Screen Printing as a Scalable and Low-Cost Approach for Rigid and Flexible Thin-Film Transistors Using Separated Carbon Nanotubes

Semiconducting single-wall carbon nanotubes are very promising materials in printed electronics due to their excellent mechanical and electrical property, outstanding printability, and great potential for flexible electronics. Nonetheless, developing scalable and low-cost approaches for manufacturin...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 8; no. 12; pp. 12769 - 12776
Main Authors Cao, Xuan, Chen, Haitian, Gu, Xiaofei, Liu, Bilu, Wang, Wenli, Cao, Yu, Wu, Fanqi, Zhou, Chongwu
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 23.12.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Semiconducting single-wall carbon nanotubes are very promising materials in printed electronics due to their excellent mechanical and electrical property, outstanding printability, and great potential for flexible electronics. Nonetheless, developing scalable and low-cost approaches for manufacturing fully printed high-performance single-wall carbon nanotube thin-film transistors remains a major challenge. Here we report that screen printing, which is a simple, scalable, and cost-effective technique, can be used to produce both rigid and flexible thin-film transistors using separated single-wall carbon nanotubes. Our fully printed top-gated nanotube thin-film transistors on rigid and flexible substrates exhibit decent performance, with mobility up to 7.67 cm2 V–1 s–1, on/off ratio of 104 ∼ 105, minimal hysteresis, and low operation voltage (<10 V). In addition, outstanding mechanical flexibility of printed nanotube thin-film transistors (bent with radius of curvature down to 3 mm) and driving capability for organic light-emitting diode have been demonstrated. Given the high performance of the fully screen-printed single-wall carbon nanotube thin-film transistors, we believe screen printing stands as a low-cost, scalable, and reliable approach to manufacture high-performance nanotube thin-film transistors for application in display electronics. Moreover, this technique may be used to fabricate thin-film transistors based on other materials for large-area flexible macroelectronics, and low-cost display electronics.
AbstractList Semiconducting single-wall carbon nanotubes are very promising materials in printed electronics due to their excellent mechanical and electrical property, outstanding printability, and great potential for flexible electronics. Nonetheless, developing scalable and low-cost approaches for manufacturing fully printed high-performance single-wall carbon nanotube thin-film transistors remains a major challenge. Here we report that screen printing, which is a simple, scalable, and cost-effective technique, can be used to produce both rigid and flexible thin-film transistors using separated single-wall carbon nanotubes. Our fully printed top-gated nanotube thin-film transistors on rigid and flexible substrates exhibit decent performance, with mobility up to 7.67 cm2 V(-1) s(-1), on/off ratio of 10(4)∼10(5), minimal hysteresis, and low operation voltage (<10 V). In addition, outstanding mechanical flexibility of printed nanotube thin-film transistors (bent with radius of curvature down to 3 mm) and driving capability for organic light-emitting diode have been demonstrated. Given the high performance of the fully screen-printed single-wall carbon nanotube thin-film transistors, we believe screen printing stands as a low-cost, scalable, and reliable approach to manufacture high-performance nanotube thin-film transistors for application in display electronics. Moreover, this technique may be used to fabricate thin-film transistors based on other materials for large-area flexible macroelectronics, and low-cost display electronics.
Semiconducting single-wall carbon nanotubes are very promising materials in printed electronics due to their excellent mechanical and electrical property, outstanding printability, and great potential for flexible electronics. Nonetheless, developing scalable and low-cost approaches for manufacturing fully printed high-performance single-wall carbon nanotube thin-film transistors remains a major challenge. Here we report that screen printing, which is a simple, scalable, and cost-effective technique, can be used to produce both rigid and flexible thin-film transistors using separated single-wall carbon nanotubes. Our fully printed top-gated nanotube thin-film transistors on rigid and flexible substrates exhibit decent performance, with mobility up to 7.67 cm super(2) V super(-1) s super(-1), on/off ratio of 10 super(4) similar to 10 super(5), minimal hysteresis, and low operation voltage (<10 V). In addition, outstanding mechanical flexibility of printed nanotube thin-film transistors (bent with radius of curvature down to 3 mm) and driving capability for organic light-emitting diode have been demonstrated. Given the high performance of the fully screen-printed single-wall carbon nanotube thin-film transistors, we believe screen printing stands as a low-cost, scalable, and reliable approach to manufacture high-performance nanotube thin-film transistors for application in display electronics. Moreover, this technique may be used to fabricate thin-film transistors based on other materials for large-area flexible macroelectronics, and low-cost display electronics. Keywords: single-wall carbon nanotube; screen printing; thin-film transistor; flexible electronics; organic light-emitting diode
Semiconducting single-wall carbon nanotubes are very promising materials in printed electronics due to their excellent mechanical and electrical property, outstanding printability, and great potential for flexible electronics. Nonetheless, developing scalable and low-cost approaches for manufacturing fully printed high-performance single-wall carbon nanotube thin-film transistors remains a major challenge. Here we report that screen printing, which is a simple, scalable, and cost-effective technique, can be used to produce both rigid and flexible thin-film transistors using separated single-wall carbon nanotubes. Our fully printed top-gated nanotube thin-film transistors on rigid and flexible substrates exhibit decent performance, with mobility up to 7.67 cm2 V–1 s–1, on/off ratio of 104 ∼ 105, minimal hysteresis, and low operation voltage (<10 V). In addition, outstanding mechanical flexibility of printed nanotube thin-film transistors (bent with radius of curvature down to 3 mm) and driving capability for organic light-emitting diode have been demonstrated. Given the high performance of the fully screen-printed single-wall carbon nanotube thin-film transistors, we believe screen printing stands as a low-cost, scalable, and reliable approach to manufacture high-performance nanotube thin-film transistors for application in display electronics. Moreover, this technique may be used to fabricate thin-film transistors based on other materials for large-area flexible macroelectronics, and low-cost display electronics.
Semiconducting single-wall carbon nanotubes are very promising materials in printed electronics due to their excellent mechanical and electrical property, outstanding printability, and great potential for flexible electronics. Nonetheless, developing scalable and low-cost approaches for manufacturing fully printed high-performance single-wall carbon nanotube thin-film transistors remains a major challenge. Here we report that screen printing, which is a simple, scalable, and cost-effective technique, can be used to produce both rigid and flexible thin-film transistors using separated single-wall carbon nanotubes. Our fully printed top-gated nanotube thin-film transistors on rigid and flexible substrates exhibit decent performance, with mobility up to 7.67 cm2 V(-1) s(-1), on/off ratio of 10(4)∼10(5), minimal hysteresis, and low operation voltage (<10 V). In addition, outstanding mechanical flexibility of printed nanotube thin-film transistors (bent with radius of curvature down to 3 mm) and driving capability for organic light-emitting diode have been demonstrated. Given the high performance of the fully screen-printed single-wall carbon nanotube thin-film transistors, we believe screen printing stands as a low-cost, scalable, and reliable approach to manufacture high-performance nanotube thin-film transistors for application in display electronics. Moreover, this technique may be used to fabricate thin-film transistors based on other materials for large-area flexible macroelectronics, and low-cost display electronics.Semiconducting single-wall carbon nanotubes are very promising materials in printed electronics due to their excellent mechanical and electrical property, outstanding printability, and great potential for flexible electronics. Nonetheless, developing scalable and low-cost approaches for manufacturing fully printed high-performance single-wall carbon nanotube thin-film transistors remains a major challenge. Here we report that screen printing, which is a simple, scalable, and cost-effective technique, can be used to produce both rigid and flexible thin-film transistors using separated single-wall carbon nanotubes. Our fully printed top-gated nanotube thin-film transistors on rigid and flexible substrates exhibit decent performance, with mobility up to 7.67 cm2 V(-1) s(-1), on/off ratio of 10(4)∼10(5), minimal hysteresis, and low operation voltage (<10 V). In addition, outstanding mechanical flexibility of printed nanotube thin-film transistors (bent with radius of curvature down to 3 mm) and driving capability for organic light-emitting diode have been demonstrated. Given the high performance of the fully screen-printed single-wall carbon nanotube thin-film transistors, we believe screen printing stands as a low-cost, scalable, and reliable approach to manufacture high-performance nanotube thin-film transistors for application in display electronics. Moreover, this technique may be used to fabricate thin-film transistors based on other materials for large-area flexible macroelectronics, and low-cost display electronics.
Author Liu, Bilu
Wang, Wenli
Cao, Yu
Wu, Fanqi
Gu, Xiaofei
Chen, Haitian
Zhou, Chongwu
Cao, Xuan
AuthorAffiliation Department of Electrical Engineering
Department of Materials Science
University of Southern California
AuthorAffiliation_xml – name: University of Southern California
– name: Department of Materials Science
– name: Department of Electrical Engineering
Author_xml – sequence: 1
  givenname: Xuan
  surname: Cao
  fullname: Cao, Xuan
– sequence: 2
  givenname: Haitian
  surname: Chen
  fullname: Chen, Haitian
– sequence: 3
  givenname: Xiaofei
  surname: Gu
  fullname: Gu, Xiaofei
– sequence: 4
  givenname: Bilu
  surname: Liu
  fullname: Liu, Bilu
– sequence: 5
  givenname: Wenli
  surname: Wang
  fullname: Wang, Wenli
– sequence: 6
  givenname: Yu
  surname: Cao
  fullname: Cao, Yu
– sequence: 7
  givenname: Fanqi
  surname: Wu
  fullname: Wu, Fanqi
– sequence: 8
  givenname: Chongwu
  surname: Zhou
  fullname: Zhou, Chongwu
  email: chongwuz@usc.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25497107$$D View this record in MEDLINE/PubMed
BookMark eNqF0U1rGzEQBmBREpqP9tA_UHQptIdNpNVK2j0GE6cF05bagd7E6GMTmbXkSlqaHPPPu66THEqgJw3omRdm5gQdhBgcQu8oOaOkpuchcMI72a1foWPaMVGRVvw8eK45PUInOa8J4bKV4jU6qnnTSUrkMXpYmuRcwN-TD8WHGwwZA14aGEAPDkOweBF_V7OYC77YblMEc4v7mPAPf-Pt3__54O78Dq9ufajmftjgVYKQfS4xZXydd7FLt4UExVk8g6RjwF8hxDJql9-gwx6G7N4-vqfoen65mn2uFt-uvswuFhU0tCmVtXVPdccaK6i2bcdMZ5gmtdPcUttBW7OWat4DaCYFAJi-r1ttmJVa9pywU_RxnzsN8Wt0uaiNz8YNAwQXx6yoFDURhAj-fyoawhhhopvo-0c66o2zapv8BtK9etrwBM73wKSYc3K9Mr5A8TGUBH5QlKjdDdXzDaeOT_90PIW-ZD_sLZis1nFMYVrhC-4P14eo8w
CitedBy_id crossref_primary_10_1002_smtd_202101333
crossref_primary_10_1038_s41598_022_13810_0
crossref_primary_10_1039_D2NR05786G
crossref_primary_10_1088_2058_8585_aa5164
crossref_primary_10_1007_s12221_018_8167_2
crossref_primary_10_1021_acsomega_3c01176
crossref_primary_10_1039_D3CP02005C
crossref_primary_10_1002_smtd_202000919
crossref_primary_10_1088_0960_1317_27_1_015003
crossref_primary_10_1021_acsbiomaterials_3c00869
crossref_primary_10_1021_acs_nanolett_2c04196
crossref_primary_10_1021_acsanm_2c02708
crossref_primary_10_1007_s12274_015_0915_7
crossref_primary_10_3390_mi11121027
crossref_primary_10_1021_acsnano_7b06654
crossref_primary_10_1038_s41598_017_17835_8
crossref_primary_10_1021_acsnano_8b06748
crossref_primary_10_1039_C8NR09120J
crossref_primary_10_1088_1555_6611_acd7d6
crossref_primary_10_1177_09544062241289219
crossref_primary_10_1002_admt_201800708
crossref_primary_10_1021_acsnano_5b02847
crossref_primary_10_1109_ACCESS_2022_3170486
crossref_primary_10_1002_ejoc_202101166
crossref_primary_10_1109_ACCESS_2019_2931594
crossref_primary_10_1002_adfm_201502367
crossref_primary_10_1002_sdtp_11814
crossref_primary_10_1063_1_4958850
crossref_primary_10_1039_D2NR06771D
crossref_primary_10_1002_adma_201805864
crossref_primary_10_1039_C9TC04540F
crossref_primary_10_1109_JIOT_2020_3037904
crossref_primary_10_1002_adfm_202312881
crossref_primary_10_1021_acsnano_6b08185
crossref_primary_10_1088_1361_6439_aaa1d6
crossref_primary_10_1021_acsami_7b02684
crossref_primary_10_1039_C7NR07334H
crossref_primary_10_1149_2_0041504jss
crossref_primary_10_1021_acsphotonics_6b01027
crossref_primary_10_1016_j_cis_2018_09_003
crossref_primary_10_1039_C9RA02599E
crossref_primary_10_1021_acsami_0c13824
crossref_primary_10_1063_5_0150361
crossref_primary_10_3390_s17081854
crossref_primary_10_1021_acsaelm_0c00508
crossref_primary_10_1021_acsami_9b08854
crossref_primary_10_1088_0022_3727_49_16_165310
crossref_primary_10_1016_j_solmat_2018_04_013
crossref_primary_10_1007_s40684_022_00461_9
crossref_primary_10_1088_1361_6528_ace36a
crossref_primary_10_1016_j_nanoen_2018_01_031
crossref_primary_10_1002_advs_201801653
crossref_primary_10_1039_D3TC00388D
crossref_primary_10_1002_adfm_201901505
crossref_primary_10_1007_s00170_022_10043_3
crossref_primary_10_1016_j_electacta_2016_08_143
crossref_primary_10_1038_ncomms11160
crossref_primary_10_1002_adma_201707600
crossref_primary_10_1002_adma_202000716
crossref_primary_10_1039_C5NR04851F
crossref_primary_10_3390_mi11090847
crossref_primary_10_1016_j_carbon_2017_05_040
crossref_primary_10_1016_j_cap_2023_08_011
crossref_primary_10_1021_acsnano_6b08561
crossref_primary_10_1021_acsapm_2c00491
crossref_primary_10_1016_j_mattod_2020_10_025
crossref_primary_10_1007_s41061_016_0083_6
crossref_primary_10_1109_JSEN_2020_3002388
crossref_primary_10_1088_1361_6439_ab4d1f
crossref_primary_10_1002_aelm_201600229
crossref_primary_10_1016_j_carbon_2019_06_039
crossref_primary_10_7567_JJAP_55_03DD01
crossref_primary_10_1021_acsami_3c14382
crossref_primary_10_1021_acsnano_6b07190
crossref_primary_10_1016_j_matpr_2022_02_089
crossref_primary_10_1002_aelm_202001025
crossref_primary_10_1007_s00542_015_2803_1
crossref_primary_10_3390_mi12091091
crossref_primary_10_3390_nano12244487
crossref_primary_10_1021_acsaem_8b01618
crossref_primary_10_1016_j_apsusc_2019_01_262
crossref_primary_10_1007_s40843_022_2226_6
crossref_primary_10_1016_j_surfin_2024_105348
crossref_primary_10_1002_pssa_202100808
crossref_primary_10_1007_s40843_021_1988_8
crossref_primary_10_3390_s18041191
crossref_primary_10_1177_00405175221094047
crossref_primary_10_3390_s19224835
crossref_primary_10_1002_aelm_201700057
crossref_primary_10_1088_0268_1242_30_7_074001
crossref_primary_10_1039_C7TC01797A
crossref_primary_10_1021_acsnano_9b04337
crossref_primary_10_1007_s10854_021_06681_0
crossref_primary_10_2139_ssrn_4073331
crossref_primary_10_1016_j_sna_2024_115512
crossref_primary_10_3390_electronics4030424
crossref_primary_10_1016_j_orgel_2015_07_006
crossref_primary_10_1002_adma_201603895
crossref_primary_10_1088_2053_1583_acc74c
crossref_primary_10_1039_C7NR01604B
crossref_primary_10_1007_s41061_017_0160_5
crossref_primary_10_1021_acsami_7b02573
crossref_primary_10_1039_C9NR01600G
crossref_primary_10_1109_JETCAS_2016_2619979
crossref_primary_10_3390_mi14091719
crossref_primary_10_1016_j_apsusc_2019_144643
crossref_primary_10_1021_acsami_9b02898
crossref_primary_10_1080_15583724_2018_1473424
crossref_primary_10_3390_chemosensors13020076
crossref_primary_10_1021_acsami_5b07727
crossref_primary_10_1109_JPROC_2019_2907317
crossref_primary_10_2478_adms_2023_0025
crossref_primary_10_1002_adma_201707624
crossref_primary_10_1186_s11671_015_1013_1
crossref_primary_10_1039_C7TC04390B
crossref_primary_10_1007_s12274_015_0725_y
crossref_primary_10_1080_15980316_2021_1957032
crossref_primary_10_1038_s41598_017_06000_w
crossref_primary_10_1088_2053_1583_ab29b2
crossref_primary_10_1016_j_jcou_2024_102734
crossref_primary_10_1038_s41598_021_97357_6
crossref_primary_10_1080_00405167_2022_2128015
crossref_primary_10_3390_app10196983
crossref_primary_10_1088_2399_1984_ab5f20
crossref_primary_10_1016_j_snb_2023_133750
crossref_primary_10_1021_acsami_8b01581
crossref_primary_10_1038_s41598_021_01741_1
crossref_primary_10_1002_advs_201801445
crossref_primary_10_1039_C5RA10295B
crossref_primary_10_1039_D0NR06231F
crossref_primary_10_1016_j_jcis_2018_05_006
crossref_primary_10_1002_aelm_201600260
crossref_primary_10_1088_2058_8585_ac3a14
crossref_primary_10_1002_adma_201902391
crossref_primary_10_1088_2058_8585_ad70c5
crossref_primary_10_1088_2058_8585_1_3_035002
crossref_primary_10_1016_j_est_2024_113228
crossref_primary_10_1080_15583724_2024_2308889
crossref_primary_10_1002_aelm_202400212
crossref_primary_10_1039_C7TC01953J
crossref_primary_10_1126_scirobotics_abl7344
crossref_primary_10_3390_polym12122915
crossref_primary_10_1021_acsabm_0c01256
crossref_primary_10_1016_j_mattod_2019_08_005
crossref_primary_10_3390_c4020032
crossref_primary_10_1016_j_microc_2020_104944
crossref_primary_10_1021_acsnano_6b02395
crossref_primary_10_1002_adfm_201705955
crossref_primary_10_1038_srep26121
crossref_primary_10_1039_D4CS00286E
crossref_primary_10_3390_polym10111230
crossref_primary_10_1016_j_rineng_2022_100578
crossref_primary_10_1007_s10854_017_7485_2
crossref_primary_10_1021_acsnano_6b05368
crossref_primary_10_1002_advs_202001778
crossref_primary_10_1007_s10854_019_02217_9
crossref_primary_10_1021_acsnano_6b00877
crossref_primary_10_1002_advs_201700965
crossref_primary_10_1007_s12274_018_2068_y
crossref_primary_10_1002_adfm_202301896
crossref_primary_10_1021_acsami_6b06838
crossref_primary_10_1039_D2TC02511F
crossref_primary_10_1108_CW_11_2018_0084
crossref_primary_10_1039_C6NR00015K
crossref_primary_10_3390_bios10120199
crossref_primary_10_1002_smtd_202500235
crossref_primary_10_1016_j_orgel_2016_12_045
crossref_primary_10_3390_s22051878
crossref_primary_10_1039_C5RA16615B
Cites_doi 10.1021/cm9701163
10.1021/nl3038773
10.1038/nature10313
10.1109/LED.2012.2214757
10.1039/C4TC00618F
10.1021/ja043425k
10.1038/nmat1817
10.7567/APEX.6.085101
10.1038/nmat1974
10.1038/nnano.2011.1
10.1002/adma.200901141
10.1021/nl902522f
10.1038/nmat2459
10.1021/nn3026172
10.1021/nl202765b
10.1109/TED.2009.2039541
10.1021/nl5016014
10.1002/adma.201000889
10.1039/C3NR04870E
10.1039/C2CS35325C
10.1016/j.orgel.2014.04.022
10.1021/cr050139y
10.1038/nature07727
10.1038/nature07110
10.1038/nmat2291
10.1109/LED.2011.2118732
10.1021/nn100966s
10.1063/1.3681809
10.1002/smll.201203154
10.1021/nl401934a
10.1038/ncomms5147
10.1016/j.orgel.2013.02.006
10.1038/nmat1903
ContentType Journal Article
Copyright Copyright © 2014 American Chemical Society
Copyright_xml – notice: Copyright © 2014 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1021/nn505979j
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList PubMed
Materials Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 12776
ExternalDocumentID 25497107
10_1021_nn505979j
a697666575
Genre Journal Article
GroupedDBID -
23M
4.4
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
LG6
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
5VS
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-a414t-dd2f1b934d61bd893c9c3b02eb5d1d9a82381b5faab376aaacff28bc3d7b7f503
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Fri Jul 11 12:18:20 EDT 2025
Fri Jul 11 16:26:46 EDT 2025
Thu Apr 03 07:01:31 EDT 2025
Thu Apr 24 23:09:50 EDT 2025
Sun Jul 06 05:10:00 EDT 2025
Thu Aug 27 13:42:28 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords flexible electronics
organic light-emitting diode
screen printing
thin-film transistor
single-wall carbon nanotube
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a414t-dd2f1b934d61bd893c9c3b02eb5d1d9a82381b5faab376aaacff28bc3d7b7f503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25497107
PQID 1640330369
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_1762060065
proquest_miscellaneous_1640330369
pubmed_primary_25497107
crossref_citationtrail_10_1021_nn505979j
crossref_primary_10_1021_nn505979j
acs_journals_10_1021_nn505979j
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2014-12-23
PublicationDateYYYYMMDD 2014-12-23
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-12-23
  day: 23
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2014
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Cho J. H. (ref3/cit3) 2008; 7
Minemawari H. (ref5/cit5) 2011; 475
Singh V. K. (ref33/cit33) 2012; 111
Li Y. N. (ref4/cit4) 2005; 127
Menard E. (ref31/cit31) 2007; 107
Jung M. (ref26/cit26) 2010; 57
Wang C. (ref16/cit16) 2013; 42
Sun D. M. (ref15/cit15) 2011; 6
Sekitani T. (ref7/cit7) 2009; 8
Bao Z. N. (ref1/cit1) 1997; 9
Xu W. (ref22/cit22) 2014; 6
Chen P. C. (ref23/cit23) 2011; 11
Ha M. J. (ref24/cit24) 2013; 13
Ryu G. S. (ref32/cit32) 2013; 14
ref34/cit34
Lau P. H. (ref29/cit29) 2013; 13
Cao Q. (ref18/cit18) 2008; 454
Willmann J. (ref10/cit10) 2014; 15
Berggren M. (ref2/cit2) 2007; 6
Wang C. (ref17/cit17) 2009; 9
Singh M. (ref9/cit9) 2010; 22
Ha M. J. (ref20/cit20) 2010; 4
Sekitani T. (ref8/cit8) 2007; 6
ref12/cit12
Kim B. (ref25/cit25) 2014; 14
Park J. U. (ref6/cit6) 2007; 6
Noh J. (ref27/cit27) 2012; 33
Noh J. (ref28/cit28) 2011; 32
Yan H. (ref11/cit11) 2009; 457
Aleeva Y. (ref13/cit13) 2014; 2
Higuchi K. (ref30/cit30) 2013; 6
Zhang J. L. (ref19/cit19) 2012; 6
Sun D. M. (ref14/cit14) 2013; 9
Okimoto H. (ref21/cit21) 2010; 22
References_xml – volume: 9
  start-page: 1299
  year: 1997
  ident: ref1/cit1
  publication-title: Chem. Mater.
  doi: 10.1021/cm9701163
– volume: 13
  start-page: 954
  year: 2013
  ident: ref24/cit24
  publication-title: Nano Lett.
  doi: 10.1021/nl3038773
– volume: 475
  start-page: 364
  year: 2011
  ident: ref5/cit5
  publication-title: Nature
  doi: 10.1038/nature10313
– volume: 33
  start-page: 1574
  year: 2012
  ident: ref27/cit27
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2012.2214757
– volume: 2
  start-page: 6436
  year: 2014
  ident: ref13/cit13
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C4TC00618F
– volume: 127
  start-page: 3266
  year: 2005
  ident: ref4/cit4
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja043425k
– volume: 6
  start-page: 3
  year: 2007
  ident: ref2/cit2
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1817
– volume: 6
  start-page: 085101
  year: 2013
  ident: ref30/cit30
  publication-title: Appl. Phys. Express
  doi: 10.7567/APEX.6.085101
– volume: 6
  start-page: 782
  year: 2007
  ident: ref6/cit6
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1974
– volume: 6
  start-page: 156
  year: 2011
  ident: ref15/cit15
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2011.1
– volume: 22
  start-page: 673
  year: 2010
  ident: ref9/cit9
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200901141
– volume: 9
  start-page: 4285
  year: 2009
  ident: ref17/cit17
  publication-title: Nano Lett.
  doi: 10.1021/nl902522f
– volume: 8
  start-page: 494
  year: 2009
  ident: ref7/cit7
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2459
– volume: 6
  start-page: 7412
  year: 2012
  ident: ref19/cit19
  publication-title: ACS Nano
  doi: 10.1021/nn3026172
– volume: 11
  start-page: 5301
  year: 2011
  ident: ref23/cit23
  publication-title: Nano Lett.
  doi: 10.1021/nl202765b
– volume: 57
  start-page: 571
  year: 2010
  ident: ref26/cit26
  publication-title: Ieee. T. Electron Devices
  doi: 10.1109/TED.2009.2039541
– volume: 14
  start-page: 3683
  year: 2014
  ident: ref25/cit25
  publication-title: Nano Lett.
  doi: 10.1021/nl5016014
– volume: 22
  start-page: 3981
  year: 2010
  ident: ref21/cit21
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201000889
– volume: 6
  start-page: 1589
  year: 2014
  ident: ref22/cit22
  publication-title: Nanoscale
  doi: 10.1039/C3NR04870E
– ident: ref34/cit34
– volume: 42
  start-page: 2592
  year: 2013
  ident: ref16/cit16
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C2CS35325C
– volume: 15
  start-page: 1631
  year: 2014
  ident: ref10/cit10
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2014.04.022
– volume: 107
  start-page: 1117
  year: 2007
  ident: ref31/cit31
  publication-title: Chem. Rev.
  doi: 10.1021/cr050139y
– volume: 457
  start-page: 679
  year: 2009
  ident: ref11/cit11
  publication-title: Nature
  doi: 10.1038/nature07727
– volume: 454
  start-page: 495
  year: 2008
  ident: ref18/cit18
  publication-title: Nature
  doi: 10.1038/nature07110
– volume: 7
  start-page: 900
  year: 2008
  ident: ref3/cit3
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2291
– volume: 32
  start-page: 638
  year: 2011
  ident: ref28/cit28
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2011.2118732
– volume: 4
  start-page: 4388
  year: 2010
  ident: ref20/cit20
  publication-title: ACS Nano
  doi: 10.1021/nn100966s
– volume: 111
  start-page: 034905
  year: 2012
  ident: ref33/cit33
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3681809
– volume: 9
  start-page: 1188
  year: 2013
  ident: ref14/cit14
  publication-title: Small
  doi: 10.1002/smll.201203154
– volume: 13
  start-page: 3864
  year: 2013
  ident: ref29/cit29
  publication-title: Nano Lett.
  doi: 10.1021/nl401934a
– ident: ref12/cit12
  doi: 10.1038/ncomms5147
– volume: 14
  start-page: 1218
  year: 2013
  ident: ref32/cit32
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2013.02.006
– volume: 6
  start-page: 413
  year: 2007
  ident: ref8/cit8
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1903
SSID ssj0057876
Score 2.542516
Snippet Semiconducting single-wall carbon nanotubes are very promising materials in printed electronics due to their excellent mechanical and electrical property,...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12769
SubjectTerms Electric potential
Electronics
Nanostructure
Organic light-emitting diodes
Screen printing
Semiconductor devices
Single wall carbon nanotubes
Thin films
Transistors
Title Screen Printing as a Scalable and Low-Cost Approach for Rigid and Flexible Thin-Film Transistors Using Separated Carbon Nanotubes
URI http://dx.doi.org/10.1021/nn505979j
https://www.ncbi.nlm.nih.gov/pubmed/25497107
https://www.proquest.com/docview/1640330369
https://www.proquest.com/docview/1762060065
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELZKucCB92N5VOZx4OLWdpyHj6uFVYUAIZZKvUUeP9BCSVCTFRI3_jljJ1kV0RblFGUix_HY32fN-BtCXirDgQeZMSXKwJS2kkHBK6YcD7lBQK9Smc73H4rDI_X2OD_eIS8uiOBLcdA0CNK61F-vkKuyqMq4w5ovVtNyGz2uGELHuDVG_jDJB519NUKP7f6Gngv4ZMKV5U3yejqdM6STfNvf9LBvf_0r1njZJ98iN0ZeSeeDI9wmO765Q66fURu8S36vbEyyoR_xNiY7U9NRQ1c4SPH4FDWNo-_an2zRdj2dj1LjFDkt_bT-snbp-TLKZ0bjWO6TLdcn32kCu6Q10tGUf0BXPumJe0cX5hTahuIK3vYb8N09crR883lxyMYKDMwooXrmnAwCdKZcIcAhtbHaZsClh9wJp00VAR_yYAzgQmWMsSHICmzmSihDzrP7ZLdpG_-QUKQZ3gsOpfWApEFUkGsDWofK4yX9jOzhENXjDOrqFByXot7-yxl5NY1ebUf98lhG4-Q80-db0x-DaMd5Rs8mF6hxSsU4iWl8u8GmC8WzCO36EhsEEV5EAjcjDwb_2TYV99xI3MpH_-vSY3IN-VfSjZTZE7Lbn278U-Q4PewlH_8DKs32Rg
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LbtQwFL0qZQEsKK_CUCgGgcTGbeI4Dy9YjAZGUzqtENNK3aV-pZpSEtRkVMGO3-BX-DmuPclQUIFVJZRVlCs7sa99juPrcwGecxmooGAR5WFaUC40oyoJMspNUMQSAT3zaTp3dpPRPn97EB8swbfuLAy-RI0l1X4T_6e6QLhZlojVIhXHbQDltv18hsuz-tXWa-zLF4wN3-wNRrTNIEAlD3lDjWFFqETETRIqg9CshY5UwKyKTWiEzBxgqbiQUuFAk1LqomCZ0pFJVVrEQYTlXoGrSHqYW9j1B5NulneOnsx3rHFFjrSlUy06_6oO8XT9K-L9gcZ6OBuuwPdFQ_golg8bs0Zt6C-_aUT-ny11C262LJr0525_G5ZseQdunNNWvAtfJ9qFFJF3eOtCu4msiSQTdEl3WIzI0pBxdUYHVd2QfiusTpDBk_fTo6nxz4dOLNQZu-SmdDg9-Ug8tHtllZr4aAsysV493RoykKeqKgniVdXMlK3vwf6ltMEqLJdVaR8AQVJlbRioVFuFFCnMVCykEqLILF7M9mAduy5v54s696EALMwXfdeDl53T5LpVa3dJQ04uMn22MP00lyi5yOhp53k5TiBuV0iWtpph1QkPIkdkxF9sEDKDxNHVHtyfu-2iKveHAWlq-vBfn_QEro32dsb5eGt3ew2uI_P0ipksegTLzenMPkZ216h1P8wIHF62t_4ASWhcTg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LbtQwFL0qRUKw4F0YHsUgkNikdZynFyxGU6KWlqpiqNRd6mc1pSRVk1EFO36kv9Jf49qTjAoqsKqEsopyZSf2tc9x7vUxwOtYUEkti4I4zGwQc8UCmdI8iDW1iUBAz_0xnR-30_Xd-MNesrcAZ_1eGHyJBktqfBDfjepjbTuFgXC1qhCvecYPuyTKTfPtFJdozbuNNezPN4wV7z-P1oPuFIFAxGHcBlozG0oexToNpUZ4VlxFkjIjEx1qLnIHWjKxQkgcbEIIZS3LpYp0JjOb0AjLvQbXXXjQLe6Go3E_0ztnT2dRa1yVI3XplYsuvqpDPdX8inp_oLIe0oo7cD5vDJ_J8mVl2soV9f03ncj_t7Xuwu2OTZPhzP3vwYKp7sOtCxqLD-DHWLnUIrKDty7Fm4iGCDJG13SbxoioNNmqT4NR3bRk2AmsE2Ty5NPkYKL988KJhjpjd8hpUEyOvhIP8V5hpSE-64KMjVdRN5qMxImsK4K4VbdTaZqHsHslbbAEi1VdmcdAkFwZE1KZKSORKoW5TLiQnNvc4MXMAJax-8pu3mhKnxLAwnLedwN42ztOqTrVdnd4yNFlpq_mpsczqZLLjF723lfiROKiQ6Iy9RSrTmMaOULD_2KD0ElTR1sH8GjmuvOq3J8GpKvZk3990gu4sbNWlFsb25tP4SYSUC-cyaJnsNieTM1zJHmtXPYjjcD-VTvrT6y2XtE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Screen+printing+as+a+scalable+and+low-cost+approach+for+rigid+and+flexible+thin-film+transistors+using+separated+carbon+nanotubes&rft.jtitle=ACS+nano&rft.au=Cao%2C+Xuan&rft.au=Chen%2C+Haitian&rft.au=Gu%2C+Xiaofei&rft.au=Liu%2C+Bilu&rft.date=2014-12-23&rft.eissn=1936-086X&rft.volume=8&rft.issue=12&rft.spage=12769&rft_id=info:doi/10.1021%2Fnn505979j&rft_id=info%3Apmid%2F25497107&rft.externalDocID=25497107
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon