Mechanically Driven Atom Transfer Radical Polymerization by Piezoelectricity

Targeting sustainable and eco-friendly polymer synthesis, we demonstrate here a synergistically catalyzed atom transfer radical polymerization (ATRP) induced and controlled by interplay between ball milling (BM) and piezoelectric nanoparticles (piezoNPs). BM-induced electron transfer can be achieved...

Full description

Saved in:
Bibliographic Details
Published inACS macro letters Vol. 12; no. 1; pp. 26 - 32
Main Authors Zhou, Mengjie, Zhang, Yu, Shi, Ge, He, Yanjie, Cui, Zhe, Zhang, Xiaomeng, Fu, Peng, Liu, Minying, Qiao, Xiaoguang, Pang, Xinchang
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 17.01.2023
Online AccessGet full text

Cover

Loading…
Abstract Targeting sustainable and eco-friendly polymer synthesis, we demonstrate here a synergistically catalyzed atom transfer radical polymerization (ATRP) induced and controlled by interplay between ball milling (BM) and piezoelectric nanoparticles (piezoNPs). BM-induced electron transfer can be achieved through piezoNPs deformation under impact force, serving as an external stimulus to mediate polymerization. The ppm level of copper loading is sufficient in fabrication of a polymer with well-defined molecular weight and low polydispersity. High-molecular-weight polymers ranging from 33 to 74 kDa were prepared successfully through DMSO-assisted grinding. Besides, its good performance on availability of water as liquid-assisted grinding additive, the recyclability of piezoNPs, and the formation of cross-linker-free composite resin make our ATRP approach a green and practical option alongside the existent heat-, electro-, and photo-induced methods.
AbstractList Targeting sustainable and eco-friendly polymer synthesis, we demonstrate here a synergistically catalyzed atom transfer radical polymerization (ATRP) induced and controlled by interplay between ball milling (BM) and piezoelectric nanoparticles (piezoNPs). BM-induced electron transfer can be achieved through piezoNPs deformation under impact force, serving as an external stimulus to mediate polymerization. The ppm level of copper loading is sufficient in fabrication of a polymer with well-defined molecular weight and low polydispersity. High-molecular-weight polymers ranging from 33 to 74 kDa were prepared successfully through DMSO-assisted grinding. Besides, its good performance on availability of water as liquid-assisted grinding additive, the recyclability of piezoNPs, and the formation of cross-linker-free composite resin make our ATRP approach a green and practical option alongside the existent heat-, electro-, and photo-induced methods.
Targeting sustainable and eco-friendly polymer synthesis, we demonstrate here a synergistically catalyzed atom transfer radical polymerization (ATRP) induced and controlled by interplay between ball milling (BM) and piezoelectric nanoparticles (piezoNPs). BM-induced electron transfer can be achieved through piezoNPs deformation under impact force, serving as an external stimulus to mediate polymerization. The ppm level of copper loading is sufficient in fabrication of a polymer with well-defined molecular weight and low polydispersity. High-molecular-weight polymers ranging from 33 to 74 kDa were prepared successfully through DMSO-assisted grinding. Besides, its good performance on availability of water as liquid-assisted grinding additive, the recyclability of piezoNPs, and the formation of cross-linker-free composite resin make our ATRP approach a green and practical option alongside the existent heat-, electro-, and photo-induced methods.Targeting sustainable and eco-friendly polymer synthesis, we demonstrate here a synergistically catalyzed atom transfer radical polymerization (ATRP) induced and controlled by interplay between ball milling (BM) and piezoelectric nanoparticles (piezoNPs). BM-induced electron transfer can be achieved through piezoNPs deformation under impact force, serving as an external stimulus to mediate polymerization. The ppm level of copper loading is sufficient in fabrication of a polymer with well-defined molecular weight and low polydispersity. High-molecular-weight polymers ranging from 33 to 74 kDa were prepared successfully through DMSO-assisted grinding. Besides, its good performance on availability of water as liquid-assisted grinding additive, the recyclability of piezoNPs, and the formation of cross-linker-free composite resin make our ATRP approach a green and practical option alongside the existent heat-, electro-, and photo-induced methods.
Author Zhang, Xiaomeng
Qiao, Xiaoguang
Zhang, Yu
Fu, Peng
Liu, Minying
Zhou, Mengjie
Cui, Zhe
He, Yanjie
Shi, Ge
Pang, Xinchang
AuthorAffiliation College of Materials Engineering, Henan International Joint Laboratory of Rare Earth Composite Materials, Henan Engineering Technology Research Center for Fiber Preparation and Modification
Henan University of Engineering
Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering
AuthorAffiliation_xml – name: Henan University of Engineering
– name: College of Materials Engineering, Henan International Joint Laboratory of Rare Earth Composite Materials, Henan Engineering Technology Research Center for Fiber Preparation and Modification
– name: Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering
Author_xml – sequence: 1
  givenname: Mengjie
  surname: Zhou
  fullname: Zhou, Mengjie
  organization: Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering
– sequence: 2
  givenname: Yu
  surname: Zhang
  fullname: Zhang, Yu
  organization: Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering
– sequence: 3
  givenname: Ge
  surname: Shi
  fullname: Shi, Ge
  organization: Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering
– sequence: 4
  givenname: Yanjie
  orcidid: 0000-0002-7954-5817
  surname: He
  fullname: He, Yanjie
  organization: Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering
– sequence: 5
  givenname: Zhe
  surname: Cui
  fullname: Cui, Zhe
  organization: Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering
– sequence: 6
  givenname: Xiaomeng
  orcidid: 0000-0002-3291-1904
  surname: Zhang
  fullname: Zhang, Xiaomeng
  organization: Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering
– sequence: 7
  givenname: Peng
  surname: Fu
  fullname: Fu, Peng
  organization: Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering
– sequence: 8
  givenname: Minying
  surname: Liu
  fullname: Liu, Minying
  organization: Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering
– sequence: 9
  givenname: Xiaoguang
  orcidid: 0000-0002-4379-5398
  surname: Qiao
  fullname: Qiao, Xiaoguang
  email: joexiaoguang@hotmail.com
  organization: Henan University of Engineering
– sequence: 10
  givenname: Xinchang
  surname: Pang
  fullname: Pang, Xinchang
  email: Pangxinchang1980@163.com
  organization: Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36541821$$D View this record in MEDLINE/PubMed
BookMark eNqFkE1LAzEQhoMo1o_-A5E9eqkm22x24038hopF6jnMZmcxkt1okgrbX-_WtlA8aOaQgXmfgXkOyW7rWiTkhNFzRlN2ATo0oL2zGON5qikVnO6Qg5QJNmIiG-9u9QMyDOGd9i8TrJB8nwzGIuOsSNkBmTyhfoPWaLC2S268-cI2uYquSWYe2lCjT16gWo6TqbNdg94sIBrXJmWXTA0uHFrU0RttYndM9mqwAYfr_4i83t3Orh9Gk-f7x-uryQg443FUZqJGzXjFWK55zfM0k1xKWZVVIYsUURRC8pKmKBByqcewrAo4IAOh6_EROVvt_fDuc44hqsYEjdZCi24eVJpnQghZ8LyPnq6j87LBSn1404Dv1MZAH7hcBXqbIXisVX_Jz4XRg7GKUbU0rraNq7XxHua_4M3-fzC6wvqpendz3_a2_ka-AaV4mtM
CitedBy_id crossref_primary_10_1021_acs_macromol_3c00250
crossref_primary_10_1039_D4CC05772D
crossref_primary_10_1360_TB_2024_0311
crossref_primary_10_1002_marc_202400235
crossref_primary_10_1021_acsmacrolett_3c00317
crossref_primary_10_1016_j_checat_2024_100901
crossref_primary_10_1021_acsmaterialslett_3c01209
crossref_primary_10_1002_ange_202309440
crossref_primary_10_34133_research_0243
crossref_primary_10_1039_D3MA00620D
crossref_primary_10_1246_cl_230078
crossref_primary_10_1038_s41467_024_50562_z
crossref_primary_10_1016_j_eurpolymj_2025_113837
crossref_primary_10_1016_j_ijbiomac_2023_127809
crossref_primary_10_1016_j_reactfunctpolym_2025_106172
crossref_primary_10_1002_cctc_202401814
crossref_primary_10_1039_D3CC04323A
crossref_primary_10_1002_anie_202309440
crossref_primary_10_1002_cplu_202400287
crossref_primary_10_1557_s43577_024_00801_x
crossref_primary_10_1002_marc_202400162
Cites_doi 10.1039/C8CS00583D
10.1016/j.nanoen.2015.01.035
10.1002/anie.201911356
10.1021/acsmacrolett.7b00152
10.1016/j.chempr.2020.06.014
10.1126/science.aaz9758
10.1002/anie.201811709
10.1021/jp301355q
10.1098/rstb.2009.0053
10.1002/anie.202110429
10.1038/nchem.853
10.1002/cssc.201700873
10.1021/mz500098r
10.1021/acs.chemrev.9b00744
10.1002/cssc.202100478
10.1002/anie.201906755
10.1002/advs.202106076
10.1002/adma.202108327
10.1021/ja408069v
10.1016/S1388-2481(00)00006-0
10.1039/C8PY01520A
10.1021/acs.macromol.7b01597
10.1002/adfm.201909045
10.1021/acsmacrolett.8b00171
10.1021/acsanm.0c00039
10.1038/nchem.2633
10.1002/anie.202005021
10.1021/ma1007545
10.3390/ijerph19084556
10.1002/chem.202100348
10.1002/anie.202009844
10.1002/marc.201500721
10.1126/science.aay8224
10.1002/anie.201706723
10.3390/molecules24193600
10.1039/C7GC00693D
10.1039/D2SC00313A
10.1039/C7SC05371A
10.1039/C9GC00304E
10.1002/cssc.202101131
10.1016/j.eurpolymj.2017.02.034
10.1002/anie.202003565
10.1021/ma901094s
10.1021/ma400565k
10.1039/D1CS01093J
ContentType Journal Article
Copyright 2022 American Chemical Society
Copyright_xml – notice: 2022 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acsmacrolett.2c00640
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2161-1653
EndPage 32
ExternalDocumentID 36541821
10_1021_acsmacrolett_2c00640
a372488507
Genre Journal Article
GroupedDBID 55A
7~N
AABXI
ABFRP
ABMVS
ABQRX
ABUCX
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
ED~
GGK
GNL
IH9
JG~
ROL
UI2
VF5
VG9
W1F
AAYXX
ABBLG
ABJNI
ABLBI
BAANH
CITATION
CUPRZ
EBS
NPM
7X8
ID FETCH-LOGICAL-a414t-b56fec14d117c4f472594999dbd8982ee68694b02e6ea79c3a3a3ada4ae1a6cf3
IEDL.DBID ACS
ISSN 2161-1653
IngestDate Thu Jul 10 18:51:09 EDT 2025
Wed Feb 19 02:26:18 EST 2025
Thu Apr 24 22:57:23 EDT 2025
Tue Jul 01 01:35:19 EDT 2025
Thu Jan 19 03:27:50 EST 2023
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a414t-b56fec14d117c4f472594999dbd8982ee68694b02e6ea79c3a3a3ada4ae1a6cf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4379-5398
0000-0002-3291-1904
0000-0002-7954-5817
PMID 36541821
PQID 2756669847
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2756669847
pubmed_primary_36541821
crossref_citationtrail_10_1021_acsmacrolett_2c00640
crossref_primary_10_1021_acsmacrolett_2c00640
acs_journals_10_1021_acsmacrolett_2c00640
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-17
PublicationDateYYYYMMDD 2023-01-17
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-17
  day: 17
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS macro letters
PublicationTitleAlternate ACS Macro Lett
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref17/cit17b
ref18/cit18
ref17/cit17a
ref13/cit13a
ref13/cit13b
ref10/cit10a
ref13/cit13c
ref10/cit10b
ref12/cit12d
ref12/cit12c
ref12/cit12b
ref12/cit12a
ref8/cit8
ref5/cit5
ref2/cit2
ref1/cit1a
ref1/cit1b
ref6/cit6d
ref6/cit6e
ref16/cit16b
ref6/cit6f
ref16/cit16a
ref6/cit6g
ref14/cit14a
ref19/cit19
ref21/cit21
Anastas P. T. W. (ref9/cit9) 1998
ref14/cit14b
ref15/cit15
ref3/cit3b
ref11/cit11c
ref22/cit22a
ref3/cit3c
ref11/cit11b
ref3/cit3a
ref3/cit3d
ref11/cit11a
ref20/cit20a
ref22/cit22b
ref7/cit7b
ref20/cit20b
ref7/cit7a
ref4/cit4
ref6/cit6a
ref6/cit6b
ref6/cit6c
References_xml – ident: ref16/cit16b
  doi: 10.1039/C8CS00583D
– ident: ref11/cit11c
  doi: 10.1016/j.nanoen.2015.01.035
– ident: ref6/cit6b
  doi: 10.1002/anie.201911356
– ident: ref13/cit13c
  doi: 10.1021/acsmacrolett.7b00152
– ident: ref7/cit7a
  doi: 10.1016/j.chempr.2020.06.014
– ident: ref10/cit10a
  doi: 10.1126/science.aaz9758
– ident: ref11/cit11a
  doi: 10.1002/anie.201811709
– ident: ref20/cit20b
  doi: 10.1021/jp301355q
– ident: ref2/cit2
  doi: 10.1098/rstb.2009.0053
– ident: ref12/cit12d
  doi: 10.1002/anie.202110429
– ident: ref15/cit15
  doi: 10.1038/nchem.853
– ident: ref6/cit6c
  doi: 10.1002/cssc.201700873
– ident: ref5/cit5
  doi: 10.1021/mz500098r
– ident: ref7/cit7b
  doi: 10.1021/acs.chemrev.9b00744
– ident: ref3/cit3d
  doi: 10.1002/cssc.202100478
– ident: ref3/cit3b
  doi: 10.1002/anie.201906755
– ident: ref1/cit1a
  doi: 10.1002/advs.202106076
– ident: ref3/cit3c
  doi: 10.1002/adma.202108327
– ident: ref14/cit14b
  doi: 10.1021/ja408069v
– ident: ref20/cit20a
  doi: 10.1016/S1388-2481(00)00006-0
– ident: ref6/cit6d
  doi: 10.1039/C8PY01520A
– ident: ref13/cit13b
  doi: 10.1021/acs.macromol.7b01597
– ident: ref16/cit16a
  doi: 10.1002/adfm.201909045
– ident: ref6/cit6f
  doi: 10.1021/acsmacrolett.8b00171
– ident: ref11/cit11b
  doi: 10.1021/acsanm.0c00039
– ident: ref13/cit13a
  doi: 10.1038/nchem.2633
– ident: ref8/cit8
  doi: 10.1002/anie.202005021
– ident: ref22/cit22a
  doi: 10.1021/ma1007545
– ident: ref1/cit1b
  doi: 10.3390/ijerph19084556
– ident: ref10/cit10b
  doi: 10.1002/chem.202100348
– ident: ref12/cit12b
  doi: 10.1002/anie.202009844
– ident: ref22/cit22b
  doi: 10.1002/marc.201500721
– ident: ref12/cit12a
  doi: 10.1126/science.aay8224
– ident: ref21/cit21
  doi: 10.1002/anie.201706723
– ident: ref4/cit4
  doi: 10.3390/molecules24193600
– volume-title: Green Chemistry: Theory and Practice
  year: 1998
  ident: ref9/cit9
– ident: ref6/cit6a
  doi: 10.1039/C7GC00693D
– ident: ref19/cit19
  doi: 10.1039/D2SC00313A
– ident: ref18/cit18
  doi: 10.1039/C7SC05371A
– ident: ref6/cit6e
  doi: 10.1039/C9GC00304E
– ident: ref6/cit6g
  doi: 10.1002/cssc.202101131
– ident: ref14/cit14a
  doi: 10.1016/j.eurpolymj.2017.02.034
– ident: ref12/cit12c
  doi: 10.1002/anie.202003565
– ident: ref17/cit17a
  doi: 10.1021/ma901094s
– ident: ref17/cit17b
  doi: 10.1021/ma400565k
– ident: ref3/cit3a
  doi: 10.1039/D1CS01093J
SSID ssj0000561894
Score 2.434223
Snippet Targeting sustainable and eco-friendly polymer synthesis, we demonstrate here a synergistically catalyzed atom transfer radical polymerization (ATRP) induced...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 26
Title Mechanically Driven Atom Transfer Radical Polymerization by Piezoelectricity
URI http://dx.doi.org/10.1021/acsmacrolett.2c00640
https://www.ncbi.nlm.nih.gov/pubmed/36541821
https://www.proquest.com/docview/2756669847
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELZ4HMqlBVrapYCMxIWDt7FjO8kRLSBU8VILErdo4kwkxLKpdrOH5dfjyWMpRYiiXGNLnhl7vvF45mNszwWqMNYpIeMAhTYmFGDACPRYJCryAsBSNfLZuT251j9vzM1ToPhvBl_JH-Am9-DorV1V9ZWrU0-LbFlZv48JCg1-z-9UCA3HNfeh8kBGSGvCrlrulYnIJ7nJc5_0CtCsHc7xJ3bRle0070zu-tMq67uHl10c_3Mtq-xjiz35QWMsa2wBR-vsw6CjfPvMTs-QCoFJb8MZPxzTScgPqvKe1y6twDH_BXVih1-Wwxkle5oqTp7N-OUtPpQNq86t89j-C7s-ProanIiWbkGAlroSmbEFOqlzKSOnCx35yIjioTzL4yRWiDa2ic4ChRYhSlwI9OWgASVYV4QbbGlUjvAb4xLAI4NIJ1mifQQWgYsQ0ThvBkES5LrH9r0o0na7TNI6E65k-rd80lY-PRZ2ykld27ec6DOGb4wS81F_mr4db_y_2-k99UKnrAmMsJxOUuqPb23ivXiPfW0MYj5jSCzqsZKb71jPd7ZClPV0jSOjLbZUjae47YFNle3U1vwIWOj29g
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9swDCa67tBd9n5kTw3YZQdllizJ9jHIVmRbUhRbO_RmyDINFEvjIXYO6a-fKNvZAyiKwjfDEiSSMj-JIj-Ady6SlTZOcpFGyJXWMbfaao4eiyRVWVlrKBt5cWRmp-rLmT7bAz3kwvhBNL6nJgTx_1QXEB_8uwvr6Mpd246lCxGoW3Db4xFJhj2Zft8drRAoTgMFovR4hguj4yFp7oqOyDW55l_XdAXeDH7n8B782I04XDf5Od60xdhd_lfM8cZTug93eyTKJp3pPIA9XD2Eg-lAAPcI5guktGDS4nLLPq7pv8gmbX3BgoOrcM2-2RDmYcf1ckuhny6nkxVbdnyOl3XHsXPuPNJ_DKeHn06mM96TL3CrhGp5oU2FTqhSiMSpSiV-n0S7o7Io0yyViCY1mSoiiQZtkrnY0lNaZVFY46r4Ceyv6hU-Ayas9TghUVmRKb8fS6xLEFE7bxRRFpVqBO-9KPJ-8TR5iItLkf8tn7yXzwjiQUe566uYE5nG8ppWfNfqV1fF45rv3w7qz73QKYZiV1hvmpyq5RuTeZ8-gqedXex6jIlTPZXi-Q3m8wYOZieLeT7_fPT1BdwhMns64BHJS9hv1xt85SFPW7wOBv4bFvf_Vw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED8xJm28sG8oH5sn7WUP7uLEdpLHqlCxDVC1DQntJXKci4QoDWrSh_LX43PSik1CCJS3KD7Z53PuZ5_vfgBfbBCWStuQiyRALpWKuFFGcXRYJC6L0hhN2cgnp_roTP44V-d3qL5cJ2onqfZBfFrV10XZVRgQ39z7K2Pp2l3T9EPro1DP4DlF7si4B8Pfq-MVAsaJp0EMHabhQqtomTh3jyByT7b-1z3dgzm97xm9gr-rXvsrJ5f9eZP37c1_BR2fNKzXsNkhUjZoTegNrOH0LbwcLong3sHxCVJ6MM3mZMEOZvR_ZIOmumLe0ZU4Y7-MD_ewcTVZUAioze1k-YKNL_Cmarl2LqxD_O_hbHT4Z3jEOxIGbqSQDc-VLtEKWQgRW1nK2O2XaJdU5EWSJiGiTnQq8yBEjSZObWToKYw0KIy2ZfQB1qfVFLeBCWMcXohlmqfS7ctiY2NEVNYZR5AGhezBV6eKrFtEdebj46HI7uon6_TTg2g5T5ntqpkTqcbkgVZ81eq6rebxwPeflyaQOaVTLMVMsZrXGVXN1zp1vr0HW61trCRGxK2ehGLnEeP5BC_GB6Ps-Pvpz13YIE57OucR8R6sN7M57jvk0-QfvY3fAkELAek
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanically+Driven+Atom+Transfer+Radical+Polymerization+by+Piezoelectricity&rft.jtitle=ACS+macro+letters&rft.au=Zhou%2C+Mengjie&rft.au=Zhang%2C+Yu&rft.au=Shi%2C+Ge&rft.au=He%2C+Yanjie&rft.date=2023-01-17&rft.eissn=2161-1653&rft.volume=12&rft.issue=1&rft.spage=26&rft_id=info:doi/10.1021%2Facsmacrolett.2c00640&rft_id=info%3Apmid%2F36541821&rft.externalDocID=36541821
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-1653&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-1653&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-1653&client=summon