Highly Luminescent and Photostable Quantum Dot–Silica Monolith and Its Application to Light-Emitting Diodes
A highly luminescent and photostable quantum dot–silica monolith (QD–SM) substance was prepared by preliminary surface exchange of the QDs and base-catalyzed sol–gel condensation of silica. The SM was heavily doped with 6-mercaptohexanol exchanged QDs up to 12 vol % (26 wt %) without particle aggreg...
Saved in:
Published in | ACS nano Vol. 7; no. 2; pp. 1472 - 1477 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
26.02.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A highly luminescent and photostable quantum dot–silica monolith (QD–SM) substance was prepared by preliminary surface exchange of the QDs and base-catalyzed sol–gel condensation of silica. The SM was heavily doped with 6-mercaptohexanol exchanged QDs up to 12 vol % (26 wt %) without particle aggregation. Propylamine catalyst was important in maintaining the original luminescence of the QDs in the SM during sol–gel condensation. The silica layer was a good barrier against oxygen and moisture, so that the QD–SM maintained its initial luminescence after high-power UV radiation (∼1 W) for 200 h and through the 150 °C LED encapsulant curing process. Green and red light-emitting QD–SMs were applied as color-converting layers on blue LEDs, and the external quantum efficiency reached up to 89% for the green QD–SM and 63% for the red one. A white LED made with a mixture of green and red QDs in the SM, in which the color coordinate was adjusted at (0.23, 0.21) in CIE1931 color space for a backlight application, showed an efficacy of 47 lm/W, the highest value yet reported. |
---|---|
AbstractList | A highly luminescent and photostable quantum dot-silica monolith (QD-SM) substance was prepared by preliminary surface exchange of the QDs and base-catalyzed sol-gel condensation of silica. The SM was heavily doped with 6-mercaptohexanol exchanged QDs up to 12 vol % (26 wt %) without particle aggregation. Propylamine catalyst was important in maintaining the original luminescence of the QDs in the SM during sol-gel condensation. The silica layer was a good barrier against oxygen and moisture, so that the QD-SM maintained its initial luminescence after high-power UV radiation (1 W) for 200 h and through the 150 degree C LED encapsulant curing process. Green and red light-emitting QD-SMs were applied as color-converting layers on blue LEDs, and the external quantum efficiency reached up to 89% for the green QD-SM and 63% for the red one. A white LED made with a mixture of green and red QDs in the SM, in which the color coordinate was adjusted at (0.23, 0.21) in CIE1931 color space for a backlight application, showed an efficacy of 47 lm/W, the highest value yet reported. A highly luminescent and photostable quantum dot–silica monolith (QD–SM) substance was prepared by preliminary surface exchange of the QDs and base-catalyzed sol–gel condensation of silica. The SM was heavily doped with 6-mercaptohexanol exchanged QDs up to 12 vol % (26 wt %) without particle aggregation. Propylamine catalyst was important in maintaining the original luminescence of the QDs in the SM during sol–gel condensation. The silica layer was a good barrier against oxygen and moisture, so that the QD–SM maintained its initial luminescence after high-power UV radiation (∼1 W) for 200 h and through the 150 °C LED encapsulant curing process. Green and red light-emitting QD–SMs were applied as color-converting layers on blue LEDs, and the external quantum efficiency reached up to 89% for the green QD–SM and 63% for the red one. A white LED made with a mixture of green and red QDs in the SM, in which the color coordinate was adjusted at (0.23, 0.21) in CIE1931 color space for a backlight application, showed an efficacy of 47 lm/W, the highest value yet reported. A highly luminescent and photostable quantum dot-silica monolith (QD-SM) substance was prepared by preliminary surface exchange of the QDs and base-catalyzed sol-gel condensation of silica. The SM was heavily doped with 6-mercaptohexanol exchanged QDs up to 12 vol % (26 wt %) without particle aggregation. Propylamine catalyst was important in maintaining the original luminescence of the QDs in the SM during sol-gel condensation. The silica layer was a good barrier against oxygen and moisture, so that the QD-SM maintained its initial luminescence after high-power UV radiation (∼1 W) for 200 h and through the 150 °C LED encapsulant curing process. Green and red light-emitting QD-SMs were applied as color-converting layers on blue LEDs, and the external quantum efficiency reached up to 89% for the green QD-SM and 63% for the red one. A white LED made with a mixture of green and red QDs in the SM, in which the color coordinate was adjusted at (0.23, 0.21) in CIE1931 color space for a backlight application, showed an efficacy of 47 lm/W, the highest value yet reported.A highly luminescent and photostable quantum dot-silica monolith (QD-SM) substance was prepared by preliminary surface exchange of the QDs and base-catalyzed sol-gel condensation of silica. The SM was heavily doped with 6-mercaptohexanol exchanged QDs up to 12 vol % (26 wt %) without particle aggregation. Propylamine catalyst was important in maintaining the original luminescence of the QDs in the SM during sol-gel condensation. The silica layer was a good barrier against oxygen and moisture, so that the QD-SM maintained its initial luminescence after high-power UV radiation (∼1 W) for 200 h and through the 150 °C LED encapsulant curing process. Green and red light-emitting QD-SMs were applied as color-converting layers on blue LEDs, and the external quantum efficiency reached up to 89% for the green QD-SM and 63% for the red one. A white LED made with a mixture of green and red QDs in the SM, in which the color coordinate was adjusted at (0.23, 0.21) in CIE1931 color space for a backlight application, showed an efficacy of 47 lm/W, the highest value yet reported. |
Author | Lee, Junho Jun, Shinae Jang, Eunjoo |
AuthorAffiliation | Samsung Electronics Co |
AuthorAffiliation_xml | – name: Samsung Electronics Co |
Author_xml | – sequence: 1 givenname: Shinae surname: Jun fullname: Jun, Shinae – sequence: 2 givenname: Junho surname: Lee fullname: Lee, Junho – sequence: 3 givenname: Eunjoo surname: Jang fullname: Jang, Eunjoo email: ejjang12@samsung.com |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23363407$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0b1OwzAQB3ALgegHDLwA8oIEQ6gdO3YyVlBopSJAgMQW2YnbukrsEjtDN96BN-RJSD_ogCox-ST_7qT7XwccGmsUAGcYXWMU4p4xBEUhDeMD0MYJYQGK2fvhro5wC3ScmyMU8ZizY9AKCWGEIt4G5VBPZ8USjutSG-UyZTwUJodPM-ut80IWCj7Xwvi6hLfWf39-vehCZwI-WGML7WdrPfIO9heL1YfX1kBv4biZ64NBqb3XZgpvtc2VOwFHE1E4dbp9u-DtbvB6MwzGj_ejm_44EBRTH0gWRZOEUSolEQlTPBEqiQSTDEtKMWGUM06xIjxWcSy54jlvBA3zWEolMOmCy83cRWU_auV8Wupmt6IQRtnapZizEEUJC5P_KcGEkogw3tDzLa1lqfJ0UelSVMv0N80GXG1AVlnnKjXZEYzS1aXS3aUa2_tjM-3X6flK6GJvx8WmQ2Qundu6Mk2Ee9wPD-ihJA |
CitedBy_id | crossref_primary_10_1002_mame_201500087 crossref_primary_10_1016_j_pmatsci_2018_02_006 crossref_primary_10_1021_acsami_0c11988 crossref_primary_10_1007_s11814_018_0193_7 crossref_primary_10_1109_JPHOT_2019_2916084 crossref_primary_10_1088_0957_4484_25_43_435202 crossref_primary_10_1109_JPHOT_2020_2977218 crossref_primary_10_1021_acsami_0c18371 crossref_primary_10_1039_C9NR04517A crossref_primary_10_1002_adom_201900702 crossref_primary_10_1021_acs_jpcc_2c00063 crossref_primary_10_1016_j_optmat_2020_110545 crossref_primary_10_1016_j_jnoncrysol_2015_04_021 crossref_primary_10_1002_sdtp_13031 crossref_primary_10_1016_j_apsusc_2017_09_125 crossref_primary_10_1039_D4CP00099D crossref_primary_10_1002_smll_201803200 crossref_primary_10_2139_ssrn_4180238 crossref_primary_10_1021_acsanm_3c01423 crossref_primary_10_1016_j_apcatb_2016_11_055 crossref_primary_10_1039_C5TC00660K crossref_primary_10_1002_asia_201901289 crossref_primary_10_1016_j_jallcom_2019_07_340 crossref_primary_10_1021_acsnano_3c05125 crossref_primary_10_1016_j_ceramint_2018_12_137 crossref_primary_10_1039_C4NR06883A crossref_primary_10_1111_jace_19180 crossref_primary_10_1039_C8RA00119G crossref_primary_10_1002_adom_201801072 crossref_primary_10_1039_C5RA26331J crossref_primary_10_1364_OE_27_020037 crossref_primary_10_3390_nano8080618 crossref_primary_10_1016_j_mattod_2018_09_002 crossref_primary_10_1002_ange_201501131 crossref_primary_10_1038_ncomms15198 crossref_primary_10_1021_acsami_9b19586 crossref_primary_10_1016_j_ceramint_2021_08_290 crossref_primary_10_1021_acsami_5b02860 crossref_primary_10_1039_D0TC04580B crossref_primary_10_1038_srep45906 crossref_primary_10_1002_sdtp_11646 crossref_primary_10_1002_sdtp_11649 crossref_primary_10_1021_acsami_7b13940 crossref_primary_10_1039_C7RA00081B crossref_primary_10_1002_bio_3594 crossref_primary_10_1088_1361_6463_ad759d crossref_primary_10_1021_jacs_5b02506 crossref_primary_10_1021_acsami_7b14471 crossref_primary_10_1063_1_4820406 crossref_primary_10_1364_JOSAB_537532 crossref_primary_10_1039_C5TC02428E crossref_primary_10_1007_s40843_019_9435_7 crossref_primary_10_1039_C6NR03268K crossref_primary_10_1021_acsami_6b01511 crossref_primary_10_1021_acsnano_6b03704 crossref_primary_10_1038_s41598_017_12083_2 crossref_primary_10_1021_acsami_7b18964 crossref_primary_10_1021_acs_chemmater_6b01225 crossref_primary_10_1021_jacs_5b05462 crossref_primary_10_1039_C8CC04130J crossref_primary_10_1016_j_apmt_2020_100739 crossref_primary_10_1038_srep22530 crossref_primary_10_1021_acs_jpcc_6b12129 crossref_primary_10_1039_C8NR04224A crossref_primary_10_1039_C4TC01221F crossref_primary_10_7567_JJAP_54_02BC02 crossref_primary_10_1016_j_cej_2019_03_039 crossref_primary_10_1063_1_5109068 crossref_primary_10_1051_e3sconf_202124503020 crossref_primary_10_1039_C4RA11349G crossref_primary_10_1109_TED_2022_3181223 crossref_primary_10_1002_anie_201501131 crossref_primary_10_1016_j_polymer_2019_05_059 crossref_primary_10_1021_jacs_5b13101 crossref_primary_10_1364_OL_39_001208 crossref_primary_10_1016_j_cej_2019_122735 crossref_primary_10_1002_sdtp_12302 crossref_primary_10_1039_C4RA08770D crossref_primary_10_1039_C7CC00952F crossref_primary_10_1002_ppsc_201500074 crossref_primary_10_1039_C6TC00707D crossref_primary_10_1016_j_jcis_2017_08_020 crossref_primary_10_1002_adma_201804294 crossref_primary_10_1088_2053_1591_2_3_036202 crossref_primary_10_1021_acsami_5b00925 crossref_primary_10_1063_1_4916697 crossref_primary_10_1039_C5RA24203G crossref_primary_10_1016_j_jlumin_2016_07_006 crossref_primary_10_1088_1361_6528_aa878c crossref_primary_10_1021_acs_analchem_0c00200 crossref_primary_10_1021_acs_chemmater_9b00550 crossref_primary_10_1080_15980316_2018_1498810 crossref_primary_10_1021_acsami_9b06987 crossref_primary_10_1039_C4RA08162E crossref_primary_10_1021_acsanm_0c02195 crossref_primary_10_1021_ct500548x crossref_primary_10_1016_j_jlumin_2019_116910 crossref_primary_10_1039_C5NR01880C crossref_primary_10_1021_acs_jpcc_8b03681 crossref_primary_10_1016_j_pmatsci_2022_100998 crossref_primary_10_1109_JPHOT_2021_3099313 crossref_primary_10_1021_acsphotonics_0c01240 crossref_primary_10_1111_ijag_12115 crossref_primary_10_1038_s41427_020_0200_4 crossref_primary_10_1021_acs_jpcc_6b06728 crossref_primary_10_1002_smtd_202300206 crossref_primary_10_1007_s11172_016_1620_8 crossref_primary_10_1021_acsphotonics_6b00485 crossref_primary_10_1002_adom_201700997 crossref_primary_10_1021_acsami_9b18500 crossref_primary_10_1021_acsenergylett_1c02745 crossref_primary_10_1016_j_jlumin_2016_04_038 crossref_primary_10_1039_C7NJ03017G crossref_primary_10_1039_C8RA04830D crossref_primary_10_1039_C8TC04095H crossref_primary_10_1021_acs_jpcc_7b09788 crossref_primary_10_1016_j_matlet_2013_08_091 crossref_primary_10_1109_TED_2019_2937340 crossref_primary_10_1515_nanoph_2016_0009 crossref_primary_10_1038_s41598_017_03063_7 crossref_primary_10_1016_j_materresbull_2017_06_012 crossref_primary_10_1021_acs_chemmater_8b04769 crossref_primary_10_1016_j_ceramint_2016_03_039 crossref_primary_10_1007_s11051_025_06258_6 crossref_primary_10_1016_j_matdes_2023_111736 crossref_primary_10_1109_JSTQE_2017_2665779 crossref_primary_10_1109_TED_2020_3044556 crossref_primary_10_1364_OL_446231 crossref_primary_10_1039_C5NR04856G crossref_primary_10_1002_sdtp_11824 crossref_primary_10_1002_adfm_201302521 crossref_primary_10_1021_ie500602n crossref_primary_10_1038_s41598_019_42925_0 crossref_primary_10_1039_D4MA00705K crossref_primary_10_1016_j_colsurfa_2020_124811 crossref_primary_10_1111_jace_16066 crossref_primary_10_1021_acsami_8b06323 crossref_primary_10_5757_ASCT_2016_25_1_1 crossref_primary_10_1186_s11671_022_03741_0 crossref_primary_10_1016_j_jallcom_2022_167608 crossref_primary_10_1039_C8NR07022A crossref_primary_10_1364_AO_57_010317 crossref_primary_10_1039_C5NR02991K crossref_primary_10_1109_TNANO_2019_2927951 crossref_primary_10_1002_adom_201902178 crossref_primary_10_1149_2_0062001JSS crossref_primary_10_1109_TED_2017_2785772 crossref_primary_10_3390_catal12101235 crossref_primary_10_1063_1_4868978 crossref_primary_10_1016_j_cej_2021_131159 crossref_primary_10_1002_adom_201801687 crossref_primary_10_1016_j_nantod_2016_04_005 crossref_primary_10_1021_acs_jpclett_8b00695 crossref_primary_10_1021_acs_jpclett_7b03037 crossref_primary_10_1002_ppsc_202100120 crossref_primary_10_1016_j_apsusc_2020_145441 crossref_primary_10_1007_s00289_016_1689_0 crossref_primary_10_1063_1_5026027 crossref_primary_10_1088_1361_6528_aa7c86 crossref_primary_10_1038_lsa_2016_271 crossref_primary_10_1109_TED_2021_3060698 crossref_primary_10_1002_cphc_201500216 crossref_primary_10_1111_ijag_15888 crossref_primary_10_1007_s12274_019_2420_x crossref_primary_10_1021_nn4024587 crossref_primary_10_1039_C6TC00943C crossref_primary_10_1039_C7TC02297B crossref_primary_10_1016_j_jlumin_2016_08_064 crossref_primary_10_1088_1361_648X_aa8b9d crossref_primary_10_1002_sdtp_10948 crossref_primary_10_3390_nano12071097 crossref_primary_10_1088_1361_6528_ac86de crossref_primary_10_1007_s41061_016_0041_3 crossref_primary_10_1039_C8TC06292G crossref_primary_10_1364_OME_4_001297 crossref_primary_10_1002_sdtp_15420 crossref_primary_10_1186_s11671_020_03350_9 crossref_primary_10_1364_OME_3_001468 crossref_primary_10_1364_OL_38_002885 crossref_primary_10_1364_PRJ_5_0000A1 crossref_primary_10_3390_nano13182560 crossref_primary_10_1002_adma_201603081 crossref_primary_10_1109_TED_2019_2930898 crossref_primary_10_1088_1361_6528_aab18e crossref_primary_10_1021_acs_langmuir_6b04333 crossref_primary_10_1039_D0NA01012J crossref_primary_10_1021_acsnano_5b05513 crossref_primary_10_1039_C7TC02897K crossref_primary_10_1002_adma_202415436 crossref_primary_10_1039_C8NR01501E crossref_primary_10_1002_adom_201800346 crossref_primary_10_1021_acsami_5b03004 crossref_primary_10_1021_acsphotonics_9b01587 crossref_primary_10_1039_C5NR02696B crossref_primary_10_1039_D2PY00789D crossref_primary_10_1021_acsanm_8b00810 crossref_primary_10_1002_adom_201600834 crossref_primary_10_1016_j_matdes_2015_11_077 crossref_primary_10_1002_adfm_201901810 crossref_primary_10_1021_acsnano_9b06021 crossref_primary_10_1088_1361_6528_aa8610 crossref_primary_10_1088_0957_4484_25_22_225601 crossref_primary_10_1039_C9TC00505F crossref_primary_10_1002_anie_201703264 crossref_primary_10_1021_acsami_8b14677 crossref_primary_10_1038_s41377_021_00508_7 crossref_primary_10_1557_opl_2015_505 crossref_primary_10_1039_c3ra41323c crossref_primary_10_1021_acs_chemmater_8b03096 crossref_primary_10_1115_1_4033143 crossref_primary_10_1039_C7NR05370C crossref_primary_10_1021_acs_chemmater_7b00164 crossref_primary_10_1142_S0217984918502548 crossref_primary_10_1007_s10853_024_10143_3 crossref_primary_10_1039_C5NR04839G crossref_primary_10_1063_5_0026314 crossref_primary_10_1021_jacs_6b10681 crossref_primary_10_1016_j_ssc_2019_113765 crossref_primary_10_3390_nano12162846 crossref_primary_10_1002_cnma_201700056 crossref_primary_10_1002_biot_202000117 crossref_primary_10_1016_j_apsusc_2024_162196 crossref_primary_10_1039_C9TC05966K crossref_primary_10_7567_JJAP_56_041701 crossref_primary_10_1002_ange_201703264 crossref_primary_10_1038_s41598_020_70838_w crossref_primary_10_1039_C9NR03645H crossref_primary_10_1039_C5CC09539E crossref_primary_10_1557_mrs_2013_184 crossref_primary_10_1021_nn5040444 crossref_primary_10_1149_2_0091707jss crossref_primary_10_1021_acsphotonics_7b00980 crossref_primary_10_1016_j_cej_2019_122792 crossref_primary_10_1364_OE_27_009459 |
Cites_doi | 10.1002/adma.201000525 10.1021/cm050962a 10.1002/adma.200600791 10.1002/1439-7641(20010518)2:5<331::AID-CPHC331>3.0.CO;2-0 10.1002/1521-4095(200008)12:15<1102::AID-ADMA1102>3.0.CO;2-J 10.1021/nl203620f 10.1016/0021-9797(68)90272-5 10.1002/anie.200453728 10.1002/anie.200600317 10.1021/ja076363h 10.1021/ja057980d 10.1021/ja066749c 10.1002/anie.200604245 10.1103/PhysRevB.81.205316 10.1021/ja970754m 10.1021/ja711379k 10.1002/adma.200602642 10.1021/jp9530562 10.1002/1521-4095(200107)13:12/13<985::AID-ADMA985>3.0.CO;2-W 10.1002/anie.201206333 10.1002/adma.200401960 10.1021/la050397q 10.1039/b509196a 10.1021/jp971091y 10.1016/j.apsusc.2004.08.022 10.1039/c002243h 10.1166/nnl.2011.1228 10.1351/pac200072010257 10.1021/la035546o |
ContentType | Journal Article |
Copyright | Copyright © 2013 American Chemical Society |
Copyright_xml | – notice: Copyright © 2013 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1021/nn3052428 |
DatabaseName | CrossRef PubMed MEDLINE - Academic Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 1477 |
ExternalDocumentID | 23363407 10_1021_nn3052428 g23514718 |
Genre | Journal Article |
GroupedDBID | - 23M 4.4 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ LG6 P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 5VS 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV AHGAQ BAANH CITATION CUPRZ GGK NPM 7X8 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-a414t-b655f9644bb3a96e79ae95a6b61b44136476741e378e88b7e7d7ae942d8bbea13 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Fri Jul 11 04:38:54 EDT 2025 Thu Jul 10 21:19:28 EDT 2025 Thu Apr 03 07:03:47 EDT 2025 Tue Jul 01 01:33:30 EDT 2025 Thu Apr 24 23:04:49 EDT 2025 Thu Aug 27 13:41:57 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | quantum dot LED semiconductor nanocrystal silica monolith |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a414t-b655f9644bb3a96e79ae95a6b61b44136476741e378e88b7e7d7ae942d8bbea13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 23363407 |
PQID | 1313435367 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1762059629 proquest_miscellaneous_1313435367 pubmed_primary_23363407 crossref_primary_10_1021_nn3052428 crossref_citationtrail_10_1021_nn3052428 acs_journals_10_1021_nn3052428 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-02-26 |
PublicationDateYYYYMMDD | 2013-02-26 |
PublicationDate_xml | – month: 02 year: 2013 text: 2013-02-26 day: 26 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2013 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Jun S. (ref5/cit5) 2005 Haubold S. (ref8/cit8) 2001; 2 Jun S. (ref13/cit13) 2013; 52 Hines M. A. (ref1/cit1) 1996; 100 Riassetto D. (ref23/cit23) 2011; 3 Lee J. (ref14/cit14) 2000; 12 Arachchige I. U. (ref27/cit27) 2007; 129 Stöber W. (ref15/cit15) 1968; 26 Steckel J. S. (ref6/cit6) 2006; 45 Jang E. (ref12/cit12) 2010; 22 Xie R. (ref9/cit9) 2007; 129 Yang P. (ref21/cit21) 2005; 21 Sorensen L. (ref25/cit25) 2006; 18 Pal B. N. (ref11/cit11) 2012; 12 Lim J. (ref7/cit7) 2007; 19 Lunz M. (ref29/cit29) 2010; 81 Alejandro-Arellano M. (ref16/cit16) 2000; 72 Selvan S. T. (ref28/cit28) 2001; 13 Li C. (ref20/cit20) 2004; 20 Yang P. (ref17/cit17) 2010; 46 Wang Q. (ref24/cit24) 2005; 17 Chen Y. (ref10/cit10) 2008; 130 Dabbousi B. O. (ref3/cit3) 1997; 101 Selvan S. T. (ref18/cit18) 2005; 17 Steckel J. S. (ref4/cit4) 2004; 43 Chan Y. (ref26/cit26) 2006; 128 Zhoua X. (ref22/cit22) 2005; 242 Peng X. (ref2/cit2) 1997; 119 Selvan S. T. (ref19/cit19) 2007; 46 |
References_xml | – volume: 22 start-page: 3076 year: 2010 ident: ref12/cit12 publication-title: Adv. Mater. doi: 10.1002/adma.201000525 – volume: 17 start-page: 4762 year: 2005 ident: ref24/cit24 publication-title: Chem. Mater. doi: 10.1021/cm050962a – volume: 18 start-page: 1965 year: 2006 ident: ref25/cit25 publication-title: Adv. Mater. doi: 10.1002/adma.200600791 – volume: 2 start-page: 331 year: 2001 ident: ref8/cit8 publication-title: ChemPhysChem doi: 10.1002/1439-7641(20010518)2:5<331::AID-CPHC331>3.0.CO;2-0 – volume: 12 start-page: 1102 year: 2000 ident: ref14/cit14 publication-title: Adv. Mater. doi: 10.1002/1521-4095(200008)12:15<1102::AID-ADMA1102>3.0.CO;2-J – volume: 12 start-page: 331 year: 2012 ident: ref11/cit11 publication-title: Nano Lett. doi: 10.1021/nl203620f – volume: 26 start-page: 62 year: 1968 ident: ref15/cit15 publication-title: J. Colloid Interface Sci. doi: 10.1016/0021-9797(68)90272-5 – volume: 43 start-page: 2154 year: 2004 ident: ref4/cit4 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200453728 – volume: 45 start-page: 5796 year: 2006 ident: ref6/cit6 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200600317 – volume: 129 start-page: 15432 year: 2007 ident: ref9/cit9 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja076363h – volume: 128 start-page: 3146 year: 2006 ident: ref26/cit26 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja057980d – volume: 129 start-page: 1840 year: 2007 ident: ref27/cit27 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja066749c – volume: 46 start-page: 2448 year: 2007 ident: ref19/cit19 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200604245 – volume: 81 start-page: 205316 year: 2010 ident: ref29/cit29 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.81.205316 – volume: 119 start-page: 7019 year: 1997 ident: ref2/cit2 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja970754m – volume: 130 start-page: 5026 year: 2008 ident: ref10/cit10 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja711379k – volume: 19 start-page: 1927 year: 2007 ident: ref7/cit7 publication-title: Adv. Mater. doi: 10.1002/adma.200602642 – volume: 100 start-page: 468 year: 1996 ident: ref1/cit1 publication-title: J. Phys. Chem. doi: 10.1021/jp9530562 – volume: 13 start-page: 985 year: 2001 ident: ref28/cit28 publication-title: Adv. Mater. doi: 10.1002/1521-4095(200107)13:12/13<985::AID-ADMA985>3.0.CO;2-W – volume: 52 start-page: 679 year: 2013 ident: ref13/cit13 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201206333 – volume: 17 start-page: 1620 year: 2005 ident: ref18/cit18 publication-title: Adv. Mater. doi: 10.1002/adma.200401960 – volume: 21 start-page: 8913 year: 2005 ident: ref21/cit21 publication-title: Langmuir doi: 10.1021/la050397q – start-page: 4616 year: 2005 ident: ref5/cit5 publication-title: Chem. Commun. doi: 10.1039/b509196a – volume: 101 start-page: 9463 year: 1997 ident: ref3/cit3 publication-title: J. Phys. Chem. B doi: 10.1021/jp971091y – volume: 242 start-page: 281 year: 2005 ident: ref22/cit22 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2004.08.022 – volume: 46 start-page: 4595 year: 2010 ident: ref17/cit17 publication-title: Chem. Commun. doi: 10.1039/c002243h – volume: 3 start-page: 655 year: 2011 ident: ref23/cit23 publication-title: Nanosci. Nanotechnol. Lett. doi: 10.1166/nnl.2011.1228 – volume: 72 start-page: 257 year: 2000 ident: ref16/cit16 publication-title: Pure Appl. Chem. doi: 10.1351/pac200072010257 – volume: 20 start-page: 1 year: 2004 ident: ref20/cit20 publication-title: Langmuir doi: 10.1021/la035546o |
SSID | ssj0057876 |
Score | 2.5333652 |
Snippet | A highly luminescent and photostable quantum dot–silica monolith (QD–SM) substance was prepared by preliminary surface exchange of the QDs and base-catalyzed... A highly luminescent and photostable quantum dot-silica monolith (QD-SM) substance was prepared by preliminary surface exchange of the QDs and base-catalyzed... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1472 |
SubjectTerms | Agglomeration Color Condensing Curing Exchange Luminescence Nanostructure Quantum dots Silicon dioxide Sol gel process |
Title | Highly Luminescent and Photostable Quantum Dot–Silica Monolith and Its Application to Light-Emitting Diodes |
URI | http://dx.doi.org/10.1021/nn3052428 https://www.ncbi.nlm.nih.gov/pubmed/23363407 https://www.proquest.com/docview/1313435367 https://www.proquest.com/docview/1762059629 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NTtxADLYovdADtKWFhRYN0EMvgSSTTCbHFQuiiKJWgMQtGieOdsVugrrJoT31HfqGfRI8yWYL4qd3R5OM7fHn2PMZ4FOeytjLjXaIQuPw6ec66KrMyTCXKEm7GNvLyV_P1PFlcHIVXi3A7hMVfN_bLwo2SQ4k-gW89JWObIbVPzjvjltrcaotHXNqzPihow-6-6gNPen0fuh5Ak82ceVoBQbd7Zy2neR6r65wL_31kKzxuVd-DcszXCn6rSG8gQUq3sKrO2yDqzCxPR3jn-K0nthed9uWKUyRiW_DsioZJOKYxPead7qeiEFZ_f3953xkf-kJ9nvbJTdspL9UU9H_V_UWVSlOGzKSw8mo6aEWg1GZ0fQdXB4dXhwcO7NpC44JvKByUIVhHjM8QpQmVhRZ2u7QKFQeMmayPPOK4QfJSJPWGFGURSwR-JlGJOPJ97BYlAWtg2DQ4EYYq9jkFLiZJQB3vZyyPA_SkDT2YIvVkcy8ZZo0hXDfS-b71oPPnaaSdMZVbkdmjB8T3ZmL3rQEHY8JbXfqTth9bE3EFFTWvLT0JCNGqaJnZDhgNFOK4h6stbYyX8qXUklOijf-90mbsOQ3kzR8x1cfYLH6UdNHxjMVbjX2fAvqLe-d |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NTtwwELb4ObQ9tJT-sKVQU_XQS5YkTpzkuIJFS1lQK0DiFnmSiVh1N0FNcoBT34E35EkYO9ldQNByn8TOeOz5JjP-hrFvWSIiJ1Ohhegri04_2wJbplYKmQCBoQ2Rvpx8eCQHp96PM_-spcnRd2FoEiW9qTRJ_Dm7gLOd52SZ5E_CRbZMIMTVgVZv53h66mrDk00GmSJkghFTFqG7j2oPlJT3PdATsNK4l703TZ8iMzFTVfK7W1fQTa4ecDY-b-Yr7HWLMnmvMYu3bAHzVfbqDvfgOzbRFR7jSz6sJ7ryXRdpcpWn_Od5URUEGWGM_FdNeq8nfLeobv5eH4_0Dz5Op4CumTs30vtVyXvzHDivCj401CT9ychUVPPdUZFi-Z6d7vVPdgZW23vBUp7jVRZI388iAksAQkUSA03i7SsJ0gFCUJp1XhIYQRGEGIYQYJAGJOG5aQiAyhEf2FJe5LjGOEEIO4BIRipDz041HbjtZJhmmZf4GEKHbZLa4nbvlLFJi7tOPNNbh32fLlictMzluoHG-DHRrzPRi4au4zGhremqx7SZdIZE5VjUNLRwBOFHIYN_yJD7MD2Log772JjMbChXCCkoRP70v0_6wl4MTg6H8XD_6GCdvXRNjw3XcuVntlT9qXGDkE4Fm8bEbwEnOvf- |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BkRAcaHm0LH1gEAcuaZM4cZLjqttVC0spKpV6izyxra7YTSqSHODEf-Af9pd07M1uHyqP-yR27BnPN5nxNwDvTMGzwMjU0zqWHp1-voe-UJ5Cw5Hr1MfMXk7-dCj2T6IPp_FpFyjauzA0iZreVLskvrXqc2U6hoFgpyxJO8mnpPfhgU3X2WCrv3s8P3mt8olZFpmiZIIScyah649aL1TUN73QH6ClczHDZfi8mJyrLPm23Ta4Xfy8xdv4_7NfgScd2mT9mXo8hXu6fAaPr3EQPoeprfSY_GCjdmor4G2xJpOlYkdnVVMRdMSJZl9aWv92ygZVc_Hr9_HY_uhjdBrY2rkzJ33Q1Kx_lQtnTcVGjqJkbzp2ldVsMK6Url_AyXDv6-6-1_Vg8GQURI2HIo5NRqAJkctM6MSSecdSoAiQkJRlnxcESjRPUp2mmOhEJSQRhSpF1DLgq7BUVqV-CYyghJ9gJjJpdOQrSwvuB0YrY6Ii1in2YIuWLu9sqM5dejwM8sW69eD9fNPyomMwt400JneJvl2Ins9oO-4SejPf-ZyMymZKZKmrlobmASccyUXyFxlyI653UdaDtZnaLIYKORecQuVX__qk1_DwaDDMRweHH9fhUehabYReKDZgqfne6k0CPA1uOS2_BEBk-oE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+luminescent+and+photostable+quantum+dot-silica+monolith+and+its+application+to+light-emitting+diodes&rft.jtitle=ACS+nano&rft.au=Jun%2C+Shinae&rft.au=Lee%2C+Junho&rft.au=Jang%2C+Eunjoo&rft.date=2013-02-26&rft.issn=1936-086X&rft.eissn=1936-086X&rft.volume=7&rft.issue=2&rft.spage=1472&rft_id=info:doi/10.1021%2Fnn3052428&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |