Cobalt Complexes as an Emerging Class of Catalysts for Homogeneous Hydrogenations

Conspectus Catalytic hydrogenation using molecular hydrogen represents a green and practical approach for reductions of all kinds of organic chemicals. Traditionally, in the majority of these processes the presence of transition metal catalysts is required. In this regard, noble-metal-based catalyst...

Full description

Saved in:
Bibliographic Details
Published inAccounts of chemical research Vol. 51; no. 8; pp. 1858 - 1869
Main Authors Liu, Weiping, Sahoo, Basudev, Junge, Kathrin, Beller, Matthias
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 21.08.2018
Online AccessGet full text

Cover

Loading…
Abstract Conspectus Catalytic hydrogenation using molecular hydrogen represents a green and practical approach for reductions of all kinds of organic chemicals. Traditionally, in the majority of these processes the presence of transition metal catalysts is required. In this regard, noble-metal-based catalysts have largely been implemented, such as the application of iridium, palladium, rhodium, ruthenium, and others. Recently, the employment of earth-abundant 3d metals has emerged to replace the utilization of scarce noble metals because of their availability, lower cost, and often reduced toxicity. In this respect, several cobalt complexes, in the form of either molecularly well-defined or in situ-formed complexes, are receiving increasing attention from the scientific community. Importantly, the stability and reactivity of the complexes have greatly been supported by multidentate ligands under steric and/or electronic influences. For instance, tridentate or tetradentate phosphine ligands indirectly tune the reactivity of the metal center to accelerate the overall process, whereas direct participation of the ligand in pincer-type complexes through ligand–metal cooperation regulates the elementary steps in the catalytic cycle. In this Account, we emphasize specifically the advancements in cobalt-catalyzed hydrogenations using molecular hydrogen accomplished in our group. A variety of substrate classes ranging from simple molecules (e.g., carbon dioxide) to complex compounds were explored under the mild and efficient catalytic conditions. Notable examples include the reduction of carbon dioxide to afford either formates using a Co­(BF4)2·6H2O/Tetraphos catalyst system or methanol employing a Co­(acac)3/Triphos complex in the presence of HNTf2. As interesting examples of the synthesis of fine chemicals, cobalt-promoted hydrogenations of nitriles to primary amines and reductive alkylations of indoles using carboxylic acids as alkylating agents are highlighted. Moreover, highly selective hydrogenations of N-heteroarenes under additive-free conditions were possible by the application of specific cobalt complexes. More recently, a set of carboxylic esters could be hydrogenated to the corresponding alcohols with high efficiency by the use of a well-defined cobalt–PNP pincer catalyst. In particular, the decent reactivity of cobalt catalysts enabled high selectivity and functional group tolerance to be achieved. Throughout our studies, it was found that the pairing of a suitable cobalt precursor and an appropriate tridentate or tetradentate phosphine ligand plays a crucial role harnessing the desired reactivity, while other monodentate and bidentate phosphine ligands showed no reactivity in these investigations. Our developments could provide supervisory information for the future exploration of cobalt-catalyzed hydrogenation reactions and other types of reactions involving cobalt catalysis. Furthermore, relevant contributions from other groups, remaining challenges, and future perspectives in this research area are also presented.
AbstractList Conspectus Catalytic hydrogenation using molecular hydrogen represents a green and practical approach for reductions of all kinds of organic chemicals. Traditionally, in the majority of these processes the presence of transition metal catalysts is required. In this regard, noble-metal-based catalysts have largely been implemented, such as the application of iridium, palladium, rhodium, ruthenium, and others. Recently, the employment of earth-abundant 3d metals has emerged to replace the utilization of scarce noble metals because of their availability, lower cost, and often reduced toxicity. In this respect, several cobalt complexes, in the form of either molecularly well-defined or in situ-formed complexes, are receiving increasing attention from the scientific community. Importantly, the stability and reactivity of the complexes have greatly been supported by multidentate ligands under steric and/or electronic influences. For instance, tridentate or tetradentate phosphine ligands indirectly tune the reactivity of the metal center to accelerate the overall process, whereas direct participation of the ligand in pincer-type complexes through ligand–metal cooperation regulates the elementary steps in the catalytic cycle. In this Account, we emphasize specifically the advancements in cobalt-catalyzed hydrogenations using molecular hydrogen accomplished in our group. A variety of substrate classes ranging from simple molecules (e.g., carbon dioxide) to complex compounds were explored under the mild and efficient catalytic conditions. Notable examples include the reduction of carbon dioxide to afford either formates using a Co­(BF4)2·6H2O/Tetraphos catalyst system or methanol employing a Co­(acac)3/Triphos complex in the presence of HNTf2. As interesting examples of the synthesis of fine chemicals, cobalt-promoted hydrogenations of nitriles to primary amines and reductive alkylations of indoles using carboxylic acids as alkylating agents are highlighted. Moreover, highly selective hydrogenations of N-heteroarenes under additive-free conditions were possible by the application of specific cobalt complexes. More recently, a set of carboxylic esters could be hydrogenated to the corresponding alcohols with high efficiency by the use of a well-defined cobalt–PNP pincer catalyst. In particular, the decent reactivity of cobalt catalysts enabled high selectivity and functional group tolerance to be achieved. Throughout our studies, it was found that the pairing of a suitable cobalt precursor and an appropriate tridentate or tetradentate phosphine ligand plays a crucial role harnessing the desired reactivity, while other monodentate and bidentate phosphine ligands showed no reactivity in these investigations. Our developments could provide supervisory information for the future exploration of cobalt-catalyzed hydrogenation reactions and other types of reactions involving cobalt catalysis. Furthermore, relevant contributions from other groups, remaining challenges, and future perspectives in this research area are also presented.
Catalytic hydrogenation using molecular hydrogen represents a green and practical approach for reductions of all kinds of organic chemicals. Traditionally, in the majority of these processes the presence of transition metal catalysts is required. In this regard, noble-metal-based catalysts have largely been implemented, such as the application of iridium, palladium, rhodium, ruthenium, and others. Recently, the employment of earth-abundant 3d metals has emerged to replace the utilization of scarce noble metals because of their availability, lower cost, and often reduced toxicity. In this respect, several cobalt complexes, in the form of either molecularly well-defined or in situ-formed complexes, are receiving increasing attention from the scientific community. Importantly, the stability and reactivity of the complexes have greatly been supported by multidentate ligands under steric and/or electronic influences. For instance, tridentate or tetradentate phosphine ligands indirectly tune the reactivity of the metal center to accelerate the overall process, whereas direct participation of the ligand in pincer-type complexes through ligand-metal cooperation regulates the elementary steps in the catalytic cycle. In this Account, we emphasize specifically the advancements in cobalt-catalyzed hydrogenations using molecular hydrogen accomplished in our group. A variety of substrate classes ranging from simple molecules (e.g., carbon dioxide) to complex compounds were explored under the mild and efficient catalytic conditions. Notable examples include the reduction of carbon dioxide to afford either formates using a Co(BF4)2·6H2O/Tetraphos catalyst system or methanol employing a Co(acac)3/Triphos complex in the presence of HNTf2. As interesting examples of the synthesis of fine chemicals, cobalt-promoted hydrogenations of nitriles to primary amines and reductive alkylations of indoles using carboxylic acids as alkylating agents are highlighted. Moreover, highly selective hydrogenations of N-heteroarenes under additive-free conditions were possible by the application of specific cobalt complexes. More recently, a set of carboxylic esters could be hydrogenated to the corresponding alcohols with high efficiency by the use of a well-defined cobalt-PNP pincer catalyst. In particular, the decent reactivity of cobalt catalysts enabled high selectivity and functional group tolerance to be achieved. Throughout our studies, it was found that the pairing of a suitable cobalt precursor and an appropriate tridentate or tetradentate phosphine ligand plays a crucial role harnessing the desired reactivity, while other monodentate and bidentate phosphine ligands showed no reactivity in these investigations. Our developments could provide supervisory information for the future exploration of cobalt-catalyzed hydrogenation reactions and other types of reactions involving cobalt catalysis. Furthermore, relevant contributions from other groups, remaining challenges, and future perspectives in this research area are also presented.Catalytic hydrogenation using molecular hydrogen represents a green and practical approach for reductions of all kinds of organic chemicals. Traditionally, in the majority of these processes the presence of transition metal catalysts is required. In this regard, noble-metal-based catalysts have largely been implemented, such as the application of iridium, palladium, rhodium, ruthenium, and others. Recently, the employment of earth-abundant 3d metals has emerged to replace the utilization of scarce noble metals because of their availability, lower cost, and often reduced toxicity. In this respect, several cobalt complexes, in the form of either molecularly well-defined or in situ-formed complexes, are receiving increasing attention from the scientific community. Importantly, the stability and reactivity of the complexes have greatly been supported by multidentate ligands under steric and/or electronic influences. For instance, tridentate or tetradentate phosphine ligands indirectly tune the reactivity of the metal center to accelerate the overall process, whereas direct participation of the ligand in pincer-type complexes through ligand-metal cooperation regulates the elementary steps in the catalytic cycle. In this Account, we emphasize specifically the advancements in cobalt-catalyzed hydrogenations using molecular hydrogen accomplished in our group. A variety of substrate classes ranging from simple molecules (e.g., carbon dioxide) to complex compounds were explored under the mild and efficient catalytic conditions. Notable examples include the reduction of carbon dioxide to afford either formates using a Co(BF4)2·6H2O/Tetraphos catalyst system or methanol employing a Co(acac)3/Triphos complex in the presence of HNTf2. As interesting examples of the synthesis of fine chemicals, cobalt-promoted hydrogenations of nitriles to primary amines and reductive alkylations of indoles using carboxylic acids as alkylating agents are highlighted. Moreover, highly selective hydrogenations of N-heteroarenes under additive-free conditions were possible by the application of specific cobalt complexes. More recently, a set of carboxylic esters could be hydrogenated to the corresponding alcohols with high efficiency by the use of a well-defined cobalt-PNP pincer catalyst. In particular, the decent reactivity of cobalt catalysts enabled high selectivity and functional group tolerance to be achieved. Throughout our studies, it was found that the pairing of a suitable cobalt precursor and an appropriate tridentate or tetradentate phosphine ligand plays a crucial role harnessing the desired reactivity, while other monodentate and bidentate phosphine ligands showed no reactivity in these investigations. Our developments could provide supervisory information for the future exploration of cobalt-catalyzed hydrogenation reactions and other types of reactions involving cobalt catalysis. Furthermore, relevant contributions from other groups, remaining challenges, and future perspectives in this research area are also presented.
Catalytic hydrogenation using molecular hydrogen represents a green and practical approach for reductions of all kinds of organic chemicals. Traditionally, in the majority of these processes the presence of transition metal catalysts is required. In this regard, noble-metal-based catalysts have largely been implemented, such as the application of iridium, palladium, rhodium, ruthenium, and others. Recently, the employment of earth-abundant 3d metals has emerged to replace the utilization of scarce noble metals because of their availability, lower cost, and often reduced toxicity. In this respect, several cobalt complexes, in the form of either molecularly well-defined or in situ-formed complexes, are receiving increasing attention from the scientific community. Importantly, the stability and reactivity of the complexes have greatly been supported by multidentate ligands under steric and/or electronic influences. For instance, tridentate or tetradentate phosphine ligands indirectly tune the reactivity of the metal center to accelerate the overall process, whereas direct participation of the ligand in pincer-type complexes through ligand-metal cooperation regulates the elementary steps in the catalytic cycle. In this Account, we emphasize specifically the advancements in cobalt-catalyzed hydrogenations using molecular hydrogen accomplished in our group. A variety of substrate classes ranging from simple molecules (e.g., carbon dioxide) to complex compounds were explored under the mild and efficient catalytic conditions. Notable examples include the reduction of carbon dioxide to afford either formates using a Co(BF ) ·6H O/Tetraphos catalyst system or methanol employing a Co(acac) /Triphos complex in the presence of HNTf . As interesting examples of the synthesis of fine chemicals, cobalt-promoted hydrogenations of nitriles to primary amines and reductive alkylations of indoles using carboxylic acids as alkylating agents are highlighted. Moreover, highly selective hydrogenations of N-heteroarenes under additive-free conditions were possible by the application of specific cobalt complexes. More recently, a set of carboxylic esters could be hydrogenated to the corresponding alcohols with high efficiency by the use of a well-defined cobalt-PNP pincer catalyst. In particular, the decent reactivity of cobalt catalysts enabled high selectivity and functional group tolerance to be achieved. Throughout our studies, it was found that the pairing of a suitable cobalt precursor and an appropriate tridentate or tetradentate phosphine ligand plays a crucial role harnessing the desired reactivity, while other monodentate and bidentate phosphine ligands showed no reactivity in these investigations. Our developments could provide supervisory information for the future exploration of cobalt-catalyzed hydrogenation reactions and other types of reactions involving cobalt catalysis. Furthermore, relevant contributions from other groups, remaining challenges, and future perspectives in this research area are also presented.
Author Beller, Matthias
Sahoo, Basudev
Liu, Weiping
Junge, Kathrin
Author_xml – sequence: 1
  givenname: Weiping
  orcidid: 0000-0002-1064-7276
  surname: Liu
  fullname: Liu, Weiping
– sequence: 2
  givenname: Basudev
  orcidid: 0000-0002-9746-9555
  surname: Sahoo
  fullname: Sahoo, Basudev
– sequence: 3
  givenname: Kathrin
  surname: Junge
  fullname: Junge, Kathrin
– sequence: 4
  givenname: Matthias
  orcidid: 0000-0001-5709-0965
  surname: Beller
  fullname: Beller, Matthias
  email: matthias.beller@catalysis.de
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30091891$$D View this record in MEDLINE/PubMed
BookMark eNqFkE1LxDAQhoMo7of-A5EcvXSdpF-pNymrKyyIoOcybdKlS9usSQruvzf75cGDQmAyzPMOwzMh573uFSE3DGYMOLvHys6wqvTQOzsTJQBP-BkZs5hDEIlMnJMxADD_j_iITKxd-5ZHSXpJRiFAxkTGxuQt1yW2jua627TqS1mK_vV03imzavoVzVu0luqa5uiw3Vpnaa0NXehOr1Sv9GDpYivNrkHX6N5ekYsaW6uuj3VKPp7m7_kiWL4-v-SPywAjFrmgDnktIJQizlQSq5iHGMch1qikjCXGGSt5GUksy1oKBSnKRElPRpkIMUwhnJK7w96N0Z-Dsq7oGluptsX9VQUHkfotKTCP3h7RoeyULDam6dBsi5MGD0QHoDLaWqPqH4RBsbNdeNvFyXZxtO1jD79iVeP2FpzBpv0vDIfwbrrWg-m9rb8j360Fm2U
CitedBy_id crossref_primary_10_1002_adsc_202201346
crossref_primary_10_1002_ejic_202300123
crossref_primary_10_1016_j_ijhydene_2023_10_180
crossref_primary_10_1021_acs_organomet_3c00170
crossref_primary_10_1021_acs_chemrev_8b00555
crossref_primary_10_1016_j_molstruc_2022_132532
crossref_primary_10_1039_D0GC00855A
crossref_primary_10_1002_anie_201907457
crossref_primary_10_1038_s41929_019_0404_6
crossref_primary_10_1038_s41467_021_23705_9
crossref_primary_10_1002_adsc_202400267
crossref_primary_10_1016_j_jcat_2020_01_034
crossref_primary_10_1021_acs_orglett_8b03463
crossref_primary_10_1039_D0CS00736F
crossref_primary_10_1002_slct_202003607
crossref_primary_10_1016_j_chempr_2019_03_010
crossref_primary_10_3390_molecules25020421
crossref_primary_10_1021_acs_orglett_9b03030
crossref_primary_10_1002_anie_202016705
crossref_primary_10_1002_cctc_202401693
crossref_primary_10_1016_j_molstruc_2022_133512
crossref_primary_10_1021_acscatal_1c03461
crossref_primary_10_1016_j_mcat_2024_114707
crossref_primary_10_1021_acscatal_1c04797
crossref_primary_10_1039_D3NJ00128H
crossref_primary_10_1021_acs_chemrev_4c00188
crossref_primary_10_1002_asia_202401433
crossref_primary_10_1039_D2DT01177H
crossref_primary_10_3390_catal10070773
crossref_primary_10_1002_ejoc_202100073
crossref_primary_10_1002_cssc_202000576
crossref_primary_10_1002_ange_202002844
crossref_primary_10_1016_j_ica_2024_122445
crossref_primary_10_1038_s41467_023_39375_8
crossref_primary_10_1002_ange_201909928
crossref_primary_10_1002_cctc_202301562
crossref_primary_10_1002_cssc_201901728
crossref_primary_10_1021_jacsau_1c00489
crossref_primary_10_1002_anie_202215882
crossref_primary_10_1002_ange_201916014
crossref_primary_10_1021_acs_organomet_9b00386
crossref_primary_10_1039_D1NJ01442K
crossref_primary_10_1002_cctc_202301567
crossref_primary_10_1002_pol_20230760
crossref_primary_10_1039_D2DT00076H
crossref_primary_10_1021_acsomega_9b00567
crossref_primary_10_1039_C9SC04534A
crossref_primary_10_1002_cctc_202300508
crossref_primary_10_1002_cjoc_201900371
crossref_primary_10_1039_D2SC05274A
crossref_primary_10_1039_D1SC06608K
crossref_primary_10_1002_ange_202409387
crossref_primary_10_1039_C8SC04346A
crossref_primary_10_1016_j_ijhydene_2023_05_291
crossref_primary_10_1021_jacs_4c04239
crossref_primary_10_1002_anie_201811210
crossref_primary_10_1021_acs_joc_3c00445
crossref_primary_10_1038_s41570_021_00289_y
crossref_primary_10_1039_D0DT03551C
crossref_primary_10_1002_adsc_201900586
crossref_primary_10_1002_ange_202215882
crossref_primary_10_1016_j_tetlet_2021_153362
crossref_primary_10_1021_acscentsci_4c00825
crossref_primary_10_1016_j_ica_2023_121408
crossref_primary_10_1002_chem_201900531
crossref_primary_10_3389_fchem_2022_1034291
crossref_primary_10_1002_ejoc_202400979
crossref_primary_10_1038_s41598_024_80092_z
crossref_primary_10_1016_j_ica_2020_120215
crossref_primary_10_1016_j_mcat_2019_110565
crossref_primary_10_1039_D0DT03748F
crossref_primary_10_1002_chem_202301174
crossref_primary_10_1002_anie_201903766
crossref_primary_10_1002_chem_201805612
crossref_primary_10_1002_anie_202409387
crossref_primary_10_1039_C8CY02218F
crossref_primary_10_1002_ange_201907457
crossref_primary_10_1080_01614940_2024_2340582
crossref_primary_10_1002_ange_201903766
crossref_primary_10_1021_acscatal_4c04492
crossref_primary_10_1002_ange_201811210
crossref_primary_10_1039_D2SC06793E
crossref_primary_10_1021_acs_inorgchem_3c02959
crossref_primary_10_1016_j_jcat_2022_11_036
crossref_primary_10_1002_ejoc_202300597
crossref_primary_10_1002_ejic_202000542
crossref_primary_10_1021_acscatal_0c02283
crossref_primary_10_1021_acs_joc_0c02814
crossref_primary_10_3390_catal14010069
crossref_primary_10_1002_ange_202016705
crossref_primary_10_1021_acs_joc_4c01253
crossref_primary_10_1016_j_inoche_2024_112494
crossref_primary_10_1021_acscatal_9b02605
crossref_primary_10_1016_j_mcat_2022_112850
crossref_primary_10_1039_D1CC04002B
crossref_primary_10_1016_j_jcat_2025_116011
crossref_primary_10_1021_acs_inorgchem_3c03861
crossref_primary_10_1039_D3CC03078D
crossref_primary_10_1039_D3DT02022C
crossref_primary_10_1021_acs_organomet_0c00498
crossref_primary_10_1039_D4DT00916A
crossref_primary_10_6023_cjoc202105052
crossref_primary_10_1002_anie_201916014
crossref_primary_10_1139_cjc_2020_0352
crossref_primary_10_1002_ejoc_202201376
crossref_primary_10_1021_acs_jpcc_0c09953
crossref_primary_10_1021_acs_organomet_4c00211
crossref_primary_10_1039_C9GC01276A
crossref_primary_10_1039_D0GC02819C
crossref_primary_10_1002_ange_202311427
crossref_primary_10_1002_anie_202003830
crossref_primary_10_1021_acs_orglett_0c03159
crossref_primary_10_1039_D2QO01386J
crossref_primary_10_1021_acssuschemeng_2c05297
crossref_primary_10_6023_A21050236
crossref_primary_10_1021_acs_orglett_0c02905
crossref_primary_10_1002_asia_201901762
crossref_primary_10_1021_jacs_9b09038
crossref_primary_10_1002_chem_202401698
crossref_primary_10_1021_acs_orglett_8b03132
crossref_primary_10_1038_s41570_024_00612_3
crossref_primary_10_1016_j_cclet_2020_02_025
crossref_primary_10_1021_acs_organomet_1c00053
crossref_primary_10_1002_anie_202215963
crossref_primary_10_1016_j_tet_2021_132187
crossref_primary_10_1021_jacs_9b11070
crossref_primary_10_1002_ajoc_202100781
crossref_primary_10_1002_anie_202311427
crossref_primary_10_1016_j_molstruc_2022_133125
crossref_primary_10_1039_D0CC01631D
crossref_primary_10_1002_aenm_202200817
crossref_primary_10_1016_j_cclet_2022_08_011
crossref_primary_10_1039_D1RA07266H
crossref_primary_10_1134_S1063774523600813
crossref_primary_10_1016_j_checat_2022_03_001
crossref_primary_10_1002_adsc_202200712
crossref_primary_10_3390_catal14090557
crossref_primary_10_1016_j_jcou_2021_101606
crossref_primary_10_1016_j_cclet_2020_09_011
crossref_primary_10_1021_acs_orglett_9b00034
crossref_primary_10_1002_ajoc_202200330
crossref_primary_10_1016_j_jorganchem_2024_123071
crossref_primary_10_1039_D1RA05945A
crossref_primary_10_1021_acscatal_9b04882
crossref_primary_10_1002_ange_202215963
crossref_primary_10_1002_aoc_6483
crossref_primary_10_1038_s41467_019_13351_7
crossref_primary_10_1002_anie_202002844
crossref_primary_10_1016_j_tetlet_2021_153047
crossref_primary_10_1021_acs_organomet_2c00379
crossref_primary_10_1002_anie_201909928
crossref_primary_10_1039_C9CY01239G
crossref_primary_10_1039_C8FD00162F
crossref_primary_10_2174_0113852728295698240220081550
crossref_primary_10_3390_catal14090560
crossref_primary_10_1002_anie_202303433
crossref_primary_10_1039_D2CY00027J
crossref_primary_10_3390_ijms24032937
crossref_primary_10_1039_D1QO01552D
crossref_primary_10_1016_j_ccr_2019_01_024
crossref_primary_10_1039_C9CY00225A
crossref_primary_10_1016_j_cej_2023_144742
crossref_primary_10_1039_D2OB01353C
crossref_primary_10_1021_jacs_4c16130
crossref_primary_10_1021_jacs_9b13876
crossref_primary_10_1039_D3CY01044A
crossref_primary_10_1515_zkri_2020_0038
crossref_primary_10_1039_D0CY01078B
crossref_primary_10_1021_acs_orglett_3c02530
crossref_primary_10_1002_asia_202300758
crossref_primary_10_1007_s11051_024_05991_8
crossref_primary_10_1002_ange_202003830
crossref_primary_10_1016_j_isci_2021_103045
crossref_primary_10_1002_ange_202303433
Cites_doi 10.1039/C7CS00334J
10.1021/acs.accounts.5b00385
10.1021/jacs.7b07368
10.1039/C2CS35228A
10.1126/science.1247240
10.1021/ja00097a065
10.1021/acs.inorgchem.6b00369
10.1021/jacs.7b12183
10.1021/jacs.5b04879
10.1002/anie.200462121
10.1021/ja903574e
10.1021/ja2034377
10.1002/anie.201206051
10.1002/anie.201202320
10.1002/anie.201502418
10.1021/acs.inorgchem.6b01454
10.1126/science.aaa8938
10.1002/anie.201612290
10.1021/acs.chemrev.7b00182
10.1021/ja511329m
10.1126/science.aac7997
10.1002/anie.201308967
10.1021/ja962702n
10.1002/anie.201709010
10.1002/1521-3773(20010105)40:1<40::AID-ANIE40>3.0.CO;2-5
10.1039/C7SC01175J
10.1021/acscatal.7b00116
10.1126/science.1183281
10.1021/acscatal.5b02002
10.1021/op4003278
10.1002/ajoc.201600358
10.1021/ja402679a
10.1002/9783527619191
10.1021/jacs.5b04349
10.1021/acs.accounts.5b00134
10.1002/chem.201705201
10.1021/ja504334a
10.1021/ja408149n
10.1002/anie.201702905
10.1002/anie.201207781
10.1002/cssc.201601843
10.1021/acscatal.7b00623
10.1002/anie.201508575
10.1002/9783527627806
10.1039/C7SC02117H
10.1002/anie.200503771
10.1021/ja00234a041
10.1038/ncomms6933
10.1002/chem.201101343
10.1002/anie.201609077
10.1021/acscentsci.6b00272
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acs.accounts.8b00262
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-4898
EndPage 1869
ExternalDocumentID 30091891
10_1021_acs_accounts_8b00262
d168706515
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
23M
53G
55A
5GY
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
RNS
ROL
TWZ
UI2
UPT
VF5
VG9
W1F
WH7
X
YZZ
---
-DZ
-~X
4.4
5ZA
6J9
6P2
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
AFXLT
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
ZCA
~02
NPM
7X8
ID FETCH-LOGICAL-a414t-f32f803d859e65e523a553afaedd5da591b2b4dabbfd8e07ad6ede654983a3703
IEDL.DBID ACS
ISSN 0001-4842
1520-4898
IngestDate Fri Jul 11 08:59:36 EDT 2025
Thu Apr 03 06:59:24 EDT 2025
Tue Jul 01 03:16:01 EDT 2025
Thu Apr 24 23:11:55 EDT 2025
Thu Aug 27 13:42:11 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a414t-f32f803d859e65e523a553afaedd5da591b2b4dabbfd8e07ad6ede654983a3703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5709-0965
0000-0002-1064-7276
0000-0002-9746-9555
PMID 30091891
PQID 2087591701
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2087591701
pubmed_primary_30091891
crossref_primary_10_1021_acs_accounts_8b00262
crossref_citationtrail_10_1021_acs_accounts_8b00262
acs_journals_10_1021_acs_accounts_8b00262
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-08-21
PublicationDateYYYYMMDD 2018-08-21
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-21
  day: 21
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Accounts of chemical research
PublicationTitleAlternate Acc. Chem. Res
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref17/cit17b
ref17/cit17c
ref17/cit17d
ref27/cit27
ref17/cit17a
ref23/cit23
ref8/cit8
de Vries J. G. (ref1/cit1) 2007
ref2/cit2b
ref31/cit31
ref2/cit2a
ref34/cit34
ref37/cit37
ref5/cit5b
ref5/cit5c
ref10/cit10
Lawrence S. A. (ref20/cit20) 2004
ref5/cit5a
Olah G. A. (ref15/cit15a) 2009
ref35/cit35
ref19/cit19
ref21/cit21
ref3/cit3b
ref11/cit11b
ref3/cit3a
ref11/cit11a
ref13/cit13
ref7/cit7b
ref7/cit7a
ref24/cit24
ref38/cit38
ref36/cit36
ref18/cit18
ref15/cit15b
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref28/cit28
ref40/cit40
ref26/cit26
ref4/cit4a
ref4/cit4b
ref4/cit4c
ref12/cit12
ref41/cit41
ref22/cit22
ref33/cit33
ref6/cit6a
ref6/cit6b
Weissermel K. (ref16/cit16) 2003
References_xml – ident: ref4/cit4a
  doi: 10.1039/C7CS00334J
– volume-title: Amines: Synthesis, Properties and Applications
  year: 2004
  ident: ref20/cit20
– ident: ref3/cit3a
  doi: 10.1021/acs.accounts.5b00385
– ident: ref22/cit22
  doi: 10.1021/jacs.7b07368
– ident: ref5/cit5b
  doi: 10.1039/C2CS35228A
– ident: ref3/cit3b
  doi: 10.1126/science.1247240
– ident: ref11/cit11b
  doi: 10.1021/ja00097a065
– ident: ref6/cit6a
  doi: 10.1021/acs.inorgchem.6b00369
– ident: ref17/cit17a
  doi: 10.1021/jacs.7b12183
– ident: ref21/cit21
  doi: 10.1021/jacs.5b04879
– ident: ref15/cit15b
  doi: 10.1002/anie.200462121
– ident: ref9/cit9
  doi: 10.1021/ja903574e
– ident: ref26/cit26
  doi: 10.1021/ja2034377
– ident: ref24/cit24
  doi: 10.1002/anie.201206051
– ident: ref17/cit17c
  doi: 10.1002/anie.201202320
– ident: ref35/cit35
  doi: 10.1002/anie.201502418
– ident: ref13/cit13
  doi: 10.1021/acs.inorgchem.6b01454
– ident: ref28/cit28
  doi: 10.1126/science.aaa8938
– ident: ref41/cit41
  doi: 10.1002/anie.201612290
– ident: ref8/cit8
  doi: 10.1021/acs.chemrev.7b00182
– ident: ref17/cit17b
  doi: 10.1021/ja511329m
– ident: ref7/cit7a
  doi: 10.1126/science.aac7997
– ident: ref25/cit25
  doi: 10.1002/anie.201308967
– ident: ref11/cit11a
  doi: 10.1021/ja962702n
– ident: ref4/cit4b
  doi: 10.1002/anie.201709010
– ident: ref2/cit2b
  doi: 10.1002/1521-3773(20010105)40:1<40::AID-ANIE40>3.0.CO;2-5
– ident: ref39/cit39
  doi: 10.1039/C7SC01175J
– ident: ref14/cit14
  doi: 10.1021/acscatal.7b00116
– volume-title: Handbook of Homogeneous Hydrogenation
  year: 2007
  ident: ref1/cit1
– ident: ref5/cit5c
  doi: 10.1126/science.1183281
– ident: ref40/cit40
  doi: 10.1021/acscatal.5b02002
– ident: ref2/cit2a
  doi: 10.1021/op4003278
– ident: ref33/cit33
  doi: 10.1002/ajoc.201600358
– ident: ref31/cit31
  doi: 10.1021/ja402679a
– volume-title: Industrial Organic Chemistry
  year: 2003
  ident: ref16/cit16
  doi: 10.1002/9783527619191
– ident: ref32/cit32
  doi: 10.1021/jacs.5b04349
– ident: ref4/cit4c
  doi: 10.1021/acs.accounts.5b00134
– ident: ref37/cit37
  doi: 10.1002/chem.201705201
– ident: ref6/cit6b
  doi: 10.1021/ja504334a
– ident: ref27/cit27
  doi: 10.1021/ja408149n
– ident: ref19/cit19
  doi: 10.1002/anie.201702905
– ident: ref17/cit17d
  doi: 10.1002/anie.201207781
– ident: ref23/cit23
  doi: 10.1002/cssc.201601843
– ident: ref36/cit36
  doi: 10.1021/acscatal.7b00623
– ident: ref38/cit38
  doi: 10.1002/anie.201508575
– volume-title: Beyond Oil and Gas: The Methanol Economy
  year: 2009
  ident: ref15/cit15a
  doi: 10.1002/9783527627806
– ident: ref29/cit29
  doi: 10.1039/C7SC02117H
– ident: ref34/cit34
  doi: 10.1002/anie.200503771
– ident: ref12/cit12
  doi: 10.1021/ja00234a041
– ident: ref7/cit7b
  doi: 10.1038/ncomms6933
– ident: ref10/cit10
  doi: 10.1002/chem.201101343
– ident: ref18/cit18
  doi: 10.1002/anie.201609077
– ident: ref5/cit5a
  doi: 10.1021/acscentsci.6b00272
SSID ssj0002467
Score 2.6161673
Snippet Conspectus Catalytic hydrogenation using molecular hydrogen represents a green and practical approach for reductions of all kinds of organic chemicals....
Catalytic hydrogenation using molecular hydrogen represents a green and practical approach for reductions of all kinds of organic chemicals. Traditionally, in...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1858
Title Cobalt Complexes as an Emerging Class of Catalysts for Homogeneous Hydrogenations
URI http://dx.doi.org/10.1021/acs.accounts.8b00262
https://www.ncbi.nlm.nih.gov/pubmed/30091891
https://www.proquest.com/docview/2087591701
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6yHvTi-7G-iODFQ9dNmsT0KMVlEVREF7yVtEkurluxXVB_vTN9rKiICr20JIFOJjPfTJJvCDmSAnmz8GSr6otAOOGCKDM2kGnEvAIXH1bl3i6v1HAkLu7l_Ueg-HUHn7MTkxUwdFU5oejpKmgAkzvPFaxjhELx7czycqFqjkwIkYUWvL0q98Mo6JCy4rND-gFlVt5msEyu2zs79SGTh960THvZ23cKxz_-yApZaoAnPas1ZZXMuckaWYjbem_r5CZGapCSooUYuxdXUAPPhGLaCisZ0ap-Js09jTHl81qUBQXES4f5Yw5a6PJpQYev9hlf6jTgBhkNzu_iYdAUXAiMYKIMfMi97odWy8gp6SBGNVKGxhtnrbRGRizlqbAmTb3Vrn9qrHIWWopIhyYE27FJOpN84rYJ1VlfeK0ib1MlMM_KrXDec3CIgIkY65JjkEfSLJgiqfbCOUvwYyukpBFSl4TtDCVZw1yOBTTGv_QKZr2eauaOX9oftpOfgORx38RUsks4sv5HSFzfJVu1VsxGDAGjMh2xnX_8zy5ZBNiFxOABZ3ukUz5P3T5AmzI9qPT5HSF59ZE
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0heqCXtrTQLh-tK_XCIcvasVPniCJQ2gJSBVTcIie2L9BNhbMS9Ncz4ySLWgkhpFxi2ZY9mcyMx_Z7AF-UJNwsOtmazWQinXRJ3hibqDrnPkMXn0a6t5PTrLyQ3y_V5Qqo8S4MDiJgTyFu4j-gC_B9KjM9gUKY6rh2QMv7AuMRQYp9UJwtDbCQWQ-ViStlqaUYb8w90gv5pSb865ceCTaj0zl6Db-Ww41nTa6mi66eNn__Q3J89nzewKshDGUHvd6sw4qbv4W1YmR_ewc_CwIK6RjZi2t36wIz-MwZJbGI14hFNk3WelZQAugudIFh_MvK9neLOunaRWDlnb2hlz4puAEXR4fnRZkM9AuJkVx2iU-F17PUapW7TDlcsRqlUuONs1ZZo3Jei1paU9feajf7amzmLNaUuU5NipZkE1bn7dx9AKabmfQ6y72tM0lZV2Gl816ge8QIifMJ7KE8quH3CVXcGRe8osJRSNUgpAmk44eqmgHHnOg0rp9olSxb_elxPJ6o_3nUgQolT7soJsquEsQBkBOM_QTe98qx7DHFiJXrnG89Yz6fYK08Pzmujr-d_tiGlxiQEWR4IvgOrHY3C7eLQU9Xf4wqfg_J6P3y
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBclhXUv7b6Xbus06EsfnFmy5MqPxVtI9xFW2kDYi5Et6WVdXCoH1v31vZPtsBZCWMEvFpKQzifd6U7-_Qg5lAJxs_BmaxqLSFhho6zSJpJlxlwKJj4JdG_fp-lkJr7M5fwfqi8YhIeefEji46q-Mq5DGGAfsVy3JAp-pML5AXbfbczcoXKf5OerTZiLtIXLhNOyUIL3f82t6QVtU-Xv2qY1DmcwPOM98nM15HDf5Ndo2ZSj6u89NMcHzekJ2e3cUXrS6s9TsmUXz8hO3rPAPSdnOQKGNBT3jUv7x3qq4VlQDGYhvxENrJq0djTHQNCNbzwFP5hO6t816Katl55Obsw1vrTBwRdkNv58kU-ijoYh0oKJJnIJdypOjJKZTaWFk6uWMtFOW2Ok0TJjJS-F0WXpjLLxsTapNVBTZCrRCewoL8lgUS_sa0JVFQun0syZMhUYfeVGWOc4mEnwlBgbkiOQR9EtI1-EDDlnBRb2Qio6IQ1J0n-sourwzJFW43JDq2jV6qrF89hQ_0OvBwVIHrMpOsiu4MgFkCGc_ZC8ahVk1WMCnitTGdv_j_m8J49-fBoX306nX9-Qx-CXIXJ4xNlbMmiul_Yd-D5NeRC0_Bbx4ACE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cobalt+Complexes+as+an+Emerging+Class+of+Catalysts+for+Homogeneous+Hydrogenations&rft.jtitle=Accounts+of+chemical+research&rft.au=Liu%2C+Weiping&rft.au=Sahoo%2C+Basudev&rft.au=Junge%2C+Kathrin&rft.au=Beller%2C+Matthias&rft.date=2018-08-21&rft.issn=0001-4842&rft.eissn=1520-4898&rft.volume=51&rft.issue=8&rft.spage=1858&rft.epage=1869&rft_id=info:doi/10.1021%2Facs.accounts.8b00262&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_accounts_8b00262
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon