Common Origin of Green Luminescence in Carbon Nanodots and Graphene Quantum Dots

Carbon nanodots (C-dots) synthesized by electrochemical ablation and small molecule carbonization, as well as graphene quantum dots (GQDs) fabricated by solvothermally cutting graphene oxide, are three kinds of typical green fluorescence carbon nanomaterials. Insight into the photoluminescence origi...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 8; no. 3; pp. 2541 - 2547
Main Authors Wang, Lei, Zhu, Shou-Jun, Wang, Hai-Yu, Qu, Song-Nan, Zhang, Yong-Lai, Zhang, Jun-Hu, Chen, Qi-Dai, Xu, Huai-Liang, Han, Wei, Yang, Bai, Sun, Hong-Bo
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 25.03.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Carbon nanodots (C-dots) synthesized by electrochemical ablation and small molecule carbonization, as well as graphene quantum dots (GQDs) fabricated by solvothermally cutting graphene oxide, are three kinds of typical green fluorescence carbon nanomaterials. Insight into the photoluminescence origin in these fluorescent carbon nanomaterials is one of the important matters of current debates. Here, a common origin of green luminescence in these C-dots and GQDs is unraveled by ultrafast spectroscopy. According to the change of surface functional groups during surface chemical reduction experiments, which are also accompanied by obvious emission-type transform, these common green luminescence emission centers that emerge in these C-dots and GQDs synthesized by bottom-up and top-down methods are unambiguously assigned to special edge states consisting of several carbon atoms on the edge of carbon backbone and functional groups with CO (carbonyl and carboxyl groups). Our findings further suggest that the competition among various emission centers (bright edge states) and traps dominates the optical properties of these fluorescent carbon nanomaterials.
AbstractList Carbon nanodots (C-dots) synthesized by electrochemical ablation and small molecule carbonization, as well as graphene quantum dots (GQDs) fabricated by solvothermally cutting graphene oxide, are three kinds of typical green fluorescence carbon nanomaterials. Insight into the photoluminescence origin in these fluorescent carbon nanomaterials is one of the important matters of current debates. Here, a common origin of green luminescence in these C-dots and GQDs is unraveled by ultrafast spectroscopy. According to the change of surface functional groups during surface chemical reduction experiments, which are also accompanied by obvious emission-type transform, these common green luminescence emission centers that emerge in these C-dots and GQDs synthesized by bottom-up and top-down methods are unambiguously assigned to special edge states consisting of several carbon atoms on the edge of carbon backbone and functional groups with C═O (carbonyl and carboxyl groups). Our findings further suggest that the competition among various emission centers (bright edge states) and traps dominates the optical properties of these fluorescent carbon nanomaterials.Carbon nanodots (C-dots) synthesized by electrochemical ablation and small molecule carbonization, as well as graphene quantum dots (GQDs) fabricated by solvothermally cutting graphene oxide, are three kinds of typical green fluorescence carbon nanomaterials. Insight into the photoluminescence origin in these fluorescent carbon nanomaterials is one of the important matters of current debates. Here, a common origin of green luminescence in these C-dots and GQDs is unraveled by ultrafast spectroscopy. According to the change of surface functional groups during surface chemical reduction experiments, which are also accompanied by obvious emission-type transform, these common green luminescence emission centers that emerge in these C-dots and GQDs synthesized by bottom-up and top-down methods are unambiguously assigned to special edge states consisting of several carbon atoms on the edge of carbon backbone and functional groups with C═O (carbonyl and carboxyl groups). Our findings further suggest that the competition among various emission centers (bright edge states) and traps dominates the optical properties of these fluorescent carbon nanomaterials.
Carbon nanodots (C-dots) synthesized by electrochemical ablation and small molecule carbonization, as well as graphene quantum dots (GQDs) fabricated by solvothermally cutting graphene oxide, are three kinds of typical green fluorescence carbon nanomaterials. Insight into the photoluminescence origin in these fluorescent carbon nanomaterials is one of the important matters of current debates. Here, a common origin of green luminescence in these C-dots and GQDs is unraveled by ultrafast spectroscopy. According to the change of surface functional groups during surface chemical reduction experiments, which are also accompanied by obvious emission-type transform, these common green luminescence emission centers that emerge in these C-dots and GQDs synthesized by bottom-up and top-down methods are unambiguously assigned to special edge states consisting of several carbon atoms on the edge of carbon backbone and functional groups with C=O (carbonyl and carboxyl groups). Our findings further suggest that the competition among various emission centers (bright edge states) and traps dominates the optical properties of these fluorescent carbon nanomaterials.
Carbon nanodots (C-dots) synthesized by electrochemical ablation and small molecule carbonization, as well as graphene quantum dots (GQDs) fabricated by solvothermally cutting graphene oxide, are three kinds of typical green fluorescence carbon nanomaterials. Insight into the photoluminescence origin in these fluorescent carbon nanomaterials is one of the important matters of current debates. Here, a common origin of green luminescence in these C-dots and GQDs is unraveled by ultrafast spectroscopy. According to the change of surface functional groups during surface chemical reduction experiments, which are also accompanied by obvious emission-type transform, these common green luminescence emission centers that emerge in these C-dots and GQDs synthesized by bottom-up and top-down methods are unambiguously assigned to special edge states consisting of several carbon atoms on the edge of carbon backbone and functional groups with CO (carbonyl and carboxyl groups). Our findings further suggest that the competition among various emission centers (bright edge states) and traps dominates the optical properties of these fluorescent carbon nanomaterials.
Carbon nanodots (C-dots) synthesized by electrochemical ablation and small molecule carbonization, as well as graphene quantum dots (GQDs) fabricated by solvothermally cutting graphene oxide, are three kinds of typical green fluorescence carbon nanomaterials. Insight into the photoluminescence origin in these fluorescent carbon nanomaterials is one of the important matters of current debates. Here, a common origin of green luminescence in these C-dots and GQDs is unraveled by ultrafast spectroscopy. According to the change of surface functional groups during surface chemical reduction experiments, which are also accompanied by obvious emission-type transform, these common green luminescence emission centers that emerge in these C-dots and GQDs synthesized by bottom-up and top-down methods are unambiguously assigned to special edge states consisting of several carbon atoms on the edge of carbon backbone and functional groups with C═O (carbonyl and carboxyl groups). Our findings further suggest that the competition among various emission centers (bright edge states) and traps dominates the optical properties of these fluorescent carbon nanomaterials.
Author Chen, Qi-Dai
Han, Wei
Xu, Huai-Liang
Zhu, Shou-Jun
Sun, Hong-Bo
Qu, Song-Nan
Zhang, Jun-Hu
Wang, Lei
Wang, Hai-Yu
Zhang, Yong-Lai
Yang, Bai
AuthorAffiliation College of Physics
Jilin University
Chinese Academy of Sciences
State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry
AuthorAffiliation_xml – name: State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering
– name: State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry
– name: Jilin University
– name: College of Physics
– name: Chinese Academy of Sciences
Author_xml – sequence: 1
  givenname: Lei
  surname: Wang
  fullname: Wang, Lei
– sequence: 2
  givenname: Shou-Jun
  surname: Zhu
  fullname: Zhu, Shou-Jun
– sequence: 3
  givenname: Hai-Yu
  surname: Wang
  fullname: Wang, Hai-Yu
  email: hbsun@jlu.edu.cn, haiyu_wang@jlu.edu.cn, byangchem@jlu.edu.cn
– sequence: 4
  givenname: Song-Nan
  surname: Qu
  fullname: Qu, Song-Nan
– sequence: 5
  givenname: Yong-Lai
  surname: Zhang
  fullname: Zhang, Yong-Lai
– sequence: 6
  givenname: Jun-Hu
  surname: Zhang
  fullname: Zhang, Jun-Hu
– sequence: 7
  givenname: Qi-Dai
  surname: Chen
  fullname: Chen, Qi-Dai
– sequence: 8
  givenname: Huai-Liang
  surname: Xu
  fullname: Xu, Huai-Liang
– sequence: 9
  givenname: Wei
  surname: Han
  fullname: Han, Wei
– sequence: 10
  givenname: Bai
  surname: Yang
  fullname: Yang, Bai
  email: hbsun@jlu.edu.cn, haiyu_wang@jlu.edu.cn, byangchem@jlu.edu.cn
– sequence: 11
  givenname: Hong-Bo
  surname: Sun
  fullname: Sun, Hong-Bo
  email: hbsun@jlu.edu.cn, haiyu_wang@jlu.edu.cn, byangchem@jlu.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24517361$$D View this record in MEDLINE/PubMed
BookMark eNqF0UtLxDAQAOAgivvQg39AehH0UDdpm7R7lKqrsLgKCt5Ckk60S5usSXvw3xvZx0EWPCXDfDMkMyN0aKwBhM4IviY4IRNjKMYpK9oDNCTTlMW4YO-HuzslAzTyfokxzYucHaNBklGSp4wM0XNp29aaaOHqj9pEVkczB2Cied_WBrwCoyAKiVI4GdiTMLaynY-EqYIUq08wEL30wnR9G92GzAk60qLxcLo5x-jt_u61fIjni9ljeTOPRUayLlZpUVVM5RWd6kpqEmI1VUCITGReaRpCUJSBZFRoTDMiNGMyg1wqqnOQ6RhdrvuunP3qwXe8rcNzm0YYsL3nJGdJ-G-WJP9TSnCGE5wVgZ5vaC9bqPjK1a1w33w7sAAma6Cc9d6B5qruRFdb0zlRN5xg_rsSvltJqLj6U7Ftus9erK1Qni9t70wY4R73A6iVl40
CitedBy_id crossref_primary_10_1016_j_carbon_2017_11_069
crossref_primary_10_1039_C5NR05549K
crossref_primary_10_1016_j_trac_2019_03_011
crossref_primary_10_1039_C5NR00814J
crossref_primary_10_1016_j_optmat_2020_109674
crossref_primary_10_1039_c4nr01453g
crossref_primary_10_1002_advs_201801470
crossref_primary_10_1007_s00604_017_2108_4
crossref_primary_10_1039_D3TB02139D
crossref_primary_10_1039_C7CC00169J
crossref_primary_10_1038_ncomms6357
crossref_primary_10_1021_acs_jpcc_0c02175
crossref_primary_10_1063_1_5008454
crossref_primary_10_1039_C5NR00490J
crossref_primary_10_1039_C8NR03430C
crossref_primary_10_1039_C6RA09679D
crossref_primary_10_1016_j_mattod_2015_04_005
crossref_primary_10_1002_adom_202402467
crossref_primary_10_1002_smll_201501632
crossref_primary_10_1021_acs_jpclett_9b01339
crossref_primary_10_1039_C6TC00548A
crossref_primary_10_1002_adma_201600616
crossref_primary_10_1016_j_ccr_2017_04_006
crossref_primary_10_1039_C5RA04653J
crossref_primary_10_1021_acsami_5b10132
crossref_primary_10_1039_C8CP01619D
crossref_primary_10_1016_j_msec_2020_111809
crossref_primary_10_1039_C8CP02069H
crossref_primary_10_7498_aps_66_147901
crossref_primary_10_1039_C5RA11796H
crossref_primary_10_1016_j_matlet_2015_09_105
crossref_primary_10_3390_nano11081879
crossref_primary_10_1002_adfm_201601452
crossref_primary_10_1103_PhysRevA_92_013812
crossref_primary_10_1038_srep46422
crossref_primary_10_1016_j_carbon_2017_10_013
crossref_primary_10_1002_adom_201601049
crossref_primary_10_1016_j_nantod_2014_09_004
crossref_primary_10_1021_acsami_5b11579
crossref_primary_10_1021_acsomega_0c01993
crossref_primary_10_1016_j_carbon_2014_05_051
crossref_primary_10_1039_D2TC01587K
crossref_primary_10_1039_C4NR05246C
crossref_primary_10_1016_j_cej_2019_122503
crossref_primary_10_1016_j_heliyon_2020_e03957
crossref_primary_10_1021_acs_chemmater_7b01580
crossref_primary_10_1021_acs_jpclett_6b00752
crossref_primary_10_1021_acs_chemmater_9b00870
crossref_primary_10_1039_C5CP03498A
crossref_primary_10_1007_s10570_019_02807_0
crossref_primary_10_1002_adfm_201602325
crossref_primary_10_1002_smll_202102683
crossref_primary_10_1039_C8AY02660B
crossref_primary_10_1021_acs_jpcc_5b10186
crossref_primary_10_1039_C8GC02736F
crossref_primary_10_1039_C6NR02669A
crossref_primary_10_1088_1361_6528_abeeb6
crossref_primary_10_1039_C7NJ03513F
crossref_primary_10_1021_acs_jpcc_6b07593
crossref_primary_10_1021_acsami_7b13940
crossref_primary_10_1016_j_cocom_2023_e00793
crossref_primary_10_1016_j_carbon_2016_07_019
crossref_primary_10_1016_j_msec_2017_03_045
crossref_primary_10_1039_C8NJ04365E
crossref_primary_10_1021_acs_jpclett_7b00170
crossref_primary_10_1002_sia_6727
crossref_primary_10_19113_sdufenbed_570337
crossref_primary_10_1063_5_0093878
crossref_primary_10_1039_D0CS00462F
crossref_primary_10_1007_s00604_016_1819_2
crossref_primary_10_1016_j_matdes_2019_107925
crossref_primary_10_1016_j_mssp_2024_108945
crossref_primary_10_1016_j_optmat_2021_110950
crossref_primary_10_1002_adpr_202200314
crossref_primary_10_1039_C7CP07411E
crossref_primary_10_1088_2053_1591_ab2bb7
crossref_primary_10_3390_inorganics11060262
crossref_primary_10_1039_C9TB02468A
crossref_primary_10_1016_j_cartre_2024_100412
crossref_primary_10_1039_C8RA00390D
crossref_primary_10_1039_C5RA02598B
crossref_primary_10_1016_j_molliq_2017_06_089
crossref_primary_10_3390_nano8040233
crossref_primary_10_1007_s40843_019_9450_3
crossref_primary_10_1016_j_cej_2017_12_056
crossref_primary_10_1021_acsanm_0c03011
crossref_primary_10_1021_acs_jpcc_2c02472
crossref_primary_10_1021_acsami_2c09496
crossref_primary_10_1007_s00449_020_02330_8
crossref_primary_10_1039_C5NR01178G
crossref_primary_10_3762_bjnano_13_93
crossref_primary_10_1021_acsami_5b11317
crossref_primary_10_1016_j_jenvman_2019_109486
crossref_primary_10_1021_cr500304f
crossref_primary_10_1039_C7CP02731A
crossref_primary_10_1016_j_saa_2019_01_079
crossref_primary_10_1021_jp510436r
crossref_primary_10_1016_j_optmat_2022_112368
crossref_primary_10_1039_C7NJ03280C
crossref_primary_10_1016_j_snb_2021_130072
crossref_primary_10_1080_09205063_2018_1470736
crossref_primary_10_1039_C4RA04264F
crossref_primary_10_1016_j_matlet_2019_127012
crossref_primary_10_1021_acsomega_9b02686
crossref_primary_10_1002_elps_201500166
crossref_primary_10_1021_acs_jpclett_6b01309
crossref_primary_10_1021_jacs_9b08071
crossref_primary_10_3390_c4040067
crossref_primary_10_1142_S1793292021500314
crossref_primary_10_1016_j_molliq_2020_114711
crossref_primary_10_1016_j_saa_2022_121456
crossref_primary_10_1038_srep12604
crossref_primary_10_1039_C4RA14019B
crossref_primary_10_1002_smll_201702098
crossref_primary_10_1007_s00604_018_3175_x
crossref_primary_10_1016_j_matchemphys_2017_09_064
crossref_primary_10_1021_acs_jpcc_9b11732
crossref_primary_10_1039_D0NR01365J
crossref_primary_10_1038_srep24205
crossref_primary_10_1039_C5AY02451J
crossref_primary_10_1088_2631_6331_ab0c80
crossref_primary_10_1039_C7CP02875J
crossref_primary_10_1007_s11431_023_2618_3
crossref_primary_10_1016_j_mattod_2019_05_003
crossref_primary_10_1021_acs_langmuir_6b02422
crossref_primary_10_1007_s12274_019_2337_4
crossref_primary_10_1016_j_jphotochem_2023_115158
crossref_primary_10_1039_C7SE00158D
crossref_primary_10_1039_C5NR07153D
crossref_primary_10_1002_smll_202310563
crossref_primary_10_1021_acsami_7b04942
crossref_primary_10_1039_C8NR01900B
crossref_primary_10_1002_anie_201700949
crossref_primary_10_1021_acs_jpclett_8b03803
crossref_primary_10_1016_j_diamond_2023_110441
crossref_primary_10_1016_j_nanoso_2019_100391
crossref_primary_10_1002_chem_201601849
crossref_primary_10_1016_j_carbon_2018_12_056
crossref_primary_10_1021_acs_jpcc_5b12294
crossref_primary_10_1038_s41570_019_0103_5
crossref_primary_10_1016_j_carbon_2016_10_089
crossref_primary_10_1002_asia_202101087
crossref_primary_10_1039_C5CP04782J
crossref_primary_10_1016_j_isci_2022_104421
crossref_primary_10_1021_acs_jpcc_8b01385
crossref_primary_10_1016_j_matlet_2017_08_025
crossref_primary_10_1039_C5RA26279H
crossref_primary_10_1016_j_cej_2024_148550
crossref_primary_10_1039_C7TC05878K
crossref_primary_10_1016_j_cej_2024_151839
crossref_primary_10_1002_cssc_201701847
crossref_primary_10_1016_j_jallcom_2016_07_226
crossref_primary_10_1039_C8TC02982B
crossref_primary_10_1016_j_carbon_2016_06_007
crossref_primary_10_1016_j_compositesb_2019_107504
crossref_primary_10_3390_nano12040693
crossref_primary_10_1002_ange_201700949
crossref_primary_10_1039_C9RA02080B
crossref_primary_10_1364_OME_7_002208
crossref_primary_10_1016_j_molstruc_2021_130922
crossref_primary_10_1016_j_talanta_2015_08_024
crossref_primary_10_1039_C6NR08444C
crossref_primary_10_1016_j_bios_2017_01_067
crossref_primary_10_1002_bio_3685
crossref_primary_10_1016_j_cartre_2023_100276
crossref_primary_10_1016_j_sbsr_2018_100253
crossref_primary_10_1016_j_carbon_2017_08_021
crossref_primary_10_3390_lubricants12030088
crossref_primary_10_1016_j_scitotenv_2021_152745
crossref_primary_10_1007_s00604_016_2039_5
crossref_primary_10_1039_C9GC02266J
crossref_primary_10_1021_acsami_6b08315
crossref_primary_10_1021_acsami_6b10516
crossref_primary_10_1016_j_jallcom_2018_12_383
crossref_primary_10_1016_j_chemosphere_2024_143966
crossref_primary_10_1039_C4RA09525A
crossref_primary_10_1002_ejic_201900876
crossref_primary_10_1016_j_aca_2021_338919
crossref_primary_10_1021_acs_jpclett_7b02521
crossref_primary_10_1186_s11671_017_2249_8
crossref_primary_10_1016_j_elecom_2015_01_023
crossref_primary_10_1039_C9NJ03874D
crossref_primary_10_1021_acs_jpcc_9b02428
crossref_primary_10_1007_s12274_019_2489_2
crossref_primary_10_1021_acs_jpcc_2c05477
crossref_primary_10_1002_chem_201604213
crossref_primary_10_3390_c5040071
crossref_primary_10_1039_C6TC03100E
crossref_primary_10_1039_D0NJ04878J
crossref_primary_10_1007_s13738_019_01678_3
crossref_primary_10_1021_acs_nanolett_5b03915
crossref_primary_10_1039_D3NR04802K
crossref_primary_10_1007_s11051_019_4510_9
crossref_primary_10_1016_j_jallcom_2024_173947
crossref_primary_10_1002_adfm_201801761
crossref_primary_10_1002_smll_201603495
crossref_primary_10_1021_ja510183c
crossref_primary_10_3762_bjnano_11_48
crossref_primary_10_1039_D2NA00925K
crossref_primary_10_1039_C7NR03648E
crossref_primary_10_1016_j_diamond_2020_107960
crossref_primary_10_1002_slct_201702455
crossref_primary_10_1039_C8NR04596H
crossref_primary_10_1134_S1070363223100250
crossref_primary_10_1002_ange_202111285
crossref_primary_10_1002_bio_70108
crossref_primary_10_1002_SMMD_20240012
crossref_primary_10_1007_s40242_020_9109_2
crossref_primary_10_1021_acsanm_1c01880
crossref_primary_10_1016_j_nwnano_2025_100077
crossref_primary_10_1039_C7RA11963A
crossref_primary_10_1088_0957_4484_26_6_065402
crossref_primary_10_1039_C8NR02043D
crossref_primary_10_1063_1_4904958
crossref_primary_10_1016_j_ultsonch_2017_01_001
crossref_primary_10_1002_adom_201400200
crossref_primary_10_1007_s13738_015_0659_z
crossref_primary_10_1002_chem_201405088
crossref_primary_10_1039_C6AN00514D
crossref_primary_10_1039_C5NR04466A
crossref_primary_10_1002_ppsc_201500062
crossref_primary_10_1016_j_ensm_2024_103791
crossref_primary_10_1016_j_molstruc_2025_141951
crossref_primary_10_3390_pr9071095
crossref_primary_10_1039_C7NR01663H
crossref_primary_10_1039_C8NR01063C
crossref_primary_10_1039_C5RA07319G
crossref_primary_10_1039_D1TC04951H
crossref_primary_10_1016_j_nantod_2016_12_006
crossref_primary_10_1021_acsami_7b19524
crossref_primary_10_1016_j_cej_2022_135800
crossref_primary_10_1016_j_ab_2020_113876
crossref_primary_10_1021_acs_jpcc_7b11779
crossref_primary_10_1039_D2NR04642C
crossref_primary_10_1039_C4RA09899D
crossref_primary_10_1016_j_matpr_2021_04_288
crossref_primary_10_1016_j_jlumin_2019_01_040
crossref_primary_10_1021_acs_jpclett_6b01791
crossref_primary_10_1039_C8NR02296H
crossref_primary_10_1016_j_trac_2019_05_051
crossref_primary_10_1039_C8AN01676C
crossref_primary_10_1002_chem_201502463
crossref_primary_10_1016_j_jcis_2018_04_113
crossref_primary_10_1016_j_jlumin_2017_08_008
crossref_primary_10_1021_acs_chemmater_0c01391
crossref_primary_10_1002_adpr_202200161
crossref_primary_10_1021_la502705g
crossref_primary_10_1002_adma_202304074
crossref_primary_10_1002_slct_202200655
crossref_primary_10_1021_acs_jpcc_8b04601
crossref_primary_10_1038_s41377_022_00745_4
crossref_primary_10_3390_c5040060
crossref_primary_10_1016_j_saa_2023_122395
crossref_primary_10_1021_acs_jpcc_1c06029
crossref_primary_10_1039_C9TC02422K
crossref_primary_10_1007_s42823_021_00315_5
crossref_primary_10_1016_j_cej_2023_142354
crossref_primary_10_1007_s42823_022_00337_7
crossref_primary_10_1016_j_biopha_2018_05_067
crossref_primary_10_1142_S1793292020500988
crossref_primary_10_1016_j_chempr_2023_09_020
crossref_primary_10_1021_acs_jchemed_8b00114
crossref_primary_10_1021_acs_jpcc_5b05935
crossref_primary_10_1039_C5TA07780J
crossref_primary_10_1039_C7RA03840B
crossref_primary_10_1007_s40820_019_0303_z
crossref_primary_10_1016_j_apsusc_2017_08_133
crossref_primary_10_1021_acs_chemmater_6b01710
crossref_primary_10_1016_j_mtcomm_2021_102277
crossref_primary_10_1021_acs_jpclett_9b03714
crossref_primary_10_1016_j_saa_2023_123117
crossref_primary_10_1039_c3ra47994c
crossref_primary_10_1016_j_apcatb_2022_121379
crossref_primary_10_1039_D0NR02021D
crossref_primary_10_1021_acsanm_8b01355
crossref_primary_10_3390_nano13081344
crossref_primary_10_1021_acsami_8b07332
crossref_primary_10_52711_2231_5691_2022_00054
crossref_primary_10_1016_j_trac_2017_02_001
crossref_primary_10_1021_acsami_9b20500
crossref_primary_10_1021_acs_jpclett_7b00153
crossref_primary_10_1039_C4TC02536A
crossref_primary_10_1021_acssuschemeng_1c02791
crossref_primary_10_1016_j_bios_2023_115648
crossref_primary_10_1039_C9NA00698B
crossref_primary_10_1007_s12274_015_0786_y
crossref_primary_10_1039_C7CP08411K
crossref_primary_10_1016_j_mtcomm_2022_103777
crossref_primary_10_1016_j_nantod_2016_08_006
crossref_primary_10_1039_C7RA12069A
crossref_primary_10_1021_acsanm_1c01960
crossref_primary_10_1021_acs_jpcc_7b08039
crossref_primary_10_1016_j_scitotenv_2020_137680
crossref_primary_10_1002_anie_201801707
crossref_primary_10_1021_nl502372x
crossref_primary_10_1021_jp512188x
crossref_primary_10_1088_2043_6262_7_2_023001
crossref_primary_10_1016_j_colsurfa_2019_124201
crossref_primary_10_1021_acs_jpcc_8b03859
crossref_primary_10_1149_2_0041607jes
crossref_primary_10_1016_j_electacta_2015_08_015
crossref_primary_10_1039_C8NR02953A
crossref_primary_10_1016_j_bbe_2018_03_006
crossref_primary_10_1016_j_carbon_2016_08_023
crossref_primary_10_1016_j_chemosphere_2021_129959
crossref_primary_10_1021_acsami_6b10654
crossref_primary_10_1021_acsnano_5b05406
crossref_primary_10_1039_D2AN01858F
crossref_primary_10_1016_j_carbon_2018_02_004
crossref_primary_10_1088_1361_6463_aadbda
crossref_primary_10_1039_C6CP05813B
crossref_primary_10_3390_nano9040495
crossref_primary_10_1016_j_saa_2021_119964
crossref_primary_10_1002_cey2_175
crossref_primary_10_1038_srep12420
crossref_primary_10_1002_smll_201503958
crossref_primary_10_1021_acs_jpcc_7b10129
crossref_primary_10_1002_adma_202401002
crossref_primary_10_1021_acs_chemmater_7b01700
crossref_primary_10_1016_j_bioadv_2022_212756
crossref_primary_10_1039_C6RA17673A
crossref_primary_10_1016_j_carbon_2018_10_047
crossref_primary_10_1016_j_optmat_2017_12_051
crossref_primary_10_1039_C6NR00451B
crossref_primary_10_1021_acsami_0c15236
crossref_primary_10_3233_MGC_210132
crossref_primary_10_1016_j_mtsust_2022_100137
crossref_primary_10_1039_D3AN02134C
crossref_primary_10_3390_ma13163654
crossref_primary_10_3390_molecules27248728
crossref_primary_10_1016_j_jphotochem_2020_112847
crossref_primary_10_1021_acsomega_9b00085
crossref_primary_10_1016_j_carbon_2015_08_066
crossref_primary_10_1039_C5CS00397K
crossref_primary_10_1039_C4CC05806B
crossref_primary_10_1002_qua_26900
crossref_primary_10_1039_C4NR05737F
crossref_primary_10_1016_j_mtphys_2020_100328
crossref_primary_10_1039_C9RA08050C
crossref_primary_10_1016_j_eurpolymj_2021_110957
crossref_primary_10_1016_j_msec_2018_08_058
crossref_primary_10_1016_j_saa_2021_120442
crossref_primary_10_1007_s40199_019_00276_1
crossref_primary_10_1039_C8NH00258D
crossref_primary_10_1016_j_jcis_2016_12_057
crossref_primary_10_1016_j_jsamd_2020_01_006
crossref_primary_10_1016_j_bios_2014_12_028
crossref_primary_10_1002_jssc_201601180
crossref_primary_10_1021_acsami_8b07498
crossref_primary_10_1039_C8NR02405G
crossref_primary_10_1039_D4NR00271G
crossref_primary_10_1002_adom_201700257
crossref_primary_10_1021_acsami_5b02199
crossref_primary_10_1016_j_porgcoat_2023_107872
crossref_primary_10_1016_j_mattod_2020_04_008
crossref_primary_10_1002_cnma_201500009
crossref_primary_10_1039_C6TB00081A
crossref_primary_10_1002_slct_201801383
crossref_primary_10_1016_j_cartre_2021_100133
crossref_primary_10_1016_j_jlumin_2016_05_051
crossref_primary_10_1021_acsomega_7b01539
crossref_primary_10_1021_acsami_6b01765
crossref_primary_10_1016_j_cej_2021_129460
crossref_primary_10_1021_acsanm_0c02945
crossref_primary_10_1039_C6QI00587J
crossref_primary_10_1016_j_optmat_2022_112739
crossref_primary_10_1039_C8NJ04429E
crossref_primary_10_1016_j_aca_2015_11_021
crossref_primary_10_1039_C5TB00467E
crossref_primary_10_1007_s10812_023_01581_z
crossref_primary_10_1016_j_foodchem_2022_134961
crossref_primary_10_1021_acs_jpcc_1c02243
crossref_primary_10_1155_2015_787862
crossref_primary_10_1039_C5SC00819K
crossref_primary_10_1039_C6RA14732A
crossref_primary_10_1002_bio_3901
crossref_primary_10_1016_j_jlumin_2022_118742
crossref_primary_10_1016_j_snb_2018_09_027
crossref_primary_10_1134_S2075113319020217
crossref_primary_10_1039_C4NR02544J
crossref_primary_10_1002_adfm_201802585
crossref_primary_10_1016_j_jcis_2014_08_059
crossref_primary_10_1016_j_jlumin_2019_116554
crossref_primary_10_1063_1_4941818
crossref_primary_10_1364_OME_6_000312
crossref_primary_10_1007_s13738_020_01975_2
crossref_primary_10_1002_advs_202407090
crossref_primary_10_1021_acsami_2c16046
crossref_primary_10_3390_nano12224008
crossref_primary_10_1021_acs_nanolett_5b02215
crossref_primary_10_1016_j_molliq_2020_113086
crossref_primary_10_1039_C6RA21651J
crossref_primary_10_1021_acssuschemeng_3c01775
crossref_primary_10_1039_C7CS00235A
crossref_primary_10_1039_D1GC02964A
crossref_primary_10_1002_anie_202111285
crossref_primary_10_1002_lpor_202401478
crossref_primary_10_1021_acsami_6b13954
crossref_primary_10_1021_acs_jpcc_8b08012
crossref_primary_10_1039_C7NJ04562J
crossref_primary_10_1364_OE_24_00A312
crossref_primary_10_1039_C8FO01159A
crossref_primary_10_1002_chem_202000763
crossref_primary_10_1021_acssuschemeng_2c03173
crossref_primary_10_1039_C6CP05321A
crossref_primary_10_7498_aps_65_231101
crossref_primary_10_1039_C6NR00605A
crossref_primary_10_3389_fctls_2022_1006564
crossref_primary_10_1016_j_talanta_2018_12_042
crossref_primary_10_1021_acs_jpcc_8b08249
crossref_primary_10_3390_molecules29122790
crossref_primary_10_1016_j_cplett_2016_01_019
crossref_primary_10_1039_D4NA00033A
crossref_primary_10_1016_j_nanoen_2023_108623
crossref_primary_10_3390_coatings11091100
crossref_primary_10_1016_j_cocis_2015_11_001
crossref_primary_10_1016_j_jlumin_2016_05_033
crossref_primary_10_1016_j_optmat_2016_03_051
crossref_primary_10_1021_acs_nanolett_9b01940
crossref_primary_10_1039_C4RA06818A
crossref_primary_10_1016_j_cis_2019_102046
crossref_primary_10_1021_acsami_9b14472
crossref_primary_10_1039_C6NR05983J
crossref_primary_10_1002_asia_202301082
crossref_primary_10_1039_C7DT03089D
crossref_primary_10_1002_slct_202003487
crossref_primary_10_1039_C8NJ03698E
crossref_primary_10_1039_C6TB02131J
crossref_primary_10_1039_C7TC00631D
crossref_primary_10_1039_C7TB00363C
crossref_primary_10_1039_D1NA00811K
crossref_primary_10_1002_EXP_20230166
crossref_primary_10_1088_1361_6528_acb7fb
crossref_primary_10_1021_acs_analchem_7b03567
crossref_primary_10_1039_C7NR03754F
crossref_primary_10_1039_C5RA21137A
crossref_primary_10_1246_bcsj_20220250
crossref_primary_10_1007_s40242_020_0015_4
crossref_primary_10_1002_bio_4060
crossref_primary_10_1063_1_5143819
crossref_primary_10_1016_j_jmst_2021_11_039
crossref_primary_10_1007_s10895_017_2205_0
crossref_primary_10_1016_j_jcis_2018_10_088
crossref_primary_10_1039_C9TB00544G
crossref_primary_10_1039_C5RA27172J
crossref_primary_10_1039_D2NR01306A
crossref_primary_10_1007_s00604_019_3688_y
crossref_primary_10_1016_j_snb_2017_01_145
crossref_primary_10_1080_1536383X_2023_2274917
crossref_primary_10_1021_acsami_7b16002
crossref_primary_10_1016_j_cclet_2020_08_036
crossref_primary_10_1038_s41467_017_01463_x
crossref_primary_10_1002_bio_4190
crossref_primary_10_1002_advs_201900766
crossref_primary_10_1016_j_mri_2020_02_003
crossref_primary_10_1021_acs_jpcc_1c03012
crossref_primary_10_1016_j_jlumin_2018_10_056
crossref_primary_10_1039_C4CS00486H
crossref_primary_10_1007_s13205_023_03552_9
crossref_primary_10_1021_acs_chemrev_6b00116
crossref_primary_10_1016_j_jcis_2019_10_039
crossref_primary_10_1063_5_0084568
crossref_primary_10_1039_C6TA04813G
crossref_primary_10_1016_j_nantod_2020_101001
crossref_primary_10_1039_C7NJ00175D
crossref_primary_10_1016_j_apmt_2020_100924
crossref_primary_10_1016_j_apcatb_2024_124264
crossref_primary_10_4028_www_scientific_net_AMR_1123_233
crossref_primary_10_1039_C8TB01796D
crossref_primary_10_1016_j_jcis_2019_08_049
crossref_primary_10_1021_acsaelm_0c00411
crossref_primary_10_1021_acs_jpcc_6b07935
crossref_primary_10_1093_rb_rbad109
crossref_primary_10_1039_D1TB02457D
crossref_primary_10_1021_acsbiomaterials_9b01153
crossref_primary_10_1021_acsnano_9b00688
crossref_primary_10_1016_j_ceramint_2023_04_123
crossref_primary_10_1002_adfm_202302862
crossref_primary_10_1088_1361_6528_ab3cdf
crossref_primary_10_1002_slct_202201261
crossref_primary_10_1039_D2MA00747A
crossref_primary_10_1016_j_snb_2016_04_124
crossref_primary_10_1039_D1AY00270H
crossref_primary_10_1002_agt2_296
crossref_primary_10_1049_mnl_2020_0101
crossref_primary_10_1016_j_pmatsci_2017_02_004
crossref_primary_10_1080_1061186X_2018_1437920
crossref_primary_10_1002_adom_201900932
crossref_primary_10_1016_j_cej_2023_143010
crossref_primary_10_1002_cssc_201601741
crossref_primary_10_1021_acs_chemmater_7b03344
crossref_primary_10_1039_C4TC00988F
crossref_primary_10_1016_j_cej_2020_128125
crossref_primary_10_1039_C7NJ03337K
crossref_primary_10_3390_nano8050342
crossref_primary_10_1007_s11426_017_9172_0
crossref_primary_10_1039_C5RA15538J
crossref_primary_10_1007_s11356_023_30629_y
crossref_primary_10_1038_lsa_2015_137
crossref_primary_10_1039_C4NR03506B
crossref_primary_10_1002_slct_201803721
crossref_primary_10_1016_j_msec_2018_11_060
crossref_primary_10_1016_j_mtnano_2020_100091
crossref_primary_10_1002_cssc_201901795
crossref_primary_10_1002_adfm_201804337
crossref_primary_10_1002_adhm_201500720
crossref_primary_10_1016_S1872_5805_16_60008_2
crossref_primary_10_1021_acsanm_3c03328
crossref_primary_10_1016_j_jphotochem_2023_115066
crossref_primary_10_1039_C7RA04421F
crossref_primary_10_1016_j_saa_2019_117944
crossref_primary_10_1016_j_microc_2023_109837
crossref_primary_10_1039_C7NR07639H
crossref_primary_10_1021_acs_chemrev_2c00048
crossref_primary_10_1039_C9CE01067J
crossref_primary_10_1088_2515_7639_ad3b6f
crossref_primary_10_1007_s12274_014_0644_3
crossref_primary_10_1021_acssuschemeng_9b04817
crossref_primary_10_1007_s40843_016_5160_9
crossref_primary_10_1016_j_ceramint_2019_05_299
crossref_primary_10_1021_acs_energyfuels_2c03362
crossref_primary_10_3390_nano10020303
crossref_primary_10_1021_acsbiomaterials_7b01008
crossref_primary_10_1039_C5CP07558K
crossref_primary_10_1002_aelm_201700264
crossref_primary_10_1021_acssuschemeng_9b01796
crossref_primary_10_1016_j_cplett_2017_12_029
crossref_primary_10_1002_adpr_202100092
crossref_primary_10_1039_C6NJ02107G
crossref_primary_10_1039_C4NR03965C
crossref_primary_10_1002_adfm_202003656
crossref_primary_10_1039_C5RA09315E
crossref_primary_10_1039_C7SC02528A
crossref_primary_10_1021_acs_langmuir_9b00448
crossref_primary_10_1021_acs_jpcc_1c00004
crossref_primary_10_1088_1361_6528_aa810a
crossref_primary_10_1002_cnma_201800285
crossref_primary_10_1016_j_actbio_2016_09_027
crossref_primary_10_1016_j_carbon_2021_11_063
crossref_primary_10_1039_C8RA01148F
crossref_primary_10_1002_cphc_201600294
crossref_primary_10_1002_cphc_201601020
crossref_primary_10_1016_j_snb_2016_09_068
crossref_primary_10_1039_C7NR03570E
crossref_primary_10_1016_j_chemphys_2019_110607
crossref_primary_10_1021_acsabm_3c00046
crossref_primary_10_1021_cm503782p
crossref_primary_10_1007_s12221_022_4829_1
crossref_primary_10_1021_acsomega_8b00839
crossref_primary_10_1002_adom_202403251
crossref_primary_10_1109_JSTQE_2017_2729023
crossref_primary_10_1016_j_talanta_2016_02_018
crossref_primary_10_1039_C8TB02064G
crossref_primary_10_1021_acsanm_3c03229
crossref_primary_10_1002_ange_201801707
crossref_primary_10_1016_j_carbon_2022_03_019
crossref_primary_10_1021_acsami_9b10365
crossref_primary_10_1016_j_jddst_2019_101408
crossref_primary_10_1016_j_carbon_2019_08_037
crossref_primary_10_1039_C4CC02496F
crossref_primary_10_1039_C7NJ02588B
crossref_primary_10_1016_j_cplett_2016_10_030
crossref_primary_10_1016_j_jphotobiol_2019_111545
crossref_primary_10_1021_acsanm_3c05760
crossref_primary_10_15406_ipcse_2017_02_00063
crossref_primary_10_34133_research_0152
crossref_primary_10_3390_ma15051880
crossref_primary_10_1016_j_molstruc_2020_128343
crossref_primary_10_1016_j_cis_2019_06_008
crossref_primary_10_1016_j_jssc_2019_121107
crossref_primary_10_1039_C9CP03063H
crossref_primary_10_1007_s10971_022_05901_1
crossref_primary_10_1016_j_mser_2025_100940
crossref_primary_10_1016_j_electacta_2016_05_108
crossref_primary_10_1021_acsomega_1c06413
crossref_primary_10_1021_acs_jpcc_0c00238
crossref_primary_10_1186_s11671_016_1638_8
crossref_primary_10_3390_coatings8010033
crossref_primary_10_1016_j_chemosphere_2023_139638
crossref_primary_10_1002_pat_6115
crossref_primary_10_1002_adma_201503223
crossref_primary_10_1007_s12274_022_4558_1
crossref_primary_10_1021_acsaom_4c00301
crossref_primary_10_1016_j_mtchem_2021_100755
crossref_primary_10_1016_j_nantod_2015_09_002
crossref_primary_10_1016_j_saa_2018_10_029
crossref_primary_10_1021_acs_chemmater_7b04446
crossref_primary_10_1016_j_rineng_2023_101611
crossref_primary_10_1063_5_0049183
crossref_primary_10_15826_chimtech_2023_10_4_05
crossref_primary_10_1002_advs_201901316
crossref_primary_10_1039_C5RA17789H
crossref_primary_10_1063_1_4928028
crossref_primary_10_1016_j_matlet_2014_11_104
crossref_primary_10_1039_C6CP03159E
crossref_primary_10_1080_1536383X_2020_1752679
crossref_primary_10_1002_adfm_201501250
crossref_primary_10_1063_1_4909506
crossref_primary_10_1016_j_envres_2021_111008
crossref_primary_10_1039_C5RA02961A
crossref_primary_10_1039_C7NR06764J
crossref_primary_10_1021_acs_jpclett_0c02008
crossref_primary_10_1039_C6TC03469A
crossref_primary_10_1007_s11082_024_06582_6
crossref_primary_10_1039_C5PY01277E
crossref_primary_10_1142_S0219581X18500175
crossref_primary_10_1016_j_diamond_2021_108500
crossref_primary_10_1039_C5RA24987B
crossref_primary_10_1016_j_cej_2017_07_165
crossref_primary_10_1039_C5NR01757B
crossref_primary_10_1016_j_jece_2024_115080
crossref_primary_10_1021_acsami_8b22298
crossref_primary_10_1039_C5TC00813A
crossref_primary_10_1016_j_mattod_2015_11_008
crossref_primary_10_1039_D2MA00567K
crossref_primary_10_1007_s13659_023_00415_x
crossref_primary_10_1039_C7TC04824F
crossref_primary_10_1016_j_jallcom_2016_05_259
crossref_primary_10_1021_acscatal_4c02327
crossref_primary_10_1016_j_colsurfa_2023_132596
crossref_primary_10_1039_C5RA17439B
crossref_primary_10_3762_bjnano_9_35
crossref_primary_10_1021_acs_jpclett_1c02594
crossref_primary_10_1039_C8CP02433B
crossref_primary_10_1038_srep19991
crossref_primary_10_1039_C5TA01561H
crossref_primary_10_1016_j_jphotochemrev_2018_08_001
crossref_primary_10_1016_j_mtcomm_2022_104068
crossref_primary_10_1039_C8TA02061B
crossref_primary_10_1021_acsnano_5b00319
crossref_primary_10_1016_j_carbon_2016_04_004
crossref_primary_10_1039_C4RA03720K
crossref_primary_10_1039_C8NH00106E
crossref_primary_10_1021_acsami_9b12455
crossref_primary_10_1016_j_cossms_2022_101043
crossref_primary_10_1016_j_electacta_2018_09_193
crossref_primary_10_1039_C7CS00836H
crossref_primary_10_1016_j_optlastec_2018_06_013
crossref_primary_10_1021_acsanm_0c01259
crossref_primary_10_1039_C6RA11386A
crossref_primary_10_1016_j_est_2022_104279
crossref_primary_10_1021_jp507080c
crossref_primary_10_1007_s00604_018_3110_1
crossref_primary_10_1039_C5CP00417A
crossref_primary_10_1016_j_pmatsci_2020_100665
crossref_primary_10_1016_j_foodchem_2019_05_082
crossref_primary_10_1039_C8TB00428E
crossref_primary_10_1021_acsanm_3c02345
crossref_primary_10_1039_C6CC05947C
crossref_primary_10_1364_OME_7_002617
crossref_primary_10_1021_acsami_9b04600
crossref_primary_10_1039_C4NR02657H
crossref_primary_10_1007_s00604_018_3045_6
crossref_primary_10_1016_j_snb_2015_05_006
crossref_primary_10_1016_j_foodchem_2020_127107
crossref_primary_10_1016_j_optmat_2015_12_007
crossref_primary_10_1016_j_carbon_2021_04_075
crossref_primary_10_1186_s11671_019_3088_6
crossref_primary_10_1039_C8TC03508C
crossref_primary_10_1016_j_talo_2023_100236
crossref_primary_10_1016_j_heliyon_2023_e15388
crossref_primary_10_1016_j_ceramint_2020_06_133
crossref_primary_10_1021_acs_jpcc_5b08516
crossref_primary_10_1016_j_aca_2017_12_048
crossref_primary_10_1021_acs_langmuir_5b01875
crossref_primary_10_1002_smll_202205957
crossref_primary_10_1016_j_jphotochem_2018_10_052
crossref_primary_10_1016_j_inoche_2022_109883
crossref_primary_10_1039_C9NR08461D
crossref_primary_10_1016_j_snb_2018_01_137
crossref_primary_10_1016_j_colsurfa_2020_126129
crossref_primary_10_1016_j_apsusc_2016_03_077
crossref_primary_10_1039_D4MA00823E
crossref_primary_10_1002_adom_202500822
crossref_primary_10_1039_D0SC03246H
crossref_primary_10_1039_C9TB02043H
crossref_primary_10_1039_C9TC02199J
crossref_primary_10_1038_lsa_2015_18
Cites_doi 10.1039/c2ra20182h
10.1002/adfm.201203441
10.1364/OME.2.000490
10.1039/c2cc00110a
10.1039/c2cc31201h
10.1002/ange.201000982
10.1002/adma.201300233
10.1039/b906252a
10.1002/adma.201202599
10.1002/anie.201300519
10.1002/anie.201204381
10.1021/am400930h
10.1039/c2cc17769b
10.1021/ar300128j
10.1039/C1JM14112K
10.1002/adfm.201201499
10.1002/adma.201102866
10.1039/c3ra23410j
10.1002/adom.201200046
10.1002/anie.200906154
10.1021/nn405017q
10.1038/srep00085
10.1039/c0cc05391k
10.1002/adma.201302927
10.1039/c2cc33844k
10.1002/adma.201104950
10.1039/c2jm31191g
10.1002/anie.201206791
10.1021/nl302624p
10.1002/adom.201200020
10.1021/jp307308z
10.1002/anie.200906623
10.1002/adma.200902825
10.1039/c2jm34690g
10.1002/adom.201300368
ContentType Journal Article
Copyright Copyright © 2014 American Chemical Society
Copyright_xml – notice: Copyright © 2014 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1021/nn500368m
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList MEDLINE - Academic
Materials Research Database

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 2547
ExternalDocumentID 24517361
10_1021_nn500368m
c208612493
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
23M
4.4
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
LG6
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
5VS
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-a414t-c38dd6c7d59fdbf1c38c9ce11b2b7df538cec56eb65af0541af66b4e7bc5f7eb3
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Fri Jul 11 05:23:45 EDT 2025
Fri Jul 11 01:16:37 EDT 2025
Mon Jul 21 05:34:01 EDT 2025
Tue Jul 01 01:33:38 EDT 2025
Thu Apr 24 23:07:34 EDT 2025
Thu Aug 27 13:45:07 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords carbon nanodots
edge states
carboxyl groups
graphene quantum dots
transient species
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a414t-c38dd6c7d59fdbf1c38c9ce11b2b7df538cec56eb65af0541af66b4e7bc5f7eb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24517361
PQID 1510402048
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_1762057422
proquest_miscellaneous_1510402048
pubmed_primary_24517361
crossref_citationtrail_10_1021_nn500368m
crossref_primary_10_1021_nn500368m
acs_journals_10_1021_nn500368m
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-03-25
PublicationDateYYYYMMDD 2014-03-25
PublicationDate_xml – month: 03
  year: 2014
  text: 2014-03-25
  day: 25
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2014
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Yu P. (ref27/cit27) 2012; 116
Wen X. M. (ref29/cit29) 2013; 1
Zhang W. F. (ref17/cit17) 2012; 2
Zhu C. Z. (ref9/cit9) 2012; 48
Lin F. (ref25/cit25) 2012; 22
Qu S. N. (ref5/cit5) 2012; 51
Lingam K. (ref34/cit34) 2013; 23
Zhu S. J. (ref32/cit32) 2012; 2
Wang F. (ref14/cit14) 2011; 47
Guo X. (ref15/cit15) 2012; 48
Zhang W. F. (ref18/cit18) 2012; 24
Wang X. (ref24/cit24) 2009
Zhang Y. L. (ref13/cit13) 2013; 3
Wang L. (ref30/cit30) 2013; 1
Cao L. (ref19/cit19) 2013; 46
Galande C. (ref35/cit35) 2011; 1
Shen J. H. (ref4/cit4) 2012; 48
Liu F. (ref23/cit23) 2013; 25
Exarhos A. L. (ref28/cit28) 2013; 13
Wang X. (ref21/cit21) 2010; 122
Mirtchev P. (ref12/cit12) 2012; 22
Kong B. (ref10/cit10) 2012; 24
Pan D. Y. (ref22/cit22) 2010; 22
Gan Z. X. (ref20/cit20) 2013; 1
Wang J. (ref8/cit8) 2012; 51
Bao L. (ref26/cit26) 2011; 23
Wang L. (ref31/cit31) 2013; 25
Baker S. N. (ref1/cit1) 2010; 49
Zhu S. J. (ref33/cit33) 2012; 22
Zhang X. Y. (ref16/cit16) 2013; 7
Zhu S. J. (ref7/cit7) 2013; 52
Ma Z. (ref11/cit11) 2013; 5
Li H. T. (ref6/cit6) 2010; 49
Li H. T. (ref2/cit2) 2012; 22
Zhu S. J. (ref3/cit3) 2012; 48
References_xml – volume: 2
  start-page: 2717
  year: 2012
  ident: ref32/cit32
  publication-title: RSC Adv.
  doi: 10.1039/c2ra20182h
– volume: 23
  start-page: 5062
  year: 2013
  ident: ref34/cit34
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201203441
– volume: 2
  start-page: 490
  year: 2012
  ident: ref17/cit17
  publication-title: Opt. Mater. Express
  doi: 10.1364/OME.2.000490
– volume: 48
  start-page: 3686
  year: 2012
  ident: ref4/cit4
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc00110a
– volume: 48
  start-page: 4527
  year: 2012
  ident: ref3/cit3
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc31201h
– volume: 122
  start-page: 5438
  year: 2010
  ident: ref21/cit21
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201000982
– volume: 25
  start-page: 3657
  year: 2013
  ident: ref23/cit23
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201300233
– start-page: 3774
  year: 2009
  ident: ref24/cit24
  publication-title: Chem. Commun.
  doi: 10.1039/b906252a
– volume: 24
  start-page: 5844
  year: 2012
  ident: ref10/cit10
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201202599
– volume: 52
  start-page: 3953
  year: 2013
  ident: ref7/cit7
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201300519
– volume: 51
  start-page: 9297
  year: 2012
  ident: ref8/cit8
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201204381
– volume: 5
  start-page: 5080
  year: 2013
  ident: ref11/cit11
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am400930h
– volume: 48
  start-page: 2692
  year: 2012
  ident: ref15/cit15
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc17769b
– volume: 46
  start-page: 171
  year: 2013
  ident: ref19/cit19
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar300128j
– volume: 22
  start-page: 1265
  year: 2012
  ident: ref12/cit12
  publication-title: J. Mater. Chem.
  doi: 10.1039/C1JM14112K
– volume: 22
  start-page: 4732
  year: 2012
  ident: ref33/cit33
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201201499
– volume: 23
  start-page: 5801
  year: 2011
  ident: ref26/cit26
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201102866
– volume: 3
  start-page: 3733
  year: 2013
  ident: ref13/cit13
  publication-title: RSC Adv.
  doi: 10.1039/c3ra23410j
– volume: 1
  start-page: 173
  year: 2013
  ident: ref29/cit29
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201200046
– volume: 49
  start-page: 4430
  year: 2010
  ident: ref6/cit6
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200906154
– volume: 7
  start-page: 11234
  year: 2013
  ident: ref16/cit16
  publication-title: ACS Nano
  doi: 10.1021/nn405017q
– volume: 1
  start-page: 85
  year: 2011
  ident: ref35/cit35
  publication-title: Sci. Rep.
  doi: 10.1038/srep00085
– volume: 47
  start-page: 3502
  year: 2011
  ident: ref14/cit14
  publication-title: Chem. Commun.
  doi: 10.1039/c0cc05391k
– volume: 25
  start-page: 6539
  year: 2013
  ident: ref31/cit31
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201302927
– volume: 48
  start-page: 9367
  year: 2012
  ident: ref9/cit9
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc33844k
– volume: 24
  start-page: 2263
  year: 2012
  ident: ref18/cit18
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201104950
– volume: 22
  start-page: 11801
  year: 2012
  ident: ref25/cit25
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm31191g
– volume: 51
  start-page: 12215
  year: 2012
  ident: ref5/cit5
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201206791
– volume: 13
  start-page: 344
  year: 2013
  ident: ref28/cit28
  publication-title: Nano Lett.
  doi: 10.1021/nl302624p
– volume: 1
  start-page: 264
  year: 2013
  ident: ref30/cit30
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201200020
– volume: 116
  start-page: 25552
  year: 2012
  ident: ref27/cit27
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp307308z
– volume: 49
  start-page: 6726
  year: 2010
  ident: ref1/cit1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200906623
– volume: 22
  start-page: 734
  year: 2010
  ident: ref22/cit22
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200902825
– volume: 22
  start-page: 24230
  year: 2012
  ident: ref2/cit2
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm34690g
– volume: 1
  start-page: 926
  year: 2013
  ident: ref20/cit20
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201300368
SSID ssj0057876
Score 2.6232243
Snippet Carbon nanodots (C-dots) synthesized by electrochemical ablation and small molecule carbonization, as well as graphene quantum dots (GQDs) fabricated by...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2541
SubjectTerms Carbon
Fluorescence
Functional groups
Graphene
Luminescence
Nanomaterials
Nanostructure
Origins
Quantum dots
Title Common Origin of Green Luminescence in Carbon Nanodots and Graphene Quantum Dots
URI http://dx.doi.org/10.1021/nn500368m
https://www.ncbi.nlm.nih.gov/pubmed/24517361
https://www.proquest.com/docview/1510402048
https://www.proquest.com/docview/1762057422
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT8MwDLbGuMCB92M8pvA4cOkgXZJ2R7QxTYinAGm3Ks8LrEPbeuHX47TrBILBsaqjtMln-7PsOACnNBTc2QsVRMjWAyZkFEhpZMAQO1I0WeyoPzt8eyd6L-y6z_sVOJmTwQ_peZpy3zQlHizAYihQeT3_aT-V5tYjThSpYwyNkT-U7YO-DvWuR4-_u545fDL3K91V6JSnc4pyktdGNlEN_fGzWeNfn7wGK1NeSS4LIKxDxaYbsPyl2-AmPPjDIMOU3Od3YZGhI3nRDbnJBr72XXsdJ_iiLUcKxdDu-pB1TGRqUFL6YjBLHjPcimxAOvhmC166V8_tXjC9UCGQjLJJoJuxMUJHhrecUY7is25pS6kKVWQc2j5tNRdWCS4dcjkqnRCK2Uhp7iIMu7ehmg5TuwsklMxSh4OMjpmmGLVpy7nyeUF0u9bUoI4rnkwVYpzkue6QJrOlqcFZuRmJnrYj97divP0mejwTfS96cPwmdFTuaIIa4tMeMrXDDKdGs-OjZBb_IYM-AaGECK3BTgGH2VQh4zRqCrr33y_twxLSKeYr1EJ-ANXJKLOHSFkmqp5D9hPW2eW7
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVYDsCBfSlLMYgDlwBObSc9okJVoGwCpN4irxdogprkwtczTtKyqCzHyOPEsceeN5rxG4QOiM-ZNSfSCwCte5SLwBNCC4-C7gjeoKEl7u7w9Q3vPNHLHutVNDnuLgwMIoU3pUUQ_4NdgBzHMXPcKWF_Ek0DCPGdNp-2HoanrlM8XkaQwUMGGDFkEfrc1VkglX61QD_AysK8tBfKOkXFwIqskuejPJNH6u0bZ-P_Rr6I5iuUiU9LtVhCEyZeRnOfuAdX0J27GpLE-LaojIUTi4sUHNzN-y4TXrkdj6GhJQYSxOAUdg5sikWsQVK41DCD73NYmLyPz6BlFT21zx9bHa8qr-AJSmjmqUaoNVeBZk2rpSXwrJrKECJ9GWgLJ6EyinEjORMWkB0RlnNJTSAVswE44WtoKk5is4GwL6ghFjppFVJFwIdThjHpooRghI2uoTrMTFRtjzQqIt8-iUZTU0OHwzWJVEVO7mpkvIwT3R-JvpaMHOOE9oYLG8F-cUEQEZskh0_DIeR8Zhr-IgMWAjQK9LWG1kutGH3Kp4wEDU42__qlXTTTebzuRt2Lm6stNAtAi7rcNZ9to6lskJsdADOZrBda_A70Bu4c
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB7RVqrKAUqhEB5hW3Hg4rbr7K6dY5QQpW2apIJIvVn7vECcqo4v_HpmHCdKUXgcrZ31vr55aWZnAT7xWMngL0yUoLUeCaWTSGunI4HY0aol0sDp7vDNSA2m4upO3tWOIt2FwUkU-KeiCuITV9-7UFcY4Od5Lql-SjrbgT0K1xGiO92vK8lL4FPLKDJ6yWhKrCoJbXYlLWSLx1roD6ZlpWL6z2G8nlyVWfL9rFyYM_vzt7qN_z_7Q3hWW5uss4THC3ji8yN4ulGD8CVM6IrIPGfj6oUsNg-sSsVhw3JGGfGWOJ9hQ1c_GCRDaUyObMF07pBSU4qYZ7clHlA5Yz1seQXT_pdv3UFUP7MQacHFIrKt1DllEyfbwZnA8du2refcxCZxASWi9VYqb5TUAS08roNSRvjEWBkSdMaPYTef5_4NsFgLzwN2cjYVlqMvZ72UhqKFqIy9a0ATdyer2aTIqgh4zLP11jTg8-pcMlsXKae3Mn5sIz1dk94vK3NsIzpZHW6GfEPBEJ37eYlDozAi31mkf6FBTYGoQtw24PUSGeuhYiF50lL87b-W9BH2J71-NrwcXb-DA7S3BKWwxfI97C4eSv8BbZqFaVZA_gW9vPCf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Common+origin+of+green+luminescence+in+carbon+nanodots+and+graphene+quantum+dots&rft.jtitle=ACS+nano&rft.au=Wang%2C+Lei&rft.au=Zhu%2C+Shou-Jun&rft.au=Wang%2C+Hai-Yu&rft.au=Qu%2C+Song-Nan&rft.date=2014-03-25&rft.issn=1936-086X&rft.eissn=1936-086X&rft.volume=8&rft.issue=3&rft.spage=2541&rft_id=info:doi/10.1021%2Fnn500368m&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon