A Direct and Polymer-Free Method for Transferring Graphene Grown by Chemical Vapor Deposition to Any Substrate

We demonstrate a polymer-free method that can routinely transfer relatively large-area graphene to any substrate with advanced electrical properties and superior atomic and chemical structures as compared to the graphene sheets transferred with conventional polymer-assisted methods. The graphene fil...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 8; no. 2; pp. 1784 - 1791
Main Authors Lin, Wei-Hsiang, Chen, Ting-Hui, Chang, Jan-Kai, Taur, Jieh-I, Lo, Yuan-Yen, Lee, Wei-Li, Chang, Chia-Seng, Su, Wei-Bin, Wu, Chih-I
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 25.02.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We demonstrate a polymer-free method that can routinely transfer relatively large-area graphene to any substrate with advanced electrical properties and superior atomic and chemical structures as compared to the graphene sheets transferred with conventional polymer-assisted methods. The graphene films that are transferred with polymer-free method show high electrical conductance and excellent optical transmittance. Raman spectroscopy and X-ray/ultraviolet photoelectron spectroscopy also confirm the presence of high quality graphene sheets with little contamination after transfer. Atom-resolved images can be obtained using scanning tunneling microscope on as-transferred graphene sheets without additional cleaning process. The mobility of the polymer-free graphene monolayer is as high as 63 000 cm2 V–1 s–1, which is 50% higher than the similar sample transferred with the conventional method. More importantly, this method allows us to place graphene directly on top of devices made of soft materials, such as organic and polymeric thin films, which widens the applications of graphene in soft electronics.
AbstractList We demonstrate a polymer-free method that can routinely transfer relatively large-area graphene to any substrate with advanced electrical properties and superior atomic and chemical structures as compared to the graphene sheets transferred with conventional polymer-assisted methods. The graphene films that are transferred with polymer-free method show high electrical conductance and excellent optical transmittance. Raman spectroscopy and X-ray/ultraviolet photoelectron spectroscopy also confirm the presence of high quality graphene sheets with little contamination after transfer. Atom-resolved images can be obtained using scanning tunneling microscope on as-transferred graphene sheets without additional cleaning process. The mobility of the polymer-free graphene monolayer is as high as 63 000 cm super(2) V super(-1) s super(-1), which is 50% higher than the similar sample transferred with the conventional method. More importantly, this method allows us to place graphene directly on top of devices made of soft materials, such as organic and polymeric thin films, which widens the applications of graphene in soft electronics.
We demonstrate a polymer-free method that can routinely transfer relatively large-area graphene to any substrate with advanced electrical properties and superior atomic and chemical structures as compared to the graphene sheets transferred with conventional polymer-assisted methods. The graphene films that are transferred with polymer-free method show high electrical conductance and excellent optical transmittance. Raman spectroscopy and X-ray/ultraviolet photoelectron spectroscopy also confirm the presence of high quality graphene sheets with little contamination after transfer. Atom-resolved images can be obtained using scanning tunneling microscope on as-transferred graphene sheets without additional cleaning process. The mobility of the polymer-free graphene monolayer is as high as 63 000 cm2 V–1 s–1, which is 50% higher than the similar sample transferred with the conventional method. More importantly, this method allows us to place graphene directly on top of devices made of soft materials, such as organic and polymeric thin films, which widens the applications of graphene in soft electronics.
We demonstrate a polymer-free method that can routinely transfer relatively large-area graphene to any substrate with advanced electrical properties and superior atomic and chemical structures as compared to the graphene sheets transferred with conventional polymer-assisted methods. The graphene films that are transferred with polymer-free method show high electrical conductance and excellent optical transmittance. Raman spectroscopy and X-ray/ultraviolet photoelectron spectroscopy also confirm the presence of high quality graphene sheets with little contamination after transfer. Atom-resolved images can be obtained using scanning tunneling microscope on as-transferred graphene sheets without additional cleaning process. The mobility of the polymer-free graphene monolayer is as high as 63,000 cm(2) V(-1) s(-1), which is 50% higher than the similar sample transferred with the conventional method. More importantly, this method allows us to place graphene directly on top of devices made of soft materials, such as organic and polymeric thin films, which widens the applications of graphene in soft electronics.We demonstrate a polymer-free method that can routinely transfer relatively large-area graphene to any substrate with advanced electrical properties and superior atomic and chemical structures as compared to the graphene sheets transferred with conventional polymer-assisted methods. The graphene films that are transferred with polymer-free method show high electrical conductance and excellent optical transmittance. Raman spectroscopy and X-ray/ultraviolet photoelectron spectroscopy also confirm the presence of high quality graphene sheets with little contamination after transfer. Atom-resolved images can be obtained using scanning tunneling microscope on as-transferred graphene sheets without additional cleaning process. The mobility of the polymer-free graphene monolayer is as high as 63,000 cm(2) V(-1) s(-1), which is 50% higher than the similar sample transferred with the conventional method. More importantly, this method allows us to place graphene directly on top of devices made of soft materials, such as organic and polymeric thin films, which widens the applications of graphene in soft electronics.
We demonstrate a polymer-free method that can routinely transfer relatively large-area graphene to any substrate with advanced electrical properties and superior atomic and chemical structures as compared to the graphene sheets transferred with conventional polymer-assisted methods. The graphene films that are transferred with polymer-free method show high electrical conductance and excellent optical transmittance. Raman spectroscopy and X-ray/ultraviolet photoelectron spectroscopy also confirm the presence of high quality graphene sheets with little contamination after transfer. Atom-resolved images can be obtained using scanning tunneling microscope on as-transferred graphene sheets without additional cleaning process. The mobility of the polymer-free graphene monolayer is as high as 63,000 cm(2) V(-1) s(-1), which is 50% higher than the similar sample transferred with the conventional method. More importantly, this method allows us to place graphene directly on top of devices made of soft materials, such as organic and polymeric thin films, which widens the applications of graphene in soft electronics.
Author Lin, Wei-Hsiang
Lee, Wei-Li
Chang, Jan-Kai
Wu, Chih-I
Chang, Chia-Seng
Taur, Jieh-I
Chen, Ting-Hui
Lo, Yuan-Yen
Su, Wei-Bin
AuthorAffiliation Institute of Physics
National Taiwan University
Graduate Institute of Photonics and Optoelectronics and Department of Electrical Engineering
Academia Sinica
AuthorAffiliation_xml – name: Graduate Institute of Photonics and Optoelectronics and Department of Electrical Engineering
– name: Academia Sinica
– name: National Taiwan University
– name: Institute of Physics
Author_xml – sequence: 1
  givenname: Wei-Hsiang
  surname: Lin
  fullname: Lin, Wei-Hsiang
– sequence: 2
  givenname: Ting-Hui
  surname: Chen
  fullname: Chen, Ting-Hui
– sequence: 3
  givenname: Jan-Kai
  surname: Chang
  fullname: Chang, Jan-Kai
– sequence: 4
  givenname: Jieh-I
  surname: Taur
  fullname: Taur, Jieh-I
– sequence: 5
  givenname: Yuan-Yen
  surname: Lo
  fullname: Lo, Yuan-Yen
– sequence: 6
  givenname: Wei-Li
  surname: Lee
  fullname: Lee, Wei-Li
– sequence: 7
  givenname: Chia-Seng
  surname: Chang
  fullname: Chang, Chia-Seng
– sequence: 8
  givenname: Wei-Bin
  surname: Su
  fullname: Su, Wei-Bin
– sequence: 9
  givenname: Chih-I
  surname: Wu
  fullname: Wu, Chih-I
  email: chihiwu@ntu.edu.tw
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24471977$$D View this record in MEDLINE/PubMed
BookMark eNqF0U1P3DAQBmALgfgqB_5A5QsSHFJsx7GT42optBIIpNKqt2iSjLtGiR1sR9X-e4KW7qFC4jRzeN45vHNEdp13SMgpZ184E_zSOckU16zbIYe8ylXGSvV7d7sX_IAcxfjEWKFLrfbJgZBS80rrQ-IW9MoGbBMF19EH368HDNl1QKR3mFa-o8YH-hjARYMhWPeH3gQYV-hwXvxfR5s1Xa5wsC309BeMs77C0UebrHc0ebpwa_pjamIKkPAT2TPQRzx5m8fk5_XXx-W37Pb-5vtycZuB5DJljQJdllqKVnLFIFeNbEs0iAYqI0ohucaqkrwA0VRdXujc8NKUDFTBOKomPybnm7tj8M8TxlQPNrbY9-DQT7HmWglWKFawj2nBRJ4rLfRMP7_RqRmwq8dgBwjr-l-dM7jYgDb4GAOaLeGsfn1VvX3VbC__s61N8Nra3JTt302cbRLQxvrJT8HNFb7jXgA5LqBc
CitedBy_id crossref_primary_10_1016_j_carbon_2020_01_111
crossref_primary_10_1002_admi_201900084
crossref_primary_10_1016_j_surfcoat_2015_04_040
crossref_primary_10_1039_D3NR06041A
crossref_primary_10_7498_aps_68_20190279
crossref_primary_10_1021_acsaelm_4c00652
crossref_primary_10_1039_C9NA00393B
crossref_primary_10_1021_nn505316q
crossref_primary_10_1515_revic_2023_0033
crossref_primary_10_1016_j_mee_2022_111899
crossref_primary_10_1021_acsami_8b12718
crossref_primary_10_1016_j_ijthermalsci_2021_107231
crossref_primary_10_1116_1_4938408
crossref_primary_10_1063_5_0004242
crossref_primary_10_1002_adma_201603610
crossref_primary_10_1021_acsanm_2c04582
crossref_primary_10_1021_acs_chemrev_8b00325
crossref_primary_10_1021_acs_chemmater_2c00450
crossref_primary_10_3390_app9235014
crossref_primary_10_3390_nano11102494
crossref_primary_10_1007_s12274_021_3345_8
crossref_primary_10_1021_acs_chemmater_7b00183
crossref_primary_10_3390_nano9020293
crossref_primary_10_1021_acsami_6b00681
crossref_primary_10_1039_C7TA05481E
crossref_primary_10_1063_1_4898065
crossref_primary_10_1002_adom_201900550
crossref_primary_10_1021_acsami_7b19034
crossref_primary_10_1038_s41598_020_77012_2
crossref_primary_10_1021_acsnano_9b07776
crossref_primary_10_1039_C7MH00485K
crossref_primary_10_1016_j_mtchem_2021_100578
crossref_primary_10_1063_1_5001479
crossref_primary_10_1002_adfm_201902427
crossref_primary_10_1038_srep46281
crossref_primary_10_1016_j_electacta_2015_06_142
crossref_primary_10_1021_acsami_8b00916
crossref_primary_10_1016_j_apsusc_2020_146764
crossref_primary_10_1021_am508154n
crossref_primary_10_1088_2053_1583_3_2_021003
crossref_primary_10_1021_acsami_7b12573
crossref_primary_10_1002_advs_201500343
crossref_primary_10_1021_acsnano_4c01000
crossref_primary_10_1039_C5RA03919C
crossref_primary_10_3390_mi10010013
crossref_primary_10_1021_acsanm_9b00151
crossref_primary_10_1103_PhysRevMaterials_4_066004
crossref_primary_10_1016_j_surfrep_2020_100482
crossref_primary_10_1021_acs_jpcc_0c05257
crossref_primary_10_1002_admi_202201926
crossref_primary_10_1021_acs_nanolett_8b04821
crossref_primary_10_1016_j_mser_2016_08_002
crossref_primary_10_1088_1367_2630_ab6811
crossref_primary_10_1021_acsami_8b21946
crossref_primary_10_1039_C6NR01366J
crossref_primary_10_1002_adma_201505527
crossref_primary_10_1002_admi_202100748
crossref_primary_10_1039_D3CP03842D
crossref_primary_10_1039_C7RA00392G
crossref_primary_10_1002_adom_202002102
crossref_primary_10_1021_acsami_5b03941
crossref_primary_10_3390_nanomanufacturing1010005
crossref_primary_10_1039_D0TC01936D
crossref_primary_10_1021_acsami_5b03934
crossref_primary_10_1088_1361_6528_ab0cab
crossref_primary_10_1021_acsnano_6b04363
crossref_primary_10_1016_j_orgel_2017_12_024
crossref_primary_10_1038_srep09693
crossref_primary_10_1039_C4CC09404B
crossref_primary_10_1016_j_carbon_2019_09_052
crossref_primary_10_1021_acsnano_9b05550
crossref_primary_10_1088_0957_4484_26_45_455304
crossref_primary_10_1002_smtd_201900049
crossref_primary_10_1016_j_mtphys_2022_100649
crossref_primary_10_1038_srep20907
crossref_primary_10_1002_admi_201801520
crossref_primary_10_1039_D0NR01198C
crossref_primary_10_1002_smll_201902820
crossref_primary_10_1088_2053_1591_aa766a
crossref_primary_10_1021_cm503688p
crossref_primary_10_1002_adfm_201800179
crossref_primary_10_1002_aelm_202101146
crossref_primary_10_1039_C7NR06510H
crossref_primary_10_1080_15421406_2016_1277323
crossref_primary_10_1002_adfm_201604134
crossref_primary_10_1007_s12274_020_2671_6
crossref_primary_10_1002_smll_201402230
crossref_primary_10_1007_s10659_022_09937_w
crossref_primary_10_1088_2053_1583_aba8ad
crossref_primary_10_3390_ma15144820
crossref_primary_10_1021_acs_jpcc_2c07972
crossref_primary_10_1021_acsnano_5b06842
crossref_primary_10_1007_s11244_018_1075_2
crossref_primary_10_1016_j_cej_2019_05_034
crossref_primary_10_1007_s10118_024_3207_4
crossref_primary_10_1016_j_rser_2018_09_011
crossref_primary_10_1088_2053_1583_ab1e0a
crossref_primary_10_1088_0957_4484_27_17_175603
crossref_primary_10_1093_oxfmat_itab007
crossref_primary_10_1039_C9NR05315H
crossref_primary_10_1380_ejssnt_2019_71
crossref_primary_10_1039_C9NH00487D
crossref_primary_10_1088_1361_6528_ab9045
crossref_primary_10_1016_j_icheatmasstransfer_2024_107521
crossref_primary_10_1039_D0TC05213B
crossref_primary_10_1002_adfm_201707102
crossref_primary_10_1126_sciadv_aat9488
crossref_primary_10_1002_adma_201700639
crossref_primary_10_7567_APEX_11_075102
crossref_primary_10_1002_andp_201700023
crossref_primary_10_1002_cctc_202400239
crossref_primary_10_1038_ncomms7620
crossref_primary_10_1038_s41699_020_0148_9
crossref_primary_10_1088_1361_6528_aad4d9
crossref_primary_10_1007_s10008_018_04172_7
crossref_primary_10_1016_j_porgcoat_2022_107208
crossref_primary_10_1039_D0NR07384A
crossref_primary_10_1002_smll_202404087
crossref_primary_10_1016_j_carbon_2016_09_029
crossref_primary_10_1039_C4RA14651D
crossref_primary_10_1093_jmicro_dfx014
crossref_primary_10_1021_acsnano_4c00590
crossref_primary_10_1002_adfm_202203115
crossref_primary_10_1016_j_apsusc_2017_06_148
crossref_primary_10_1021_acs_langmuir_3c03154
crossref_primary_10_1063_1_4896411
crossref_primary_10_1116_1_5024852
crossref_primary_10_1063_1_4953815
crossref_primary_10_1002_smtd_202100771
crossref_primary_10_1021_acsanm_4c04349
crossref_primary_10_1109_TIM_2019_2931525
crossref_primary_10_1016_j_susc_2016_06_014
crossref_primary_10_1038_s41378_024_00791_5
crossref_primary_10_1088_1361_6528_aafdbf
crossref_primary_10_1007_s12274_015_0972_y
crossref_primary_10_1016_j_susc_2014_09_003
crossref_primary_10_1063_1_5016547
crossref_primary_10_1039_C7CP06450K
crossref_primary_10_1016_j_mtcomm_2018_12_008
crossref_primary_10_1002_advs_202201336
crossref_primary_10_1007_s10853_015_9440_z
crossref_primary_10_1016_j_carbon_2021_02_078
crossref_primary_10_1021_acsanm_0c02482
crossref_primary_10_1021_acscentsci_6b00236
crossref_primary_10_1039_C7CS00256D
crossref_primary_10_1021_acs_chemmater_6b00217
crossref_primary_10_1021_acs_nanolett_5b05073
crossref_primary_10_1021_acsaelm_1c00807
crossref_primary_10_1002_admi_201400448
crossref_primary_10_1002_advs_202000058
crossref_primary_10_1088_2053_1583_3_3_034004
crossref_primary_10_1002_celc_201800934
crossref_primary_10_1039_C5RA11100E
crossref_primary_10_3390_mi13010027
crossref_primary_10_1021_acs_nanolett_5b01036
Cites_doi 10.1038/nature04233
10.1021/jp040650f
10.1021/nl102824h
10.1021/nl801827v
10.1103/PhysRevLett.98.186806
10.1063/1.3643444
10.1063/1.3599708
10.1038/nature05545
10.1021/nl901572a
10.1002/adma.201100304
10.1063/1.4737415
10.1126/science.1102896
10.1088/0957-4484/10/3/308
10.1126/science.1171245
10.1063/1.3524217
10.1126/science.1156965
10.1021/nl080649i
10.1021/nn201207c
10.1021/nn200105j
10.1063/1.3337091
10.1038/nmat1849
10.1021/jp807380s
10.1016/j.nuclphysb.2006.10.031
10.1149/2.101204jes
10.1126/science.1157996
10.1016/j.jpcs.2006.05.010
10.1021/cm0630800
10.1073/pnas.0703337104
10.1038/nature07719
10.1038/nnano.2010.132
10.1021/nl070613a
10.1021/nl902623y
10.1038/nnano.2013.63
10.1063/1.124316
10.1038/nphoton.2010.186
10.1103/RevModPhys.81.109
10.1021/nn101896a
ContentType Journal Article
Copyright Copyright © 2014 American Chemical Society
Copyright_xml – notice: Copyright © 2014 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1021/nn406170d
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 1791
ExternalDocumentID 24471977
10_1021_nn406170d
b64934999
Genre Journal Article
GroupedDBID -
23M
4.4
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
LG6
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
5VS
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-a414t-b6a788742c4160a36b4c8efeefa9f282417e99415a2b9d3573f18f80a6501e6b3
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Fri Jul 11 11:54:54 EDT 2025
Fri Jul 11 10:01:20 EDT 2025
Thu Apr 03 07:04:43 EDT 2025
Thu Apr 24 22:54:55 EDT 2025
Tue Jul 01 01:33:38 EDT 2025
Thu Aug 27 13:42:41 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords scanning tunneling microscope
transfer
polymer-free
photoemission spectroscopy
graphene
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a414t-b6a788742c4160a36b4c8efeefa9f282417e99415a2b9d3573f18f80a6501e6b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24471977
PQID 1502336727
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_1762056050
proquest_miscellaneous_1502336727
pubmed_primary_24471977
crossref_primary_10_1021_nn406170d
crossref_citationtrail_10_1021_nn406170d
acs_journals_10_1021_nn406170d
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-02-25
PublicationDateYYYYMMDD 2014-02-25
PublicationDate_xml – month: 02
  year: 2014
  text: 2014-02-25
  day: 25
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2014
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Hong S. K. (ref36/cit36) 2012; 159
Geim A. K. (ref3/cit3) 2007; 6
Yu Y.-J. (ref34/cit34) 2009; 9
Lu X. K. (ref7/cit7) 1999; 10
Bonaccorso F. (ref15/cit15) 2010; 4
Hwang E. H. (ref39/cit39) 2007; 98
Novoselov K. S. (ref2/cit2) 2005; 438
Suk J. W. (ref19/cit19) 2011; 5
Lee C. (ref4/cit4) 2008; 321
Castro Neto A. H. (ref1/cit1) 2009; 81
Pang S. (ref16/cit16) 2011; 23
Ishigami M. (ref33/cit33) 2007; 7
Reina A. (ref13/cit13) 2009; 9
Kim K. S. (ref21/cit21) 2009; 457
Blake P. (ref28/cit28) 2008; 8
Bae S. (ref22/cit22) 2010; 5
Luo Z. (ref35/cit35) 2010; 97
McAllister M. J. (ref12/cit12) 2007; 19
Ledwosinska E. (ref26/cit26) 2012; 101
Cortijoa A. (ref31/cit31) 2007; 763
Rollings E. (ref10/cit10) 2006; 67
Berger C. (ref6/cit6) 2004; 108
Ishigami M. (ref29/cit29) 2007; 7
Li X. (ref18/cit18) 2009; 9
Lu X. K. (ref8/cit8) 1999; 75
Song J. (ref24/cit24) 2013; 8
Lin Y.-C. (ref23/cit23) 2011; 5
Unarunotai S. (ref11/cit11) 2010; 4
Nair R. R. (ref27/cit27) 2009; 324
Phaedon A. (ref17/cit17) 2010; 10
Alfonso R. (ref20/cit20) 2008; 112
Stolyarova E. (ref30/cit30) 2007; 104
Meyer J. C. (ref32/cit32) 2007; 446
Pirkle A. (ref37/cit37) 2011; 99
Li X. (ref14/cit14) 2009; 324
Gannett W. (ref38/cit38) 2011; 98
Nair R. R. (ref5/cit5) 2008; 320
Regan W. (ref25/cit25) 2010; 96
Novoselov K. S. (ref9/cit9) 2004; 306
References_xml – volume: 438
  start-page: 197
  year: 2005
  ident: ref2/cit2
  publication-title: Nature
  doi: 10.1038/nature04233
– volume: 108
  start-page: 19912
  year: 2004
  ident: ref6/cit6
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp040650f
– volume: 10
  start-page: 4285
  year: 2010
  ident: ref17/cit17
  publication-title: Nano Lett.
  doi: 10.1021/nl102824h
– volume: 9
  start-page: 30
  year: 2009
  ident: ref13/cit13
  publication-title: Nano Lett.
  doi: 10.1021/nl801827v
– volume: 98
  start-page: 186806
  year: 2007
  ident: ref39/cit39
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.186806
– volume: 99
  start-page: 122108
  year: 2011
  ident: ref37/cit37
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3643444
– volume: 98
  start-page: 242105
  year: 2011
  ident: ref38/cit38
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3599708
– volume: 446
  start-page: 60
  year: 2007
  ident: ref32/cit32
  publication-title: Nature
  doi: 10.1038/nature05545
– volume: 9
  start-page: 3430
  year: 2009
  ident: ref34/cit34
  publication-title: Nano Lett.
  doi: 10.1021/nl901572a
– volume: 23
  start-page: 2779
  year: 2011
  ident: ref16/cit16
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201100304
– volume: 101
  start-page: 033104
  year: 2012
  ident: ref26/cit26
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4737415
– volume: 306
  start-page: 666
  year: 2004
  ident: ref9/cit9
  publication-title: Science
  doi: 10.1126/science.1102896
– volume: 10
  start-page: 269
  year: 1999
  ident: ref7/cit7
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/10/3/308
– volume: 324
  start-page: 1312
  year: 2009
  ident: ref14/cit14
  publication-title: Science
  doi: 10.1126/science.1171245
– volume: 97
  start-page: 233111
  year: 2010
  ident: ref35/cit35
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3524217
– volume: 320
  start-page: 1308
  year: 2008
  ident: ref5/cit5
  publication-title: Science
  doi: 10.1126/science.1156965
– volume: 324
  start-page: 1312
  year: 2009
  ident: ref27/cit27
  publication-title: Science
  doi: 10.1126/science.1171245
– volume: 8
  start-page: 1704
  year: 2008
  ident: ref28/cit28
  publication-title: Nano Lett.
  doi: 10.1021/nl080649i
– volume: 5
  start-page: 6916
  year: 2011
  ident: ref19/cit19
  publication-title: ACS Nano
  doi: 10.1021/nn201207c
– volume: 5
  start-page: 2362
  year: 2011
  ident: ref23/cit23
  publication-title: ACS Nano
  doi: 10.1021/nn200105j
– volume: 96
  start-page: 113102
  year: 2010
  ident: ref25/cit25
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3337091
– volume: 6
  start-page: 183
  year: 2007
  ident: ref3/cit3
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1849
– volume: 112
  start-page: 17741
  year: 2008
  ident: ref20/cit20
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp807380s
– volume: 763
  start-page: 293
  year: 2007
  ident: ref31/cit31
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2006.10.031
– volume: 159
  start-page: K107
  year: 2012
  ident: ref36/cit36
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.101204jes
– volume: 321
  start-page: 385
  year: 2008
  ident: ref4/cit4
  publication-title: Science
  doi: 10.1126/science.1157996
– volume: 67
  start-page: 2172
  year: 2006
  ident: ref10/cit10
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/j.jpcs.2006.05.010
– volume: 19
  start-page: 4396
  year: 2007
  ident: ref12/cit12
  publication-title: Chem. Mater.
  doi: 10.1021/cm0630800
– volume: 104
  start-page: 9209
  year: 2007
  ident: ref30/cit30
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0703337104
– volume: 457
  start-page: 706
  year: 2009
  ident: ref21/cit21
  publication-title: Nature
  doi: 10.1038/nature07719
– volume: 5
  start-page: 574
  year: 2010
  ident: ref22/cit22
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.132
– volume: 7
  start-page: 1643
  year: 2007
  ident: ref29/cit29
  publication-title: Nano Lett.
  doi: 10.1021/nl070613a
– volume: 9
  start-page: 4359
  year: 2009
  ident: ref18/cit18
  publication-title: Nano Lett.
  doi: 10.1021/nl902623y
– volume: 8
  start-page: 356
  year: 2013
  ident: ref24/cit24
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2013.63
– volume: 75
  start-page: 193
  year: 1999
  ident: ref8/cit8
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.124316
– volume: 7
  start-page: 1643
  year: 2007
  ident: ref33/cit33
  publication-title: Nano Lett.
  doi: 10.1021/nl070613a
– volume: 4
  start-page: 611
  year: 2010
  ident: ref15/cit15
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2010.186
– volume: 81
  start-page: 109
  year: 2009
  ident: ref1/cit1
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.81.109
– volume: 4
  start-page: 5591
  year: 2010
  ident: ref11/cit11
  publication-title: ACS Nano
  doi: 10.1021/nn101896a
SSID ssj0057876
Score 2.509878
Snippet We demonstrate a polymer-free method that can routinely transfer relatively large-area graphene to any substrate with advanced electrical properties and...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1784
SubjectTerms Atomic structure
Chemical vapor deposition
Cleaning
Devices
Electronics
Graphene
Nanostructure
Nuclear power generation
Title A Direct and Polymer-Free Method for Transferring Graphene Grown by Chemical Vapor Deposition to Any Substrate
URI http://dx.doi.org/10.1021/nn406170d
https://www.ncbi.nlm.nih.gov/pubmed/24471977
https://www.proquest.com/docview/1502336727
https://www.proquest.com/docview/1762056050
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT8JAEJ4gXvTg-4EPsj4OXop9P44ERGKCMVEMt2Z3u-tB3BooB_z1zraUYES89TDNtp3pfN9kZr8FuE4iajEq9VSj5xgul9ygvk8NbjIE44SySOpCsffod_vuw8AbVODqjw6-bd0qpTEnMJM1WLf9MNAVVrP1XKZbHXF-0TrG0hj5QykftHirhh4-_gk9f_DJHFc629Aud-cU4yTvjUnGGvzrt1jjqkfega0ZryTNIhB2oSLUHmwuqA3ug2qSIsERqhLylA6nH2JkdEZCkF5-jjRBAkty8JJar1G9kXstZ43ZEC-wWidsSkqBAfJKkbmTtiinvkiWkqaaEp2JcsXbA-h37l5aXWN23IJBXcvNDOZTPVro2hxJmkkdn7k8FFIISSOJlZlrBSKKEPCpzaLE8QJHWqEMTYokzxI-cw6hqlIljoHwyJNYS1IW6K6lQI8HtoOZxUnCkIVJUIM6-iOe_S7jOO-E21Y8_3A1uCldFfOZWLk-M2O4zPRybvpZKHQsM7oo_R3j_6ObIlSJdIJLe8haHN2PXmGDiIFE0fTMGhwVwTJfCulRYCGJPvnvlU5hA8mWm2-H986gmo0m4hwJTcbqeUB_A_lT7iU
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LTxRBEK4gHJSD4AvWB5ZGEy-D834cOGzAdRGWmAiG29Dd080B6DE7syHrT_Gv8Oeo7plZwKCeSLzNoTL9qqnvq1TN1wDviox5nCnT1RgFTiiUcFgcM0e4nMC4YDxTJlEc7cXDg_DLYXQ4B7-6f2FoEhW9qbJF_Ct1Ae-j1gZ6ErdoGyh35PSc0rNqY3uLzvK97w8-7W8OnfYGAYeFXlg7PGamWy70BfEOlwUxD0UqlZSKZYqSjdBLZJYRhjGfZ0UQJYHyUpW6jHiLJ2Me0HvvwQKRHt8kdv3Nb12UN44eNxVrysiJtnSqRdenahBPVDcR7w801sLZYAkuZhthu1hO1ic1Xxc_f9OI_D93ahketiwa-43bP4I5qR_D4jVtxSeg-9iEc2S6wK_l6fRMjp3BWEoc2Vuzkeg6WqhWRp1SH-NnI95NsZ8eynONfIqdnAJ-Z5Sn4JbsetywLrGvp2jirtX3fQoHd7LgZzCvSy1XAUUWKcqcGU9MjVaSfyd-QHE0KNKUp0XSgzU6p7wNDlVu6_6-l88OqgcfOg_JRSvNbm4IOb3N9O3M9EejR3Kb0ZvOzXKKFqYExLQsJzR0RBwtMNX3v9gQPhItdiO3ByuNj86GIjKYeJQyPP_Xkl7D_eH-aDff3d7beQEPiGaGVgggegnz9XgiXxGVq_ma_aYQju7aNS8BvfxPdw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3JTtxAEC0RkFA4JGSfsKSCEikXE-_LIYcRw7AjpISIm9Pd7uYQ0kZjj9DkY_iV_Fqq2_YIECQnJG4-tHqtrvdKVX4N8KHImMeZMlWNUeCEQgmHxTFzhMsJjAvGM2UCxYPDePs43D2JTmbgsvsXhiZRUU-VTeKbW31eqFZhwPustYGfxC3aIso9ObmgEK36sjOg8_zo-8PNbxvbTvuKgMNCL6wdHjNTMRf6griHy4KYhyKVSkrFMkUBR-glMssIx5jPsyKIkkB5qUpdRtzFkzEPqN9HMGfSgya462987Ty9Mfa4yVpTVE7UpVMuujpVg3qiuo56d1BZC2nDp_Bnuhm2kuXn-rjm6-L3DZ3Ih7tbi_CkZdPYb8z_GcxI_RwWrmgsvgDdx8atI9MFHpVnk19y5AxHUuKBfT0bibajhWxlVCr1KW4ZEW_CAPooLzTyCXayCvidUbyCA9nVumFdYl9P0Phfq_P7Eo7vZcGvYFaXWr4BFFmkKIJmPDG5Wkl2nvgB-dOgSFOeFkkPVums8tZJVLnN__tePj2oHnzqrCQXrUS7eSnk7Lama9Om540uyW2N3nemlpPXMKkgpmU5pqEj4mqBycL_ow3hJNFjN3J78Lqx0-lQRAoTj0KHt_9b0juYPxoM8_2dw70leExsM7R6ANEyzNajsVwhRlfzVXutEH7ct2X-BfnDUfo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+direct+and+polymer-free+method+for+transferring+graphene+grown+by+chemical+vapor+deposition+to+any+substrate&rft.jtitle=ACS+nano&rft.au=Lin%2C+Wei-Hsiang&rft.au=Chen%2C+Ting-Hui&rft.au=Chang%2C+Jan-Kai&rft.au=Taur%2C+Jieh-I&rft.date=2014-02-25&rft.issn=1936-086X&rft.eissn=1936-086X&rft.volume=8&rft.issue=2&rft.spage=1784&rft_id=info:doi/10.1021%2Fnn406170d&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon