Crossover Experiments Applied to Network Formation Reactions: Improved Strategies for Counting Elastically Inactive Molecular Defects in PEG Gels and Hyperbranched Polymers
Molecular defects critically impact the properties of materials. Here we introduce a paradigm called “isotopic labeling disassembly spectrometry” (ILDaS) that facilitates unprecedented precise experimental correlations between elastically inactive network defects (dangling chains and primary loops)...
Saved in:
Published in | Journal of the American Chemical Society Vol. 136; no. 26; pp. 9464 - 9470 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
02.07.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Molecular defects critically impact the properties of materials. Here we introduce a paradigm called “isotopic labeling disassembly spectrometry” (ILDaS) that facilitates unprecedented precise experimental correlations between elastically inactive network defects (dangling chains and primary loops) and network formation kinetics and precursor structure. ILDaS is inspired by classical crossover experiments, which are often used to interrogate whether a reaction mechanism proceeds via an inter- or intramolecular pathway. We show that if networks are designed from labeled bifunctional monomers that transfer their labels to multifunctional junctions upon network formation, then the extent of junction labeling correlates directly with the number of dangling chains and cyclic imperfections within the network. We demonstrate two complementary ILDaS approaches that enable defect measurements with short analysis times, low cost, and synthetic versatility applicable to a broad range of network materials including polydisperse polymer precursors. The results will spur new experimental and theoretical investigations into the interplay between polymer network structure and properties. |
---|---|
AbstractList | Molecular defects critically impact the properties of materials. Here we introduce a paradigm called "isotopic labeling disassembly spectrometry" (ILDaS) that facilitates unprecedented precise experimental correlations between elastically inactive network defects (dangling chains and primary loops) and network formation kinetics and precursor structure. ILDaS is inspired by classical crossover experiments, which are often used to interrogate whether a reaction mechanism proceeds via an inter- or intramolecular pathway. We show that if networks are designed from labeled bifunctional monomers that transfer their labels to multifunctional junctions upon network formation, then the extent of junction labeling correlates directly with the number of dangling chains and cyclic imperfections within the network. We demonstrate two complementary ILDaS approaches that enable defect measurements with short analysis times, low cost, and synthetic versatility applicable to a broad range of network materials including polydisperse polymer precursors. The results will spur new experimental and theoretical investigations into the interplay between polymer network structure and properties.Molecular defects critically impact the properties of materials. Here we introduce a paradigm called "isotopic labeling disassembly spectrometry" (ILDaS) that facilitates unprecedented precise experimental correlations between elastically inactive network defects (dangling chains and primary loops) and network formation kinetics and precursor structure. ILDaS is inspired by classical crossover experiments, which are often used to interrogate whether a reaction mechanism proceeds via an inter- or intramolecular pathway. We show that if networks are designed from labeled bifunctional monomers that transfer their labels to multifunctional junctions upon network formation, then the extent of junction labeling correlates directly with the number of dangling chains and cyclic imperfections within the network. We demonstrate two complementary ILDaS approaches that enable defect measurements with short analysis times, low cost, and synthetic versatility applicable to a broad range of network materials including polydisperse polymer precursors. The results will spur new experimental and theoretical investigations into the interplay between polymer network structure and properties. Molecular defects critically impact the properties of materials. Here we introduce a paradigm called “isotopic labeling disassembly spectrometry” (ILDaS) that facilitates unprecedented precise experimental correlations between elastically inactive network defects (dangling chains and primary loops) and network formation kinetics and precursor structure. ILDaS is inspired by classical crossover experiments, which are often used to interrogate whether a reaction mechanism proceeds via an inter- or intramolecular pathway. We show that if networks are designed from labeled bifunctional monomers that transfer their labels to multifunctional junctions upon network formation, then the extent of junction labeling correlates directly with the number of dangling chains and cyclic imperfections within the network. We demonstrate two complementary ILDaS approaches that enable defect measurements with short analysis times, low cost, and synthetic versatility applicable to a broad range of network materials including polydisperse polymer precursors. The results will spur new experimental and theoretical investigations into the interplay between polymer network structure and properties. |
Author | Glassman, Matthew J Zhou, Huaxing Díaz Díaz, David Olsen, Bradley D Zhong, Mingjiang Liu, Jenny Wang, Muzhou Schön, Eva-Maria Johnson, Jeremiah A |
AuthorAffiliation | Department of Chemistry Massachusetts Institute of Technology Department of Chemical Engineering Universität Regensburg Institut für Organische Chemie, Fakul tät für Chemie und Pharmazie |
AuthorAffiliation_xml | – name: Department of Chemical Engineering – name: Department of Chemistry – name: Massachusetts Institute of Technology – name: Universität Regensburg – name: Institut für Organische Chemie, Fakul tät für Chemie und Pharmazie |
Author_xml | – sequence: 1 givenname: Huaxing surname: Zhou fullname: Zhou, Huaxing – sequence: 2 givenname: Eva-Maria surname: Schön fullname: Schön, Eva-Maria – sequence: 3 givenname: Muzhou surname: Wang fullname: Wang, Muzhou – sequence: 4 givenname: Matthew J surname: Glassman fullname: Glassman, Matthew J – sequence: 5 givenname: Jenny surname: Liu fullname: Liu, Jenny – sequence: 6 givenname: Mingjiang surname: Zhong fullname: Zhong, Mingjiang – sequence: 7 givenname: David surname: Díaz Díaz fullname: Díaz Díaz, David – sequence: 8 givenname: Bradley D surname: Olsen fullname: Olsen, Bradley D – sequence: 9 givenname: Jeremiah A surname: Johnson fullname: Johnson, Jeremiah A email: jaj2109@mit.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24933318$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAUhS1URKeFBS-AvEGCRah_MzG7aphORypQ8bOOHOemZHDs1HZK5536kHiYlgWqxMq2_J1z7XOO0IHzDhB6Sck7Shg92WhJBOOVfIJmVDJSSMrKAzQjhLBiXpX8EB3FuMlHwSr6DB0yoTjntJqhu0XwMfobCHh5O0LoB3Ap4tNxtD20OHn8CdIvH37iMx8GnXrv8BfQZreJ7_F6GEMWt_hrCjrBVQ8Rdz7ghZ9c6t0VXlodU2-0tVu8djvdDeCP3oKZrA74A3Rg8rze4cvlCq_ARqxdi8-3-S1N0M78yOaX3m4HCPE5etppG-HF_XqMvp8tvy3Oi4vPq_Xi9KLQgopUgKzmSklQrARQLSe0bIzoRNkJBm1j1LzrTKMqogQvtWrzrexUqyshJdFNy4_Rm71v_tz1BDHVQx8NWKsd-CnWLCfJBVeE_RelUrBSMlnxjL66R6dmgLYec9g6bOuHMjJwsgfMrpMAXW369CfyHG5va0rqXd3137qz4u0_igfTx9jXe1abWG_8FFyO8BHuN-EMuFo |
CitedBy_id | crossref_primary_10_1021_acs_accounts_6b00454 crossref_primary_10_1021_acsmacrolett_6b00857 crossref_primary_10_1039_C8SC00495A crossref_primary_10_1002_ange_202107161 crossref_primary_10_1002_masy_201900010 crossref_primary_10_1002_nadc_201590289 crossref_primary_10_1103_PhysRevLett_116_188302 crossref_primary_10_1073_pnas_1620985114 crossref_primary_10_1021_acsmacrolett_9b00721 crossref_primary_10_1021_acs_macromol_7b01829 crossref_primary_10_1002_anie_202314120 crossref_primary_10_1021_acsmacrolett_5b00608 crossref_primary_10_1002_ange_201902900 crossref_primary_10_1021_acsmacrolett_7b00586 crossref_primary_10_1002_ange_202113872 crossref_primary_10_1039_C9PY00447E crossref_primary_10_1093_nsr_nwaa128 crossref_primary_10_1002_ange_201913297 crossref_primary_10_1021_acs_chemrev_5b00671 crossref_primary_10_1021_acs_macromol_8b01676 crossref_primary_10_1021_acsmacrolett_3c00619 crossref_primary_10_1021_acs_macromol_8b01630 crossref_primary_10_1103_PhysRevLett_119_267801 crossref_primary_10_1021_acsbiomaterials_7b00830 crossref_primary_10_1002_adma_202307129 crossref_primary_10_1021_jacs_0c00759 crossref_primary_10_1021_acs_macromol_9b01489 crossref_primary_10_1002_polb_24750 crossref_primary_10_1016_j_polymer_2016_07_064 crossref_primary_10_1016_j_eurpolymj_2017_09_039 crossref_primary_10_1039_C9SC01297D crossref_primary_10_1016_j_polymer_2015_10_061 crossref_primary_10_1038_s43586_021_00028_z crossref_primary_10_1002_mats_201600076 crossref_primary_10_1021_acs_macromol_3c00849 crossref_primary_10_3390_polym9040145 crossref_primary_10_1039_C6PY00986G crossref_primary_10_1021_acs_macromol_6b01607 crossref_primary_10_1002_anie_201913297 crossref_primary_10_1016_j_polymer_2015_10_018 crossref_primary_10_1039_C9PY01021A crossref_primary_10_1021_jacs_2c09623 crossref_primary_10_1039_C8SM02093K crossref_primary_10_1002_adfm_202000639 crossref_primary_10_1016_j_trechm_2019_02_017 crossref_primary_10_1002_marc_202400058 crossref_primary_10_1002_anie_202113872 crossref_primary_10_1021_acsmacrolett_5b00221 crossref_primary_10_1002_masy_201600170 crossref_primary_10_1002_ange_202314120 crossref_primary_10_1021_acs_biomac_6b00990 crossref_primary_10_1021_acsmacrolett_3c00006 crossref_primary_10_1021_acs_macromol_4c01143 crossref_primary_10_1080_10601325_2021_1969947 crossref_primary_10_1063_5_0198388 crossref_primary_10_1007_s10965_017_1352_y crossref_primary_10_1021_acs_macromol_5b02243 crossref_primary_10_1016_j_commatsci_2022_111315 crossref_primary_10_1021_acs_macromol_6b01912 crossref_primary_10_1039_D4PY00912F crossref_primary_10_1039_D3PY00914A crossref_primary_10_1007_s10965_019_1737_1 crossref_primary_10_1021_jacs_2c08104 crossref_primary_10_1021_acs_macromol_8b01014 crossref_primary_10_1021_acs_macromol_3c00831 crossref_primary_10_1039_C8SC05480K crossref_primary_10_1021_acs_jpcb_9b11378 crossref_primary_10_1039_C9PY00909D crossref_primary_10_1002_anie_202107161 crossref_primary_10_1021_acs_chemrev_0c01304 crossref_primary_10_1021_acs_macromol_6b01107 crossref_primary_10_1039_C8SC01798K crossref_primary_10_1039_D0SM01371D crossref_primary_10_1002_anie_201902900 crossref_primary_10_1039_D1PY01547H crossref_primary_10_1021_acsmacrolett_4c00428 crossref_primary_10_1039_D4SC00417E crossref_primary_10_1021_acs_macromol_0c01038 crossref_primary_10_1063_1_4993649 crossref_primary_10_1021_acsmacrolett_8b00008 crossref_primary_10_1038_nchem_2390 crossref_primary_10_1126_science_aag0184 crossref_primary_10_1021_acs_jpcb_6b05183 crossref_primary_10_1038_s41428_022_00650_y crossref_primary_10_1016_j_mtbio_2022_100356 |
Cites_doi | 10.1021/ma062776b 10.1007/s00289-006-0614-3 10.1073/pnas.1304496110 10.1002/apmc.1996.052400104 10.1038/nmat1573 10.1021/ma052567b 10.1126/science.1215309 10.1038/nature09024 10.1002/masy.200351027 10.1073/pnas.0737381100 10.1063/1.1379573 10.1002/pen.760272209 10.1021/ma60037a012 10.1021/ma049025z 10.1002/masy.201300008 10.1073/pnas.1213169109 10.1038/nature06669 10.1021/ma000132c 10.1021/ma201847v 10.1002/anie.201003888 10.1021/ma800476x 10.1126/science.1212648 10.1038/nature11223 10.1002/pen.760190409 10.1021/bm4000508 10.1038/nature08693 10.1002/pi.4980090207 10.1021/ma048803k 10.1002/macp.1972.021520124 10.1002/anie.201207966 10.1126/science.1065879 10.1021/ja0612910 10.1002/adfm.201202034 10.1039/f19757101292 10.1063/1.481264 10.1021/cm980256s 10.1126/science.1110505 10.1039/b924290b 10.1021/ma300317z 10.1021/ma401588v 10.1021/ja01525a060 10.1002/actp.1988.010390113 |
ContentType | Journal Article |
Copyright | Copyright © 2014 American Chemical Society |
Copyright_xml | – notice: Copyright © 2014 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/ja5042385 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 9470 |
ExternalDocumentID | 24933318 10_1021_ja5042385 b442894383 |
Genre | Journal Article |
GroupedDBID | - .K2 02 4.4 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ EJD ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TAF TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 NPM 7X8 AAYWT 7S9 L.6 |
ID | FETCH-LOGICAL-a414t-e587995e926ee9d3016bc4f46f42edbc97ffcb9809436a9d6bc5f9da84550abd3 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Thu Jul 10 23:21:24 EDT 2025 Sun Aug 24 04:05:55 EDT 2025 Thu Apr 03 07:05:10 EDT 2025 Thu Apr 24 23:00:49 EDT 2025 Tue Jul 01 04:33:00 EDT 2025 Thu Aug 27 13:42:32 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 26 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a414t-e587995e926ee9d3016bc4f46f42edbc97ffcb9809436a9d6bc5f9da84550abd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 24933318 |
PQID | 1542652583 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2000343902 proquest_miscellaneous_1542652583 pubmed_primary_24933318 crossref_citationtrail_10_1021_ja5042385 crossref_primary_10_1021_ja5042385 acs_journals_10_1021_ja5042385 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-07-02 |
PublicationDateYYYYMMDD | 2014-07-02 |
PublicationDate_xml | – month: 07 year: 2014 text: 2014-07-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2014 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Saalwachter K. (ref24/cit24) 2004; 37 Scott T. F. (ref46/cit46) 2005; 308 Olsen B. D. (ref21/cit21) 2013; 110 Alge D. L. (ref40/cit40) 2013; 14 Cail J. I. (ref14/cit14) 2007; 58 Stepto R. F. T. (ref44/cit44) 1988; 39 Gilra N. (ref33/cit33) 2000; 112 Winter H. H. (ref43/cit43) 1987; 27 Stanford J. L. (ref28/cit28) 1977; 9 Glassman M. J. (ref11/cit11) 2013; 23 Wang Q. (ref6/cit6) 2010; 463 Stepto R. F. T. (ref31/cit31) 1972; 152 Amamoto Y. (ref47/cit47) 2011; 50 Saalwachter K. (ref22/cit22) 2007; 40 Shen W. (ref45/cit45) 2006; 5 Gong J. P. (ref7/cit7) 2010; 6 Zhou H. (ref25/cit25) 2012; 109 Stadler F. J. (ref20/cit20) 2013; 110 He X. M. (ref9/cit9) 2012; 487 Samiullah M. H. (ref19/cit19) 2013; 46 Anslyn E. V. (ref39/cit39) 2006 Flory P. J. (ref13/cit13) 1953 Zhou H. X. (ref12/cit12) 2013; 52 Saalwachter K. (ref23/cit23) 2006; 39 Rankin S. E. (ref35/cit35) 1998; 10 Stepto R. F. T. (ref30/cit30) 2003; 200 Cok A. M. (ref42/cit42) 2013; 319 Lutolf M. P. (ref2/cit2) 2003; 100 Lang M. (ref15/cit15) 2012; 45 Tonelli A. E. (ref38/cit38) 1996; 6 Miller D. R. (ref36/cit36) 1979; 19 Tonelli A. E. (ref37/cit37) 1974; 7 Lv S. (ref5/cit5) 2010; 465 Rankin S. E. (ref17/cit17) 2000; 33 Stanford J. L. (ref29/cit29) 1975; 71 Montarnal D. (ref8/cit8) 2011; 334 Cordier P. (ref4/cit4) 2008; 451 Johnson J. A. (ref18/cit18) 2006; 128 Carboni R. A. (ref41/cit41) 1959; 81 Chen X. X. (ref1/cit1) 2002; 295 Sakai T. (ref3/cit3) 2008; 41 Lang M. (ref34/cit34) 2005; 38 Lange F. (ref16/cit16) 2011; 44 Gilra N. (ref32/cit32) 2001; 115 Stepto R. F. T. (ref27/cit27) 1988 Dutton S. (ref26/cit26) 1996; 240 Kim J. (ref10/cit10) 2012; 335 |
References_xml | – volume: 40 start-page: 1555 year: 2007 ident: ref22/cit22 publication-title: Macromolecules doi: 10.1021/ma062776b – volume: 58 start-page: 15 year: 2007 ident: ref14/cit14 publication-title: Polym. Bull. doi: 10.1007/s00289-006-0614-3 – volume-title: Principles of Polymer Chemistry year: 1953 ident: ref13/cit13 – volume: 110 start-page: E1973 year: 2013 ident: ref21/cit21 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1304496110 – volume: 240 start-page: 39 year: 1996 ident: ref26/cit26 publication-title: Angew. Makromol. Chem. doi: 10.1002/apmc.1996.052400104 – volume: 5 start-page: 153 year: 2006 ident: ref45/cit45 publication-title: Nat. Mater. doi: 10.1038/nmat1573 – start-page: 153 year: 1988 ident: ref27/cit27 publication-title: Biol. Synth. Polym. Networks – volume: 39 start-page: 3291 year: 2006 ident: ref23/cit23 publication-title: Macromolecules doi: 10.1021/ma052567b – volume: 335 start-page: 1201 year: 2012 ident: ref10/cit10 publication-title: Science doi: 10.1126/science.1215309 – volume: 465 start-page: 69 year: 2010 ident: ref5/cit5 publication-title: Nature doi: 10.1038/nature09024 – volume: 200 start-page: 255 year: 2003 ident: ref30/cit30 publication-title: Macromol. Symp. doi: 10.1002/masy.200351027 – volume: 100 start-page: 5413 year: 2003 ident: ref2/cit2 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0737381100 – volume: 115 start-page: 1100 year: 2001 ident: ref32/cit32 publication-title: J. Chem. Phys. doi: 10.1063/1.1379573 – volume: 27 start-page: 1698 year: 1987 ident: ref43/cit43 publication-title: Polym. Eng. Sci. doi: 10.1002/pen.760272209 – volume: 7 start-page: 59 year: 1974 ident: ref37/cit37 publication-title: Macromolecules doi: 10.1021/ma60037a012 – volume: 38 start-page: 2515 year: 2005 ident: ref34/cit34 publication-title: Macromolecules doi: 10.1021/ma049025z – volume: 319 start-page: 108 year: 2013 ident: ref42/cit42 publication-title: Macromol. Symp. doi: 10.1002/masy.201300008 – volume: 109 start-page: 19119 year: 2012 ident: ref25/cit25 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1213169109 – volume: 451 start-page: 977 year: 2008 ident: ref4/cit4 publication-title: Nature doi: 10.1038/nature06669 – volume: 33 start-page: 7639 year: 2000 ident: ref17/cit17 publication-title: Macromolecules doi: 10.1021/ma000132c – volume: 44 start-page: 9666 year: 2011 ident: ref16/cit16 publication-title: Macromolecules doi: 10.1021/ma201847v – volume: 50 start-page: 1660 year: 2011 ident: ref47/cit47 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201003888 – volume: 41 start-page: 5379 year: 2008 ident: ref3/cit3 publication-title: Macromolecules doi: 10.1021/ma800476x – volume: 334 start-page: 965 year: 2011 ident: ref8/cit8 publication-title: Science doi: 10.1126/science.1212648 – volume: 110 start-page: E1972 year: 2013 ident: ref20/cit20 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 487 start-page: 214 year: 2012 ident: ref9/cit9 publication-title: Nature doi: 10.1038/nature11223 – volume: 6 start-page: 103 year: 1996 ident: ref38/cit38 publication-title: Comput. Theor. Polym. Sci. – volume: 19 start-page: 272 year: 1979 ident: ref36/cit36 publication-title: Polym. Eng. Sci. doi: 10.1002/pen.760190409 – volume: 14 start-page: 949 year: 2013 ident: ref40/cit40 publication-title: Biomacromolecules doi: 10.1021/bm4000508 – volume: 463 start-page: 339 year: 2010 ident: ref6/cit6 publication-title: Nature doi: 10.1038/nature08693 – volume: 9 start-page: 124 year: 1977 ident: ref28/cit28 publication-title: Br. Polym. J. doi: 10.1002/pi.4980090207 – volume: 37 start-page: 8556 year: 2004 ident: ref24/cit24 publication-title: Macromolecules doi: 10.1021/ma048803k – volume: 152 start-page: 263 year: 1972 ident: ref31/cit31 publication-title: Makromol. Chem. doi: 10.1002/macp.1972.021520124 – volume: 52 start-page: 2235 year: 2013 ident: ref12/cit12 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201207966 – volume: 295 start-page: 1698 year: 2002 ident: ref1/cit1 publication-title: Science doi: 10.1126/science.1065879 – volume: 128 start-page: 6564 year: 2006 ident: ref18/cit18 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0612910 – volume: 23 start-page: 1182 year: 2013 ident: ref11/cit11 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201202034 – volume: 71 start-page: 1292 year: 1975 ident: ref29/cit29 publication-title: Chem. Soc., Faraday Trans. 1 doi: 10.1039/f19757101292 – volume: 112 start-page: 6910 year: 2000 ident: ref33/cit33 publication-title: J. Chem. Phys. doi: 10.1063/1.481264 – volume: 10 start-page: 2037 year: 1998 ident: ref35/cit35 publication-title: Chem. Mater. doi: 10.1021/cm980256s – volume-title: Modern Physical Organic Chemistry year: 2006 ident: ref39/cit39 – volume: 308 start-page: 1615 year: 2005 ident: ref46/cit46 publication-title: Science doi: 10.1126/science.1110505 – volume: 6 start-page: 2583 year: 2010 ident: ref7/cit7 publication-title: Soft Matter doi: 10.1039/b924290b – volume: 45 start-page: 4886 year: 2012 ident: ref15/cit15 publication-title: Macromolecules doi: 10.1021/ma300317z – volume: 46 start-page: 6922 year: 2013 ident: ref19/cit19 publication-title: Macromolecules doi: 10.1021/ma401588v – volume: 81 start-page: 4342 year: 1959 ident: ref41/cit41 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01525a060 – volume: 39 start-page: 61 year: 1988 ident: ref44/cit44 publication-title: Acta Polym. doi: 10.1002/actp.1988.010390113 |
SSID | ssj0004281 |
Score | 2.426312 |
Snippet | Molecular defects critically impact the properties of materials. Here we introduce a paradigm called “isotopic labeling disassembly spectrometry” (ILDaS) that... Molecular defects critically impact the properties of materials. Here we introduce a paradigm called "isotopic labeling disassembly spectrometry" (ILDaS) that... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 9464 |
SubjectTerms | gels isotope labeling polymers spectroscopy |
Title | Crossover Experiments Applied to Network Formation Reactions: Improved Strategies for Counting Elastically Inactive Molecular Defects in PEG Gels and Hyperbranched Polymers |
URI | http://dx.doi.org/10.1021/ja5042385 https://www.ncbi.nlm.nih.gov/pubmed/24933318 https://www.proquest.com/docview/1542652583 https://www.proquest.com/docview/2000343902 |
Volume | 136 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTtxAEG0ROCSXAFnIZEGV5ZCL0bgXuzs3ZGYYIgWhJEjcRr1ZoIw8EfYcyDfxkam23UMiGDi77LbdS73qfvWKkE9B1o5ZaRIM1HjCjROJVtIlIs-tTMuMm45tcZxNTvnXM3G2Rj6uOMGnQR9IBO6GFI_IBs1kHiKs_eLHTfIjlWnEuLnMWJQP-vfW4Hps_b_rWYEnW78y3iQHMTuno5P82ls0Zs_-uS3WeN8rb5GnPa6E_W4gbJM1Xz0jj4tYzu05uS7CSwXCJoyWqv419CgUmjkcd4xwGMd8Rvjuu7SH-gt0mw9oGOVsfQ2Id6Hoa03ACGF4uy8-u4KjSrfLKHyLxXfhwLe8Ebio4GR0CIfokkFXDiYYB1-aUN3jHB9-Mp9dhY30F-R0PPpZTJK-VEOiecqbxAsZlOW8opn3yuGqkRnLS56VnHpnrMrL0holA48x08rhVVEqp2VIqtbGsZdkvZpX_hUBFSTtKLdDb3KumNM0ZTmzQ63KNCTKDsgu9uW0n2r1tD1FpxjFxJ8-IJ9jN09tL3Qe6m3M7jL9sDT93al73GX0Po6VKfZZOFDRlZ8vsGmB-EZQIdlqG9pKADE1pAOy0w20ZVMY-jKGi-rrhz7pDXmCQI23NGH6lqw3lwv_DsFQY3bbyfAXXaoDyw |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHMqF8ixboAyIA5dUGz8Sm1sVdruFdlVBK_UW2Y4jEKssarKH8pv4kYydeAuoFZwzcSZ-zTf2zDeEvPG0dsxKk6CjxhNuKpFoJatE5LmVaZ1x00dbzLPZGf9wLs4HmhyfC4NKtNhSGy7xr9gFPE2Q8CEcUtwmdxCEUO9o7Refr3IgqUwj1M1lxiKL0O-vegtk2z8t0A2wMpiX6VZfpygoFqJKvu2tOrNnf_zF2fh_mt8n9waUCfv9tHhAbrnmIdksYnG3R-Rn4XXz4ZswWXP8tzBgUuiWMO_jw2Easxvhk-uTINp30B9FoGAkt3UtIPqFYqg8ARME5eGUfHEJh40Omyocx1K88N6FKBL42sDJ5AAO0ECDbiqYoVd8YXytjy_Y-MlycemP1R-Ts-nktJglQ-GGRPOUd4kT0vPMOUUz51SFe0hmLK95VnPqKmNVXtfWKOmjGjOtKnwqalVp6VOstanYE7LRLBv3lIDyBHeU27EzOVes0jRlObNjrerUp82OyC72eTksvLYMd-oUfZrY6SPyNo52aQfac199Y3Gd6Ou16Pee6-M6oVdxypQ4Zv56RTduucJPC0Q7ggrJbpahgRCIqTEdke1-vq0_hY4wY7jF7vzrl16Szdnp8VF5dDj_-IzcRQjHQwAxfU42uouVe4EwqTO7YX38Asu4DCw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JbtRAEG1BkIAL-zIsoUAcuDga92J3c4ucmUxYhhEQKTerN4soI08Uew7hm_hIqtv2sCgRnF1ul3t91VX1ipDXgdaOWWkSNNR4wo0TiVbSJSLPrUyrjJsu2mKezQ75uyNx1BuKIRcGlWiwpSY68cOqPnVVzzAQqIJECOOQ4iq5Ftx1wdjaLb78yoOkMh3gbi4zNjAJ_f5qOIVs8-cpdAm0jEfM9Db5tFEuRpac7Kxbs2O__8Xb-P_a3yG3erQJu930uEuu-PoeuVEMRd7ukx9F0C-EccJkw_XfQI9NoV3BvIsTh-mQ5QiffZcM0byF7koCBQeSW98AomAo-goUMEFwHm_Ll-dwUOu4ucLHoSQv7PkYTQLHNSwm-7CPBzXo2sEMreMzE2p-fMPGF6vlebhef0AOp5OvxSzpCzgkmqe8TbyQgW_OK5p5rxzuJZmxvOJZxal3xqq8qqxRMkQ3Zlo5fCoq5bQMqdbaOPaQbNWr2j8moALRHeV27E3OFXOapixndqxVlYb02RHZxn4v-wXYlNG3TtG2GTp9RN4MI17anv48VOFYXiT6aiN62nF-XCT0cpg2JY5ZcLPo2q_W-GmBqEdQIdnlMjQSAzE1piPyqJtzm0-hQcwYbrVP_vVLL8j1xd60_HAwf_-U3EQkx2McMX1GttqztX-OaKk123GJ_AR4CQ6v |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crossover+Experiments+Applied+to+Network+Formation+Reactions%3A+Improved+Strategies+for+Counting+Elastically+Inactive+Molecular+Defects+in+PEG+Gels+and+Hyperbranched+Polymers&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Zhou%2C+Huaxing&rft.au=Scho%CC%88n%2C+Eva-Maria&rft.au=Wang%2C+Muzhou&rft.au=Glassman%2C+Matthew+J&rft.date=2014-07-02&rft.pub=American+Chemical+Society&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=136&rft.issue=26&rft.spage=9464&rft.epage=9470&rft_id=info:doi/10.1021%2Fja5042385&rft.externalDocID=b442894383 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |