Highly Luminescent and Photostable Quantum Dot–Silica Monolith and Its Application to Light-Emitting Diodes

A highly luminescent and photostable quantum dot–silica monolith (QD–SM) substance was prepared by preliminary surface exchange of the QDs and base-catalyzed sol–gel condensation of silica. The SM was heavily doped with 6-mercaptohexanol exchanged QDs up to 12 vol % (26 wt %) without particle aggreg...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 7; no. 2; pp. 1472 - 1477
Main Authors Jun, Shinae, Lee, Junho, Jang, Eunjoo
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 26.02.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A highly luminescent and photostable quantum dot–silica monolith (QD–SM) substance was prepared by preliminary surface exchange of the QDs and base-catalyzed sol–gel condensation of silica. The SM was heavily doped with 6-mercaptohexanol exchanged QDs up to 12 vol % (26 wt %) without particle aggregation. Propylamine catalyst was important in maintaining the original luminescence of the QDs in the SM during sol–gel condensation. The silica layer was a good barrier against oxygen and moisture, so that the QD–SM maintained its initial luminescence after high-power UV radiation (∼1 W) for 200 h and through the 150 °C LED encapsulant curing process. Green and red light-emitting QD–SMs were applied as color-converting layers on blue LEDs, and the external quantum efficiency reached up to 89% for the green QD–SM and 63% for the red one. A white LED made with a mixture of green and red QDs in the SM, in which the color coordinate was adjusted at (0.23, 0.21) in CIE1931 color space for a backlight application, showed an efficacy of 47 lm/W, the highest value yet reported.
AbstractList A highly luminescent and photostable quantum dot-silica monolith (QD-SM) substance was prepared by preliminary surface exchange of the QDs and base-catalyzed sol-gel condensation of silica. The SM was heavily doped with 6-mercaptohexanol exchanged QDs up to 12 vol % (26 wt %) without particle aggregation. Propylamine catalyst was important in maintaining the original luminescence of the QDs in the SM during sol-gel condensation. The silica layer was a good barrier against oxygen and moisture, so that the QD-SM maintained its initial luminescence after high-power UV radiation (1 W) for 200 h and through the 150 degree C LED encapsulant curing process. Green and red light-emitting QD-SMs were applied as color-converting layers on blue LEDs, and the external quantum efficiency reached up to 89% for the green QD-SM and 63% for the red one. A white LED made with a mixture of green and red QDs in the SM, in which the color coordinate was adjusted at (0.23, 0.21) in CIE1931 color space for a backlight application, showed an efficacy of 47 lm/W, the highest value yet reported.
A highly luminescent and photostable quantum dot–silica monolith (QD–SM) substance was prepared by preliminary surface exchange of the QDs and base-catalyzed sol–gel condensation of silica. The SM was heavily doped with 6-mercaptohexanol exchanged QDs up to 12 vol % (26 wt %) without particle aggregation. Propylamine catalyst was important in maintaining the original luminescence of the QDs in the SM during sol–gel condensation. The silica layer was a good barrier against oxygen and moisture, so that the QD–SM maintained its initial luminescence after high-power UV radiation (∼1 W) for 200 h and through the 150 °C LED encapsulant curing process. Green and red light-emitting QD–SMs were applied as color-converting layers on blue LEDs, and the external quantum efficiency reached up to 89% for the green QD–SM and 63% for the red one. A white LED made with a mixture of green and red QDs in the SM, in which the color coordinate was adjusted at (0.23, 0.21) in CIE1931 color space for a backlight application, showed an efficacy of 47 lm/W, the highest value yet reported.
A highly luminescent and photostable quantum dot-silica monolith (QD-SM) substance was prepared by preliminary surface exchange of the QDs and base-catalyzed sol-gel condensation of silica. The SM was heavily doped with 6-mercaptohexanol exchanged QDs up to 12 vol % (26 wt %) without particle aggregation. Propylamine catalyst was important in maintaining the original luminescence of the QDs in the SM during sol-gel condensation. The silica layer was a good barrier against oxygen and moisture, so that the QD-SM maintained its initial luminescence after high-power UV radiation (∼1 W) for 200 h and through the 150 °C LED encapsulant curing process. Green and red light-emitting QD-SMs were applied as color-converting layers on blue LEDs, and the external quantum efficiency reached up to 89% for the green QD-SM and 63% for the red one. A white LED made with a mixture of green and red QDs in the SM, in which the color coordinate was adjusted at (0.23, 0.21) in CIE1931 color space for a backlight application, showed an efficacy of 47 lm/W, the highest value yet reported.A highly luminescent and photostable quantum dot-silica monolith (QD-SM) substance was prepared by preliminary surface exchange of the QDs and base-catalyzed sol-gel condensation of silica. The SM was heavily doped with 6-mercaptohexanol exchanged QDs up to 12 vol % (26 wt %) without particle aggregation. Propylamine catalyst was important in maintaining the original luminescence of the QDs in the SM during sol-gel condensation. The silica layer was a good barrier against oxygen and moisture, so that the QD-SM maintained its initial luminescence after high-power UV radiation (∼1 W) for 200 h and through the 150 °C LED encapsulant curing process. Green and red light-emitting QD-SMs were applied as color-converting layers on blue LEDs, and the external quantum efficiency reached up to 89% for the green QD-SM and 63% for the red one. A white LED made with a mixture of green and red QDs in the SM, in which the color coordinate was adjusted at (0.23, 0.21) in CIE1931 color space for a backlight application, showed an efficacy of 47 lm/W, the highest value yet reported.
Author Lee, Junho
Jun, Shinae
Jang, Eunjoo
AuthorAffiliation Samsung Electronics Co
AuthorAffiliation_xml – name: Samsung Electronics Co
Author_xml – sequence: 1
  givenname: Shinae
  surname: Jun
  fullname: Jun, Shinae
– sequence: 2
  givenname: Junho
  surname: Lee
  fullname: Lee, Junho
– sequence: 3
  givenname: Eunjoo
  surname: Jang
  fullname: Jang, Eunjoo
  email: ejjang12@samsung.com
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23363407$$D View this record in MEDLINE/PubMed
BookMark eNqF0b1OwzAQB3ALgegHDLwA8oIEQ6gdO3YyVlBopSJAgMQW2YnbukrsEjtDN96BN-RJSD_ogCox-ST_7qT7XwccGmsUAGcYXWMU4p4xBEUhDeMD0MYJYQGK2fvhro5wC3ScmyMU8ZizY9AKCWGEIt4G5VBPZ8USjutSG-UyZTwUJodPM-ut80IWCj7Xwvi6hLfWf39-vehCZwI-WGML7WdrPfIO9heL1YfX1kBv4biZ64NBqb3XZgpvtc2VOwFHE1E4dbp9u-DtbvB6MwzGj_ejm_44EBRTH0gWRZOEUSolEQlTPBEqiQSTDEtKMWGUM06xIjxWcSy54jlvBA3zWEolMOmCy83cRWU_auV8Wupmt6IQRtnapZizEEUJC5P_KcGEkogw3tDzLa1lqfJ0UelSVMv0N80GXG1AVlnnKjXZEYzS1aXS3aUa2_tjM-3X6flK6GJvx8WmQ2Qundu6Mk2Ee9wPD-ihJA
CitedBy_id crossref_primary_10_1002_mame_201500087
crossref_primary_10_1016_j_pmatsci_2018_02_006
crossref_primary_10_1021_acsami_0c11988
crossref_primary_10_1007_s11814_018_0193_7
crossref_primary_10_1109_JPHOT_2019_2916084
crossref_primary_10_1088_0957_4484_25_43_435202
crossref_primary_10_1109_JPHOT_2020_2977218
crossref_primary_10_1021_acsami_0c18371
crossref_primary_10_1039_C9NR04517A
crossref_primary_10_1002_adom_201900702
crossref_primary_10_1021_acs_jpcc_2c00063
crossref_primary_10_1016_j_optmat_2020_110545
crossref_primary_10_1016_j_jnoncrysol_2015_04_021
crossref_primary_10_1002_sdtp_13031
crossref_primary_10_1016_j_apsusc_2017_09_125
crossref_primary_10_1039_D4CP00099D
crossref_primary_10_1002_smll_201803200
crossref_primary_10_2139_ssrn_4180238
crossref_primary_10_1021_acsanm_3c01423
crossref_primary_10_1016_j_apcatb_2016_11_055
crossref_primary_10_1039_C5TC00660K
crossref_primary_10_1002_asia_201901289
crossref_primary_10_1016_j_jallcom_2019_07_340
crossref_primary_10_1021_acsnano_3c05125
crossref_primary_10_1016_j_ceramint_2018_12_137
crossref_primary_10_1039_C4NR06883A
crossref_primary_10_1111_jace_19180
crossref_primary_10_1039_C8RA00119G
crossref_primary_10_1002_adom_201801072
crossref_primary_10_1039_C5RA26331J
crossref_primary_10_1364_OE_27_020037
crossref_primary_10_3390_nano8080618
crossref_primary_10_1016_j_mattod_2018_09_002
crossref_primary_10_1002_ange_201501131
crossref_primary_10_1038_ncomms15198
crossref_primary_10_1021_acsami_9b19586
crossref_primary_10_1016_j_ceramint_2021_08_290
crossref_primary_10_1021_acsami_5b02860
crossref_primary_10_1039_D0TC04580B
crossref_primary_10_1038_srep45906
crossref_primary_10_1002_sdtp_11646
crossref_primary_10_1002_sdtp_11649
crossref_primary_10_1021_acsami_7b13940
crossref_primary_10_1039_C7RA00081B
crossref_primary_10_1002_bio_3594
crossref_primary_10_1088_1361_6463_ad759d
crossref_primary_10_1021_jacs_5b02506
crossref_primary_10_1021_acsami_7b14471
crossref_primary_10_1063_1_4820406
crossref_primary_10_1364_JOSAB_537532
crossref_primary_10_1039_C5TC02428E
crossref_primary_10_1007_s40843_019_9435_7
crossref_primary_10_1039_C6NR03268K
crossref_primary_10_1021_acsami_6b01511
crossref_primary_10_1021_acsnano_6b03704
crossref_primary_10_1038_s41598_017_12083_2
crossref_primary_10_1021_acsami_7b18964
crossref_primary_10_1021_acs_chemmater_6b01225
crossref_primary_10_1021_jacs_5b05462
crossref_primary_10_1039_C8CC04130J
crossref_primary_10_1016_j_apmt_2020_100739
crossref_primary_10_1038_srep22530
crossref_primary_10_1021_acs_jpcc_6b12129
crossref_primary_10_1039_C8NR04224A
crossref_primary_10_1039_C4TC01221F
crossref_primary_10_7567_JJAP_54_02BC02
crossref_primary_10_1016_j_cej_2019_03_039
crossref_primary_10_1063_1_5109068
crossref_primary_10_1051_e3sconf_202124503020
crossref_primary_10_1039_C4RA11349G
crossref_primary_10_1109_TED_2022_3181223
crossref_primary_10_1002_anie_201501131
crossref_primary_10_1016_j_polymer_2019_05_059
crossref_primary_10_1021_jacs_5b13101
crossref_primary_10_1364_OL_39_001208
crossref_primary_10_1016_j_cej_2019_122735
crossref_primary_10_1002_sdtp_12302
crossref_primary_10_1039_C4RA08770D
crossref_primary_10_1039_C7CC00952F
crossref_primary_10_1002_ppsc_201500074
crossref_primary_10_1039_C6TC00707D
crossref_primary_10_1016_j_jcis_2017_08_020
crossref_primary_10_1002_adma_201804294
crossref_primary_10_1088_2053_1591_2_3_036202
crossref_primary_10_1021_acsami_5b00925
crossref_primary_10_1063_1_4916697
crossref_primary_10_1039_C5RA24203G
crossref_primary_10_1016_j_jlumin_2016_07_006
crossref_primary_10_1088_1361_6528_aa878c
crossref_primary_10_1021_acs_analchem_0c00200
crossref_primary_10_1021_acs_chemmater_9b00550
crossref_primary_10_1080_15980316_2018_1498810
crossref_primary_10_1021_acsami_9b06987
crossref_primary_10_1039_C4RA08162E
crossref_primary_10_1021_acsanm_0c02195
crossref_primary_10_1021_ct500548x
crossref_primary_10_1016_j_jlumin_2019_116910
crossref_primary_10_1039_C5NR01880C
crossref_primary_10_1021_acs_jpcc_8b03681
crossref_primary_10_1016_j_pmatsci_2022_100998
crossref_primary_10_1109_JPHOT_2021_3099313
crossref_primary_10_1021_acsphotonics_0c01240
crossref_primary_10_1111_ijag_12115
crossref_primary_10_1038_s41427_020_0200_4
crossref_primary_10_1021_acs_jpcc_6b06728
crossref_primary_10_1002_smtd_202300206
crossref_primary_10_1007_s11172_016_1620_8
crossref_primary_10_1021_acsphotonics_6b00485
crossref_primary_10_1002_adom_201700997
crossref_primary_10_1021_acsami_9b18500
crossref_primary_10_1021_acsenergylett_1c02745
crossref_primary_10_1016_j_jlumin_2016_04_038
crossref_primary_10_1039_C7NJ03017G
crossref_primary_10_1039_C8RA04830D
crossref_primary_10_1039_C8TC04095H
crossref_primary_10_1021_acs_jpcc_7b09788
crossref_primary_10_1016_j_matlet_2013_08_091
crossref_primary_10_1109_TED_2019_2937340
crossref_primary_10_1515_nanoph_2016_0009
crossref_primary_10_1038_s41598_017_03063_7
crossref_primary_10_1016_j_materresbull_2017_06_012
crossref_primary_10_1021_acs_chemmater_8b04769
crossref_primary_10_1016_j_ceramint_2016_03_039
crossref_primary_10_1007_s11051_025_06258_6
crossref_primary_10_1016_j_matdes_2023_111736
crossref_primary_10_1109_JSTQE_2017_2665779
crossref_primary_10_1109_TED_2020_3044556
crossref_primary_10_1364_OL_446231
crossref_primary_10_1039_C5NR04856G
crossref_primary_10_1002_sdtp_11824
crossref_primary_10_1002_adfm_201302521
crossref_primary_10_1021_ie500602n
crossref_primary_10_1038_s41598_019_42925_0
crossref_primary_10_1039_D4MA00705K
crossref_primary_10_1016_j_colsurfa_2020_124811
crossref_primary_10_1111_jace_16066
crossref_primary_10_1021_acsami_8b06323
crossref_primary_10_5757_ASCT_2016_25_1_1
crossref_primary_10_1186_s11671_022_03741_0
crossref_primary_10_1016_j_jallcom_2022_167608
crossref_primary_10_1039_C8NR07022A
crossref_primary_10_1364_AO_57_010317
crossref_primary_10_1039_C5NR02991K
crossref_primary_10_1109_TNANO_2019_2927951
crossref_primary_10_1002_adom_201902178
crossref_primary_10_1149_2_0062001JSS
crossref_primary_10_1109_TED_2017_2785772
crossref_primary_10_3390_catal12101235
crossref_primary_10_1063_1_4868978
crossref_primary_10_1016_j_cej_2021_131159
crossref_primary_10_1002_adom_201801687
crossref_primary_10_1016_j_nantod_2016_04_005
crossref_primary_10_1021_acs_jpclett_8b00695
crossref_primary_10_1021_acs_jpclett_7b03037
crossref_primary_10_1002_ppsc_202100120
crossref_primary_10_1016_j_apsusc_2020_145441
crossref_primary_10_1007_s00289_016_1689_0
crossref_primary_10_1063_1_5026027
crossref_primary_10_1088_1361_6528_aa7c86
crossref_primary_10_1038_lsa_2016_271
crossref_primary_10_1109_TED_2021_3060698
crossref_primary_10_1002_cphc_201500216
crossref_primary_10_1111_ijag_15888
crossref_primary_10_1007_s12274_019_2420_x
crossref_primary_10_1021_nn4024587
crossref_primary_10_1039_C6TC00943C
crossref_primary_10_1039_C7TC02297B
crossref_primary_10_1016_j_jlumin_2016_08_064
crossref_primary_10_1088_1361_648X_aa8b9d
crossref_primary_10_1002_sdtp_10948
crossref_primary_10_3390_nano12071097
crossref_primary_10_1088_1361_6528_ac86de
crossref_primary_10_1007_s41061_016_0041_3
crossref_primary_10_1039_C8TC06292G
crossref_primary_10_1364_OME_4_001297
crossref_primary_10_1002_sdtp_15420
crossref_primary_10_1186_s11671_020_03350_9
crossref_primary_10_1364_OME_3_001468
crossref_primary_10_1364_OL_38_002885
crossref_primary_10_1364_PRJ_5_0000A1
crossref_primary_10_3390_nano13182560
crossref_primary_10_1002_adma_201603081
crossref_primary_10_1109_TED_2019_2930898
crossref_primary_10_1088_1361_6528_aab18e
crossref_primary_10_1021_acs_langmuir_6b04333
crossref_primary_10_1039_D0NA01012J
crossref_primary_10_1021_acsnano_5b05513
crossref_primary_10_1039_C7TC02897K
crossref_primary_10_1002_adma_202415436
crossref_primary_10_1039_C8NR01501E
crossref_primary_10_1002_adom_201800346
crossref_primary_10_1021_acsami_5b03004
crossref_primary_10_1021_acsphotonics_9b01587
crossref_primary_10_1039_C5NR02696B
crossref_primary_10_1039_D2PY00789D
crossref_primary_10_1021_acsanm_8b00810
crossref_primary_10_1002_adom_201600834
crossref_primary_10_1016_j_matdes_2015_11_077
crossref_primary_10_1002_adfm_201901810
crossref_primary_10_1021_acsnano_9b06021
crossref_primary_10_1088_1361_6528_aa8610
crossref_primary_10_1088_0957_4484_25_22_225601
crossref_primary_10_1039_C9TC00505F
crossref_primary_10_1002_anie_201703264
crossref_primary_10_1021_acsami_8b14677
crossref_primary_10_1038_s41377_021_00508_7
crossref_primary_10_1557_opl_2015_505
crossref_primary_10_1039_c3ra41323c
crossref_primary_10_1021_acs_chemmater_8b03096
crossref_primary_10_1115_1_4033143
crossref_primary_10_1039_C7NR05370C
crossref_primary_10_1021_acs_chemmater_7b00164
crossref_primary_10_1142_S0217984918502548
crossref_primary_10_1007_s10853_024_10143_3
crossref_primary_10_1039_C5NR04839G
crossref_primary_10_1063_5_0026314
crossref_primary_10_1021_jacs_6b10681
crossref_primary_10_1016_j_ssc_2019_113765
crossref_primary_10_3390_nano12162846
crossref_primary_10_1002_cnma_201700056
crossref_primary_10_1002_biot_202000117
crossref_primary_10_1016_j_apsusc_2024_162196
crossref_primary_10_1039_C9TC05966K
crossref_primary_10_7567_JJAP_56_041701
crossref_primary_10_1002_ange_201703264
crossref_primary_10_1038_s41598_020_70838_w
crossref_primary_10_1039_C9NR03645H
crossref_primary_10_1039_C5CC09539E
crossref_primary_10_1557_mrs_2013_184
crossref_primary_10_1021_nn5040444
crossref_primary_10_1149_2_0091707jss
crossref_primary_10_1021_acsphotonics_7b00980
crossref_primary_10_1016_j_cej_2019_122792
crossref_primary_10_1364_OE_27_009459
Cites_doi 10.1002/adma.201000525
10.1021/cm050962a
10.1002/adma.200600791
10.1002/1439-7641(20010518)2:5<331::AID-CPHC331>3.0.CO;2-0
10.1002/1521-4095(200008)12:15<1102::AID-ADMA1102>3.0.CO;2-J
10.1021/nl203620f
10.1016/0021-9797(68)90272-5
10.1002/anie.200453728
10.1002/anie.200600317
10.1021/ja076363h
10.1021/ja057980d
10.1021/ja066749c
10.1002/anie.200604245
10.1103/PhysRevB.81.205316
10.1021/ja970754m
10.1021/ja711379k
10.1002/adma.200602642
10.1021/jp9530562
10.1002/1521-4095(200107)13:12/13<985::AID-ADMA985>3.0.CO;2-W
10.1002/anie.201206333
10.1002/adma.200401960
10.1021/la050397q
10.1039/b509196a
10.1021/jp971091y
10.1016/j.apsusc.2004.08.022
10.1039/c002243h
10.1166/nnl.2011.1228
10.1351/pac200072010257
10.1021/la035546o
ContentType Journal Article
Copyright Copyright © 2013 American Chemical Society
Copyright_xml – notice: Copyright © 2013 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1021/nn3052428
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 1477
ExternalDocumentID 23363407
10_1021_nn3052428
g23514718
Genre Journal Article
GroupedDBID -
23M
4.4
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
LG6
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
5VS
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-a414t-b655f9644bb3a96e79ae95a6b61b44136476741e378e88b7e7d7ae942d8bbea13
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Fri Jul 11 04:38:54 EDT 2025
Thu Jul 10 21:19:28 EDT 2025
Thu Apr 03 07:03:47 EDT 2025
Tue Jul 01 01:33:30 EDT 2025
Thu Apr 24 23:04:49 EDT 2025
Thu Aug 27 13:41:57 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords quantum dot
LED
semiconductor nanocrystal
silica monolith
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a414t-b655f9644bb3a96e79ae95a6b61b44136476741e378e88b7e7d7ae942d8bbea13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 23363407
PQID 1313435367
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_1762059629
proquest_miscellaneous_1313435367
pubmed_primary_23363407
crossref_primary_10_1021_nn3052428
crossref_citationtrail_10_1021_nn3052428
acs_journals_10_1021_nn3052428
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-02-26
PublicationDateYYYYMMDD 2013-02-26
PublicationDate_xml – month: 02
  year: 2013
  text: 2013-02-26
  day: 26
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2013
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Jun S. (ref5/cit5) 2005
Haubold S. (ref8/cit8) 2001; 2
Jun S. (ref13/cit13) 2013; 52
Hines M. A. (ref1/cit1) 1996; 100
Riassetto D. (ref23/cit23) 2011; 3
Lee J. (ref14/cit14) 2000; 12
Arachchige I. U. (ref27/cit27) 2007; 129
Stöber W. (ref15/cit15) 1968; 26
Steckel J. S. (ref6/cit6) 2006; 45
Jang E. (ref12/cit12) 2010; 22
Xie R. (ref9/cit9) 2007; 129
Yang P. (ref21/cit21) 2005; 21
Sorensen L. (ref25/cit25) 2006; 18
Pal B. N. (ref11/cit11) 2012; 12
Lim J. (ref7/cit7) 2007; 19
Lunz M. (ref29/cit29) 2010; 81
Alejandro-Arellano M. (ref16/cit16) 2000; 72
Selvan S. T. (ref28/cit28) 2001; 13
Li C. (ref20/cit20) 2004; 20
Yang P. (ref17/cit17) 2010; 46
Wang Q. (ref24/cit24) 2005; 17
Chen Y. (ref10/cit10) 2008; 130
Dabbousi B. O. (ref3/cit3) 1997; 101
Selvan S. T. (ref18/cit18) 2005; 17
Steckel J. S. (ref4/cit4) 2004; 43
Chan Y. (ref26/cit26) 2006; 128
Zhoua X. (ref22/cit22) 2005; 242
Peng X. (ref2/cit2) 1997; 119
Selvan S. T. (ref19/cit19) 2007; 46
References_xml – volume: 22
  start-page: 3076
  year: 2010
  ident: ref12/cit12
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201000525
– volume: 17
  start-page: 4762
  year: 2005
  ident: ref24/cit24
  publication-title: Chem. Mater.
  doi: 10.1021/cm050962a
– volume: 18
  start-page: 1965
  year: 2006
  ident: ref25/cit25
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200600791
– volume: 2
  start-page: 331
  year: 2001
  ident: ref8/cit8
  publication-title: ChemPhysChem
  doi: 10.1002/1439-7641(20010518)2:5<331::AID-CPHC331>3.0.CO;2-0
– volume: 12
  start-page: 1102
  year: 2000
  ident: ref14/cit14
  publication-title: Adv. Mater.
  doi: 10.1002/1521-4095(200008)12:15<1102::AID-ADMA1102>3.0.CO;2-J
– volume: 12
  start-page: 331
  year: 2012
  ident: ref11/cit11
  publication-title: Nano Lett.
  doi: 10.1021/nl203620f
– volume: 26
  start-page: 62
  year: 1968
  ident: ref15/cit15
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/0021-9797(68)90272-5
– volume: 43
  start-page: 2154
  year: 2004
  ident: ref4/cit4
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200453728
– volume: 45
  start-page: 5796
  year: 2006
  ident: ref6/cit6
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200600317
– volume: 129
  start-page: 15432
  year: 2007
  ident: ref9/cit9
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja076363h
– volume: 128
  start-page: 3146
  year: 2006
  ident: ref26/cit26
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja057980d
– volume: 129
  start-page: 1840
  year: 2007
  ident: ref27/cit27
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja066749c
– volume: 46
  start-page: 2448
  year: 2007
  ident: ref19/cit19
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200604245
– volume: 81
  start-page: 205316
  year: 2010
  ident: ref29/cit29
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.81.205316
– volume: 119
  start-page: 7019
  year: 1997
  ident: ref2/cit2
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja970754m
– volume: 130
  start-page: 5026
  year: 2008
  ident: ref10/cit10
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja711379k
– volume: 19
  start-page: 1927
  year: 2007
  ident: ref7/cit7
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200602642
– volume: 100
  start-page: 468
  year: 1996
  ident: ref1/cit1
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp9530562
– volume: 13
  start-page: 985
  year: 2001
  ident: ref28/cit28
  publication-title: Adv. Mater.
  doi: 10.1002/1521-4095(200107)13:12/13<985::AID-ADMA985>3.0.CO;2-W
– volume: 52
  start-page: 679
  year: 2013
  ident: ref13/cit13
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201206333
– volume: 17
  start-page: 1620
  year: 2005
  ident: ref18/cit18
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200401960
– volume: 21
  start-page: 8913
  year: 2005
  ident: ref21/cit21
  publication-title: Langmuir
  doi: 10.1021/la050397q
– start-page: 4616
  year: 2005
  ident: ref5/cit5
  publication-title: Chem. Commun.
  doi: 10.1039/b509196a
– volume: 101
  start-page: 9463
  year: 1997
  ident: ref3/cit3
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp971091y
– volume: 242
  start-page: 281
  year: 2005
  ident: ref22/cit22
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2004.08.022
– volume: 46
  start-page: 4595
  year: 2010
  ident: ref17/cit17
  publication-title: Chem. Commun.
  doi: 10.1039/c002243h
– volume: 3
  start-page: 655
  year: 2011
  ident: ref23/cit23
  publication-title: Nanosci. Nanotechnol. Lett.
  doi: 10.1166/nnl.2011.1228
– volume: 72
  start-page: 257
  year: 2000
  ident: ref16/cit16
  publication-title: Pure Appl. Chem.
  doi: 10.1351/pac200072010257
– volume: 20
  start-page: 1
  year: 2004
  ident: ref20/cit20
  publication-title: Langmuir
  doi: 10.1021/la035546o
SSID ssj0057876
Score 2.5333652
Snippet A highly luminescent and photostable quantum dot–silica monolith (QD–SM) substance was prepared by preliminary surface exchange of the QDs and base-catalyzed...
A highly luminescent and photostable quantum dot-silica monolith (QD-SM) substance was prepared by preliminary surface exchange of the QDs and base-catalyzed...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1472
SubjectTerms Agglomeration
Color
Condensing
Curing
Exchange
Luminescence
Nanostructure
Quantum dots
Silicon dioxide
Sol gel process
Title Highly Luminescent and Photostable Quantum Dot–Silica Monolith and Its Application to Light-Emitting Diodes
URI http://dx.doi.org/10.1021/nn3052428
https://www.ncbi.nlm.nih.gov/pubmed/23363407
https://www.proquest.com/docview/1313435367
https://www.proquest.com/docview/1762059629
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NTtxADLYovdADtKWFhRYN0EMvgSSTTCbHFQuiiKJWgMQtGieOdsVugrrJoT31HfqGfRI8yWYL4qd3R5OM7fHn2PMZ4FOeytjLjXaIQuPw6ec66KrMyTCXKEm7GNvLyV_P1PFlcHIVXi3A7hMVfN_bLwo2SQ4k-gW89JWObIbVPzjvjltrcaotHXNqzPihow-6-6gNPen0fuh5Ak82ceVoBQbd7Zy2neR6r65wL_31kKzxuVd-DcszXCn6rSG8gQUq3sKrO2yDqzCxPR3jn-K0nthed9uWKUyRiW_DsioZJOKYxPead7qeiEFZ_f3953xkf-kJ9nvbJTdspL9UU9H_V_UWVSlOGzKSw8mo6aEWg1GZ0fQdXB4dXhwcO7NpC44JvKByUIVhHjM8QpQmVhRZ2u7QKFQeMmayPPOK4QfJSJPWGFGURSwR-JlGJOPJ97BYlAWtg2DQ4EYYq9jkFLiZJQB3vZyyPA_SkDT2YIvVkcy8ZZo0hXDfS-b71oPPnaaSdMZVbkdmjB8T3ZmL3rQEHY8JbXfqTth9bE3EFFTWvLT0JCNGqaJnZDhgNFOK4h6stbYyX8qXUklOijf-90mbsOQ3kzR8x1cfYLH6UdNHxjMVbjX2fAvqLe-d
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NTtwwELb4ObQ9tJT-sKVQU_XQS5YkTpzkuIJFS1lQK0DiFnmSiVh1N0FNcoBT34E35EkYO9ldQNByn8TOeOz5JjP-hrFvWSIiJ1Ohhegri04_2wJbplYKmQCBoQ2Rvpx8eCQHp96PM_-spcnRd2FoEiW9qTRJ_Dm7gLOd52SZ5E_CRbZMIMTVgVZv53h66mrDk00GmSJkghFTFqG7j2oPlJT3PdATsNK4l703TZ8iMzFTVfK7W1fQTa4ecDY-b-Yr7HWLMnmvMYu3bAHzVfbqDvfgOzbRFR7jSz6sJ7ryXRdpcpWn_Od5URUEGWGM_FdNeq8nfLeobv5eH4_0Dz5Op4CumTs30vtVyXvzHDivCj401CT9ychUVPPdUZFi-Z6d7vVPdgZW23vBUp7jVRZI388iAksAQkUSA03i7SsJ0gFCUJp1XhIYQRGEGIYQYJAGJOG5aQiAyhEf2FJe5LjGOEEIO4BIRipDz041HbjtZJhmmZf4GEKHbZLa4nbvlLFJi7tOPNNbh32fLlictMzluoHG-DHRrzPRi4au4zGhremqx7SZdIZE5VjUNLRwBOFHIYN_yJD7MD2Log772JjMbChXCCkoRP70v0_6wl4MTg6H8XD_6GCdvXRNjw3XcuVntlT9qXGDkE4Fm8bEbwEnOvf-
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BkRAcaHm0LH1gEAcuaZM4cZLjqttVC0spKpV6izyxra7YTSqSHODEf-Af9pd07M1uHyqP-yR27BnPN5nxNwDvTMGzwMjU0zqWHp1-voe-UJ5Cw5Hr1MfMXk7-dCj2T6IPp_FpFyjauzA0iZreVLskvrXqc2U6hoFgpyxJO8mnpPfhgU3X2WCrv3s8P3mt8olZFpmiZIIScyah649aL1TUN73QH6ClczHDZfi8mJyrLPm23Ta4Xfy8xdv4_7NfgScd2mT9mXo8hXu6fAaPr3EQPoeprfSY_GCjdmor4G2xJpOlYkdnVVMRdMSJZl9aWv92ygZVc_Hr9_HY_uhjdBrY2rkzJ33Q1Kx_lQtnTcVGjqJkbzp2ldVsMK6Url_AyXDv6-6-1_Vg8GQURI2HIo5NRqAJkctM6MSSecdSoAiQkJRlnxcESjRPUp2mmOhEJSQRhSpF1DLgq7BUVqV-CYyghJ9gJjJpdOQrSwvuB0YrY6Ii1in2YIuWLu9sqM5dejwM8sW69eD9fNPyomMwt400JneJvl2Ins9oO-4SejPf-ZyMymZKZKmrlobmASccyUXyFxlyI653UdaDtZnaLIYKORecQuVX__qk1_DwaDDMRweHH9fhUehabYReKDZgqfne6k0CPA1uOS2_BEBk-oE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+luminescent+and+photostable+quantum+dot-silica+monolith+and+its+application+to+light-emitting+diodes&rft.jtitle=ACS+nano&rft.au=Jun%2C+Shinae&rft.au=Lee%2C+Junho&rft.au=Jang%2C+Eunjoo&rft.date=2013-02-26&rft.issn=1936-086X&rft.eissn=1936-086X&rft.volume=7&rft.issue=2&rft.spage=1472&rft_id=info:doi/10.1021%2Fnn3052428&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon