Mechanically Driven Atom Transfer Radical Polymerization by Piezoelectricity
Targeting sustainable and eco-friendly polymer synthesis, we demonstrate here a synergistically catalyzed atom transfer radical polymerization (ATRP) induced and controlled by interplay between ball milling (BM) and piezoelectric nanoparticles (piezoNPs). BM-induced electron transfer can be achieved...
Saved in:
Published in | ACS macro letters Vol. 12; no. 1; pp. 26 - 32 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
17.01.2023
|
Online Access | Get full text |
Cover
Loading…
Abstract | Targeting sustainable and eco-friendly polymer synthesis, we demonstrate here a synergistically catalyzed atom transfer radical polymerization (ATRP) induced and controlled by interplay between ball milling (BM) and piezoelectric nanoparticles (piezoNPs). BM-induced electron transfer can be achieved through piezoNPs deformation under impact force, serving as an external stimulus to mediate polymerization. The ppm level of copper loading is sufficient in fabrication of a polymer with well-defined molecular weight and low polydispersity. High-molecular-weight polymers ranging from 33 to 74 kDa were prepared successfully through DMSO-assisted grinding. Besides, its good performance on availability of water as liquid-assisted grinding additive, the recyclability of piezoNPs, and the formation of cross-linker-free composite resin make our ATRP approach a green and practical option alongside the existent heat-, electro-, and photo-induced methods. |
---|---|
AbstractList | Targeting sustainable and eco-friendly polymer synthesis, we demonstrate here a synergistically catalyzed atom transfer radical polymerization (ATRP) induced and controlled by interplay between ball milling (BM) and piezoelectric nanoparticles (piezoNPs). BM-induced electron transfer can be achieved through piezoNPs deformation under impact force, serving as an external stimulus to mediate polymerization. The ppm level of copper loading is sufficient in fabrication of a polymer with well-defined molecular weight and low polydispersity. High-molecular-weight polymers ranging from 33 to 74 kDa were prepared successfully through DMSO-assisted grinding. Besides, its good performance on availability of water as liquid-assisted grinding additive, the recyclability of piezoNPs, and the formation of cross-linker-free composite resin make our ATRP approach a green and practical option alongside the existent heat-, electro-, and photo-induced methods. Targeting sustainable and eco-friendly polymer synthesis, we demonstrate here a synergistically catalyzed atom transfer radical polymerization (ATRP) induced and controlled by interplay between ball milling (BM) and piezoelectric nanoparticles (piezoNPs). BM-induced electron transfer can be achieved through piezoNPs deformation under impact force, serving as an external stimulus to mediate polymerization. The ppm level of copper loading is sufficient in fabrication of a polymer with well-defined molecular weight and low polydispersity. High-molecular-weight polymers ranging from 33 to 74 kDa were prepared successfully through DMSO-assisted grinding. Besides, its good performance on availability of water as liquid-assisted grinding additive, the recyclability of piezoNPs, and the formation of cross-linker-free composite resin make our ATRP approach a green and practical option alongside the existent heat-, electro-, and photo-induced methods.Targeting sustainable and eco-friendly polymer synthesis, we demonstrate here a synergistically catalyzed atom transfer radical polymerization (ATRP) induced and controlled by interplay between ball milling (BM) and piezoelectric nanoparticles (piezoNPs). BM-induced electron transfer can be achieved through piezoNPs deformation under impact force, serving as an external stimulus to mediate polymerization. The ppm level of copper loading is sufficient in fabrication of a polymer with well-defined molecular weight and low polydispersity. High-molecular-weight polymers ranging from 33 to 74 kDa were prepared successfully through DMSO-assisted grinding. Besides, its good performance on availability of water as liquid-assisted grinding additive, the recyclability of piezoNPs, and the formation of cross-linker-free composite resin make our ATRP approach a green and practical option alongside the existent heat-, electro-, and photo-induced methods. |
Author | Zhang, Xiaomeng Qiao, Xiaoguang Zhang, Yu Fu, Peng Liu, Minying Zhou, Mengjie Cui, Zhe He, Yanjie Shi, Ge Pang, Xinchang |
AuthorAffiliation | College of Materials Engineering, Henan International Joint Laboratory of Rare Earth Composite Materials, Henan Engineering Technology Research Center for Fiber Preparation and Modification Henan University of Engineering Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering |
AuthorAffiliation_xml | – name: Henan University of Engineering – name: College of Materials Engineering, Henan International Joint Laboratory of Rare Earth Composite Materials, Henan Engineering Technology Research Center for Fiber Preparation and Modification – name: Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering |
Author_xml | – sequence: 1 givenname: Mengjie surname: Zhou fullname: Zhou, Mengjie organization: Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering – sequence: 2 givenname: Yu surname: Zhang fullname: Zhang, Yu organization: Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering – sequence: 3 givenname: Ge surname: Shi fullname: Shi, Ge organization: Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering – sequence: 4 givenname: Yanjie orcidid: 0000-0002-7954-5817 surname: He fullname: He, Yanjie organization: Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering – sequence: 5 givenname: Zhe surname: Cui fullname: Cui, Zhe organization: Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering – sequence: 6 givenname: Xiaomeng orcidid: 0000-0002-3291-1904 surname: Zhang fullname: Zhang, Xiaomeng organization: Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering – sequence: 7 givenname: Peng surname: Fu fullname: Fu, Peng organization: Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering – sequence: 8 givenname: Minying surname: Liu fullname: Liu, Minying organization: Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering – sequence: 9 givenname: Xiaoguang orcidid: 0000-0002-4379-5398 surname: Qiao fullname: Qiao, Xiaoguang email: joexiaoguang@hotmail.com organization: Henan University of Engineering – sequence: 10 givenname: Xinchang surname: Pang fullname: Pang, Xinchang email: Pangxinchang1980@163.com organization: Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36541821$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkE1LAzEQhoMo1o_-A5E9eqkm22x24038hopF6jnMZmcxkt1okgrbX-_WtlA8aOaQgXmfgXkOyW7rWiTkhNFzRlN2ATo0oL2zGON5qikVnO6Qg5QJNmIiG-9u9QMyDOGd9i8TrJB8nwzGIuOsSNkBmTyhfoPWaLC2S268-cI2uYquSWYe2lCjT16gWo6TqbNdg94sIBrXJmWXTA0uHFrU0RttYndM9mqwAYfr_4i83t3Orh9Gk-f7x-uryQg443FUZqJGzXjFWK55zfM0k1xKWZVVIYsUURRC8pKmKBByqcewrAo4IAOh6_EROVvt_fDuc44hqsYEjdZCi24eVJpnQghZ8LyPnq6j87LBSn1404Dv1MZAH7hcBXqbIXisVX_Jz4XRg7GKUbU0rraNq7XxHua_4M3-fzC6wvqpendz3_a2_ka-AaV4mtM |
CitedBy_id | crossref_primary_10_1021_acs_macromol_3c00250 crossref_primary_10_1039_D4CC05772D crossref_primary_10_1360_TB_2024_0311 crossref_primary_10_1002_marc_202400235 crossref_primary_10_1021_acsmacrolett_3c00317 crossref_primary_10_1016_j_checat_2024_100901 crossref_primary_10_1021_acsmaterialslett_3c01209 crossref_primary_10_1002_ange_202309440 crossref_primary_10_34133_research_0243 crossref_primary_10_1039_D3MA00620D crossref_primary_10_1246_cl_230078 crossref_primary_10_1038_s41467_024_50562_z crossref_primary_10_1016_j_eurpolymj_2025_113837 crossref_primary_10_1016_j_ijbiomac_2023_127809 crossref_primary_10_1016_j_reactfunctpolym_2025_106172 crossref_primary_10_1002_cctc_202401814 crossref_primary_10_1039_D3CC04323A crossref_primary_10_1002_anie_202309440 crossref_primary_10_1002_cplu_202400287 crossref_primary_10_1557_s43577_024_00801_x crossref_primary_10_1002_marc_202400162 |
Cites_doi | 10.1039/C8CS00583D 10.1016/j.nanoen.2015.01.035 10.1002/anie.201911356 10.1021/acsmacrolett.7b00152 10.1016/j.chempr.2020.06.014 10.1126/science.aaz9758 10.1002/anie.201811709 10.1021/jp301355q 10.1098/rstb.2009.0053 10.1002/anie.202110429 10.1038/nchem.853 10.1002/cssc.201700873 10.1021/mz500098r 10.1021/acs.chemrev.9b00744 10.1002/cssc.202100478 10.1002/anie.201906755 10.1002/advs.202106076 10.1002/adma.202108327 10.1021/ja408069v 10.1016/S1388-2481(00)00006-0 10.1039/C8PY01520A 10.1021/acs.macromol.7b01597 10.1002/adfm.201909045 10.1021/acsmacrolett.8b00171 10.1021/acsanm.0c00039 10.1038/nchem.2633 10.1002/anie.202005021 10.1021/ma1007545 10.3390/ijerph19084556 10.1002/chem.202100348 10.1002/anie.202009844 10.1002/marc.201500721 10.1126/science.aay8224 10.1002/anie.201706723 10.3390/molecules24193600 10.1039/C7GC00693D 10.1039/D2SC00313A 10.1039/C7SC05371A 10.1039/C9GC00304E 10.1002/cssc.202101131 10.1016/j.eurpolymj.2017.02.034 10.1002/anie.202003565 10.1021/ma901094s 10.1021/ma400565k 10.1039/D1CS01093J |
ContentType | Journal Article |
Copyright | 2022 American Chemical Society |
Copyright_xml | – notice: 2022 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acsmacrolett.2c00640 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2161-1653 |
EndPage | 32 |
ExternalDocumentID | 36541821 10_1021_acsmacrolett_2c00640 a372488507 |
Genre | Journal Article |
GroupedDBID | 55A 7~N AABXI ABFRP ABMVS ABQRX ABUCX ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ ED~ GGK GNL IH9 JG~ ROL UI2 VF5 VG9 W1F AAYXX ABBLG ABJNI ABLBI BAANH CITATION CUPRZ EBS NPM 7X8 |
ID | FETCH-LOGICAL-a414t-b56fec14d117c4f472594999dbd8982ee68694b02e6ea79c3a3a3ada4ae1a6cf3 |
IEDL.DBID | ACS |
ISSN | 2161-1653 |
IngestDate | Thu Jul 10 18:51:09 EDT 2025 Wed Feb 19 02:26:18 EST 2025 Thu Apr 24 22:57:23 EDT 2025 Tue Jul 01 01:35:19 EDT 2025 Thu Jan 19 03:27:50 EST 2023 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a414t-b56fec14d117c4f472594999dbd8982ee68694b02e6ea79c3a3a3ada4ae1a6cf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4379-5398 0000-0002-3291-1904 0000-0002-7954-5817 |
PMID | 36541821 |
PQID | 2756669847 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2756669847 pubmed_primary_36541821 crossref_citationtrail_10_1021_acsmacrolett_2c00640 crossref_primary_10_1021_acsmacrolett_2c00640 acs_journals_10_1021_acsmacrolett_2c00640 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-17 |
PublicationDateYYYYMMDD | 2023-01-17 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS macro letters |
PublicationTitleAlternate | ACS Macro Lett |
PublicationYear | 2023 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref17/cit17b ref18/cit18 ref17/cit17a ref13/cit13a ref13/cit13b ref10/cit10a ref13/cit13c ref10/cit10b ref12/cit12d ref12/cit12c ref12/cit12b ref12/cit12a ref8/cit8 ref5/cit5 ref2/cit2 ref1/cit1a ref1/cit1b ref6/cit6d ref6/cit6e ref16/cit16b ref6/cit6f ref16/cit16a ref6/cit6g ref14/cit14a ref19/cit19 ref21/cit21 Anastas P. T. W. (ref9/cit9) 1998 ref14/cit14b ref15/cit15 ref3/cit3b ref11/cit11c ref22/cit22a ref3/cit3c ref11/cit11b ref3/cit3a ref3/cit3d ref11/cit11a ref20/cit20a ref22/cit22b ref7/cit7b ref20/cit20b ref7/cit7a ref4/cit4 ref6/cit6a ref6/cit6b ref6/cit6c |
References_xml | – ident: ref16/cit16b doi: 10.1039/C8CS00583D – ident: ref11/cit11c doi: 10.1016/j.nanoen.2015.01.035 – ident: ref6/cit6b doi: 10.1002/anie.201911356 – ident: ref13/cit13c doi: 10.1021/acsmacrolett.7b00152 – ident: ref7/cit7a doi: 10.1016/j.chempr.2020.06.014 – ident: ref10/cit10a doi: 10.1126/science.aaz9758 – ident: ref11/cit11a doi: 10.1002/anie.201811709 – ident: ref20/cit20b doi: 10.1021/jp301355q – ident: ref2/cit2 doi: 10.1098/rstb.2009.0053 – ident: ref12/cit12d doi: 10.1002/anie.202110429 – ident: ref15/cit15 doi: 10.1038/nchem.853 – ident: ref6/cit6c doi: 10.1002/cssc.201700873 – ident: ref5/cit5 doi: 10.1021/mz500098r – ident: ref7/cit7b doi: 10.1021/acs.chemrev.9b00744 – ident: ref3/cit3d doi: 10.1002/cssc.202100478 – ident: ref3/cit3b doi: 10.1002/anie.201906755 – ident: ref1/cit1a doi: 10.1002/advs.202106076 – ident: ref3/cit3c doi: 10.1002/adma.202108327 – ident: ref14/cit14b doi: 10.1021/ja408069v – ident: ref20/cit20a doi: 10.1016/S1388-2481(00)00006-0 – ident: ref6/cit6d doi: 10.1039/C8PY01520A – ident: ref13/cit13b doi: 10.1021/acs.macromol.7b01597 – ident: ref16/cit16a doi: 10.1002/adfm.201909045 – ident: ref6/cit6f doi: 10.1021/acsmacrolett.8b00171 – ident: ref11/cit11b doi: 10.1021/acsanm.0c00039 – ident: ref13/cit13a doi: 10.1038/nchem.2633 – ident: ref8/cit8 doi: 10.1002/anie.202005021 – ident: ref22/cit22a doi: 10.1021/ma1007545 – ident: ref1/cit1b doi: 10.3390/ijerph19084556 – ident: ref10/cit10b doi: 10.1002/chem.202100348 – ident: ref12/cit12b doi: 10.1002/anie.202009844 – ident: ref22/cit22b doi: 10.1002/marc.201500721 – ident: ref12/cit12a doi: 10.1126/science.aay8224 – ident: ref21/cit21 doi: 10.1002/anie.201706723 – ident: ref4/cit4 doi: 10.3390/molecules24193600 – volume-title: Green Chemistry: Theory and Practice year: 1998 ident: ref9/cit9 – ident: ref6/cit6a doi: 10.1039/C7GC00693D – ident: ref19/cit19 doi: 10.1039/D2SC00313A – ident: ref18/cit18 doi: 10.1039/C7SC05371A – ident: ref6/cit6e doi: 10.1039/C9GC00304E – ident: ref6/cit6g doi: 10.1002/cssc.202101131 – ident: ref14/cit14a doi: 10.1016/j.eurpolymj.2017.02.034 – ident: ref12/cit12c doi: 10.1002/anie.202003565 – ident: ref17/cit17a doi: 10.1021/ma901094s – ident: ref17/cit17b doi: 10.1021/ma400565k – ident: ref3/cit3a doi: 10.1039/D1CS01093J |
SSID | ssj0000561894 |
Score | 2.434223 |
Snippet | Targeting sustainable and eco-friendly polymer synthesis, we demonstrate here a synergistically catalyzed atom transfer radical polymerization (ATRP) induced... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 26 |
Title | Mechanically Driven Atom Transfer Radical Polymerization by Piezoelectricity |
URI | http://dx.doi.org/10.1021/acsmacrolett.2c00640 https://www.ncbi.nlm.nih.gov/pubmed/36541821 https://www.proquest.com/docview/2756669847 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELZ4HMqlBVrapYCMxIWDt7FjO8kRLSBU8VILErdo4kwkxLKpdrOH5dfjyWMpRYiiXGNLnhl7vvF45mNszwWqMNYpIeMAhTYmFGDACPRYJCryAsBSNfLZuT251j9vzM1ToPhvBl_JH-Am9-DorV1V9ZWrU0-LbFlZv48JCg1-z-9UCA3HNfeh8kBGSGvCrlrulYnIJ7nJc5_0CtCsHc7xJ3bRle0070zu-tMq67uHl10c_3Mtq-xjiz35QWMsa2wBR-vsw6CjfPvMTs-QCoFJb8MZPxzTScgPqvKe1y6twDH_BXVih1-Wwxkle5oqTp7N-OUtPpQNq86t89j-C7s-ProanIiWbkGAlroSmbEFOqlzKSOnCx35yIjioTzL4yRWiDa2ic4ChRYhSlwI9OWgASVYV4QbbGlUjvAb4xLAI4NIJ1mifQQWgYsQ0ThvBkES5LrH9r0o0na7TNI6E65k-rd80lY-PRZ2ykld27ec6DOGb4wS81F_mr4db_y_2-k99UKnrAmMsJxOUuqPb23ivXiPfW0MYj5jSCzqsZKb71jPd7ZClPV0jSOjLbZUjae47YFNle3U1vwIWOj29g |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9swDCa67tBd9n5kTw3YZQdllizJ9jHIVmRbUhRbO_RmyDINFEvjIXYO6a-fKNvZAyiKwjfDEiSSMj-JIj-Ady6SlTZOcpFGyJXWMbfaao4eiyRVWVlrKBt5cWRmp-rLmT7bAz3kwvhBNL6nJgTx_1QXEB_8uwvr6Mpd246lCxGoW3Db4xFJhj2Zft8drRAoTgMFovR4hguj4yFp7oqOyDW55l_XdAXeDH7n8B782I04XDf5Od60xdhd_lfM8cZTug93eyTKJp3pPIA9XD2Eg-lAAPcI5guktGDS4nLLPq7pv8gmbX3BgoOrcM2-2RDmYcf1ckuhny6nkxVbdnyOl3XHsXPuPNJ_DKeHn06mM96TL3CrhGp5oU2FTqhSiMSpSiV-n0S7o7Io0yyViCY1mSoiiQZtkrnY0lNaZVFY46r4Ceyv6hU-Ayas9TghUVmRKb8fS6xLEFE7bxRRFpVqBO-9KPJ-8TR5iItLkf8tn7yXzwjiQUe566uYE5nG8ppWfNfqV1fF45rv3w7qz73QKYZiV1hvmpyq5RuTeZ8-gqedXex6jIlTPZXi-Q3m8wYOZieLeT7_fPT1BdwhMns64BHJS9hv1xt85SFPW7wOBv4bFvf_Vw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED8xJm28sG8oH5sn7WUP7uLEdpLHqlCxDVC1DQntJXKci4QoDWrSh_LX43PSik1CCJS3KD7Z53PuZ5_vfgBfbBCWStuQiyRALpWKuFFGcXRYJC6L0hhN2cgnp_roTP44V-d3qL5cJ2onqfZBfFrV10XZVRgQ39z7K2Pp2l3T9EPro1DP4DlF7si4B8Pfq-MVAsaJp0EMHabhQqtomTh3jyByT7b-1z3dgzm97xm9gr-rXvsrJ5f9eZP37c1_BR2fNKzXsNkhUjZoTegNrOH0LbwcLong3sHxCVJ6MM3mZMEOZvR_ZIOmumLe0ZU4Y7-MD_ewcTVZUAioze1k-YKNL_Cmarl2LqxD_O_hbHT4Z3jEOxIGbqSQDc-VLtEKWQgRW1nK2O2XaJdU5EWSJiGiTnQq8yBEjSZObWToKYw0KIy2ZfQB1qfVFLeBCWMcXohlmqfS7ctiY2NEVNYZR5AGhezBV6eKrFtEdebj46HI7uon6_TTg2g5T5ntqpkTqcbkgVZ81eq6rebxwPeflyaQOaVTLMVMsZrXGVXN1zp1vr0HW61trCRGxK2ehGLnEeP5BC_GB6Ps-Pvpz13YIE57OucR8R6sN7M57jvk0-QfvY3fAkELAek |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanically+Driven+Atom+Transfer+Radical+Polymerization+by+Piezoelectricity&rft.jtitle=ACS+macro+letters&rft.au=Zhou%2C+Mengjie&rft.au=Zhang%2C+Yu&rft.au=Shi%2C+Ge&rft.au=He%2C+Yanjie&rft.date=2023-01-17&rft.eissn=2161-1653&rft.volume=12&rft.issue=1&rft.spage=26&rft_id=info:doi/10.1021%2Facsmacrolett.2c00640&rft_id=info%3Apmid%2F36541821&rft.externalDocID=36541821 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-1653&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-1653&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-1653&client=summon |