A Direct and Polymer-Free Method for Transferring Graphene Grown by Chemical Vapor Deposition to Any Substrate
We demonstrate a polymer-free method that can routinely transfer relatively large-area graphene to any substrate with advanced electrical properties and superior atomic and chemical structures as compared to the graphene sheets transferred with conventional polymer-assisted methods. The graphene fil...
Saved in:
Published in | ACS nano Vol. 8; no. 2; pp. 1784 - 1791 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
25.02.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We demonstrate a polymer-free method that can routinely transfer relatively large-area graphene to any substrate with advanced electrical properties and superior atomic and chemical structures as compared to the graphene sheets transferred with conventional polymer-assisted methods. The graphene films that are transferred with polymer-free method show high electrical conductance and excellent optical transmittance. Raman spectroscopy and X-ray/ultraviolet photoelectron spectroscopy also confirm the presence of high quality graphene sheets with little contamination after transfer. Atom-resolved images can be obtained using scanning tunneling microscope on as-transferred graphene sheets without additional cleaning process. The mobility of the polymer-free graphene monolayer is as high as 63 000 cm2 V–1 s–1, which is 50% higher than the similar sample transferred with the conventional method. More importantly, this method allows us to place graphene directly on top of devices made of soft materials, such as organic and polymeric thin films, which widens the applications of graphene in soft electronics. |
---|---|
AbstractList | We demonstrate a polymer-free method that can routinely transfer relatively large-area graphene to any substrate with advanced electrical properties and superior atomic and chemical structures as compared to the graphene sheets transferred with conventional polymer-assisted methods. The graphene films that are transferred with polymer-free method show high electrical conductance and excellent optical transmittance. Raman spectroscopy and X-ray/ultraviolet photoelectron spectroscopy also confirm the presence of high quality graphene sheets with little contamination after transfer. Atom-resolved images can be obtained using scanning tunneling microscope on as-transferred graphene sheets without additional cleaning process. The mobility of the polymer-free graphene monolayer is as high as 63 000 cm super(2) V super(-1) s super(-1), which is 50% higher than the similar sample transferred with the conventional method. More importantly, this method allows us to place graphene directly on top of devices made of soft materials, such as organic and polymeric thin films, which widens the applications of graphene in soft electronics. We demonstrate a polymer-free method that can routinely transfer relatively large-area graphene to any substrate with advanced electrical properties and superior atomic and chemical structures as compared to the graphene sheets transferred with conventional polymer-assisted methods. The graphene films that are transferred with polymer-free method show high electrical conductance and excellent optical transmittance. Raman spectroscopy and X-ray/ultraviolet photoelectron spectroscopy also confirm the presence of high quality graphene sheets with little contamination after transfer. Atom-resolved images can be obtained using scanning tunneling microscope on as-transferred graphene sheets without additional cleaning process. The mobility of the polymer-free graphene monolayer is as high as 63 000 cm2 V–1 s–1, which is 50% higher than the similar sample transferred with the conventional method. More importantly, this method allows us to place graphene directly on top of devices made of soft materials, such as organic and polymeric thin films, which widens the applications of graphene in soft electronics. We demonstrate a polymer-free method that can routinely transfer relatively large-area graphene to any substrate with advanced electrical properties and superior atomic and chemical structures as compared to the graphene sheets transferred with conventional polymer-assisted methods. The graphene films that are transferred with polymer-free method show high electrical conductance and excellent optical transmittance. Raman spectroscopy and X-ray/ultraviolet photoelectron spectroscopy also confirm the presence of high quality graphene sheets with little contamination after transfer. Atom-resolved images can be obtained using scanning tunneling microscope on as-transferred graphene sheets without additional cleaning process. The mobility of the polymer-free graphene monolayer is as high as 63,000 cm(2) V(-1) s(-1), which is 50% higher than the similar sample transferred with the conventional method. More importantly, this method allows us to place graphene directly on top of devices made of soft materials, such as organic and polymeric thin films, which widens the applications of graphene in soft electronics.We demonstrate a polymer-free method that can routinely transfer relatively large-area graphene to any substrate with advanced electrical properties and superior atomic and chemical structures as compared to the graphene sheets transferred with conventional polymer-assisted methods. The graphene films that are transferred with polymer-free method show high electrical conductance and excellent optical transmittance. Raman spectroscopy and X-ray/ultraviolet photoelectron spectroscopy also confirm the presence of high quality graphene sheets with little contamination after transfer. Atom-resolved images can be obtained using scanning tunneling microscope on as-transferred graphene sheets without additional cleaning process. The mobility of the polymer-free graphene monolayer is as high as 63,000 cm(2) V(-1) s(-1), which is 50% higher than the similar sample transferred with the conventional method. More importantly, this method allows us to place graphene directly on top of devices made of soft materials, such as organic and polymeric thin films, which widens the applications of graphene in soft electronics. We demonstrate a polymer-free method that can routinely transfer relatively large-area graphene to any substrate with advanced electrical properties and superior atomic and chemical structures as compared to the graphene sheets transferred with conventional polymer-assisted methods. The graphene films that are transferred with polymer-free method show high electrical conductance and excellent optical transmittance. Raman spectroscopy and X-ray/ultraviolet photoelectron spectroscopy also confirm the presence of high quality graphene sheets with little contamination after transfer. Atom-resolved images can be obtained using scanning tunneling microscope on as-transferred graphene sheets without additional cleaning process. The mobility of the polymer-free graphene monolayer is as high as 63,000 cm(2) V(-1) s(-1), which is 50% higher than the similar sample transferred with the conventional method. More importantly, this method allows us to place graphene directly on top of devices made of soft materials, such as organic and polymeric thin films, which widens the applications of graphene in soft electronics. |
Author | Lin, Wei-Hsiang Lee, Wei-Li Chang, Jan-Kai Wu, Chih-I Chang, Chia-Seng Taur, Jieh-I Chen, Ting-Hui Lo, Yuan-Yen Su, Wei-Bin |
AuthorAffiliation | Institute of Physics National Taiwan University Graduate Institute of Photonics and Optoelectronics and Department of Electrical Engineering Academia Sinica |
AuthorAffiliation_xml | – name: Graduate Institute of Photonics and Optoelectronics and Department of Electrical Engineering – name: Academia Sinica – name: National Taiwan University – name: Institute of Physics |
Author_xml | – sequence: 1 givenname: Wei-Hsiang surname: Lin fullname: Lin, Wei-Hsiang – sequence: 2 givenname: Ting-Hui surname: Chen fullname: Chen, Ting-Hui – sequence: 3 givenname: Jan-Kai surname: Chang fullname: Chang, Jan-Kai – sequence: 4 givenname: Jieh-I surname: Taur fullname: Taur, Jieh-I – sequence: 5 givenname: Yuan-Yen surname: Lo fullname: Lo, Yuan-Yen – sequence: 6 givenname: Wei-Li surname: Lee fullname: Lee, Wei-Li – sequence: 7 givenname: Chia-Seng surname: Chang fullname: Chang, Chia-Seng – sequence: 8 givenname: Wei-Bin surname: Su fullname: Su, Wei-Bin – sequence: 9 givenname: Chih-I surname: Wu fullname: Wu, Chih-I email: chihiwu@ntu.edu.tw |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24471977$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0U1P3DAQBmALgfgqB_5A5QsSHFJsx7GT42optBIIpNKqt2iSjLtGiR1sR9X-e4KW7qFC4jRzeN45vHNEdp13SMgpZ184E_zSOckU16zbIYe8ylXGSvV7d7sX_IAcxfjEWKFLrfbJgZBS80rrQ-IW9MoGbBMF19EH368HDNl1QKR3mFa-o8YH-hjARYMhWPeH3gQYV-hwXvxfR5s1Xa5wsC309BeMs77C0UebrHc0ebpwa_pjamIKkPAT2TPQRzx5m8fk5_XXx-W37Pb-5vtycZuB5DJljQJdllqKVnLFIFeNbEs0iAYqI0ohucaqkrwA0VRdXujc8NKUDFTBOKomPybnm7tj8M8TxlQPNrbY9-DQT7HmWglWKFawj2nBRJ4rLfRMP7_RqRmwq8dgBwjr-l-dM7jYgDb4GAOaLeGsfn1VvX3VbC__s61N8Nra3JTt302cbRLQxvrJT8HNFb7jXgA5LqBc |
CitedBy_id | crossref_primary_10_1016_j_carbon_2020_01_111 crossref_primary_10_1002_admi_201900084 crossref_primary_10_1016_j_surfcoat_2015_04_040 crossref_primary_10_1039_D3NR06041A crossref_primary_10_7498_aps_68_20190279 crossref_primary_10_1021_acsaelm_4c00652 crossref_primary_10_1039_C9NA00393B crossref_primary_10_1021_nn505316q crossref_primary_10_1515_revic_2023_0033 crossref_primary_10_1016_j_mee_2022_111899 crossref_primary_10_1021_acsami_8b12718 crossref_primary_10_1016_j_ijthermalsci_2021_107231 crossref_primary_10_1116_1_4938408 crossref_primary_10_1063_5_0004242 crossref_primary_10_1002_adma_201603610 crossref_primary_10_1021_acsanm_2c04582 crossref_primary_10_1021_acs_chemrev_8b00325 crossref_primary_10_1021_acs_chemmater_2c00450 crossref_primary_10_3390_app9235014 crossref_primary_10_3390_nano11102494 crossref_primary_10_1007_s12274_021_3345_8 crossref_primary_10_1021_acs_chemmater_7b00183 crossref_primary_10_3390_nano9020293 crossref_primary_10_1021_acsami_6b00681 crossref_primary_10_1039_C7TA05481E crossref_primary_10_1063_1_4898065 crossref_primary_10_1002_adom_201900550 crossref_primary_10_1021_acsami_7b19034 crossref_primary_10_1038_s41598_020_77012_2 crossref_primary_10_1021_acsnano_9b07776 crossref_primary_10_1039_C7MH00485K crossref_primary_10_1016_j_mtchem_2021_100578 crossref_primary_10_1063_1_5001479 crossref_primary_10_1002_adfm_201902427 crossref_primary_10_1038_srep46281 crossref_primary_10_1016_j_electacta_2015_06_142 crossref_primary_10_1021_acsami_8b00916 crossref_primary_10_1016_j_apsusc_2020_146764 crossref_primary_10_1021_am508154n crossref_primary_10_1088_2053_1583_3_2_021003 crossref_primary_10_1021_acsami_7b12573 crossref_primary_10_1002_advs_201500343 crossref_primary_10_1021_acsnano_4c01000 crossref_primary_10_1039_C5RA03919C crossref_primary_10_3390_mi10010013 crossref_primary_10_1021_acsanm_9b00151 crossref_primary_10_1103_PhysRevMaterials_4_066004 crossref_primary_10_1016_j_surfrep_2020_100482 crossref_primary_10_1021_acs_jpcc_0c05257 crossref_primary_10_1002_admi_202201926 crossref_primary_10_1021_acs_nanolett_8b04821 crossref_primary_10_1016_j_mser_2016_08_002 crossref_primary_10_1088_1367_2630_ab6811 crossref_primary_10_1021_acsami_8b21946 crossref_primary_10_1039_C6NR01366J crossref_primary_10_1002_adma_201505527 crossref_primary_10_1002_admi_202100748 crossref_primary_10_1039_D3CP03842D crossref_primary_10_1039_C7RA00392G crossref_primary_10_1002_adom_202002102 crossref_primary_10_1021_acsami_5b03941 crossref_primary_10_3390_nanomanufacturing1010005 crossref_primary_10_1039_D0TC01936D crossref_primary_10_1021_acsami_5b03934 crossref_primary_10_1088_1361_6528_ab0cab crossref_primary_10_1021_acsnano_6b04363 crossref_primary_10_1016_j_orgel_2017_12_024 crossref_primary_10_1038_srep09693 crossref_primary_10_1039_C4CC09404B crossref_primary_10_1016_j_carbon_2019_09_052 crossref_primary_10_1021_acsnano_9b05550 crossref_primary_10_1088_0957_4484_26_45_455304 crossref_primary_10_1002_smtd_201900049 crossref_primary_10_1016_j_mtphys_2022_100649 crossref_primary_10_1038_srep20907 crossref_primary_10_1002_admi_201801520 crossref_primary_10_1039_D0NR01198C crossref_primary_10_1002_smll_201902820 crossref_primary_10_1088_2053_1591_aa766a crossref_primary_10_1021_cm503688p crossref_primary_10_1002_adfm_201800179 crossref_primary_10_1002_aelm_202101146 crossref_primary_10_1039_C7NR06510H crossref_primary_10_1080_15421406_2016_1277323 crossref_primary_10_1002_adfm_201604134 crossref_primary_10_1007_s12274_020_2671_6 crossref_primary_10_1002_smll_201402230 crossref_primary_10_1007_s10659_022_09937_w crossref_primary_10_1088_2053_1583_aba8ad crossref_primary_10_3390_ma15144820 crossref_primary_10_1021_acs_jpcc_2c07972 crossref_primary_10_1021_acsnano_5b06842 crossref_primary_10_1007_s11244_018_1075_2 crossref_primary_10_1016_j_cej_2019_05_034 crossref_primary_10_1007_s10118_024_3207_4 crossref_primary_10_1016_j_rser_2018_09_011 crossref_primary_10_1088_2053_1583_ab1e0a crossref_primary_10_1088_0957_4484_27_17_175603 crossref_primary_10_1093_oxfmat_itab007 crossref_primary_10_1039_C9NR05315H crossref_primary_10_1380_ejssnt_2019_71 crossref_primary_10_1039_C9NH00487D crossref_primary_10_1088_1361_6528_ab9045 crossref_primary_10_1016_j_icheatmasstransfer_2024_107521 crossref_primary_10_1039_D0TC05213B crossref_primary_10_1002_adfm_201707102 crossref_primary_10_1126_sciadv_aat9488 crossref_primary_10_1002_adma_201700639 crossref_primary_10_7567_APEX_11_075102 crossref_primary_10_1002_andp_201700023 crossref_primary_10_1002_cctc_202400239 crossref_primary_10_1038_ncomms7620 crossref_primary_10_1038_s41699_020_0148_9 crossref_primary_10_1088_1361_6528_aad4d9 crossref_primary_10_1007_s10008_018_04172_7 crossref_primary_10_1016_j_porgcoat_2022_107208 crossref_primary_10_1039_D0NR07384A crossref_primary_10_1002_smll_202404087 crossref_primary_10_1016_j_carbon_2016_09_029 crossref_primary_10_1039_C4RA14651D crossref_primary_10_1093_jmicro_dfx014 crossref_primary_10_1021_acsnano_4c00590 crossref_primary_10_1002_adfm_202203115 crossref_primary_10_1016_j_apsusc_2017_06_148 crossref_primary_10_1021_acs_langmuir_3c03154 crossref_primary_10_1063_1_4896411 crossref_primary_10_1116_1_5024852 crossref_primary_10_1063_1_4953815 crossref_primary_10_1002_smtd_202100771 crossref_primary_10_1021_acsanm_4c04349 crossref_primary_10_1109_TIM_2019_2931525 crossref_primary_10_1016_j_susc_2016_06_014 crossref_primary_10_1038_s41378_024_00791_5 crossref_primary_10_1088_1361_6528_aafdbf crossref_primary_10_1007_s12274_015_0972_y crossref_primary_10_1016_j_susc_2014_09_003 crossref_primary_10_1063_1_5016547 crossref_primary_10_1039_C7CP06450K crossref_primary_10_1016_j_mtcomm_2018_12_008 crossref_primary_10_1002_advs_202201336 crossref_primary_10_1007_s10853_015_9440_z crossref_primary_10_1016_j_carbon_2021_02_078 crossref_primary_10_1021_acsanm_0c02482 crossref_primary_10_1021_acscentsci_6b00236 crossref_primary_10_1039_C7CS00256D crossref_primary_10_1021_acs_chemmater_6b00217 crossref_primary_10_1021_acs_nanolett_5b05073 crossref_primary_10_1021_acsaelm_1c00807 crossref_primary_10_1002_admi_201400448 crossref_primary_10_1002_advs_202000058 crossref_primary_10_1088_2053_1583_3_3_034004 crossref_primary_10_1002_celc_201800934 crossref_primary_10_1039_C5RA11100E crossref_primary_10_3390_mi13010027 crossref_primary_10_1021_acs_nanolett_5b01036 |
Cites_doi | 10.1038/nature04233 10.1021/jp040650f 10.1021/nl102824h 10.1021/nl801827v 10.1103/PhysRevLett.98.186806 10.1063/1.3643444 10.1063/1.3599708 10.1038/nature05545 10.1021/nl901572a 10.1002/adma.201100304 10.1063/1.4737415 10.1126/science.1102896 10.1088/0957-4484/10/3/308 10.1126/science.1171245 10.1063/1.3524217 10.1126/science.1156965 10.1021/nl080649i 10.1021/nn201207c 10.1021/nn200105j 10.1063/1.3337091 10.1038/nmat1849 10.1021/jp807380s 10.1016/j.nuclphysb.2006.10.031 10.1149/2.101204jes 10.1126/science.1157996 10.1016/j.jpcs.2006.05.010 10.1021/cm0630800 10.1073/pnas.0703337104 10.1038/nature07719 10.1038/nnano.2010.132 10.1021/nl070613a 10.1021/nl902623y 10.1038/nnano.2013.63 10.1063/1.124316 10.1038/nphoton.2010.186 10.1103/RevModPhys.81.109 10.1021/nn101896a |
ContentType | Journal Article |
Copyright | Copyright © 2014 American Chemical Society |
Copyright_xml | – notice: Copyright © 2014 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1021/nn406170d |
DatabaseName | CrossRef PubMed MEDLINE - Academic Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 1791 |
ExternalDocumentID | 24471977 10_1021_nn406170d b64934999 |
Genre | Journal Article |
GroupedDBID | - 23M 4.4 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ LG6 P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 5VS 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV AHGAQ BAANH CITATION CUPRZ GGK NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-a414t-b6a788742c4160a36b4c8efeefa9f282417e99415a2b9d3573f18f80a6501e6b3 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Fri Jul 11 11:54:54 EDT 2025 Fri Jul 11 10:01:20 EDT 2025 Thu Apr 03 07:04:43 EDT 2025 Thu Apr 24 22:54:55 EDT 2025 Tue Jul 01 01:33:38 EDT 2025 Thu Aug 27 13:42:41 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | scanning tunneling microscope transfer polymer-free photoemission spectroscopy graphene |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a414t-b6a788742c4160a36b4c8efeefa9f282417e99415a2b9d3573f18f80a6501e6b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 24471977 |
PQID | 1502336727 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1762056050 proquest_miscellaneous_1502336727 pubmed_primary_24471977 crossref_primary_10_1021_nn406170d crossref_citationtrail_10_1021_nn406170d acs_journals_10_1021_nn406170d |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-02-25 |
PublicationDateYYYYMMDD | 2014-02-25 |
PublicationDate_xml | – month: 02 year: 2014 text: 2014-02-25 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2014 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Hong S. K. (ref36/cit36) 2012; 159 Geim A. K. (ref3/cit3) 2007; 6 Yu Y.-J. (ref34/cit34) 2009; 9 Lu X. K. (ref7/cit7) 1999; 10 Bonaccorso F. (ref15/cit15) 2010; 4 Hwang E. H. (ref39/cit39) 2007; 98 Novoselov K. S. (ref2/cit2) 2005; 438 Suk J. W. (ref19/cit19) 2011; 5 Lee C. (ref4/cit4) 2008; 321 Castro Neto A. H. (ref1/cit1) 2009; 81 Pang S. (ref16/cit16) 2011; 23 Ishigami M. (ref33/cit33) 2007; 7 Reina A. (ref13/cit13) 2009; 9 Kim K. S. (ref21/cit21) 2009; 457 Blake P. (ref28/cit28) 2008; 8 Bae S. (ref22/cit22) 2010; 5 Luo Z. (ref35/cit35) 2010; 97 McAllister M. J. (ref12/cit12) 2007; 19 Ledwosinska E. (ref26/cit26) 2012; 101 Cortijoa A. (ref31/cit31) 2007; 763 Rollings E. (ref10/cit10) 2006; 67 Berger C. (ref6/cit6) 2004; 108 Ishigami M. (ref29/cit29) 2007; 7 Li X. (ref18/cit18) 2009; 9 Lu X. K. (ref8/cit8) 1999; 75 Song J. (ref24/cit24) 2013; 8 Lin Y.-C. (ref23/cit23) 2011; 5 Unarunotai S. (ref11/cit11) 2010; 4 Nair R. R. (ref27/cit27) 2009; 324 Phaedon A. (ref17/cit17) 2010; 10 Alfonso R. (ref20/cit20) 2008; 112 Stolyarova E. (ref30/cit30) 2007; 104 Meyer J. C. (ref32/cit32) 2007; 446 Pirkle A. (ref37/cit37) 2011; 99 Li X. (ref14/cit14) 2009; 324 Gannett W. (ref38/cit38) 2011; 98 Nair R. R. (ref5/cit5) 2008; 320 Regan W. (ref25/cit25) 2010; 96 Novoselov K. S. (ref9/cit9) 2004; 306 |
References_xml | – volume: 438 start-page: 197 year: 2005 ident: ref2/cit2 publication-title: Nature doi: 10.1038/nature04233 – volume: 108 start-page: 19912 year: 2004 ident: ref6/cit6 publication-title: J. Phys. Chem. B doi: 10.1021/jp040650f – volume: 10 start-page: 4285 year: 2010 ident: ref17/cit17 publication-title: Nano Lett. doi: 10.1021/nl102824h – volume: 9 start-page: 30 year: 2009 ident: ref13/cit13 publication-title: Nano Lett. doi: 10.1021/nl801827v – volume: 98 start-page: 186806 year: 2007 ident: ref39/cit39 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.186806 – volume: 99 start-page: 122108 year: 2011 ident: ref37/cit37 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3643444 – volume: 98 start-page: 242105 year: 2011 ident: ref38/cit38 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3599708 – volume: 446 start-page: 60 year: 2007 ident: ref32/cit32 publication-title: Nature doi: 10.1038/nature05545 – volume: 9 start-page: 3430 year: 2009 ident: ref34/cit34 publication-title: Nano Lett. doi: 10.1021/nl901572a – volume: 23 start-page: 2779 year: 2011 ident: ref16/cit16 publication-title: Adv. Mater. doi: 10.1002/adma.201100304 – volume: 101 start-page: 033104 year: 2012 ident: ref26/cit26 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4737415 – volume: 306 start-page: 666 year: 2004 ident: ref9/cit9 publication-title: Science doi: 10.1126/science.1102896 – volume: 10 start-page: 269 year: 1999 ident: ref7/cit7 publication-title: Nanotechnology doi: 10.1088/0957-4484/10/3/308 – volume: 324 start-page: 1312 year: 2009 ident: ref14/cit14 publication-title: Science doi: 10.1126/science.1171245 – volume: 97 start-page: 233111 year: 2010 ident: ref35/cit35 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3524217 – volume: 320 start-page: 1308 year: 2008 ident: ref5/cit5 publication-title: Science doi: 10.1126/science.1156965 – volume: 324 start-page: 1312 year: 2009 ident: ref27/cit27 publication-title: Science doi: 10.1126/science.1171245 – volume: 8 start-page: 1704 year: 2008 ident: ref28/cit28 publication-title: Nano Lett. doi: 10.1021/nl080649i – volume: 5 start-page: 6916 year: 2011 ident: ref19/cit19 publication-title: ACS Nano doi: 10.1021/nn201207c – volume: 5 start-page: 2362 year: 2011 ident: ref23/cit23 publication-title: ACS Nano doi: 10.1021/nn200105j – volume: 96 start-page: 113102 year: 2010 ident: ref25/cit25 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3337091 – volume: 6 start-page: 183 year: 2007 ident: ref3/cit3 publication-title: Nat. Mater. doi: 10.1038/nmat1849 – volume: 112 start-page: 17741 year: 2008 ident: ref20/cit20 publication-title: J. Phys. Chem. C doi: 10.1021/jp807380s – volume: 763 start-page: 293 year: 2007 ident: ref31/cit31 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2006.10.031 – volume: 159 start-page: K107 year: 2012 ident: ref36/cit36 publication-title: J. Electrochem. Soc. doi: 10.1149/2.101204jes – volume: 321 start-page: 385 year: 2008 ident: ref4/cit4 publication-title: Science doi: 10.1126/science.1157996 – volume: 67 start-page: 2172 year: 2006 ident: ref10/cit10 publication-title: J. Phys. Chem. Solids doi: 10.1016/j.jpcs.2006.05.010 – volume: 19 start-page: 4396 year: 2007 ident: ref12/cit12 publication-title: Chem. Mater. doi: 10.1021/cm0630800 – volume: 104 start-page: 9209 year: 2007 ident: ref30/cit30 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0703337104 – volume: 457 start-page: 706 year: 2009 ident: ref21/cit21 publication-title: Nature doi: 10.1038/nature07719 – volume: 5 start-page: 574 year: 2010 ident: ref22/cit22 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.132 – volume: 7 start-page: 1643 year: 2007 ident: ref29/cit29 publication-title: Nano Lett. doi: 10.1021/nl070613a – volume: 9 start-page: 4359 year: 2009 ident: ref18/cit18 publication-title: Nano Lett. doi: 10.1021/nl902623y – volume: 8 start-page: 356 year: 2013 ident: ref24/cit24 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2013.63 – volume: 75 start-page: 193 year: 1999 ident: ref8/cit8 publication-title: Appl. Phys. Lett. doi: 10.1063/1.124316 – volume: 7 start-page: 1643 year: 2007 ident: ref33/cit33 publication-title: Nano Lett. doi: 10.1021/nl070613a – volume: 4 start-page: 611 year: 2010 ident: ref15/cit15 publication-title: Nat. Photonics doi: 10.1038/nphoton.2010.186 – volume: 81 start-page: 109 year: 2009 ident: ref1/cit1 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.81.109 – volume: 4 start-page: 5591 year: 2010 ident: ref11/cit11 publication-title: ACS Nano doi: 10.1021/nn101896a |
SSID | ssj0057876 |
Score | 2.509878 |
Snippet | We demonstrate a polymer-free method that can routinely transfer relatively large-area graphene to any substrate with advanced electrical properties and... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1784 |
SubjectTerms | Atomic structure Chemical vapor deposition Cleaning Devices Electronics Graphene Nanostructure Nuclear power generation |
Title | A Direct and Polymer-Free Method for Transferring Graphene Grown by Chemical Vapor Deposition to Any Substrate |
URI | http://dx.doi.org/10.1021/nn406170d https://www.ncbi.nlm.nih.gov/pubmed/24471977 https://www.proquest.com/docview/1502336727 https://www.proquest.com/docview/1762056050 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT8JAEJ4gXvTg-4EPsj4OXop9P44ERGKCMVEMt2Z3u-tB3BooB_z1zraUYES89TDNtp3pfN9kZr8FuE4iajEq9VSj5xgul9ygvk8NbjIE44SySOpCsffod_vuw8AbVODqjw6-bd0qpTEnMJM1WLf9MNAVVrP1XKZbHXF-0TrG0hj5QykftHirhh4-_gk9f_DJHFc629Aud-cU4yTvjUnGGvzrt1jjqkfega0ZryTNIhB2oSLUHmwuqA3ug2qSIsERqhLylA6nH2JkdEZCkF5-jjRBAkty8JJar1G9kXstZ43ZEC-wWidsSkqBAfJKkbmTtiinvkiWkqaaEp2JcsXbA-h37l5aXWN23IJBXcvNDOZTPVro2hxJmkkdn7k8FFIISSOJlZlrBSKKEPCpzaLE8QJHWqEMTYokzxI-cw6hqlIljoHwyJNYS1IW6K6lQI8HtoOZxUnCkIVJUIM6-iOe_S7jOO-E21Y8_3A1uCldFfOZWLk-M2O4zPRybvpZKHQsM7oo_R3j_6ObIlSJdIJLe8haHN2PXmGDiIFE0fTMGhwVwTJfCulRYCGJPvnvlU5hA8mWm2-H986gmo0m4hwJTcbqeUB_A_lT7iU |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LTxRBEK4gHJSD4AvWB5ZGEy-D834cOGzAdRGWmAiG29Dd080B6DE7syHrT_Gv8Oeo7plZwKCeSLzNoTL9qqnvq1TN1wDviox5nCnT1RgFTiiUcFgcM0e4nMC4YDxTJlEc7cXDg_DLYXQ4B7-6f2FoEhW9qbJF_Ct1Ae-j1gZ6ErdoGyh35PSc0rNqY3uLzvK97w8-7W8OnfYGAYeFXlg7PGamWy70BfEOlwUxD0UqlZSKZYqSjdBLZJYRhjGfZ0UQJYHyUpW6jHiLJ2Me0HvvwQKRHt8kdv3Nb12UN44eNxVrysiJtnSqRdenahBPVDcR7w801sLZYAkuZhthu1hO1ic1Xxc_f9OI_D93ahketiwa-43bP4I5qR_D4jVtxSeg-9iEc2S6wK_l6fRMjp3BWEoc2Vuzkeg6WqhWRp1SH-NnI95NsZ8eynONfIqdnAJ-Z5Sn4JbsetywLrGvp2jirtX3fQoHd7LgZzCvSy1XAUUWKcqcGU9MjVaSfyd-QHE0KNKUp0XSgzU6p7wNDlVu6_6-l88OqgcfOg_JRSvNbm4IOb3N9O3M9EejR3Kb0ZvOzXKKFqYExLQsJzR0RBwtMNX3v9gQPhItdiO3ByuNj86GIjKYeJQyPP_Xkl7D_eH-aDff3d7beQEPiGaGVgggegnz9XgiXxGVq_ma_aYQju7aNS8BvfxPdw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3JTtxAEC0RkFA4JGSfsKSCEikXE-_LIYcRw7AjpISIm9Pd7uYQ0kZjj9DkY_iV_Fqq2_YIECQnJG4-tHqtrvdKVX4N8KHImMeZMlWNUeCEQgmHxTFzhMsJjAvGM2UCxYPDePs43D2JTmbgsvsXhiZRUU-VTeKbW31eqFZhwPustYGfxC3aIso9ObmgEK36sjOg8_zo-8PNbxvbTvuKgMNCL6wdHjNTMRf6griHy4KYhyKVSkrFMkUBR-glMssIx5jPsyKIkkB5qUpdRtzFkzEPqN9HMGfSgya462987Ty9Mfa4yVpTVE7UpVMuujpVg3qiuo56d1BZC2nDp_Bnuhm2kuXn-rjm6-L3DZ3Ih7tbi_CkZdPYb8z_GcxI_RwWrmgsvgDdx8atI9MFHpVnk19y5AxHUuKBfT0bibajhWxlVCr1KW4ZEW_CAPooLzTyCXayCvidUbyCA9nVumFdYl9P0Phfq_P7Eo7vZcGvYFaXWr4BFFmkKIJmPDG5Wkl2nvgB-dOgSFOeFkkPVums8tZJVLnN__tePj2oHnzqrCQXrUS7eSnk7Lama9Om540uyW2N3nemlpPXMKkgpmU5pqEj4mqBycL_ow3hJNFjN3J78Lqx0-lQRAoTj0KHt_9b0juYPxoM8_2dw70leExsM7R6ANEyzNajsVwhRlfzVXutEH7ct2X-BfnDUfo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+direct+and+polymer-free+method+for+transferring+graphene+grown+by+chemical+vapor+deposition+to+any+substrate&rft.jtitle=ACS+nano&rft.au=Lin%2C+Wei-Hsiang&rft.au=Chen%2C+Ting-Hui&rft.au=Chang%2C+Jan-Kai&rft.au=Taur%2C+Jieh-I&rft.date=2014-02-25&rft.issn=1936-086X&rft.eissn=1936-086X&rft.volume=8&rft.issue=2&rft.spage=1784&rft_id=info:doi/10.1021%2Fnn406170d&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |