Cellulose Depolymerization over Heterogeneous Catalysts
Cellulosic biomass is the largest source of renewable organic carbon on our planet. Cellulose accounts for 40–50 wt % of this lignocellulose, and it is a feedstock for industrially important chemicals and fuels. The first step in cellulose conversion involves its depolymerization to glucose or to it...
Saved in:
Published in | Accounts of chemical research Vol. 51; no. 3; pp. 761 - 768 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
20.03.2018
|
Online Access | Get full text |
Cover
Loading…
Abstract | Cellulosic biomass is the largest source of renewable organic carbon on our planet. Cellulose accounts for 40–50 wt % of this lignocellulose, and it is a feedstock for industrially important chemicals and fuels. The first step in cellulose conversion involves its depolymerization to glucose or to its hydrogenated product sorbitol. The hydrolysis of cellulose to glucose by homogeneous mineral acids was the subject of research for almost a century. However, homogeneous acids have significant drawbacks and are neither economical nor environmentally friendly. In 2006, our group reported for the first time the ability of heterogeneous catalysts to depolymerize cellulose through hydrolytic hydrogenation to produce sorbitol. Later, we reported the hydrolysis of cellulose to glucose using carbon catalyst containing weakly acidic functional groups. Understanding the reaction between cellulose and heterogeneous catalyst is a challenge as the reaction occurs between a solid substrate and a solid catalyst. In this Account, we describe our efforts for the conversion of cellulose to sorbitol and glucose using heterogeneous catalysts. Sorbitol is produced by sequential hydrolysis and hydrogenation of cellulose in one pot. We reported sorbitol synthesis from cellulose in the presence of supported metal catalysts and H2 gas. The reducing environment of the reaction prevents byproduct formation, and harsh reaction conditions can be used to achieve sorbitol yield of up to 90%. Glucose is produced by acid catalyzed hydrolysis of cellulose, a more challenging reaction owing to the tendency of glucose to rapidly decompose in hot water. Sulfonated carbons were first reported as active catalysts for cellulose hydrolysis, but they were hydrothermally unstable under the reaction conditions. We found that carbon catalysts bearing weakly acidic functional groups such as hydroxyl and carboxylic acids are also active. Weakly acidic functional groups are hydrothermally stable, and a soluble sugar yield of 90% was achieved in a 20 min reaction. We clarified that the polycyclic aromatic surface of the carbon adsorbs cellulose molecules on its surface by CH−π and hydrophobic interactions driven by a positive change in entropy of the system. The adsorbed molecules are rapidly hydrolyzed by active sites containing vicinal functional groups that recognize the hydroxyl groups on cellulose to achieve a high frequency factor. This phenomenon is analogous to the hydrolysis of cellulose by enzymes that use CH−π and hydrophobic interactions along with weakly acidic carboxylic acid and carboxylate pair to catalyze the reaction. However, in comparison with enzymes, carbon catalyst is functional over a wide range of pH and temperatures. We also developed a continuous flow slurry process to demonstrate the feasibility for commercial application of carbon-catalyzed cellulose hydrolysis to glucose using inexpensive catalyst prepared by air oxidation. We believe that further efforts in this field should be directed toward eliminating roadblocks for the commercialization of cellulose conversion reactions. |
---|---|
AbstractList | Cellulosic biomass is the largest source of renewable organic carbon on our planet. Cellulose accounts for 40-50 wt % of this lignocellulose, and it is a feedstock for industrially important chemicals and fuels. The first step in cellulose conversion involves its depolymerization to glucose or to its hydrogenated product sorbitol. The hydrolysis of cellulose to glucose by homogeneous mineral acids was the subject of research for almost a century. However, homogeneous acids have significant drawbacks and are neither economical nor environmentally friendly. In 2006, our group reported for the first time the ability of heterogeneous catalysts to depolymerize cellulose through hydrolytic hydrogenation to produce sorbitol. Later, we reported the hydrolysis of cellulose to glucose using carbon catalyst containing weakly acidic functional groups. Understanding the reaction between cellulose and heterogeneous catalyst is a challenge as the reaction occurs between a solid substrate and a solid catalyst. In this Account, we describe our efforts for the conversion of cellulose to sorbitol and glucose using heterogeneous catalysts. Sorbitol is produced by sequential hydrolysis and hydrogenation of cellulose in one pot. We reported sorbitol synthesis from cellulose in the presence of supported metal catalysts and H
gas. The reducing environment of the reaction prevents byproduct formation, and harsh reaction conditions can be used to achieve sorbitol yield of up to 90%. Glucose is produced by acid catalyzed hydrolysis of cellulose, a more challenging reaction owing to the tendency of glucose to rapidly decompose in hot water. Sulfonated carbons were first reported as active catalysts for cellulose hydrolysis, but they were hydrothermally unstable under the reaction conditions. We found that carbon catalysts bearing weakly acidic functional groups such as hydroxyl and carboxylic acids are also active. Weakly acidic functional groups are hydrothermally stable, and a soluble sugar yield of 90% was achieved in a 20 min reaction. We clarified that the polycyclic aromatic surface of the carbon adsorbs cellulose molecules on its surface by CH-π and hydrophobic interactions driven by a positive change in entropy of the system. The adsorbed molecules are rapidly hydrolyzed by active sites containing vicinal functional groups that recognize the hydroxyl groups on cellulose to achieve a high frequency factor. This phenomenon is analogous to the hydrolysis of cellulose by enzymes that use CH-π and hydrophobic interactions along with weakly acidic carboxylic acid and carboxylate pair to catalyze the reaction. However, in comparison with enzymes, carbon catalyst is functional over a wide range of pH and temperatures. We also developed a continuous flow slurry process to demonstrate the feasibility for commercial application of carbon-catalyzed cellulose hydrolysis to glucose using inexpensive catalyst prepared by air oxidation. We believe that further efforts in this field should be directed toward eliminating roadblocks for the commercialization of cellulose conversion reactions. Cellulosic biomass is the largest source of renewable organic carbon on our planet. Cellulose accounts for 40–50 wt % of this lignocellulose, and it is a feedstock for industrially important chemicals and fuels. The first step in cellulose conversion involves its depolymerization to glucose or to its hydrogenated product sorbitol. The hydrolysis of cellulose to glucose by homogeneous mineral acids was the subject of research for almost a century. However, homogeneous acids have significant drawbacks and are neither economical nor environmentally friendly. In 2006, our group reported for the first time the ability of heterogeneous catalysts to depolymerize cellulose through hydrolytic hydrogenation to produce sorbitol. Later, we reported the hydrolysis of cellulose to glucose using carbon catalyst containing weakly acidic functional groups. Understanding the reaction between cellulose and heterogeneous catalyst is a challenge as the reaction occurs between a solid substrate and a solid catalyst. In this Account, we describe our efforts for the conversion of cellulose to sorbitol and glucose using heterogeneous catalysts. Sorbitol is produced by sequential hydrolysis and hydrogenation of cellulose in one pot. We reported sorbitol synthesis from cellulose in the presence of supported metal catalysts and H2 gas. The reducing environment of the reaction prevents byproduct formation, and harsh reaction conditions can be used to achieve sorbitol yield of up to 90%. Glucose is produced by acid catalyzed hydrolysis of cellulose, a more challenging reaction owing to the tendency of glucose to rapidly decompose in hot water. Sulfonated carbons were first reported as active catalysts for cellulose hydrolysis, but they were hydrothermally unstable under the reaction conditions. We found that carbon catalysts bearing weakly acidic functional groups such as hydroxyl and carboxylic acids are also active. Weakly acidic functional groups are hydrothermally stable, and a soluble sugar yield of 90% was achieved in a 20 min reaction. We clarified that the polycyclic aromatic surface of the carbon adsorbs cellulose molecules on its surface by CH−π and hydrophobic interactions driven by a positive change in entropy of the system. The adsorbed molecules are rapidly hydrolyzed by active sites containing vicinal functional groups that recognize the hydroxyl groups on cellulose to achieve a high frequency factor. This phenomenon is analogous to the hydrolysis of cellulose by enzymes that use CH−π and hydrophobic interactions along with weakly acidic carboxylic acid and carboxylate pair to catalyze the reaction. However, in comparison with enzymes, carbon catalyst is functional over a wide range of pH and temperatures. We also developed a continuous flow slurry process to demonstrate the feasibility for commercial application of carbon-catalyzed cellulose hydrolysis to glucose using inexpensive catalyst prepared by air oxidation. We believe that further efforts in this field should be directed toward eliminating roadblocks for the commercialization of cellulose conversion reactions. Cellulosic biomass is the largest source of renewable organic carbon on our planet. Cellulose accounts for 40-50 wt % of this lignocellulose, and it is a feedstock for industrially important chemicals and fuels. The first step in cellulose conversion involves its depolymerization to glucose or to its hydrogenated product sorbitol. The hydrolysis of cellulose to glucose by homogeneous mineral acids was the subject of research for almost a century. However, homogeneous acids have significant drawbacks and are neither economical nor environmentally friendly. In 2006, our group reported for the first time the ability of heterogeneous catalysts to depolymerize cellulose through hydrolytic hydrogenation to produce sorbitol. Later, we reported the hydrolysis of cellulose to glucose using carbon catalyst containing weakly acidic functional groups. Understanding the reaction between cellulose and heterogeneous catalyst is a challenge as the reaction occurs between a solid substrate and a solid catalyst. In this Account, we describe our efforts for the conversion of cellulose to sorbitol and glucose using heterogeneous catalysts. Sorbitol is produced by sequential hydrolysis and hydrogenation of cellulose in one pot. We reported sorbitol synthesis from cellulose in the presence of supported metal catalysts and H2 gas. The reducing environment of the reaction prevents byproduct formation, and harsh reaction conditions can be used to achieve sorbitol yield of up to 90%. Glucose is produced by acid catalyzed hydrolysis of cellulose, a more challenging reaction owing to the tendency of glucose to rapidly decompose in hot water. Sulfonated carbons were first reported as active catalysts for cellulose hydrolysis, but they were hydrothermally unstable under the reaction conditions. We found that carbon catalysts bearing weakly acidic functional groups such as hydroxyl and carboxylic acids are also active. Weakly acidic functional groups are hydrothermally stable, and a soluble sugar yield of 90% was achieved in a 20 min reaction. We clarified that the polycyclic aromatic surface of the carbon adsorbs cellulose molecules on its surface by CH-π and hydrophobic interactions driven by a positive change in entropy of the system. The adsorbed molecules are rapidly hydrolyzed by active sites containing vicinal functional groups that recognize the hydroxyl groups on cellulose to achieve a high frequency factor. This phenomenon is analogous to the hydrolysis of cellulose by enzymes that use CH-π and hydrophobic interactions along with weakly acidic carboxylic acid and carboxylate pair to catalyze the reaction. However, in comparison with enzymes, carbon catalyst is functional over a wide range of pH and temperatures. We also developed a continuous flow slurry process to demonstrate the feasibility for commercial application of carbon-catalyzed cellulose hydrolysis to glucose using inexpensive catalyst prepared by air oxidation. We believe that further efforts in this field should be directed toward eliminating roadblocks for the commercialization of cellulose conversion reactions.Cellulosic biomass is the largest source of renewable organic carbon on our planet. Cellulose accounts for 40-50 wt % of this lignocellulose, and it is a feedstock for industrially important chemicals and fuels. The first step in cellulose conversion involves its depolymerization to glucose or to its hydrogenated product sorbitol. The hydrolysis of cellulose to glucose by homogeneous mineral acids was the subject of research for almost a century. However, homogeneous acids have significant drawbacks and are neither economical nor environmentally friendly. In 2006, our group reported for the first time the ability of heterogeneous catalysts to depolymerize cellulose through hydrolytic hydrogenation to produce sorbitol. Later, we reported the hydrolysis of cellulose to glucose using carbon catalyst containing weakly acidic functional groups. Understanding the reaction between cellulose and heterogeneous catalyst is a challenge as the reaction occurs between a solid substrate and a solid catalyst. In this Account, we describe our efforts for the conversion of cellulose to sorbitol and glucose using heterogeneous catalysts. Sorbitol is produced by sequential hydrolysis and hydrogenation of cellulose in one pot. We reported sorbitol synthesis from cellulose in the presence of supported metal catalysts and H2 gas. The reducing environment of the reaction prevents byproduct formation, and harsh reaction conditions can be used to achieve sorbitol yield of up to 90%. Glucose is produced by acid catalyzed hydrolysis of cellulose, a more challenging reaction owing to the tendency of glucose to rapidly decompose in hot water. Sulfonated carbons were first reported as active catalysts for cellulose hydrolysis, but they were hydrothermally unstable under the reaction conditions. We found that carbon catalysts bearing weakly acidic functional groups such as hydroxyl and carboxylic acids are also active. Weakly acidic functional groups are hydrothermally stable, and a soluble sugar yield of 90% was achieved in a 20 min reaction. We clarified that the polycyclic aromatic surface of the carbon adsorbs cellulose molecules on its surface by CH-π and hydrophobic interactions driven by a positive change in entropy of the system. The adsorbed molecules are rapidly hydrolyzed by active sites containing vicinal functional groups that recognize the hydroxyl groups on cellulose to achieve a high frequency factor. This phenomenon is analogous to the hydrolysis of cellulose by enzymes that use CH-π and hydrophobic interactions along with weakly acidic carboxylic acid and carboxylate pair to catalyze the reaction. However, in comparison with enzymes, carbon catalyst is functional over a wide range of pH and temperatures. We also developed a continuous flow slurry process to demonstrate the feasibility for commercial application of carbon-catalyzed cellulose hydrolysis to glucose using inexpensive catalyst prepared by air oxidation. We believe that further efforts in this field should be directed toward eliminating roadblocks for the commercialization of cellulose conversion reactions. |
Author | Shrotri, Abhijit Kobayashi, Hirokazu Fukuoka, Atsushi |
AuthorAffiliation | Institute for Catalysis Hokkaido University |
AuthorAffiliation_xml | – name: Institute for Catalysis – name: Hokkaido University |
Author_xml | – sequence: 1 givenname: Abhijit orcidid: 0000-0001-9850-7325 surname: Shrotri fullname: Shrotri, Abhijit – sequence: 2 givenname: Hirokazu orcidid: 0000-0001-8559-6509 surname: Kobayashi fullname: Kobayashi, Hirokazu – sequence: 3 givenname: Atsushi orcidid: 0000-0002-8468-7721 surname: Fukuoka fullname: Fukuoka, Atsushi email: fukuoka@cat.hokudai.ac.jp |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29443505$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkMlOwzAQhi1URBd4A4Ry5JJiO97CDYWlSJW4wDlynAlKlcTFdpDK05NuHDjAyWPN949mvikadbYDhC4JnhNMyY02fq6NsX0X_FwWGAvCTtCEcIpjplI1QhOMMRlqRsdo6v1q-FIm5Bka05SxhGM-QTKDpukb6yG6h7VtNi24-kuH2naR_QQXLSCAs-_Qge19lOmgm40P_hydVrrxcHF4Z-jt8eE1W8TLl6fn7G4Za0ZYiAsuZEEE0aUhQtCEV1onRpQiKVRVSZCyTKgWHKjCStEUuEmVIiWttOScVMkMXe_nrp396MGHvK29GXbWu4Vyur1JJZjhAb06oH3RQpmvXd1qt8mPxw4A2wPGWe8dVD8IwfnWaT44zY9O84PTIXb7K2bqsDMUnK6b_8J4H952V7Z33WDr78g3hkqRnQ |
CitedBy_id | crossref_primary_10_1016_j_mcat_2019_110459 crossref_primary_10_1002_adfm_202421143 crossref_primary_10_1002_anie_202013843 crossref_primary_10_1016_j_apcata_2019_04_031 crossref_primary_10_1039_D1RA06737K crossref_primary_10_1039_D3GC04082H crossref_primary_10_1039_D1CY02225C crossref_primary_10_1016_j_carbpol_2022_120388 crossref_primary_10_1021_acscatal_1c00217 crossref_primary_10_1016_j_apcatb_2023_123599 crossref_primary_10_1134_S0965545X23700773 crossref_primary_10_1007_s11947_024_03738_w crossref_primary_10_1039_D2GC01303G crossref_primary_10_3390_fermentation6010031 crossref_primary_10_1039_D2IM00054G crossref_primary_10_1002_open_201900283 crossref_primary_10_1021_acsmacrolett_0c00024 crossref_primary_10_1039_D1GC01690C crossref_primary_10_1016_j_biortech_2022_127861 crossref_primary_10_1016_j_ijhydene_2022_11_314 crossref_primary_10_1016_j_biombioe_2023_106722 crossref_primary_10_1016_j_fuel_2022_124642 crossref_primary_10_1016_j_jcat_2024_115860 crossref_primary_10_1039_D0GC03745A crossref_primary_10_1016_j_clay_2020_105512 crossref_primary_10_1016_j_jaap_2022_105659 crossref_primary_10_1002_ange_201913023 crossref_primary_10_1039_D3EY00147D crossref_primary_10_2174_1570178620666230731152241 crossref_primary_10_1038_s41428_018_0140_9 crossref_primary_10_1038_s41570_023_00567_x crossref_primary_10_1134_S0036023624600527 crossref_primary_10_1016_j_carbon_2024_119545 crossref_primary_10_1002_ijch_202200119 crossref_primary_10_1016_j_jobab_2024_09_001 crossref_primary_10_1627_jpi_66_48 crossref_primary_10_1016_j_apcatb_2020_118732 crossref_primary_10_1039_C9GC02949D crossref_primary_10_1246_bcsj_20190287 crossref_primary_10_1016_j_fuel_2022_123882 crossref_primary_10_1016_j_cej_2024_153038 crossref_primary_10_1021_acsanm_2c00354 crossref_primary_10_1016_j_cej_2022_139206 crossref_primary_10_1016_j_fuproc_2019_106155 crossref_primary_10_1016_j_ijbiomac_2024_135060 crossref_primary_10_1039_D0GC03190A crossref_primary_10_1016_j_apcata_2019_117182 crossref_primary_10_1021_acs_inorgchem_4c02799 crossref_primary_10_1016_j_cattod_2023_02_007 crossref_primary_10_1002_pol_20220755 crossref_primary_10_1016_j_fuproc_2019_106162 crossref_primary_10_31857_S0044457X24040059 crossref_primary_10_1016_j_carres_2019_107826 crossref_primary_10_1016_j_ijbiomac_2025_140496 crossref_primary_10_1016_j_apcatb_2022_121785 crossref_primary_10_1002_elsc_202100025 crossref_primary_10_1021_acssuschemeng_4c08961 crossref_primary_10_1016_j_ccr_2023_215622 crossref_primary_10_1039_D1GC03725K crossref_primary_10_1021_acsomega_8b02754 crossref_primary_10_1039_D0CY00783H crossref_primary_10_1039_D1GC00376C crossref_primary_10_1016_j_cej_2024_158384 crossref_primary_10_1039_D4CY00266K crossref_primary_10_1021_acssuschemeng_2c06675 crossref_primary_10_1002_cssc_202001068 crossref_primary_10_1039_D0RA05641C crossref_primary_10_1080_01614940_2020_1819936 crossref_primary_10_1038_s41570_022_00411_8 crossref_primary_10_1016_j_fuproc_2019_106175 crossref_primary_10_1002_cssc_201901110 crossref_primary_10_1016_j_carres_2019_02_002 crossref_primary_10_1021_acsapm_4c02440 crossref_primary_10_2174_2211544712666230322092202 crossref_primary_10_1039_D4CS00244J crossref_primary_10_1002_star_201800144 crossref_primary_10_14710_jksa_23_6_209_215 crossref_primary_10_1039_D0CY02230F crossref_primary_10_1021_acs_langmuir_4c03636 crossref_primary_10_1002_slct_202103804 crossref_primary_10_1007_s13399_023_04378_4 crossref_primary_10_2139_ssrn_4167600 crossref_primary_10_3390_catal9080674 crossref_primary_10_1007_s11696_025_03970_4 crossref_primary_10_1016_j_cej_2023_146657 crossref_primary_10_1016_j_apcatb_2019_117826 crossref_primary_10_1016_j_jcat_2024_115382 crossref_primary_10_1021_acssuschemeng_8b03683 crossref_primary_10_1007_s11144_022_02176_z crossref_primary_10_1016_j_cattod_2022_08_012 crossref_primary_10_1002_cssc_201900800 crossref_primary_10_32604_jrm_2023_026314 crossref_primary_10_1016_j_gee_2019_01_009 crossref_primary_10_1021_acscatal_1c03045 crossref_primary_10_1007_s42452_024_05680_0 crossref_primary_10_1016_j_mcat_2019_110400 crossref_primary_10_1016_j_mtsust_2020_100058 crossref_primary_10_1021_acs_biomac_4c01382 crossref_primary_10_1021_acssuschemeng_9b06264 crossref_primary_10_1002_cphc_202000455 crossref_primary_10_1002_hlca_202200032 crossref_primary_10_1186_s40643_024_00768_2 crossref_primary_10_2139_ssrn_3949253 crossref_primary_10_1080_01614940_2022_2111070 crossref_primary_10_1016_j_flatc_2023_100543 crossref_primary_10_1016_j_fuel_2025_135136 crossref_primary_10_1021_acsomega_8b03088 crossref_primary_10_1021_acssuschemeng_4c08126 crossref_primary_10_3846_jeelm_2022_16744 crossref_primary_10_1016_j_ijhydene_2022_09_202 crossref_primary_10_1016_j_cattod_2023_114086 crossref_primary_10_3389_fchem_2019_00834 crossref_primary_10_1016_j_fuel_2022_125446 crossref_primary_10_1016_j_catcom_2023_106726 crossref_primary_10_1007_s13399_025_06555_z crossref_primary_10_1021_acssuschemeng_0c09051 crossref_primary_10_1016_j_jece_2023_109290 crossref_primary_10_3390_en13174394 crossref_primary_10_1016_j_renene_2020_02_034 crossref_primary_10_1007_s13399_020_00802_1 crossref_primary_10_3389_fchem_2021_831102 crossref_primary_10_3390_polym15183671 crossref_primary_10_1021_acs_chemrev_9b00199 crossref_primary_10_2139_ssrn_4119328 crossref_primary_10_2139_ssrn_3975663 crossref_primary_10_1002_pls2_10159 crossref_primary_10_1021_acssuschemeng_3c01602 crossref_primary_10_1039_D0CS00314J crossref_primary_10_1039_D0NJ00919A crossref_primary_10_1021_acssuschemeng_1c00469 crossref_primary_10_1039_C8DT00828K crossref_primary_10_1007_s10562_020_03402_w crossref_primary_10_1002_bit_27877 crossref_primary_10_1002_cphc_201801160 crossref_primary_10_1016_j_mcat_2020_110883 crossref_primary_10_1016_j_carbpol_2019_115503 crossref_primary_10_1007_s10930_020_09906_z crossref_primary_10_1007_s10562_020_03497_1 crossref_primary_10_1021_acscatal_3c01440 crossref_primary_10_3390_en16010256 crossref_primary_10_2174_0124055204263490231103114459 crossref_primary_10_1021_acssuschemeng_8b03539 crossref_primary_10_3390_catal12060653 crossref_primary_10_1002_cplu_202300554 crossref_primary_10_1016_j_carres_2021_108341 crossref_primary_10_1016_j_apcatb_2024_124217 crossref_primary_10_1016_j_joule_2019_05_020 crossref_primary_10_1016_j_cej_2024_152336 crossref_primary_10_1039_D5GC00924C crossref_primary_10_3390_polym11091417 crossref_primary_10_1007_s10570_020_03411_3 crossref_primary_10_1016_j_supflu_2020_104827 crossref_primary_10_7209_tanso_2019_211 crossref_primary_10_2174_1573413715666190716123250 crossref_primary_10_1039_C9RA05748J crossref_primary_10_1039_C9RA07668A crossref_primary_10_1155_2018_4723573 crossref_primary_10_1016_j_ccst_2024_100264 crossref_primary_10_1002_cssc_202400954 crossref_primary_10_1016_j_ijbiomac_2024_137062 crossref_primary_10_1039_D1RA09225A crossref_primary_10_1039_D2GC01289H crossref_primary_10_2174_2213337208666211129090444 crossref_primary_10_2139_ssrn_4163534 crossref_primary_10_3389_fpls_2021_731977 crossref_primary_10_3390_chemistry5010028 crossref_primary_10_1002_anie_201913023 crossref_primary_10_3390_polym17070857 crossref_primary_10_1021_acssuschemeng_1c04290 crossref_primary_10_1021_acscatal_2c01717 crossref_primary_10_4028_www_scientific_net_KEM_849_72 crossref_primary_10_1080_17597269_2023_2221969 crossref_primary_10_1002_ange_202013843 crossref_primary_10_3390_foods13223585 crossref_primary_10_3390_catal9090753 crossref_primary_10_1007_s11356_022_19726_6 crossref_primary_10_1007_s13399_021_02062_z crossref_primary_10_1016_j_jechem_2022_06_043 crossref_primary_10_1016_j_biortech_2020_124159 crossref_primary_10_1039_D0GC04268D crossref_primary_10_1016_j_gee_2022_07_003 crossref_primary_10_1021_acssuschemeng_1c05273 crossref_primary_10_1016_j_fuproc_2021_106847 crossref_primary_10_1039_D3CC00902E crossref_primary_10_9767_bcrec_16_3_10635_661_672 crossref_primary_10_1016_j_crgsc_2021_100230 crossref_primary_10_1016_j_apcata_2021_118177 crossref_primary_10_1039_C9CC00802K crossref_primary_10_1007_s12649_022_01975_8 crossref_primary_10_1039_C9GC02201E crossref_primary_10_1007_s10924_022_02388_3 crossref_primary_10_1016_S1872_2067_20_63569_0 crossref_primary_10_1002_cssc_202401399 crossref_primary_10_1627_jpi_63_221 crossref_primary_10_1039_D0GC01561J crossref_primary_10_1007_s11356_021_12793_1 crossref_primary_10_3390_molecules24091832 crossref_primary_10_1002_sstr_202200224 crossref_primary_10_1016_j_carbpol_2021_117652 crossref_primary_10_1016_j_fuproc_2019_02_002 crossref_primary_10_5059_yukigoseikyokaishi_82_719 crossref_primary_10_1016_j_procbio_2018_05_012 |
Cites_doi | 10.1021/cs1001515 10.1002/cctc.201300731 10.1021/acs.chemrev.5b00203 10.1016/j.cattod.2015.08.026 10.1002/cssc.201000092 10.1039/c0cc02014a 10.1021/acs.chemrev.7b00395 10.1002/cssc.201600279 10.1021/acscatal.7b01295 10.1016/j.apcatb.2013.09.046 10.1039/C3GC41357H 10.1021/cs300845f 10.1039/C0GC00666A 10.1039/c001096k 10.1021/acs.iecr.7b03918 10.1016/j.apcata.2011.10.014 10.1039/c2cy20119d 10.1039/c3gc00060e 10.1002/cssc.201000087 10.1039/c3gc40945g 10.1039/C0CC04311G 10.1039/c0gc00235f 10.1016/j.catcom.2014.05.008 10.1039/C5GC00319A 10.1039/c000075b 10.1021/acs.jpcc.5b06476 10.1016/j.apcata.2011.08.039 10.1016/j.apcata.2015.07.034 10.1002/anie.200702661 10.1021/ie50421a004 10.1021/acscatal.5b00707 10.1002/cssc.201301296 10.1006/jcat.2002.3523 10.1002/cctc.201301020 10.1021/ja803983h 10.1002/cssc.200900188 10.1021/acscatal.5b01172 10.1021/ef500717p 10.1016/0079-6700(94)90033-7 10.1007/s11244-012-9785-3 10.1007/BF01173350 10.1039/C5SC03377B 10.1016/j.cattod.2013.09.057 10.1016/j.jcat.2013.10.022 10.1002/cssc.201100782 10.1246/cl.2011.1195 10.1039/c004654j 10.1039/C5GC03077C 10.1002/cssc.201100498 10.1039/C4CY00175C 10.1002/cssc.200900296 10.1002/anie.200601921 10.1002/cssc.201301204 10.1039/b808471h 10.1007/s10562-009-0136-3 10.1039/C2EE23057G 10.1039/c1cc10422e 10.1002/anie.200460587 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acs.accounts.7b00614 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-4898 |
EndPage | 768 |
ExternalDocumentID | 29443505 10_1021_acs_accounts_7b00614 b28881455 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 23M 53G 55A 5GY 5VS 7~N 85S AABXI ABFLS ABMVS ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 P2P RNS ROL TWZ UI2 UPT VF5 VG9 W1F WH7 X YZZ --- -DZ -~X 4.4 5ZA 6J9 6P2 AAYXX ABBLG ABJNI ABLBI ABQRX ACGFO ADHLV AFXLT AGXLV AHGAQ CITATION CUPRZ GGK IH2 XSW ZCA ~02 NPM 7X8 |
ID | FETCH-LOGICAL-a414t-b567b161adc166235faa3c6d63b8ff7e77d32a65e2808829e5c9881d2fa7551f3 |
IEDL.DBID | ACS |
ISSN | 0001-4842 1520-4898 |
IngestDate | Fri Jul 11 16:10:32 EDT 2025 Thu Apr 03 07:05:26 EDT 2025 Thu Apr 24 23:01:05 EDT 2025 Tue Jul 01 03:16:00 EDT 2025 Thu Aug 27 13:42:32 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | http://pubs.acs.org/page/policy/authorchoice_termsofuse.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a414t-b567b161adc166235faa3c6d63b8ff7e77d32a65e2808829e5c9881d2fa7551f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9850-7325 0000-0002-8468-7721 0000-0001-8559-6509 |
PMID | 29443505 |
PQID | 2002483040 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2002483040 pubmed_primary_29443505 crossref_primary_10_1021_acs_accounts_7b00614 crossref_citationtrail_10_1021_acs_accounts_7b00614 acs_journals_10_1021_acs_accounts_7b00614 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-03-20 |
PublicationDateYYYYMMDD | 2018-03-20 |
PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Accounts of chemical research |
PublicationTitleAlternate | Acc. Chem. Res |
PublicationYear | 2018 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 Krässig H. (ref4/cit4) 2000 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref14/cit14 doi: 10.1021/cs1001515 – ident: ref23/cit23 doi: 10.1002/cctc.201300731 – ident: ref41/cit41 doi: 10.1021/acs.chemrev.5b00203 – ident: ref20/cit20 doi: 10.1016/j.cattod.2015.08.026 – ident: ref27/cit27 doi: 10.1002/cssc.201000092 – ident: ref48/cit48 doi: 10.1039/c0cc02014a – ident: ref3/cit3 doi: 10.1021/acs.chemrev.7b00395 – ident: ref54/cit54 doi: 10.1002/cssc.201600279 – ident: ref45/cit45 doi: 10.1021/acscatal.7b01295 – ident: ref13/cit13 doi: 10.1016/j.apcatb.2013.09.046 – ident: ref21/cit21 doi: 10.1039/C3GC41357H – ident: ref52/cit52 doi: 10.1021/cs300845f – ident: ref12/cit12 doi: 10.1039/C0GC00666A – ident: ref37/cit37 doi: 10.1039/c001096k – ident: ref59/cit59 doi: 10.1021/acs.iecr.7b03918 – ident: ref8/cit8 doi: 10.1016/j.apcata.2011.10.014 – ident: ref35/cit35 doi: 10.1039/c2cy20119d – ident: ref2/cit2 doi: 10.1039/c3gc00060e – ident: ref25/cit25 doi: 10.1002/cssc.201000087 – ident: ref33/cit33 doi: 10.1039/c3gc40945g – ident: ref22/cit22 doi: 10.1039/C0CC04311G – ident: ref49/cit49 doi: 10.1039/c0gc00235f – ident: ref19/cit19 doi: 10.1016/j.catcom.2014.05.008 – ident: ref43/cit43 doi: 10.1039/C5GC00319A – ident: ref38/cit38 doi: 10.1039/c000075b – ident: ref58/cit58 doi: 10.1021/acs.jpcc.5b06476 – ident: ref51/cit51 doi: 10.1016/j.apcata.2011.08.039 – ident: ref44/cit44 doi: 10.1016/j.apcata.2015.07.034 – ident: ref16/cit16 doi: 10.1002/anie.200702661 – ident: ref9/cit9 doi: 10.1021/ie50421a004 – ident: ref24/cit24 doi: 10.1021/acscatal.5b00707 – ident: ref56/cit56 doi: 10.1002/cssc.201301296 – ident: ref26/cit26 doi: 10.1006/jcat.2002.3523 – ident: ref42/cit42 doi: 10.1002/cctc.201301020 – ident: ref46/cit46 doi: 10.1021/ja803983h – ident: ref6/cit6 doi: 10.1002/cssc.200900188 – ident: ref57/cit57 doi: 10.1021/acscatal.5b01172 – ident: ref29/cit29 doi: 10.1021/ef500717p – ident: ref40/cit40 doi: 10.1016/0079-6700(94)90033-7 – ident: ref15/cit15 doi: 10.1007/s11244-012-9785-3 – ident: ref10/cit10 doi: 10.1007/BF01173350 – ident: ref53/cit53 doi: 10.1039/C5SC03377B – volume-title: Ullmann’s Encyclopedia of Industrial Chemistry year: 2000 ident: ref4/cit4 – ident: ref18/cit18 doi: 10.1016/j.cattod.2013.09.057 – ident: ref34/cit34 doi: 10.1016/j.jcat.2013.10.022 – ident: ref30/cit30 doi: 10.1002/cssc.201100782 – ident: ref50/cit50 doi: 10.1246/cl.2011.1195 – ident: ref5/cit5 doi: 10.1039/c004654j – ident: ref36/cit36 doi: 10.1039/C5GC03077C – ident: ref28/cit28 doi: 10.1002/cssc.201100498 – ident: ref55/cit55 doi: 10.1039/C4CY00175C – ident: ref7/cit7 doi: 10.1002/cssc.200900296 – ident: ref11/cit11 doi: 10.1002/anie.200601921 – ident: ref31/cit31 doi: 10.1002/cssc.201301204 – ident: ref47/cit47 doi: 10.1039/b808471h – ident: ref17/cit17 doi: 10.1007/s10562-009-0136-3 – ident: ref32/cit32 doi: 10.1039/C2EE23057G – ident: ref39/cit39 doi: 10.1039/c1cc10422e – ident: ref1/cit1 doi: 10.1002/anie.200460587 |
SSID | ssj0002467 |
Score | 2.6317167 |
Snippet | Cellulosic biomass is the largest source of renewable organic carbon on our planet. Cellulose accounts for 40–50 wt % of this lignocellulose, and it is a... Cellulosic biomass is the largest source of renewable organic carbon on our planet. Cellulose accounts for 40-50 wt % of this lignocellulose, and it is a... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 761 |
Title | Cellulose Depolymerization over Heterogeneous Catalysts |
URI | http://dx.doi.org/10.1021/acs.accounts.7b00614 https://www.ncbi.nlm.nih.gov/pubmed/29443505 https://www.proquest.com/docview/2002483040 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFLZQGWDhPsqlILEwpDSOr4woUFVIwACVukW2Yy9EDSLJUH49zzmKAFXAGtlPeoft7-VdCF2AWlWqhfH5kFmfKCZ8FQbaV8OI08AoppkrFL5_YOMJuZvS6aej-D2Cj4MrqQsgXU9OKAbcWYmbW72KGZxjB4Xip8XNiwlremSCi0wEwV2p3BIq7kHSxdcHaQnKrF-b0SZ67Gp2miSTl0FVqoF-_9nC8Y-MbKGNFnh6142lbKMVM9tBa3E3720X8dhkWZXlhfFuAJVncxfLaYo0PZfn6Y1d5kwOBmfyqvBi999nXpTFHpqMbp_jsd-OVfAlCUjpK8q4AqAnUx0wQD_UShlqlrJQCWu54TwNsWTUYOHwd2SojgTAWmwlB3xlw33Um-Uzc4i8wFqrwclKBWUkNUJpbSNwEA0QCgDp9dElcJ20x6JI6og3DhL3sRNF0oqij8JOD4lu-5O7MRnZL7v8xa7Xpj_HL-vPOxUnIF8XHZG12Nw8TkxECJdaHx00ul9QxBEBWDmkR__g5xitA7iq6xfx8AT1yrfKnAKAKdVZbbUfjVTtrw |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ25TsQwEEBHCApouI_lDBINRZaN4yslCqDlbDhEF8WO3RDtIpwt4OsZ51gEEkK0UTyyxxP7OeOZATjCaVWFliYUA25DqrgMVRzpUA0SwSKjuOY-UPj2jg8f6dUze54B1sXCYCccSnK1E_8ru0B04p_lTQEF1xfeWHz56jnkEeIN-zS9ny7AhPImVSaelKmkpIuY-0WK35e0-74v_QKb9aZzsQRP0-7Wd01e-pNK9fXHj0yO_x7PMiy2GBqcNnazAjNmtArzaVf9bQ1EaspyUo6dCc6Q0ct379lpQjYDf-szGPp7NGM0PzOeuCD1f4HeXeXW4fHi_CEdhm2RhTCnEa1CxbhQiH15oSOOLMRsnseaFzxW0lphhChiknNmiPQ0nhimE4mQS2wukLZsvAGzo_HIbEEQWWs1HrkKyTgtjFRa2wSPiwYFRch9PTjGUWftR-Ky2v9Nosw_7FSRtaroQdxNR6bbbOW-aEb5R6tw2uq1ydbxx_uH3UxnqF_vK8lrtfnqnITKGJe4Hmw2JjCVSBKKkDlg2_8YzwHMDx9ub7Kby7vrHVhA7KojG8lgF2art4nZQ7Sp1H5tyJ9Zm_YQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFA6ioF7cl3Gt4MVDx2maJulRqsO4IqggXkqTJhfLjJjOQX-973UZVBDRa2geyctL8qVv-Qg5hGVVuZbGFz1ufaa49FUYaF_1YhEFRnHNMVH4-oYPHtjFY_T4ieoLBuFAkquc-LirX3LbVBgIjrE9q0kUXFegwSCF9Qx67tC4T5K7ySFMGa_LZcJrmUlG26y5H6Tg3aTd17vpB8BZXTz9RfI0GXIVb_LcHZeqq9-_VXP815yWyEIDR72T2n6WyZQZrpC5pGWBWyUiMUUxLkbOeKeA1Ys39PDUqZseRn96A4ynGYEZmtHYeQn-DXpzpVsjD_2z-2TgN2QLfsYCVvoq4kIB_MtyHXDARJHNslDznIdKWiuMEHlIMx4ZKhGVxybSsQSwS20mAHXZcJ1MD0dDs0m8wFqr4emVy4iz3EiltY3h2WhAUAD4r0OOYNZps1lcWvnBaZBiY6uKtFFFh4TtkqS6qVqO5BnFL738Sa-XumrHL98ftKudgn7RZ5JVakOWTspkCEddh2zUZjCRSGMGYLMXbf1hPvtk9va0n16d31xuk3lAX1WCI-3tkOnydWx2AeGUaq-y5Q9IEfiT |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cellulose+Depolymerization+over+Heterogeneous+Catalysts&rft.jtitle=Accounts+of+chemical+research&rft.au=Shrotri%2C+Abhijit&rft.au=Kobayashi%2C+Hirokazu&rft.au=Fukuoka%2C+Atsushi&rft.date=2018-03-20&rft.pub=American+Chemical+Society&rft.issn=0001-4842&rft.eissn=1520-4898&rft.volume=51&rft.issue=3&rft.spage=761&rft.epage=768&rft_id=info:doi/10.1021%2Facs.accounts.7b00614&rft.externalDocID=b28881455 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon |