1oKBSnKRElPRpkIMUwhnJK7w96N0Z-Dsq7oGluptsX9VQUHkfotKTCP3h7RoeyULDam6dBsi5MGD0QHoDLaWqPqH4RBsbNdeNvFyXZxtO1jD79iVeP2FpzBpv0vDIfwbrrWg-m9rb8j360Fm2U |
CitedBy_id | crossref_primary_10_1002_adsc_202201346 crossref_primary_10_1002_ejic_202300123 crossref_primary_10_1016_j_ijhydene_2023_10_180 crossref_primary_10_1021_acs_organomet_3c00170 crossref_primary_10_1021_acs_chemrev_8b00555 crossref_primary_10_1016_j_molstruc_2022_132532 crossref_primary_10_1039_D0GC00855A crossref_primary_10_1002_anie_201907457 crossref_primary_10_1038_s41929_019_0404_6 crossref_primary_10_1038_s41467_021_23705_9 crossref_primary_10_1002_adsc_202400267 crossref_primary_10_1016_j_jcat_2020_01_034 crossref_primary_10_1021_acs_orglett_8b03463 crossref_primary_10_1039_D0CS00736F crossref_primary_10_1002_slct_202003607 crossref_primary_10_1016_j_chempr_2019_03_010 crossref_primary_10_3390_molecules25020421 crossref_primary_10_1021_acs_orglett_9b03030 crossref_primary_10_1002_anie_202016705 crossref_primary_10_1002_cctc_202401693 crossref_primary_10_1016_j_molstruc_2022_133512 crossref_primary_10_1021_acscatal_1c03461 crossref_primary_10_1016_j_mcat_2024_114707 crossref_primary_10_1021_acscatal_1c04797 crossref_primary_10_1039_D3NJ00128H crossref_primary_10_1021_acs_chemrev_4c00188 crossref_primary_10_1002_asia_202401433 crossref_primary_10_1039_D2DT01177H crossref_primary_10_3390_catal10070773 crossref_primary_10_1002_ejoc_202100073 crossref_primary_10_1002_cssc_202000576 crossref_primary_10_1002_ange_202002844 crossref_primary_10_1016_j_ica_2024_122445 crossref_primary_10_1038_s41467_023_39375_8 crossref_primary_10_1002_ange_201909928 crossref_primary_10_1002_cctc_202301562 crossref_primary_10_1002_cssc_201901728 crossref_primary_10_1021_jacsau_1c00489 crossref_primary_10_1002_anie_202215882 crossref_primary_10_1002_ange_201916014 crossref_primary_10_1021_acs_organomet_9b00386 crossref_primary_10_1039_D1NJ01442K crossref_primary_10_1002_cctc_202301567 crossref_primary_10_1002_pol_20230760 crossref_primary_10_1039_D2DT00076H crossref_primary_10_1021_acsomega_9b00567 crossref_primary_10_1039_C9SC04534A crossref_primary_10_1002_cctc_202300508 crossref_primary_10_1002_cjoc_201900371 crossref_primary_10_1039_D2SC05274A crossref_primary_10_1039_D1SC06608K crossref_primary_10_1002_ange_202409387 crossref_primary_10_1039_C8SC04346A crossref_primary_10_1016_j_ijhydene_2023_05_291 crossref_primary_10_1021_jacs_4c04239 crossref_primary_10_1002_anie_201811210 crossref_primary_10_1021_acs_joc_3c00445 crossref_primary_10_1038_s41570_021_00289_y crossref_primary_10_1039_D0DT03551C crossref_primary_10_1002_adsc_201900586 crossref_primary_10_1002_ange_202215882 crossref_primary_10_1016_j_tetlet_2021_153362 crossref_primary_10_1021_acscentsci_4c00825 crossref_primary_10_1016_j_ica_2023_121408 crossref_primary_10_1002_chem_201900531 crossref_primary_10_3389_fchem_2022_1034291 crossref_primary_10_1002_ejoc_202400979 crossref_primary_10_1038_s41598_024_80092_z crossref_primary_10_1016_j_ica_2020_120215 crossref_primary_10_1016_j_mcat_2019_110565 crossref_primary_10_1039_D0DT03748F crossref_primary_10_1002_chem_202301174 crossref_primary_10_1002_anie_201903766 crossref_primary_10_1002_chem_201805612 crossref_primary_10_1002_anie_202409387 crossref_primary_10_1039_C8CY02218F crossref_primary_10_1002_ange_201907457 crossref_primary_10_1080_01614940_2024_2340582 crossref_primary_10_1002_ange_201903766 crossref_primary_10_1021_acscatal_4c04492 crossref_primary_10_1002_ange_201811210 crossref_primary_10_1039_D2SC06793E crossref_primary_10_1021_acs_inorgchem_3c02959 crossref_primary_10_1016_j_jcat_2022_11_036 crossref_primary_10_1002_ejoc_202300597 crossref_primary_10_1002_ejic_202000542 crossref_primary_10_1021_acscatal_0c02283 crossref_primary_10_1021_acs_joc_0c02814 crossref_primary_10_3390_catal14010069 crossref_primary_10_1002_ange_202016705 crossref_primary_10_1021_acs_joc_4c01253 crossref_primary_10_1016_j_inoche_2024_112494 crossref_primary_10_1021_acscatal_9b02605 crossref_primary_10_1016_j_mcat_2022_112850 crossref_primary_10_1039_D1CC04002B crossref_primary_10_1016_j_jcat_2025_116011 crossref_primary_10_1021_acs_inorgchem_3c03861 crossref_primary_10_1039_D3CC03078D crossref_primary_10_1039_D3DT02022C crossref_primary_10_1021_acs_organomet_0c00498 crossref_primary_10_1039_D4DT00916A crossref_primary_10_6023_cjoc202105052 crossref_primary_10_1002_anie_201916014 crossref_primary_10_1139_cjc_2020_0352 crossref_primary_10_1002_ejoc_202201376 crossref_primary_10_1021_acs_jpcc_0c09953 crossref_primary_10_1021_acs_organomet_4c00211 crossref_primary_10_1039_C9GC01276A crossref_primary_10_1039_D0GC02819C crossref_primary_10_1002_ange_202311427 crossref_primary_10_1002_anie_202003830 crossref_primary_10_1021_acs_orglett_0c03159 crossref_primary_10_1039_D2QO01386J crossref_primary_10_1021_acssuschemeng_2c05297 crossref_primary_10_6023_A21050236 crossref_primary_10_1021_acs_orglett_0c02905 crossref_primary_10_1002_asia_201901762 crossref_primary_10_1021_jacs_9b09038 crossref_primary_10_1002_chem_202401698 crossref_primary_10_1021_acs_orglett_8b03132 crossref_primary_10_1038_s41570_024_00612_3 crossref_primary_10_1016_j_cclet_2020_02_025 crossref_primary_10_1021_acs_organomet_1c00053 crossref_primary_10_1002_anie_202215963 crossref_primary_10_1016_j_tet_2021_132187 crossref_primary_10_1021_jacs_9b11070 crossref_primary_10_1002_ajoc_202100781 crossref_primary_10_1002_anie_202311427 crossref_primary_10_1016_j_molstruc_2022_133125 crossref_primary_10_1039_D0CC01631D crossref_primary_10_1002_aenm_202200817 crossref_primary_10_1016_j_cclet_2022_08_011 crossref_primary_10_1039_D1RA07266H crossref_primary_10_1134_S1063774523600813 crossref_primary_10_1016_j_checat_2022_03_001 crossref_primary_10_1002_adsc_202200712 crossref_primary_10_3390_catal14090557 crossref_primary_10_1016_j_jcou_2021_101606 crossref_primary_10_1016_j_cclet_2020_09_011 crossref_primary_10_1021_acs_orglett_9b00034 crossref_primary_10_1002_ajoc_202200330 crossref_primary_10_1016_j_jorganchem_2024_123071 crossref_primary_10_1039_D1RA05945A crossref_primary_10_1021_acscatal_9b04882 crossref_primary_10_1002_ange_202215963 crossref_primary_10_1002_aoc_6483 crossref_primary_10_1038_s41467_019_13351_7 crossref_primary_10_1002_anie_202002844 crossref_primary_10_1016_j_tetlet_2021_153047 crossref_primary_10_1021_acs_organomet_2c00379 crossref_primary_10_1002_anie_201909928 crossref_primary_10_1039_C9CY01239G crossref_primary_10_1039_C8FD00162F crossref_primary_10_2174_0113852728295698240220081550 crossref_primary_10_3390_catal14090560 crossref_primary_10_1002_anie_202303433 crossref_primary_10_1039_D2CY00027J crossref_primary_10_3390_ijms24032937 crossref_primary_10_1039_D1QO01552D crossref_primary_10_1016_j_ccr_2019_01_024 crossref_primary_10_1039_C9CY00225A crossref_primary_10_1016_j_cej_2023_144742 crossref_primary_10_1039_D2OB01353C crossref_primary_10_1021_jacs_4c16130 crossref_primary_10_1021_jacs_9b13876 crossref_primary_10_1039_D3CY01044A crossref_primary_10_1515_zkri_2020_0038 crossref_primary_10_1039_D0CY01078B crossref_primary_10_1021_acs_orglett_3c02530 crossref_primary_10_1002_asia_202300758 crossref_primary_10_1007_s11051_024_05991_8 crossref_primary_10_1002_ange_202003830 crossref_primary_10_1016_j_isci_2021_103045 crossref_primary_10_1002_ange_202303433 |
Cites_doi | 10.1039/C7CS00334J 10.1021/acs.accounts.5b00385 10.1021/jacs.7b07368 10.1039/C2CS35228A 10.1126/science.1247240 10.1021/ja00097a065 10.1021/acs.inorgchem.6b00369 10.1021/jacs.7b12183 10.1021/jacs.5b04879 10.1002/anie.200462121 10.1021/ja903574e 10.1021/ja2034377 10.1002/anie.201206051 10.1002/anie.201202320 10.1002/anie.201502418 10.1021/acs.inorgchem.6b01454 10.1126/science.aaa8938 10.1002/anie.201612290 10.1021/acs.chemrev.7b00182 10.1021/ja511329m 10.1126/science.aac7997 10.1002/anie.201308967 10.1021/ja962702n 10.1002/anie.201709010 10.1002/1521-3773(20010105)40:1<40::AID-ANIE40>3.0.CO;2-5 10.1039/C7SC01175J 10.1021/acscatal.7b00116 10.1126/science.1183281 10.1021/acscatal.5b02002 10.1021/op4003278 10.1002/ajoc.201600358 10.1021/ja402679a 10.1002/9783527619191 10.1021/jacs.5b04349 10.1021/acs.accounts.5b00134 10.1002/chem.201705201 10.1021/ja504334a 10.1021/ja408149n 10.1002/anie.201702905 10.1002/anie.201207781 10.1002/cssc.201601843 10.1021/acscatal.7b00623 10.1002/anie.201508575 10.1002/9783527627806 10.1039/C7SC02117H 10.1002/anie.200503771 10.1021/ja00234a041 10.1038/ncomms6933 10.1002/chem.201101343 10.1002/anie.201609077 10.1021/acscentsci.6b00272 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acs.accounts.8b00262 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-4898 |
EndPage | 1869 |
ExternalDocumentID | 30091891 10_1021_acs_accounts_8b00262 d168706515 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 23M 53G 55A 5GY 5VS 7~N 85S AABXI ABFLS ABMVS ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 P2P RNS ROL TWZ UI2 UPT VF5 VG9 W1F WH7 X YZZ --- -DZ -~X 4.4 5ZA 6J9 6P2 AAYXX ABBLG ABJNI ABLBI ABQRX ACGFO ADHLV AFXLT AGXLV AHGAQ CITATION CUPRZ GGK IH2 XSW ZCA ~02 NPM 7X8 |
ID | FETCH-LOGICAL-a414t-f32f803d859e65e523a553afaedd5da591b2b4dabbfd8e07ad6ede654983a3703 |
IEDL.DBID | ACS |
ISSN | 0001-4842 1520-4898 |
IngestDate | Fri Jul 11 08:59:36 EDT 2025 Thu Apr 03 06:59:24 EDT 2025 Tue Jul 01 03:16:01 EDT 2025 Thu Apr 24 23:11:55 EDT 2025 Thu Aug 27 13:42:11 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a414t-f32f803d859e65e523a553afaedd5da591b2b4dabbfd8e07ad6ede654983a3703 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5709-0965 0000-0002-1064-7276 0000-0002-9746-9555 |
PMID | 30091891 |
PQID | 2087591701 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2087591701 pubmed_primary_30091891 crossref_primary_10_1021_acs_accounts_8b00262 crossref_citationtrail_10_1021_acs_accounts_8b00262 acs_journals_10_1021_acs_accounts_8b00262 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-08-21 |
PublicationDateYYYYMMDD | 2018-08-21 |
PublicationDate_xml | – month: 08 year: 2018 text: 2018-08-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Accounts of chemical research |
PublicationTitleAlternate | Acc. Chem. Res |
PublicationYear | 2018 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref17/cit17b ref17/cit17c ref17/cit17d ref27/cit27 ref17/cit17a ref23/cit23 ref8/cit8 de Vries J. G. (ref1/cit1) 2007 ref2/cit2b ref31/cit31 ref2/cit2a ref34/cit34 ref37/cit37 ref5/cit5b ref5/cit5c ref10/cit10 Lawrence S. A. (ref20/cit20) 2004 ref5/cit5a Olah G. A. (ref15/cit15a) 2009 ref35/cit35 ref19/cit19 ref21/cit21 ref3/cit3b ref11/cit11b ref3/cit3a ref11/cit11a ref13/cit13 ref7/cit7b ref7/cit7a ref24/cit24 ref38/cit38 ref36/cit36 ref18/cit18 ref15/cit15b ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref28/cit28 ref40/cit40 ref26/cit26 ref4/cit4a ref4/cit4b ref4/cit4c ref12/cit12 ref41/cit41 ref22/cit22 ref33/cit33 ref6/cit6a ref6/cit6b Weissermel K. (ref16/cit16) 2003 |
References_xml | – ident: ref4/cit4a doi: 10.1039/C7CS00334J – volume-title: Amines: Synthesis, Properties and Applications year: 2004 ident: ref20/cit20 – ident: ref3/cit3a doi: 10.1021/acs.accounts.5b00385 – ident: ref22/cit22 doi: 10.1021/jacs.7b07368 – ident: ref5/cit5b doi: 10.1039/C2CS35228A – ident: ref3/cit3b doi: 10.1126/science.1247240 – ident: ref11/cit11b doi: 10.1021/ja00097a065 – ident: ref6/cit6a doi: 10.1021/acs.inorgchem.6b00369 – ident: ref17/cit17a doi: 10.1021/jacs.7b12183 – ident: ref21/cit21 doi: 10.1021/jacs.5b04879 – ident: ref15/cit15b doi: 10.1002/anie.200462121 – ident: ref9/cit9 doi: 10.1021/ja903574e – ident: ref26/cit26 doi: 10.1021/ja2034377 – ident: ref24/cit24 doi: 10.1002/anie.201206051 – ident: ref17/cit17c doi: 10.1002/anie.201202320 – ident: ref35/cit35 doi: 10.1002/anie.201502418 – ident: ref13/cit13 doi: 10.1021/acs.inorgchem.6b01454 – ident: ref28/cit28 doi: 10.1126/science.aaa8938 – ident: ref41/cit41 doi: 10.1002/anie.201612290 – ident: ref8/cit8 doi: 10.1021/acs.chemrev.7b00182 – ident: ref17/cit17b doi: 10.1021/ja511329m – ident: ref7/cit7a doi: 10.1126/science.aac7997 – ident: ref25/cit25 doi: 10.1002/anie.201308967 – ident: ref11/cit11a doi: 10.1021/ja962702n – ident: ref4/cit4b doi: 10.1002/anie.201709010 – ident: ref2/cit2b doi: 10.1002/1521-3773(20010105)40:1<40::AID-ANIE40>3.0.CO;2-5 – ident: ref39/cit39 doi: 10.1039/C7SC01175J – ident: ref14/cit14 doi: 10.1021/acscatal.7b00116 – volume-title: Handbook of Homogeneous Hydrogenation year: 2007 ident: ref1/cit1 – ident: ref5/cit5c doi: 10.1126/science.1183281 – ident: ref40/cit40 doi: 10.1021/acscatal.5b02002 – ident: ref2/cit2a doi: 10.1021/op4003278 – ident: ref33/cit33 doi: 10.1002/ajoc.201600358 – ident: ref31/cit31 doi: 10.1021/ja402679a – volume-title: Industrial Organic Chemistry year: 2003 ident: ref16/cit16 doi: 10.1002/9783527619191 – ident: ref32/cit32 doi: 10.1021/jacs.5b04349 – ident: ref4/cit4c doi: 10.1021/acs.accounts.5b00134 – ident: ref37/cit37 doi: 10.1002/chem.201705201 – ident: ref6/cit6b doi: 10.1021/ja504334a – ident: ref27/cit27 doi: 10.1021/ja408149n – ident: ref19/cit19 doi: 10.1002/anie.201702905 – ident: ref17/cit17d doi: 10.1002/anie.201207781 – ident: ref23/cit23 doi: 10.1002/cssc.201601843 – ident: ref36/cit36 doi: 10.1021/acscatal.7b00623 – ident: ref38/cit38 doi: 10.1002/anie.201508575 – volume-title: Beyond Oil and Gas: The Methanol Economy year: 2009 ident: ref15/cit15a doi: 10.1002/9783527627806 – ident: ref29/cit29 doi: 10.1039/C7SC02117H – ident: ref34/cit34 doi: 10.1002/anie.200503771 – ident: ref12/cit12 doi: 10.1021/ja00234a041 – ident: ref7/cit7b doi: 10.1038/ncomms6933 – ident: ref10/cit10 doi: 10.1002/chem.201101343 – ident: ref18/cit18 doi: 10.1002/anie.201609077 – ident: ref5/cit5a doi: 10.1021/acscentsci.6b00272 |
SSID | ssj0002467 |
Score | 2.6161673 |
Snippet | Conspectus Catalytic hydrogenation using molecular hydrogen represents a green and practical approach for reductions of all kinds of organic chemicals.... Catalytic hydrogenation using molecular hydrogen represents a green and practical approach for reductions of all kinds of organic chemicals. Traditionally, in... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1858 |
Title | Cobalt Complexes as an Emerging Class of Catalysts for Homogeneous Hydrogenations |
URI | http://dx.doi.org/10.1021/acs.accounts.8b00262 https://www.ncbi.nlm.nih.gov/pubmed/30091891 https://www.proquest.com/docview/2087591701 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6yHvTi-7G-iODFQ9dNmsT0KMVlEVREF7yVtEkurluxXVB_vTN9rKiICr20JIFOJjPfTJJvCDmSAnmz8GSr6otAOOGCKDM2kGnEvAIXH1bl3i6v1HAkLu7l_Ueg-HUHn7MTkxUwdFU5oejpKmgAkzvPFaxjhELx7czycqFqjkwIkYUWvL0q98Mo6JCy4rND-gFlVt5msEyu2zs79SGTh960THvZ23cKxz_-yApZaoAnPas1ZZXMuckaWYjbem_r5CZGapCSooUYuxdXUAPPhGLaCisZ0ap-Js09jTHl81qUBQXES4f5Yw5a6PJpQYev9hlf6jTgBhkNzu_iYdAUXAiMYKIMfMi97odWy8gp6SBGNVKGxhtnrbRGRizlqbAmTb3Vrn9qrHIWWopIhyYE27FJOpN84rYJ1VlfeK0ib1MlMM_KrXDec3CIgIkY65JjkEfSLJgiqfbCOUvwYyukpBFSl4TtDCVZw1yOBTTGv_QKZr2eauaOX9oftpOfgORx38RUsks4sv5HSFzfJVu1VsxGDAGjMh2xnX_8zy5ZBNiFxOABZ3ukUz5P3T5AmzI9qPT5HSF59ZE |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0heqCXtrTQLh-tK_XCIcvasVPniCJQ2gJSBVTcIie2L9BNhbMS9Ncz4ySLWgkhpFxi2ZY9mcyMx_Z7AF-UJNwsOtmazWQinXRJ3hibqDrnPkMXn0a6t5PTrLyQ3y_V5Qqo8S4MDiJgTyFu4j-gC_B9KjM9gUKY6rh2QMv7AuMRQYp9UJwtDbCQWQ-ViStlqaUYb8w90gv5pSb865ceCTaj0zl6Db-Ww41nTa6mi66eNn__Q3J89nzewKshDGUHvd6sw4qbv4W1YmR_ewc_CwIK6RjZi2t36wIz-MwZJbGI14hFNk3WelZQAugudIFh_MvK9neLOunaRWDlnb2hlz4puAEXR4fnRZkM9AuJkVx2iU-F17PUapW7TDlcsRqlUuONs1ZZo3Jei1paU9feajf7amzmLNaUuU5NipZkE1bn7dx9AKabmfQ6y72tM0lZV2Gl816ge8QIifMJ7KE8quH3CVXcGRe8osJRSNUgpAmk44eqmgHHnOg0rp9olSxb_elxPJ6o_3nUgQolT7soJsquEsQBkBOM_QTe98qx7DHFiJXrnG89Yz6fYK08Pzmujr-d_tiGlxiQEWR4IvgOrHY3C7eLQU9Xf4wqfg_J6P3y |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBclhXUv7b6Xbus06EsfnFmy5MqPxVtI9xFW2kDYi5Et6WVdXCoH1v31vZPtsBZCWMEvFpKQzifd6U7-_Qg5lAJxs_BmaxqLSFhho6zSJpJlxlwKJj4JdG_fp-lkJr7M5fwfqi8YhIeefEji46q-Mq5DGGAfsVy3JAp-pML5AXbfbczcoXKf5OerTZiLtIXLhNOyUIL3f82t6QVtU-Xv2qY1DmcwPOM98nM15HDf5Ndo2ZSj6u89NMcHzekJ2e3cUXrS6s9TsmUXz8hO3rPAPSdnOQKGNBT3jUv7x3qq4VlQDGYhvxENrJq0djTHQNCNbzwFP5hO6t816Katl55Obsw1vrTBwRdkNv58kU-ijoYh0oKJJnIJdypOjJKZTaWFk6uWMtFOW2Ok0TJjJS-F0WXpjLLxsTapNVBTZCrRCewoL8lgUS_sa0JVFQun0syZMhUYfeVGWOc4mEnwlBgbkiOQR9EtI1-EDDlnBRb2Qio6IQ1J0n-sourwzJFW43JDq2jV6qrF89hQ_0OvBwVIHrMpOsiu4MgFkCGc_ZC8ahVk1WMCnitTGdv_j_m8J49-fBoX306nX9-Qx-CXIXJ4xNlbMmiul_Yd-D5NeRC0_Bbx4ACE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cobalt+Complexes+as+an+Emerging+Class+of+Catalysts+for+Homogeneous+Hydrogenations&rft.jtitle=Accounts+of+chemical+research&rft.au=Liu%2C+Weiping&rft.au=Sahoo%2C+Basudev&rft.au=Junge%2C+Kathrin&rft.au=Beller%2C+Matthias&rft.date=2018-08-21&rft.issn=0001-4842&rft.eissn=1520-4898&rft.volume=51&rft.issue=8&rft.spage=1858&rft.epage=1869&rft_id=info:doi/10.1021%2Facs.accounts.8b00262&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_accounts_8b00262 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon |