Screen Printing as a Scalable and Low-Cost Approach for Rigid and Flexible Thin-Film Transistors Using Separated Carbon Nanotubes
Semiconducting single-wall carbon nanotubes are very promising materials in printed electronics due to their excellent mechanical and electrical property, outstanding printability, and great potential for flexible electronics. Nonetheless, developing scalable and low-cost approaches for manufacturin...
Saved in:
Published in | ACS nano Vol. 8; no. 12; pp. 12769 - 12776 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
23.12.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Semiconducting single-wall carbon nanotubes are very promising materials in printed electronics due to their excellent mechanical and electrical property, outstanding printability, and great potential for flexible electronics. Nonetheless, developing scalable and low-cost approaches for manufacturing fully printed high-performance single-wall carbon nanotube thin-film transistors remains a major challenge. Here we report that screen printing, which is a simple, scalable, and cost-effective technique, can be used to produce both rigid and flexible thin-film transistors using separated single-wall carbon nanotubes. Our fully printed top-gated nanotube thin-film transistors on rigid and flexible substrates exhibit decent performance, with mobility up to 7.67 cm2 V–1 s–1, on/off ratio of 104 ∼ 105, minimal hysteresis, and low operation voltage (<10 V). In addition, outstanding mechanical flexibility of printed nanotube thin-film transistors (bent with radius of curvature down to 3 mm) and driving capability for organic light-emitting diode have been demonstrated. Given the high performance of the fully screen-printed single-wall carbon nanotube thin-film transistors, we believe screen printing stands as a low-cost, scalable, and reliable approach to manufacture high-performance nanotube thin-film transistors for application in display electronics. Moreover, this technique may be used to fabricate thin-film transistors based on other materials for large-area flexible macroelectronics, and low-cost display electronics. |
---|---|
AbstractList | Semiconducting single-wall carbon nanotubes are very promising materials in printed electronics due to their excellent mechanical and electrical property, outstanding printability, and great potential for flexible electronics. Nonetheless, developing scalable and low-cost approaches for manufacturing fully printed high-performance single-wall carbon nanotube thin-film transistors remains a major challenge. Here we report that screen printing, which is a simple, scalable, and cost-effective technique, can be used to produce both rigid and flexible thin-film transistors using separated single-wall carbon nanotubes. Our fully printed top-gated nanotube thin-film transistors on rigid and flexible substrates exhibit decent performance, with mobility up to 7.67 cm2 V(-1) s(-1), on/off ratio of 10(4)∼10(5), minimal hysteresis, and low operation voltage (<10 V). In addition, outstanding mechanical flexibility of printed nanotube thin-film transistors (bent with radius of curvature down to 3 mm) and driving capability for organic light-emitting diode have been demonstrated. Given the high performance of the fully screen-printed single-wall carbon nanotube thin-film transistors, we believe screen printing stands as a low-cost, scalable, and reliable approach to manufacture high-performance nanotube thin-film transistors for application in display electronics. Moreover, this technique may be used to fabricate thin-film transistors based on other materials for large-area flexible macroelectronics, and low-cost display electronics. Semiconducting single-wall carbon nanotubes are very promising materials in printed electronics due to their excellent mechanical and electrical property, outstanding printability, and great potential for flexible electronics. Nonetheless, developing scalable and low-cost approaches for manufacturing fully printed high-performance single-wall carbon nanotube thin-film transistors remains a major challenge. Here we report that screen printing, which is a simple, scalable, and cost-effective technique, can be used to produce both rigid and flexible thin-film transistors using separated single-wall carbon nanotubes. Our fully printed top-gated nanotube thin-film transistors on rigid and flexible substrates exhibit decent performance, with mobility up to 7.67 cm super(2) V super(-1) s super(-1), on/off ratio of 10 super(4) similar to 10 super(5), minimal hysteresis, and low operation voltage (<10 V). In addition, outstanding mechanical flexibility of printed nanotube thin-film transistors (bent with radius of curvature down to 3 mm) and driving capability for organic light-emitting diode have been demonstrated. Given the high performance of the fully screen-printed single-wall carbon nanotube thin-film transistors, we believe screen printing stands as a low-cost, scalable, and reliable approach to manufacture high-performance nanotube thin-film transistors for application in display electronics. Moreover, this technique may be used to fabricate thin-film transistors based on other materials for large-area flexible macroelectronics, and low-cost display electronics. Keywords: single-wall carbon nanotube; screen printing; thin-film transistor; flexible electronics; organic light-emitting diode Semiconducting single-wall carbon nanotubes are very promising materials in printed electronics due to their excellent mechanical and electrical property, outstanding printability, and great potential for flexible electronics. Nonetheless, developing scalable and low-cost approaches for manufacturing fully printed high-performance single-wall carbon nanotube thin-film transistors remains a major challenge. Here we report that screen printing, which is a simple, scalable, and cost-effective technique, can be used to produce both rigid and flexible thin-film transistors using separated single-wall carbon nanotubes. Our fully printed top-gated nanotube thin-film transistors on rigid and flexible substrates exhibit decent performance, with mobility up to 7.67 cm2 V–1 s–1, on/off ratio of 104 ∼ 105, minimal hysteresis, and low operation voltage (<10 V). In addition, outstanding mechanical flexibility of printed nanotube thin-film transistors (bent with radius of curvature down to 3 mm) and driving capability for organic light-emitting diode have been demonstrated. Given the high performance of the fully screen-printed single-wall carbon nanotube thin-film transistors, we believe screen printing stands as a low-cost, scalable, and reliable approach to manufacture high-performance nanotube thin-film transistors for application in display electronics. Moreover, this technique may be used to fabricate thin-film transistors based on other materials for large-area flexible macroelectronics, and low-cost display electronics. Semiconducting single-wall carbon nanotubes are very promising materials in printed electronics due to their excellent mechanical and electrical property, outstanding printability, and great potential for flexible electronics. Nonetheless, developing scalable and low-cost approaches for manufacturing fully printed high-performance single-wall carbon nanotube thin-film transistors remains a major challenge. Here we report that screen printing, which is a simple, scalable, and cost-effective technique, can be used to produce both rigid and flexible thin-film transistors using separated single-wall carbon nanotubes. Our fully printed top-gated nanotube thin-film transistors on rigid and flexible substrates exhibit decent performance, with mobility up to 7.67 cm2 V(-1) s(-1), on/off ratio of 10(4)∼10(5), minimal hysteresis, and low operation voltage (<10 V). In addition, outstanding mechanical flexibility of printed nanotube thin-film transistors (bent with radius of curvature down to 3 mm) and driving capability for organic light-emitting diode have been demonstrated. Given the high performance of the fully screen-printed single-wall carbon nanotube thin-film transistors, we believe screen printing stands as a low-cost, scalable, and reliable approach to manufacture high-performance nanotube thin-film transistors for application in display electronics. Moreover, this technique may be used to fabricate thin-film transistors based on other materials for large-area flexible macroelectronics, and low-cost display electronics.Semiconducting single-wall carbon nanotubes are very promising materials in printed electronics due to their excellent mechanical and electrical property, outstanding printability, and great potential for flexible electronics. Nonetheless, developing scalable and low-cost approaches for manufacturing fully printed high-performance single-wall carbon nanotube thin-film transistors remains a major challenge. Here we report that screen printing, which is a simple, scalable, and cost-effective technique, can be used to produce both rigid and flexible thin-film transistors using separated single-wall carbon nanotubes. Our fully printed top-gated nanotube thin-film transistors on rigid and flexible substrates exhibit decent performance, with mobility up to 7.67 cm2 V(-1) s(-1), on/off ratio of 10(4)∼10(5), minimal hysteresis, and low operation voltage (<10 V). In addition, outstanding mechanical flexibility of printed nanotube thin-film transistors (bent with radius of curvature down to 3 mm) and driving capability for organic light-emitting diode have been demonstrated. Given the high performance of the fully screen-printed single-wall carbon nanotube thin-film transistors, we believe screen printing stands as a low-cost, scalable, and reliable approach to manufacture high-performance nanotube thin-film transistors for application in display electronics. Moreover, this technique may be used to fabricate thin-film transistors based on other materials for large-area flexible macroelectronics, and low-cost display electronics. |
Author | Liu, Bilu Wang, Wenli Cao, Yu Wu, Fanqi Gu, Xiaofei Chen, Haitian Zhou, Chongwu Cao, Xuan |
AuthorAffiliation | Department of Electrical Engineering Department of Materials Science University of Southern California |
AuthorAffiliation_xml | – name: University of Southern California – name: Department of Materials Science – name: Department of Electrical Engineering |
Author_xml | – sequence: 1 givenname: Xuan surname: Cao fullname: Cao, Xuan – sequence: 2 givenname: Haitian surname: Chen fullname: Chen, Haitian – sequence: 3 givenname: Xiaofei surname: Gu fullname: Gu, Xiaofei – sequence: 4 givenname: Bilu surname: Liu fullname: Liu, Bilu – sequence: 5 givenname: Wenli surname: Wang fullname: Wang, Wenli – sequence: 6 givenname: Yu surname: Cao fullname: Cao, Yu – sequence: 7 givenname: Fanqi surname: Wu fullname: Wu, Fanqi – sequence: 8 givenname: Chongwu surname: Zhou fullname: Zhou, Chongwu email: chongwuz@usc.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25497107$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0U1rGzEQBmBREpqP9tA_UHQptIdNpNVK2j0GE6cF05bagd7E6GMTmbXkSlqaHPPPu66THEqgJw3omRdm5gQdhBgcQu8oOaOkpuchcMI72a1foWPaMVGRVvw8eK45PUInOa8J4bKV4jU6qnnTSUrkMXpYmuRcwN-TD8WHGwwZA14aGEAPDkOweBF_V7OYC77YblMEc4v7mPAPf-Pt3__54O78Dq9ufajmftjgVYKQfS4xZXydd7FLt4UExVk8g6RjwF8hxDJql9-gwx6G7N4-vqfoen65mn2uFt-uvswuFhU0tCmVtXVPdccaK6i2bcdMZ5gmtdPcUttBW7OWat4DaCYFAJi-r1ttmJVa9pywU_RxnzsN8Wt0uaiNz8YNAwQXx6yoFDURhAj-fyoawhhhopvo-0c66o2zapv8BtK9etrwBM73wKSYc3K9Mr5A8TGUBH5QlKjdDdXzDaeOT_90PIW-ZD_sLZis1nFMYVrhC-4P14eo8w |
CitedBy_id | crossref_primary_10_1002_smtd_202101333 crossref_primary_10_1038_s41598_022_13810_0 crossref_primary_10_1039_D2NR05786G crossref_primary_10_1088_2058_8585_aa5164 crossref_primary_10_1007_s12221_018_8167_2 crossref_primary_10_1021_acsomega_3c01176 crossref_primary_10_1039_D3CP02005C crossref_primary_10_1002_smtd_202000919 crossref_primary_10_1088_0960_1317_27_1_015003 crossref_primary_10_1021_acsbiomaterials_3c00869 crossref_primary_10_1021_acs_nanolett_2c04196 crossref_primary_10_1021_acsanm_2c02708 crossref_primary_10_1007_s12274_015_0915_7 crossref_primary_10_3390_mi11121027 crossref_primary_10_1021_acsnano_7b06654 crossref_primary_10_1038_s41598_017_17835_8 crossref_primary_10_1021_acsnano_8b06748 crossref_primary_10_1039_C8NR09120J crossref_primary_10_1088_1555_6611_acd7d6 crossref_primary_10_1177_09544062241289219 crossref_primary_10_1002_admt_201800708 crossref_primary_10_1021_acsnano_5b02847 crossref_primary_10_1109_ACCESS_2022_3170486 crossref_primary_10_1002_ejoc_202101166 crossref_primary_10_1109_ACCESS_2019_2931594 crossref_primary_10_1002_adfm_201502367 crossref_primary_10_1002_sdtp_11814 crossref_primary_10_1063_1_4958850 crossref_primary_10_1039_D2NR06771D crossref_primary_10_1002_adma_201805864 crossref_primary_10_1039_C9TC04540F crossref_primary_10_1109_JIOT_2020_3037904 crossref_primary_10_1002_adfm_202312881 crossref_primary_10_1021_acsnano_6b08185 crossref_primary_10_1088_1361_6439_aaa1d6 crossref_primary_10_1021_acsami_7b02684 crossref_primary_10_1039_C7NR07334H crossref_primary_10_1149_2_0041504jss crossref_primary_10_1021_acsphotonics_6b01027 crossref_primary_10_1016_j_cis_2018_09_003 crossref_primary_10_1039_C9RA02599E crossref_primary_10_1021_acsami_0c13824 crossref_primary_10_1063_5_0150361 crossref_primary_10_3390_s17081854 crossref_primary_10_1021_acsaelm_0c00508 crossref_primary_10_1021_acsami_9b08854 crossref_primary_10_1088_0022_3727_49_16_165310 crossref_primary_10_1016_j_solmat_2018_04_013 crossref_primary_10_1007_s40684_022_00461_9 crossref_primary_10_1088_1361_6528_ace36a crossref_primary_10_1016_j_nanoen_2018_01_031 crossref_primary_10_1002_advs_201801653 crossref_primary_10_1039_D3TC00388D crossref_primary_10_1002_adfm_201901505 crossref_primary_10_1007_s00170_022_10043_3 crossref_primary_10_1016_j_electacta_2016_08_143 crossref_primary_10_1038_ncomms11160 crossref_primary_10_1002_adma_201707600 crossref_primary_10_1002_adma_202000716 crossref_primary_10_1039_C5NR04851F crossref_primary_10_3390_mi11090847 crossref_primary_10_1016_j_carbon_2017_05_040 crossref_primary_10_1016_j_cap_2023_08_011 crossref_primary_10_1021_acsnano_6b08561 crossref_primary_10_1021_acsapm_2c00491 crossref_primary_10_1016_j_mattod_2020_10_025 crossref_primary_10_1007_s41061_016_0083_6 crossref_primary_10_1109_JSEN_2020_3002388 crossref_primary_10_1088_1361_6439_ab4d1f crossref_primary_10_1002_aelm_201600229 crossref_primary_10_1016_j_carbon_2019_06_039 crossref_primary_10_7567_JJAP_55_03DD01 crossref_primary_10_1021_acsami_3c14382 crossref_primary_10_1021_acsnano_6b07190 crossref_primary_10_1016_j_matpr_2022_02_089 crossref_primary_10_1002_aelm_202001025 crossref_primary_10_1007_s00542_015_2803_1 crossref_primary_10_3390_mi12091091 crossref_primary_10_3390_nano12244487 crossref_primary_10_1021_acsaem_8b01618 crossref_primary_10_1016_j_apsusc_2019_01_262 crossref_primary_10_1007_s40843_022_2226_6 crossref_primary_10_1016_j_surfin_2024_105348 crossref_primary_10_1002_pssa_202100808 crossref_primary_10_1007_s40843_021_1988_8 crossref_primary_10_3390_s18041191 crossref_primary_10_1177_00405175221094047 crossref_primary_10_3390_s19224835 crossref_primary_10_1002_aelm_201700057 crossref_primary_10_1088_0268_1242_30_7_074001 crossref_primary_10_1039_C7TC01797A crossref_primary_10_1021_acsnano_9b04337 crossref_primary_10_1007_s10854_021_06681_0 crossref_primary_10_2139_ssrn_4073331 crossref_primary_10_1016_j_sna_2024_115512 crossref_primary_10_3390_electronics4030424 crossref_primary_10_1016_j_orgel_2015_07_006 crossref_primary_10_1002_adma_201603895 crossref_primary_10_1088_2053_1583_acc74c crossref_primary_10_1039_C7NR01604B crossref_primary_10_1007_s41061_017_0160_5 crossref_primary_10_1021_acsami_7b02573 crossref_primary_10_1039_C9NR01600G crossref_primary_10_1109_JETCAS_2016_2619979 crossref_primary_10_3390_mi14091719 crossref_primary_10_1016_j_apsusc_2019_144643 crossref_primary_10_1021_acsami_9b02898 crossref_primary_10_1080_15583724_2018_1473424 crossref_primary_10_3390_chemosensors13020076 crossref_primary_10_1021_acsami_5b07727 crossref_primary_10_1109_JPROC_2019_2907317 crossref_primary_10_2478_adms_2023_0025 crossref_primary_10_1002_adma_201707624 crossref_primary_10_1186_s11671_015_1013_1 crossref_primary_10_1039_C7TC04390B crossref_primary_10_1007_s12274_015_0725_y crossref_primary_10_1080_15980316_2021_1957032 crossref_primary_10_1038_s41598_017_06000_w crossref_primary_10_1088_2053_1583_ab29b2 crossref_primary_10_1016_j_jcou_2024_102734 crossref_primary_10_1038_s41598_021_97357_6 crossref_primary_10_1080_00405167_2022_2128015 crossref_primary_10_3390_app10196983 crossref_primary_10_1088_2399_1984_ab5f20 crossref_primary_10_1016_j_snb_2023_133750 crossref_primary_10_1021_acsami_8b01581 crossref_primary_10_1038_s41598_021_01741_1 crossref_primary_10_1002_advs_201801445 crossref_primary_10_1039_C5RA10295B crossref_primary_10_1039_D0NR06231F crossref_primary_10_1016_j_jcis_2018_05_006 crossref_primary_10_1002_aelm_201600260 crossref_primary_10_1088_2058_8585_ac3a14 crossref_primary_10_1002_adma_201902391 crossref_primary_10_1088_2058_8585_ad70c5 crossref_primary_10_1088_2058_8585_1_3_035002 crossref_primary_10_1016_j_est_2024_113228 crossref_primary_10_1080_15583724_2024_2308889 crossref_primary_10_1002_aelm_202400212 crossref_primary_10_1039_C7TC01953J crossref_primary_10_1126_scirobotics_abl7344 crossref_primary_10_3390_polym12122915 crossref_primary_10_1021_acsabm_0c01256 crossref_primary_10_1016_j_mattod_2019_08_005 crossref_primary_10_3390_c4020032 crossref_primary_10_1016_j_microc_2020_104944 crossref_primary_10_1021_acsnano_6b02395 crossref_primary_10_1002_adfm_201705955 crossref_primary_10_1038_srep26121 crossref_primary_10_1039_D4CS00286E crossref_primary_10_3390_polym10111230 crossref_primary_10_1016_j_rineng_2022_100578 crossref_primary_10_1007_s10854_017_7485_2 crossref_primary_10_1021_acsnano_6b05368 crossref_primary_10_1002_advs_202001778 crossref_primary_10_1007_s10854_019_02217_9 crossref_primary_10_1021_acsnano_6b00877 crossref_primary_10_1002_advs_201700965 crossref_primary_10_1007_s12274_018_2068_y crossref_primary_10_1002_adfm_202301896 crossref_primary_10_1021_acsami_6b06838 crossref_primary_10_1039_D2TC02511F crossref_primary_10_1108_CW_11_2018_0084 crossref_primary_10_1039_C6NR00015K crossref_primary_10_3390_bios10120199 crossref_primary_10_1002_smtd_202500235 crossref_primary_10_1016_j_orgel_2016_12_045 crossref_primary_10_3390_s22051878 crossref_primary_10_1039_C5RA16615B |
Cites_doi | 10.1021/cm9701163 10.1021/nl3038773 10.1038/nature10313 10.1109/LED.2012.2214757 10.1039/C4TC00618F 10.1021/ja043425k 10.1038/nmat1817 10.7567/APEX.6.085101 10.1038/nmat1974 10.1038/nnano.2011.1 10.1002/adma.200901141 10.1021/nl902522f 10.1038/nmat2459 10.1021/nn3026172 10.1021/nl202765b 10.1109/TED.2009.2039541 10.1021/nl5016014 10.1002/adma.201000889 10.1039/C3NR04870E 10.1039/C2CS35325C 10.1016/j.orgel.2014.04.022 10.1021/cr050139y 10.1038/nature07727 10.1038/nature07110 10.1038/nmat2291 10.1109/LED.2011.2118732 10.1021/nn100966s 10.1063/1.3681809 10.1002/smll.201203154 10.1021/nl401934a 10.1038/ncomms5147 10.1016/j.orgel.2013.02.006 10.1038/nmat1903 |
ContentType | Journal Article |
Copyright | Copyright © 2014 American Chemical Society |
Copyright_xml | – notice: Copyright © 2014 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1021/nn505979j |
DatabaseName | CrossRef PubMed MEDLINE - Academic Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | PubMed Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 12776 |
ExternalDocumentID | 25497107 10_1021_nn505979j a697666575 |
Genre | Journal Article |
GroupedDBID | - 23M 4.4 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ LG6 P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 5VS 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV AHGAQ BAANH CITATION CUPRZ GGK NPM 7X8 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-a414t-dd2f1b934d61bd893c9c3b02eb5d1d9a82381b5faab376aaacff28bc3d7b7f503 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Fri Jul 11 12:18:20 EDT 2025 Fri Jul 11 16:26:46 EDT 2025 Thu Apr 03 07:01:31 EDT 2025 Thu Apr 24 23:09:50 EDT 2025 Sun Jul 06 05:10:00 EDT 2025 Thu Aug 27 13:42:28 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | flexible electronics organic light-emitting diode screen printing thin-film transistor single-wall carbon nanotube |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a414t-dd2f1b934d61bd893c9c3b02eb5d1d9a82381b5faab376aaacff28bc3d7b7f503 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 25497107 |
PQID | 1640330369 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1762060065 proquest_miscellaneous_1640330369 pubmed_primary_25497107 crossref_citationtrail_10_1021_nn505979j crossref_primary_10_1021_nn505979j acs_journals_10_1021_nn505979j |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2014-12-23 |
PublicationDateYYYYMMDD | 2014-12-23 |
PublicationDate_xml | – month: 12 year: 2014 text: 2014-12-23 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2014 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Cho J. H. (ref3/cit3) 2008; 7 Minemawari H. (ref5/cit5) 2011; 475 Singh V. K. (ref33/cit33) 2012; 111 Li Y. N. (ref4/cit4) 2005; 127 Menard E. (ref31/cit31) 2007; 107 Jung M. (ref26/cit26) 2010; 57 Wang C. (ref16/cit16) 2013; 42 Sun D. M. (ref15/cit15) 2011; 6 Sekitani T. (ref7/cit7) 2009; 8 Bao Z. N. (ref1/cit1) 1997; 9 Xu W. (ref22/cit22) 2014; 6 Chen P. C. (ref23/cit23) 2011; 11 Ha M. J. (ref24/cit24) 2013; 13 Ryu G. S. (ref32/cit32) 2013; 14 ref34/cit34 Lau P. H. (ref29/cit29) 2013; 13 Cao Q. (ref18/cit18) 2008; 454 Willmann J. (ref10/cit10) 2014; 15 Berggren M. (ref2/cit2) 2007; 6 Wang C. (ref17/cit17) 2009; 9 Singh M. (ref9/cit9) 2010; 22 Ha M. J. (ref20/cit20) 2010; 4 Sekitani T. (ref8/cit8) 2007; 6 ref12/cit12 Kim B. (ref25/cit25) 2014; 14 Park J. U. (ref6/cit6) 2007; 6 Noh J. (ref27/cit27) 2012; 33 Noh J. (ref28/cit28) 2011; 32 Yan H. (ref11/cit11) 2009; 457 Aleeva Y. (ref13/cit13) 2014; 2 Higuchi K. (ref30/cit30) 2013; 6 Zhang J. L. (ref19/cit19) 2012; 6 Sun D. M. (ref14/cit14) 2013; 9 Okimoto H. (ref21/cit21) 2010; 22 |
References_xml | – volume: 9 start-page: 1299 year: 1997 ident: ref1/cit1 publication-title: Chem. Mater. doi: 10.1021/cm9701163 – volume: 13 start-page: 954 year: 2013 ident: ref24/cit24 publication-title: Nano Lett. doi: 10.1021/nl3038773 – volume: 475 start-page: 364 year: 2011 ident: ref5/cit5 publication-title: Nature doi: 10.1038/nature10313 – volume: 33 start-page: 1574 year: 2012 ident: ref27/cit27 publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2012.2214757 – volume: 2 start-page: 6436 year: 2014 ident: ref13/cit13 publication-title: J. Mater. Chem. C doi: 10.1039/C4TC00618F – volume: 127 start-page: 3266 year: 2005 ident: ref4/cit4 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja043425k – volume: 6 start-page: 3 year: 2007 ident: ref2/cit2 publication-title: Nat. Mater. doi: 10.1038/nmat1817 – volume: 6 start-page: 085101 year: 2013 ident: ref30/cit30 publication-title: Appl. Phys. Express doi: 10.7567/APEX.6.085101 – volume: 6 start-page: 782 year: 2007 ident: ref6/cit6 publication-title: Nat. Mater. doi: 10.1038/nmat1974 – volume: 6 start-page: 156 year: 2011 ident: ref15/cit15 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2011.1 – volume: 22 start-page: 673 year: 2010 ident: ref9/cit9 publication-title: Adv. Mater. doi: 10.1002/adma.200901141 – volume: 9 start-page: 4285 year: 2009 ident: ref17/cit17 publication-title: Nano Lett. doi: 10.1021/nl902522f – volume: 8 start-page: 494 year: 2009 ident: ref7/cit7 publication-title: Nat. Mater. doi: 10.1038/nmat2459 – volume: 6 start-page: 7412 year: 2012 ident: ref19/cit19 publication-title: ACS Nano doi: 10.1021/nn3026172 – volume: 11 start-page: 5301 year: 2011 ident: ref23/cit23 publication-title: Nano Lett. doi: 10.1021/nl202765b – volume: 57 start-page: 571 year: 2010 ident: ref26/cit26 publication-title: Ieee. T. Electron Devices doi: 10.1109/TED.2009.2039541 – volume: 14 start-page: 3683 year: 2014 ident: ref25/cit25 publication-title: Nano Lett. doi: 10.1021/nl5016014 – volume: 22 start-page: 3981 year: 2010 ident: ref21/cit21 publication-title: Adv. Mater. doi: 10.1002/adma.201000889 – volume: 6 start-page: 1589 year: 2014 ident: ref22/cit22 publication-title: Nanoscale doi: 10.1039/C3NR04870E – ident: ref34/cit34 – volume: 42 start-page: 2592 year: 2013 ident: ref16/cit16 publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS35325C – volume: 15 start-page: 1631 year: 2014 ident: ref10/cit10 publication-title: Org. Electron. doi: 10.1016/j.orgel.2014.04.022 – volume: 107 start-page: 1117 year: 2007 ident: ref31/cit31 publication-title: Chem. Rev. doi: 10.1021/cr050139y – volume: 457 start-page: 679 year: 2009 ident: ref11/cit11 publication-title: Nature doi: 10.1038/nature07727 – volume: 454 start-page: 495 year: 2008 ident: ref18/cit18 publication-title: Nature doi: 10.1038/nature07110 – volume: 7 start-page: 900 year: 2008 ident: ref3/cit3 publication-title: Nat. Mater. doi: 10.1038/nmat2291 – volume: 32 start-page: 638 year: 2011 ident: ref28/cit28 publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2011.2118732 – volume: 4 start-page: 4388 year: 2010 ident: ref20/cit20 publication-title: ACS Nano doi: 10.1021/nn100966s – volume: 111 start-page: 034905 year: 2012 ident: ref33/cit33 publication-title: J. Appl. Phys. doi: 10.1063/1.3681809 – volume: 9 start-page: 1188 year: 2013 ident: ref14/cit14 publication-title: Small doi: 10.1002/smll.201203154 – volume: 13 start-page: 3864 year: 2013 ident: ref29/cit29 publication-title: Nano Lett. doi: 10.1021/nl401934a – ident: ref12/cit12 doi: 10.1038/ncomms5147 – volume: 14 start-page: 1218 year: 2013 ident: ref32/cit32 publication-title: Org. Electron. doi: 10.1016/j.orgel.2013.02.006 – volume: 6 start-page: 413 year: 2007 ident: ref8/cit8 publication-title: Nat. Mater. doi: 10.1038/nmat1903 |
SSID | ssj0057876 |
Score | 2.542516 |
Snippet | Semiconducting single-wall carbon nanotubes are very promising materials in printed electronics due to their excellent mechanical and electrical property,... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 12769 |
SubjectTerms | Electric potential Electronics Nanostructure Organic light-emitting diodes Screen printing Semiconductor devices Single wall carbon nanotubes Thin films Transistors |
Title | Screen Printing as a Scalable and Low-Cost Approach for Rigid and Flexible Thin-Film Transistors Using Separated Carbon Nanotubes |
URI | http://dx.doi.org/10.1021/nn505979j https://www.ncbi.nlm.nih.gov/pubmed/25497107 https://www.proquest.com/docview/1640330369 https://www.proquest.com/docview/1762060065 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELZKucCB92N5VOZx4OLWdpyHj6uFVYUAIZZKvUUeP9BCSVCTFRI3_jljJ1kV0RblFGUix_HY32fN-BtCXirDgQeZMSXKwJS2kkHBK6YcD7lBQK9Smc73H4rDI_X2OD_eIS8uiOBLcdA0CNK61F-vkKuyqMq4w5ovVtNyGz2uGELHuDVG_jDJB519NUKP7f6Gngv4ZMKV5U3yejqdM6STfNvf9LBvf_0r1njZJ98iN0ZeSeeDI9wmO765Q66fURu8S36vbEyyoR_xNiY7U9NRQ1c4SPH4FDWNo-_an2zRdj2dj1LjFDkt_bT-snbp-TLKZ0bjWO6TLdcn32kCu6Q10tGUf0BXPumJe0cX5hTahuIK3vYb8N09crR883lxyMYKDMwooXrmnAwCdKZcIcAhtbHaZsClh9wJp00VAR_yYAzgQmWMsSHICmzmSihDzrP7ZLdpG_-QUKQZ3gsOpfWApEFUkGsDWofK4yX9jOzhENXjDOrqFByXot7-yxl5NY1ebUf98lhG4-Q80-db0x-DaMd5Rs8mF6hxSsU4iWl8u8GmC8WzCO36EhsEEV5EAjcjDwb_2TYV99xI3MpH_-vSY3IN-VfSjZTZE7Lbn278U-Q4PewlH_8DKs32Rg |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LbtQwFL0qZQEsKK_CUCgGgcTGbeI4Dy9YjAZGUzqtENNK3aV-pZpSEtRkVMGO3-BX-DmuPclQUIFVJZRVlCs7sa99juPrcwGecxmooGAR5WFaUC40oyoJMspNUMQSAT3zaTp3dpPRPn97EB8swbfuLAy-RI0l1X4T_6e6QLhZlojVIhXHbQDltv18hsuz-tXWa-zLF4wN3-wNRrTNIEAlD3lDjWFFqETETRIqg9CshY5UwKyKTWiEzBxgqbiQUuFAk1LqomCZ0pFJVVrEQYTlXoGrSHqYW9j1B5NulneOnsx3rHFFjrSlUy06_6oO8XT9K-L9gcZ6OBuuwPdFQ_golg8bs0Zt6C-_aUT-ny11C262LJr0525_G5ZseQdunNNWvAtfJ9qFFJF3eOtCu4msiSQTdEl3WIzI0pBxdUYHVd2QfiusTpDBk_fTo6nxz4dOLNQZu-SmdDg9-Ug8tHtllZr4aAsysV493RoykKeqKgniVdXMlK3vwf6ltMEqLJdVaR8AQVJlbRioVFuFFCnMVCykEqLILF7M9mAduy5v54s696EALMwXfdeDl53T5LpVa3dJQ04uMn22MP00lyi5yOhp53k5TiBuV0iWtpph1QkPIkdkxF9sEDKDxNHVHtyfu-2iKveHAWlq-vBfn_QEro32dsb5eGt3ew2uI_P0ipksegTLzenMPkZ216h1P8wIHF62t_4ASWhcTg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LbtQwFL0qRUKw4F0YHsUgkNikdZynFyxGU6KWlqpiqNRd6mc1pSRVk1EFO36kv9Jf49qTjAoqsKqEsopyZSf2tc9x7vUxwOtYUEkti4I4zGwQc8UCmdI8iDW1iUBAz_0xnR-30_Xd-MNesrcAZ_1eGHyJBktqfBDfjepjbTuFgXC1qhCvecYPuyTKTfPtFJdozbuNNezPN4wV7z-P1oPuFIFAxGHcBlozG0oexToNpUZ4VlxFkjIjEx1qLnIHWjKxQkgcbEIIZS3LpYp0JjOb0AjLvQbXXXjQLe6Go3E_0ztnT2dRa1yVI3XplYsuvqpDPdX8inp_oLIe0oo7cD5vDJ_J8mVl2soV9f03ncj_t7Xuwu2OTZPhzP3vwYKp7sOtCxqLD-DHWLnUIrKDty7Fm4iGCDJG13SbxoioNNmqT4NR3bRk2AmsE2Ty5NPkYKL988KJhjpjd8hpUEyOvhIP8V5hpSE-64KMjVdRN5qMxImsK4K4VbdTaZqHsHslbbAEi1VdmcdAkFwZE1KZKSORKoW5TLiQnNvc4MXMAJax-8pu3mhKnxLAwnLedwN42ztOqTrVdnd4yNFlpq_mpsczqZLLjF723lfiROKiQ6Iy9RSrTmMaOULD_2KD0ElTR1sH8GjmuvOq3J8GpKvZk3990gu4sbNWlFsb25tP4SYSUC-cyaJnsNieTM1zJHmtXPYjjcD-VTvrT6y2XtE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Screen+printing+as+a+scalable+and+low-cost+approach+for+rigid+and+flexible+thin-film+transistors+using+separated+carbon+nanotubes&rft.jtitle=ACS+nano&rft.au=Cao%2C+Xuan&rft.au=Chen%2C+Haitian&rft.au=Gu%2C+Xiaofei&rft.au=Liu%2C+Bilu&rft.date=2014-12-23&rft.eissn=1936-086X&rft.volume=8&rft.issue=12&rft.spage=12769&rft_id=info:doi/10.1021%2Fnn505979j&rft_id=info%3Apmid%2F25497107&rft.externalDocID=25497107 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |