Cellulose Depolymerization over Heterogeneous Catalysts

Cellulosic biomass is the largest source of renewable organic carbon on our planet. Cellulose accounts for 40–50 wt % of this lignocellulose, and it is a feedstock for industrially important chemicals and fuels. The first step in cellulose conversion involves its depolymerization to glucose or to it...

Full description

Saved in:
Bibliographic Details
Published inAccounts of chemical research Vol. 51; no. 3; pp. 761 - 768
Main Authors Shrotri, Abhijit, Kobayashi, Hirokazu, Fukuoka, Atsushi
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 20.03.2018
Online AccessGet full text

Cover

Loading…
Abstract Cellulosic biomass is the largest source of renewable organic carbon on our planet. Cellulose accounts for 40–50 wt % of this lignocellulose, and it is a feedstock for industrially important chemicals and fuels. The first step in cellulose conversion involves its depolymerization to glucose or to its hydrogenated product sorbitol. The hydrolysis of cellulose to glucose by homogeneous mineral acids was the subject of research for almost a century. However, homogeneous acids have significant drawbacks and are neither economical nor environmentally friendly. In 2006, our group reported for the first time the ability of heterogeneous catalysts to depolymerize cellulose through hydrolytic hydrogenation to produce sorbitol. Later, we reported the hydrolysis of cellulose to glucose using carbon catalyst containing weakly acidic functional groups. Understanding the reaction between cellulose and heterogeneous catalyst is a challenge as the reaction occurs between a solid substrate and a solid catalyst. In this Account, we describe our efforts for the conversion of cellulose to sorbitol and glucose using heterogeneous catalysts. Sorbitol is produced by sequential hydrolysis and hydrogenation of cellulose in one pot. We reported sorbitol synthesis from cellulose in the presence of supported metal catalysts and H2 gas. The reducing environment of the reaction prevents byproduct formation, and harsh reaction conditions can be used to achieve sorbitol yield of up to 90%. Glucose is produced by acid catalyzed hydrolysis of cellulose, a more challenging reaction owing to the tendency of glucose to rapidly decompose in hot water. Sulfonated carbons were first reported as active catalysts for cellulose hydrolysis, but they were hydrothermally unstable under the reaction conditions. We found that carbon catalysts bearing weakly acidic functional groups such as hydroxyl and carboxylic acids are also active. Weakly acidic functional groups are hydrothermally stable, and a soluble sugar yield of 90% was achieved in a 20 min reaction. We clarified that the polycyclic aromatic surface of the carbon adsorbs cellulose molecules on its surface by CH−π and hydrophobic interactions driven by a positive change in entropy of the system. The adsorbed molecules are rapidly hydrolyzed by active sites containing vicinal functional groups that recognize the hydroxyl groups on cellulose to achieve a high frequency factor. This phenomenon is analogous to the hydrolysis of cellulose by enzymes that use CH−π and hydrophobic interactions along with weakly acidic carboxylic acid and carboxylate pair to catalyze the reaction. However, in comparison with enzymes, carbon catalyst is functional over a wide range of pH and temperatures. We also developed a continuous flow slurry process to demonstrate the feasibility for commercial application of carbon-catalyzed cellulose hydrolysis to glucose using inexpensive catalyst prepared by air oxidation. We believe that further efforts in this field should be directed toward eliminating roadblocks for the commercialization of cellulose conversion reactions.
AbstractList Cellulosic biomass is the largest source of renewable organic carbon on our planet. Cellulose accounts for 40-50 wt % of this lignocellulose, and it is a feedstock for industrially important chemicals and fuels. The first step in cellulose conversion involves its depolymerization to glucose or to its hydrogenated product sorbitol. The hydrolysis of cellulose to glucose by homogeneous mineral acids was the subject of research for almost a century. However, homogeneous acids have significant drawbacks and are neither economical nor environmentally friendly. In 2006, our group reported for the first time the ability of heterogeneous catalysts to depolymerize cellulose through hydrolytic hydrogenation to produce sorbitol. Later, we reported the hydrolysis of cellulose to glucose using carbon catalyst containing weakly acidic functional groups. Understanding the reaction between cellulose and heterogeneous catalyst is a challenge as the reaction occurs between a solid substrate and a solid catalyst. In this Account, we describe our efforts for the conversion of cellulose to sorbitol and glucose using heterogeneous catalysts. Sorbitol is produced by sequential hydrolysis and hydrogenation of cellulose in one pot. We reported sorbitol synthesis from cellulose in the presence of supported metal catalysts and H gas. The reducing environment of the reaction prevents byproduct formation, and harsh reaction conditions can be used to achieve sorbitol yield of up to 90%. Glucose is produced by acid catalyzed hydrolysis of cellulose, a more challenging reaction owing to the tendency of glucose to rapidly decompose in hot water. Sulfonated carbons were first reported as active catalysts for cellulose hydrolysis, but they were hydrothermally unstable under the reaction conditions. We found that carbon catalysts bearing weakly acidic functional groups such as hydroxyl and carboxylic acids are also active. Weakly acidic functional groups are hydrothermally stable, and a soluble sugar yield of 90% was achieved in a 20 min reaction. We clarified that the polycyclic aromatic surface of the carbon adsorbs cellulose molecules on its surface by CH-π and hydrophobic interactions driven by a positive change in entropy of the system. The adsorbed molecules are rapidly hydrolyzed by active sites containing vicinal functional groups that recognize the hydroxyl groups on cellulose to achieve a high frequency factor. This phenomenon is analogous to the hydrolysis of cellulose by enzymes that use CH-π and hydrophobic interactions along with weakly acidic carboxylic acid and carboxylate pair to catalyze the reaction. However, in comparison with enzymes, carbon catalyst is functional over a wide range of pH and temperatures. We also developed a continuous flow slurry process to demonstrate the feasibility for commercial application of carbon-catalyzed cellulose hydrolysis to glucose using inexpensive catalyst prepared by air oxidation. We believe that further efforts in this field should be directed toward eliminating roadblocks for the commercialization of cellulose conversion reactions.
Cellulosic biomass is the largest source of renewable organic carbon on our planet. Cellulose accounts for 40–50 wt % of this lignocellulose, and it is a feedstock for industrially important chemicals and fuels. The first step in cellulose conversion involves its depolymerization to glucose or to its hydrogenated product sorbitol. The hydrolysis of cellulose to glucose by homogeneous mineral acids was the subject of research for almost a century. However, homogeneous acids have significant drawbacks and are neither economical nor environmentally friendly. In 2006, our group reported for the first time the ability of heterogeneous catalysts to depolymerize cellulose through hydrolytic hydrogenation to produce sorbitol. Later, we reported the hydrolysis of cellulose to glucose using carbon catalyst containing weakly acidic functional groups. Understanding the reaction between cellulose and heterogeneous catalyst is a challenge as the reaction occurs between a solid substrate and a solid catalyst. In this Account, we describe our efforts for the conversion of cellulose to sorbitol and glucose using heterogeneous catalysts. Sorbitol is produced by sequential hydrolysis and hydrogenation of cellulose in one pot. We reported sorbitol synthesis from cellulose in the presence of supported metal catalysts and H2 gas. The reducing environment of the reaction prevents byproduct formation, and harsh reaction conditions can be used to achieve sorbitol yield of up to 90%. Glucose is produced by acid catalyzed hydrolysis of cellulose, a more challenging reaction owing to the tendency of glucose to rapidly decompose in hot water. Sulfonated carbons were first reported as active catalysts for cellulose hydrolysis, but they were hydrothermally unstable under the reaction conditions. We found that carbon catalysts bearing weakly acidic functional groups such as hydroxyl and carboxylic acids are also active. Weakly acidic functional groups are hydrothermally stable, and a soluble sugar yield of 90% was achieved in a 20 min reaction. We clarified that the polycyclic aromatic surface of the carbon adsorbs cellulose molecules on its surface by CH−π and hydrophobic interactions driven by a positive change in entropy of the system. The adsorbed molecules are rapidly hydrolyzed by active sites containing vicinal functional groups that recognize the hydroxyl groups on cellulose to achieve a high frequency factor. This phenomenon is analogous to the hydrolysis of cellulose by enzymes that use CH−π and hydrophobic interactions along with weakly acidic carboxylic acid and carboxylate pair to catalyze the reaction. However, in comparison with enzymes, carbon catalyst is functional over a wide range of pH and temperatures. We also developed a continuous flow slurry process to demonstrate the feasibility for commercial application of carbon-catalyzed cellulose hydrolysis to glucose using inexpensive catalyst prepared by air oxidation. We believe that further efforts in this field should be directed toward eliminating roadblocks for the commercialization of cellulose conversion reactions.
Cellulosic biomass is the largest source of renewable organic carbon on our planet. Cellulose accounts for 40-50 wt % of this lignocellulose, and it is a feedstock for industrially important chemicals and fuels. The first step in cellulose conversion involves its depolymerization to glucose or to its hydrogenated product sorbitol. The hydrolysis of cellulose to glucose by homogeneous mineral acids was the subject of research for almost a century. However, homogeneous acids have significant drawbacks and are neither economical nor environmentally friendly. In 2006, our group reported for the first time the ability of heterogeneous catalysts to depolymerize cellulose through hydrolytic hydrogenation to produce sorbitol. Later, we reported the hydrolysis of cellulose to glucose using carbon catalyst containing weakly acidic functional groups. Understanding the reaction between cellulose and heterogeneous catalyst is a challenge as the reaction occurs between a solid substrate and a solid catalyst. In this Account, we describe our efforts for the conversion of cellulose to sorbitol and glucose using heterogeneous catalysts. Sorbitol is produced by sequential hydrolysis and hydrogenation of cellulose in one pot. We reported sorbitol synthesis from cellulose in the presence of supported metal catalysts and H2 gas. The reducing environment of the reaction prevents byproduct formation, and harsh reaction conditions can be used to achieve sorbitol yield of up to 90%. Glucose is produced by acid catalyzed hydrolysis of cellulose, a more challenging reaction owing to the tendency of glucose to rapidly decompose in hot water. Sulfonated carbons were first reported as active catalysts for cellulose hydrolysis, but they were hydrothermally unstable under the reaction conditions. We found that carbon catalysts bearing weakly acidic functional groups such as hydroxyl and carboxylic acids are also active. Weakly acidic functional groups are hydrothermally stable, and a soluble sugar yield of 90% was achieved in a 20 min reaction. We clarified that the polycyclic aromatic surface of the carbon adsorbs cellulose molecules on its surface by CH-π and hydrophobic interactions driven by a positive change in entropy of the system. The adsorbed molecules are rapidly hydrolyzed by active sites containing vicinal functional groups that recognize the hydroxyl groups on cellulose to achieve a high frequency factor. This phenomenon is analogous to the hydrolysis of cellulose by enzymes that use CH-π and hydrophobic interactions along with weakly acidic carboxylic acid and carboxylate pair to catalyze the reaction. However, in comparison with enzymes, carbon catalyst is functional over a wide range of pH and temperatures. We also developed a continuous flow slurry process to demonstrate the feasibility for commercial application of carbon-catalyzed cellulose hydrolysis to glucose using inexpensive catalyst prepared by air oxidation. We believe that further efforts in this field should be directed toward eliminating roadblocks for the commercialization of cellulose conversion reactions.Cellulosic biomass is the largest source of renewable organic carbon on our planet. Cellulose accounts for 40-50 wt % of this lignocellulose, and it is a feedstock for industrially important chemicals and fuels. The first step in cellulose conversion involves its depolymerization to glucose or to its hydrogenated product sorbitol. The hydrolysis of cellulose to glucose by homogeneous mineral acids was the subject of research for almost a century. However, homogeneous acids have significant drawbacks and are neither economical nor environmentally friendly. In 2006, our group reported for the first time the ability of heterogeneous catalysts to depolymerize cellulose through hydrolytic hydrogenation to produce sorbitol. Later, we reported the hydrolysis of cellulose to glucose using carbon catalyst containing weakly acidic functional groups. Understanding the reaction between cellulose and heterogeneous catalyst is a challenge as the reaction occurs between a solid substrate and a solid catalyst. In this Account, we describe our efforts for the conversion of cellulose to sorbitol and glucose using heterogeneous catalysts. Sorbitol is produced by sequential hydrolysis and hydrogenation of cellulose in one pot. We reported sorbitol synthesis from cellulose in the presence of supported metal catalysts and H2 gas. The reducing environment of the reaction prevents byproduct formation, and harsh reaction conditions can be used to achieve sorbitol yield of up to 90%. Glucose is produced by acid catalyzed hydrolysis of cellulose, a more challenging reaction owing to the tendency of glucose to rapidly decompose in hot water. Sulfonated carbons were first reported as active catalysts for cellulose hydrolysis, but they were hydrothermally unstable under the reaction conditions. We found that carbon catalysts bearing weakly acidic functional groups such as hydroxyl and carboxylic acids are also active. Weakly acidic functional groups are hydrothermally stable, and a soluble sugar yield of 90% was achieved in a 20 min reaction. We clarified that the polycyclic aromatic surface of the carbon adsorbs cellulose molecules on its surface by CH-π and hydrophobic interactions driven by a positive change in entropy of the system. The adsorbed molecules are rapidly hydrolyzed by active sites containing vicinal functional groups that recognize the hydroxyl groups on cellulose to achieve a high frequency factor. This phenomenon is analogous to the hydrolysis of cellulose by enzymes that use CH-π and hydrophobic interactions along with weakly acidic carboxylic acid and carboxylate pair to catalyze the reaction. However, in comparison with enzymes, carbon catalyst is functional over a wide range of pH and temperatures. We also developed a continuous flow slurry process to demonstrate the feasibility for commercial application of carbon-catalyzed cellulose hydrolysis to glucose using inexpensive catalyst prepared by air oxidation. We believe that further efforts in this field should be directed toward eliminating roadblocks for the commercialization of cellulose conversion reactions.
Author Shrotri, Abhijit
Kobayashi, Hirokazu
Fukuoka, Atsushi
AuthorAffiliation Institute for Catalysis
Hokkaido University
AuthorAffiliation_xml – name: Institute for Catalysis
– name: Hokkaido University
Author_xml – sequence: 1
  givenname: Abhijit
  orcidid: 0000-0001-9850-7325
  surname: Shrotri
  fullname: Shrotri, Abhijit
– sequence: 2
  givenname: Hirokazu
  orcidid: 0000-0001-8559-6509
  surname: Kobayashi
  fullname: Kobayashi, Hirokazu
– sequence: 3
  givenname: Atsushi
  orcidid: 0000-0002-8468-7721
  surname: Fukuoka
  fullname: Fukuoka, Atsushi
  email: fukuoka@cat.hokudai.ac.jp
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29443505$$D View this record in MEDLINE/PubMed
BookMark eNqFkMlOwzAQhi1URBd4A4Ry5JJiO97CDYWlSJW4wDlynAlKlcTFdpDK05NuHDjAyWPN949mvikadbYDhC4JnhNMyY02fq6NsX0X_FwWGAvCTtCEcIpjplI1QhOMMRlqRsdo6v1q-FIm5Bka05SxhGM-QTKDpukb6yG6h7VtNi24-kuH2naR_QQXLSCAs-_Qge19lOmgm40P_hydVrrxcHF4Z-jt8eE1W8TLl6fn7G4Za0ZYiAsuZEEE0aUhQtCEV1onRpQiKVRVSZCyTKgWHKjCStEUuEmVIiWttOScVMkMXe_nrp396MGHvK29GXbWu4Vyur1JJZjhAb06oH3RQpmvXd1qt8mPxw4A2wPGWe8dVD8IwfnWaT44zY9O84PTIXb7K2bqsDMUnK6b_8J4H952V7Z33WDr78g3hkqRnQ
CitedBy_id crossref_primary_10_1016_j_mcat_2019_110459
crossref_primary_10_1002_adfm_202421143
crossref_primary_10_1002_anie_202013843
crossref_primary_10_1016_j_apcata_2019_04_031
crossref_primary_10_1039_D1RA06737K
crossref_primary_10_1039_D3GC04082H
crossref_primary_10_1039_D1CY02225C
crossref_primary_10_1016_j_carbpol_2022_120388
crossref_primary_10_1021_acscatal_1c00217
crossref_primary_10_1016_j_apcatb_2023_123599
crossref_primary_10_1134_S0965545X23700773
crossref_primary_10_1007_s11947_024_03738_w
crossref_primary_10_1039_D2GC01303G
crossref_primary_10_3390_fermentation6010031
crossref_primary_10_1039_D2IM00054G
crossref_primary_10_1002_open_201900283
crossref_primary_10_1021_acsmacrolett_0c00024
crossref_primary_10_1039_D1GC01690C
crossref_primary_10_1016_j_biortech_2022_127861
crossref_primary_10_1016_j_ijhydene_2022_11_314
crossref_primary_10_1016_j_biombioe_2023_106722
crossref_primary_10_1016_j_fuel_2022_124642
crossref_primary_10_1016_j_jcat_2024_115860
crossref_primary_10_1039_D0GC03745A
crossref_primary_10_1016_j_clay_2020_105512
crossref_primary_10_1016_j_jaap_2022_105659
crossref_primary_10_1002_ange_201913023
crossref_primary_10_1039_D3EY00147D
crossref_primary_10_2174_1570178620666230731152241
crossref_primary_10_1038_s41428_018_0140_9
crossref_primary_10_1038_s41570_023_00567_x
crossref_primary_10_1134_S0036023624600527
crossref_primary_10_1016_j_carbon_2024_119545
crossref_primary_10_1002_ijch_202200119
crossref_primary_10_1016_j_jobab_2024_09_001
crossref_primary_10_1627_jpi_66_48
crossref_primary_10_1016_j_apcatb_2020_118732
crossref_primary_10_1039_C9GC02949D
crossref_primary_10_1246_bcsj_20190287
crossref_primary_10_1016_j_fuel_2022_123882
crossref_primary_10_1016_j_cej_2024_153038
crossref_primary_10_1021_acsanm_2c00354
crossref_primary_10_1016_j_cej_2022_139206
crossref_primary_10_1016_j_fuproc_2019_106155
crossref_primary_10_1016_j_ijbiomac_2024_135060
crossref_primary_10_1039_D0GC03190A
crossref_primary_10_1016_j_apcata_2019_117182
crossref_primary_10_1021_acs_inorgchem_4c02799
crossref_primary_10_1016_j_cattod_2023_02_007
crossref_primary_10_1002_pol_20220755
crossref_primary_10_1016_j_fuproc_2019_106162
crossref_primary_10_31857_S0044457X24040059
crossref_primary_10_1016_j_carres_2019_107826
crossref_primary_10_1016_j_ijbiomac_2025_140496
crossref_primary_10_1016_j_apcatb_2022_121785
crossref_primary_10_1002_elsc_202100025
crossref_primary_10_1021_acssuschemeng_4c08961
crossref_primary_10_1016_j_ccr_2023_215622
crossref_primary_10_1039_D1GC03725K
crossref_primary_10_1021_acsomega_8b02754
crossref_primary_10_1039_D0CY00783H
crossref_primary_10_1039_D1GC00376C
crossref_primary_10_1016_j_cej_2024_158384
crossref_primary_10_1039_D4CY00266K
crossref_primary_10_1021_acssuschemeng_2c06675
crossref_primary_10_1002_cssc_202001068
crossref_primary_10_1039_D0RA05641C
crossref_primary_10_1080_01614940_2020_1819936
crossref_primary_10_1038_s41570_022_00411_8
crossref_primary_10_1016_j_fuproc_2019_106175
crossref_primary_10_1002_cssc_201901110
crossref_primary_10_1016_j_carres_2019_02_002
crossref_primary_10_1021_acsapm_4c02440
crossref_primary_10_2174_2211544712666230322092202
crossref_primary_10_1039_D4CS00244J
crossref_primary_10_1002_star_201800144
crossref_primary_10_14710_jksa_23_6_209_215
crossref_primary_10_1039_D0CY02230F
crossref_primary_10_1021_acs_langmuir_4c03636
crossref_primary_10_1002_slct_202103804
crossref_primary_10_1007_s13399_023_04378_4
crossref_primary_10_2139_ssrn_4167600
crossref_primary_10_3390_catal9080674
crossref_primary_10_1007_s11696_025_03970_4
crossref_primary_10_1016_j_cej_2023_146657
crossref_primary_10_1016_j_apcatb_2019_117826
crossref_primary_10_1016_j_jcat_2024_115382
crossref_primary_10_1021_acssuschemeng_8b03683
crossref_primary_10_1007_s11144_022_02176_z
crossref_primary_10_1016_j_cattod_2022_08_012
crossref_primary_10_1002_cssc_201900800
crossref_primary_10_32604_jrm_2023_026314
crossref_primary_10_1016_j_gee_2019_01_009
crossref_primary_10_1021_acscatal_1c03045
crossref_primary_10_1007_s42452_024_05680_0
crossref_primary_10_1016_j_mcat_2019_110400
crossref_primary_10_1016_j_mtsust_2020_100058
crossref_primary_10_1021_acs_biomac_4c01382
crossref_primary_10_1021_acssuschemeng_9b06264
crossref_primary_10_1002_cphc_202000455
crossref_primary_10_1002_hlca_202200032
crossref_primary_10_1186_s40643_024_00768_2
crossref_primary_10_2139_ssrn_3949253
crossref_primary_10_1080_01614940_2022_2111070
crossref_primary_10_1016_j_flatc_2023_100543
crossref_primary_10_1016_j_fuel_2025_135136
crossref_primary_10_1021_acsomega_8b03088
crossref_primary_10_1021_acssuschemeng_4c08126
crossref_primary_10_3846_jeelm_2022_16744
crossref_primary_10_1016_j_ijhydene_2022_09_202
crossref_primary_10_1016_j_cattod_2023_114086
crossref_primary_10_3389_fchem_2019_00834
crossref_primary_10_1016_j_fuel_2022_125446
crossref_primary_10_1016_j_catcom_2023_106726
crossref_primary_10_1007_s13399_025_06555_z
crossref_primary_10_1021_acssuschemeng_0c09051
crossref_primary_10_1016_j_jece_2023_109290
crossref_primary_10_3390_en13174394
crossref_primary_10_1016_j_renene_2020_02_034
crossref_primary_10_1007_s13399_020_00802_1
crossref_primary_10_3389_fchem_2021_831102
crossref_primary_10_3390_polym15183671
crossref_primary_10_1021_acs_chemrev_9b00199
crossref_primary_10_2139_ssrn_4119328
crossref_primary_10_2139_ssrn_3975663
crossref_primary_10_1002_pls2_10159
crossref_primary_10_1021_acssuschemeng_3c01602
crossref_primary_10_1039_D0CS00314J
crossref_primary_10_1039_D0NJ00919A
crossref_primary_10_1021_acssuschemeng_1c00469
crossref_primary_10_1039_C8DT00828K
crossref_primary_10_1007_s10562_020_03402_w
crossref_primary_10_1002_bit_27877
crossref_primary_10_1002_cphc_201801160
crossref_primary_10_1016_j_mcat_2020_110883
crossref_primary_10_1016_j_carbpol_2019_115503
crossref_primary_10_1007_s10930_020_09906_z
crossref_primary_10_1007_s10562_020_03497_1
crossref_primary_10_1021_acscatal_3c01440
crossref_primary_10_3390_en16010256
crossref_primary_10_2174_0124055204263490231103114459
crossref_primary_10_1021_acssuschemeng_8b03539
crossref_primary_10_3390_catal12060653
crossref_primary_10_1002_cplu_202300554
crossref_primary_10_1016_j_carres_2021_108341
crossref_primary_10_1016_j_apcatb_2024_124217
crossref_primary_10_1016_j_joule_2019_05_020
crossref_primary_10_1016_j_cej_2024_152336
crossref_primary_10_1039_D5GC00924C
crossref_primary_10_3390_polym11091417
crossref_primary_10_1007_s10570_020_03411_3
crossref_primary_10_1016_j_supflu_2020_104827
crossref_primary_10_7209_tanso_2019_211
crossref_primary_10_2174_1573413715666190716123250
crossref_primary_10_1039_C9RA05748J
crossref_primary_10_1039_C9RA07668A
crossref_primary_10_1155_2018_4723573
crossref_primary_10_1016_j_ccst_2024_100264
crossref_primary_10_1002_cssc_202400954
crossref_primary_10_1016_j_ijbiomac_2024_137062
crossref_primary_10_1039_D1RA09225A
crossref_primary_10_1039_D2GC01289H
crossref_primary_10_2174_2213337208666211129090444
crossref_primary_10_2139_ssrn_4163534
crossref_primary_10_3389_fpls_2021_731977
crossref_primary_10_3390_chemistry5010028
crossref_primary_10_1002_anie_201913023
crossref_primary_10_3390_polym17070857
crossref_primary_10_1021_acssuschemeng_1c04290
crossref_primary_10_1021_acscatal_2c01717
crossref_primary_10_4028_www_scientific_net_KEM_849_72
crossref_primary_10_1080_17597269_2023_2221969
crossref_primary_10_1002_ange_202013843
crossref_primary_10_3390_foods13223585
crossref_primary_10_3390_catal9090753
crossref_primary_10_1007_s11356_022_19726_6
crossref_primary_10_1007_s13399_021_02062_z
crossref_primary_10_1016_j_jechem_2022_06_043
crossref_primary_10_1016_j_biortech_2020_124159
crossref_primary_10_1039_D0GC04268D
crossref_primary_10_1016_j_gee_2022_07_003
crossref_primary_10_1021_acssuschemeng_1c05273
crossref_primary_10_1016_j_fuproc_2021_106847
crossref_primary_10_1039_D3CC00902E
crossref_primary_10_9767_bcrec_16_3_10635_661_672
crossref_primary_10_1016_j_crgsc_2021_100230
crossref_primary_10_1016_j_apcata_2021_118177
crossref_primary_10_1039_C9CC00802K
crossref_primary_10_1007_s12649_022_01975_8
crossref_primary_10_1039_C9GC02201E
crossref_primary_10_1007_s10924_022_02388_3
crossref_primary_10_1016_S1872_2067_20_63569_0
crossref_primary_10_1002_cssc_202401399
crossref_primary_10_1627_jpi_63_221
crossref_primary_10_1039_D0GC01561J
crossref_primary_10_1007_s11356_021_12793_1
crossref_primary_10_3390_molecules24091832
crossref_primary_10_1002_sstr_202200224
crossref_primary_10_1016_j_carbpol_2021_117652
crossref_primary_10_1016_j_fuproc_2019_02_002
crossref_primary_10_5059_yukigoseikyokaishi_82_719
crossref_primary_10_1016_j_procbio_2018_05_012
Cites_doi 10.1021/cs1001515
10.1002/cctc.201300731
10.1021/acs.chemrev.5b00203
10.1016/j.cattod.2015.08.026
10.1002/cssc.201000092
10.1039/c0cc02014a
10.1021/acs.chemrev.7b00395
10.1002/cssc.201600279
10.1021/acscatal.7b01295
10.1016/j.apcatb.2013.09.046
10.1039/C3GC41357H
10.1021/cs300845f
10.1039/C0GC00666A
10.1039/c001096k
10.1021/acs.iecr.7b03918
10.1016/j.apcata.2011.10.014
10.1039/c2cy20119d
10.1039/c3gc00060e
10.1002/cssc.201000087
10.1039/c3gc40945g
10.1039/C0CC04311G
10.1039/c0gc00235f
10.1016/j.catcom.2014.05.008
10.1039/C5GC00319A
10.1039/c000075b
10.1021/acs.jpcc.5b06476
10.1016/j.apcata.2011.08.039
10.1016/j.apcata.2015.07.034
10.1002/anie.200702661
10.1021/ie50421a004
10.1021/acscatal.5b00707
10.1002/cssc.201301296
10.1006/jcat.2002.3523
10.1002/cctc.201301020
10.1021/ja803983h
10.1002/cssc.200900188
10.1021/acscatal.5b01172
10.1021/ef500717p
10.1016/0079-6700(94)90033-7
10.1007/s11244-012-9785-3
10.1007/BF01173350
10.1039/C5SC03377B
10.1016/j.cattod.2013.09.057
10.1016/j.jcat.2013.10.022
10.1002/cssc.201100782
10.1246/cl.2011.1195
10.1039/c004654j
10.1039/C5GC03077C
10.1002/cssc.201100498
10.1039/C4CY00175C
10.1002/cssc.200900296
10.1002/anie.200601921
10.1002/cssc.201301204
10.1039/b808471h
10.1007/s10562-009-0136-3
10.1039/C2EE23057G
10.1039/c1cc10422e
10.1002/anie.200460587
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acs.accounts.7b00614
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-4898
EndPage 768
ExternalDocumentID 29443505
10_1021_acs_accounts_7b00614
b28881455
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
23M
53G
55A
5GY
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
RNS
ROL
TWZ
UI2
UPT
VF5
VG9
W1F
WH7
X
YZZ
---
-DZ
-~X
4.4
5ZA
6J9
6P2
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
AFXLT
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
ZCA
~02
NPM
7X8
ID FETCH-LOGICAL-a414t-b567b161adc166235faa3c6d63b8ff7e77d32a65e2808829e5c9881d2fa7551f3
IEDL.DBID ACS
ISSN 0001-4842
1520-4898
IngestDate Fri Jul 11 16:10:32 EDT 2025
Thu Apr 03 07:05:26 EDT 2025
Thu Apr 24 23:01:05 EDT 2025
Tue Jul 01 03:16:00 EDT 2025
Thu Aug 27 13:42:32 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://pubs.acs.org/page/policy/authorchoice_termsofuse.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a414t-b567b161adc166235faa3c6d63b8ff7e77d32a65e2808829e5c9881d2fa7551f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9850-7325
0000-0002-8468-7721
0000-0001-8559-6509
PMID 29443505
PQID 2002483040
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2002483040
pubmed_primary_29443505
crossref_primary_10_1021_acs_accounts_7b00614
crossref_citationtrail_10_1021_acs_accounts_7b00614
acs_journals_10_1021_acs_accounts_7b00614
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-03-20
PublicationDateYYYYMMDD 2018-03-20
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-20
  day: 20
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Accounts of chemical research
PublicationTitleAlternate Acc. Chem. Res
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
Krässig H. (ref4/cit4) 2000
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref14/cit14
  doi: 10.1021/cs1001515
– ident: ref23/cit23
  doi: 10.1002/cctc.201300731
– ident: ref41/cit41
  doi: 10.1021/acs.chemrev.5b00203
– ident: ref20/cit20
  doi: 10.1016/j.cattod.2015.08.026
– ident: ref27/cit27
  doi: 10.1002/cssc.201000092
– ident: ref48/cit48
  doi: 10.1039/c0cc02014a
– ident: ref3/cit3
  doi: 10.1021/acs.chemrev.7b00395
– ident: ref54/cit54
  doi: 10.1002/cssc.201600279
– ident: ref45/cit45
  doi: 10.1021/acscatal.7b01295
– ident: ref13/cit13
  doi: 10.1016/j.apcatb.2013.09.046
– ident: ref21/cit21
  doi: 10.1039/C3GC41357H
– ident: ref52/cit52
  doi: 10.1021/cs300845f
– ident: ref12/cit12
  doi: 10.1039/C0GC00666A
– ident: ref37/cit37
  doi: 10.1039/c001096k
– ident: ref59/cit59
  doi: 10.1021/acs.iecr.7b03918
– ident: ref8/cit8
  doi: 10.1016/j.apcata.2011.10.014
– ident: ref35/cit35
  doi: 10.1039/c2cy20119d
– ident: ref2/cit2
  doi: 10.1039/c3gc00060e
– ident: ref25/cit25
  doi: 10.1002/cssc.201000087
– ident: ref33/cit33
  doi: 10.1039/c3gc40945g
– ident: ref22/cit22
  doi: 10.1039/C0CC04311G
– ident: ref49/cit49
  doi: 10.1039/c0gc00235f
– ident: ref19/cit19
  doi: 10.1016/j.catcom.2014.05.008
– ident: ref43/cit43
  doi: 10.1039/C5GC00319A
– ident: ref38/cit38
  doi: 10.1039/c000075b
– ident: ref58/cit58
  doi: 10.1021/acs.jpcc.5b06476
– ident: ref51/cit51
  doi: 10.1016/j.apcata.2011.08.039
– ident: ref44/cit44
  doi: 10.1016/j.apcata.2015.07.034
– ident: ref16/cit16
  doi: 10.1002/anie.200702661
– ident: ref9/cit9
  doi: 10.1021/ie50421a004
– ident: ref24/cit24
  doi: 10.1021/acscatal.5b00707
– ident: ref56/cit56
  doi: 10.1002/cssc.201301296
– ident: ref26/cit26
  doi: 10.1006/jcat.2002.3523
– ident: ref42/cit42
  doi: 10.1002/cctc.201301020
– ident: ref46/cit46
  doi: 10.1021/ja803983h
– ident: ref6/cit6
  doi: 10.1002/cssc.200900188
– ident: ref57/cit57
  doi: 10.1021/acscatal.5b01172
– ident: ref29/cit29
  doi: 10.1021/ef500717p
– ident: ref40/cit40
  doi: 10.1016/0079-6700(94)90033-7
– ident: ref15/cit15
  doi: 10.1007/s11244-012-9785-3
– ident: ref10/cit10
  doi: 10.1007/BF01173350
– ident: ref53/cit53
  doi: 10.1039/C5SC03377B
– volume-title: Ullmann’s Encyclopedia of Industrial Chemistry
  year: 2000
  ident: ref4/cit4
– ident: ref18/cit18
  doi: 10.1016/j.cattod.2013.09.057
– ident: ref34/cit34
  doi: 10.1016/j.jcat.2013.10.022
– ident: ref30/cit30
  doi: 10.1002/cssc.201100782
– ident: ref50/cit50
  doi: 10.1246/cl.2011.1195
– ident: ref5/cit5
  doi: 10.1039/c004654j
– ident: ref36/cit36
  doi: 10.1039/C5GC03077C
– ident: ref28/cit28
  doi: 10.1002/cssc.201100498
– ident: ref55/cit55
  doi: 10.1039/C4CY00175C
– ident: ref7/cit7
  doi: 10.1002/cssc.200900296
– ident: ref11/cit11
  doi: 10.1002/anie.200601921
– ident: ref31/cit31
  doi: 10.1002/cssc.201301204
– ident: ref47/cit47
  doi: 10.1039/b808471h
– ident: ref17/cit17
  doi: 10.1007/s10562-009-0136-3
– ident: ref32/cit32
  doi: 10.1039/C2EE23057G
– ident: ref39/cit39
  doi: 10.1039/c1cc10422e
– ident: ref1/cit1
  doi: 10.1002/anie.200460587
SSID ssj0002467
Score 2.6317167
Snippet Cellulosic biomass is the largest source of renewable organic carbon on our planet. Cellulose accounts for 40–50 wt % of this lignocellulose, and it is a...
Cellulosic biomass is the largest source of renewable organic carbon on our planet. Cellulose accounts for 40-50 wt % of this lignocellulose, and it is a...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 761
Title Cellulose Depolymerization over Heterogeneous Catalysts
URI http://dx.doi.org/10.1021/acs.accounts.7b00614
https://www.ncbi.nlm.nih.gov/pubmed/29443505
https://www.proquest.com/docview/2002483040
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFLZQGWDhPsqlILEwpDSOr4woUFVIwACVukW2Yy9EDSLJUH49zzmKAFXAGtlPeoft7-VdCF2AWlWqhfH5kFmfKCZ8FQbaV8OI08AoppkrFL5_YOMJuZvS6aej-D2Cj4MrqQsgXU9OKAbcWYmbW72KGZxjB4Xip8XNiwlremSCi0wEwV2p3BIq7kHSxdcHaQnKrF-b0SZ67Gp2miSTl0FVqoF-_9nC8Y-MbKGNFnh6142lbKMVM9tBa3E3720X8dhkWZXlhfFuAJVncxfLaYo0PZfn6Y1d5kwOBmfyqvBi999nXpTFHpqMbp_jsd-OVfAlCUjpK8q4AqAnUx0wQD_UShlqlrJQCWu54TwNsWTUYOHwd2SojgTAWmwlB3xlw33Um-Uzc4i8wFqrwclKBWUkNUJpbSNwEA0QCgDp9dElcJ20x6JI6og3DhL3sRNF0oqij8JOD4lu-5O7MRnZL7v8xa7Xpj_HL-vPOxUnIF8XHZG12Nw8TkxECJdaHx00ul9QxBEBWDmkR__g5xitA7iq6xfx8AT1yrfKnAKAKdVZbbUfjVTtrw
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ25TsQwEEBHCApouI_lDBINRZaN4yslCqDlbDhEF8WO3RDtIpwt4OsZ51gEEkK0UTyyxxP7OeOZATjCaVWFliYUA25DqrgMVRzpUA0SwSKjuOY-UPj2jg8f6dUze54B1sXCYCccSnK1E_8ru0B04p_lTQEF1xfeWHz56jnkEeIN-zS9ny7AhPImVSaelKmkpIuY-0WK35e0-74v_QKb9aZzsQRP0-7Wd01e-pNK9fXHj0yO_x7PMiy2GBqcNnazAjNmtArzaVf9bQ1EaspyUo6dCc6Q0ct379lpQjYDf-szGPp7NGM0PzOeuCD1f4HeXeXW4fHi_CEdhm2RhTCnEa1CxbhQiH15oSOOLMRsnseaFzxW0lphhChiknNmiPQ0nhimE4mQS2wukLZsvAGzo_HIbEEQWWs1HrkKyTgtjFRa2wSPiwYFRch9PTjGUWftR-Ky2v9Nosw_7FSRtaroQdxNR6bbbOW-aEb5R6tw2uq1ydbxx_uH3UxnqF_vK8lrtfnqnITKGJe4Hmw2JjCVSBKKkDlg2_8YzwHMDx9ub7Kby7vrHVhA7KojG8lgF2art4nZQ7Sp1H5tyJ9Zm_YQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFA6ioF7cl3Gt4MVDx2maJulRqsO4IqggXkqTJhfLjJjOQX-973UZVBDRa2geyctL8qVv-Qg5hGVVuZbGFz1ufaa49FUYaF_1YhEFRnHNMVH4-oYPHtjFY_T4ieoLBuFAkquc-LirX3LbVBgIjrE9q0kUXFegwSCF9Qx67tC4T5K7ySFMGa_LZcJrmUlG26y5H6Tg3aTd17vpB8BZXTz9RfI0GXIVb_LcHZeqq9-_VXP815yWyEIDR72T2n6WyZQZrpC5pGWBWyUiMUUxLkbOeKeA1Ys39PDUqZseRn96A4ynGYEZmtHYeQn-DXpzpVsjD_2z-2TgN2QLfsYCVvoq4kIB_MtyHXDARJHNslDznIdKWiuMEHlIMx4ZKhGVxybSsQSwS20mAHXZcJ1MD0dDs0m8wFqr4emVy4iz3EiltY3h2WhAUAD4r0OOYNZps1lcWvnBaZBiY6uKtFFFh4TtkqS6qVqO5BnFL738Sa-XumrHL98ftKudgn7RZ5JVakOWTspkCEddh2zUZjCRSGMGYLMXbf1hPvtk9va0n16d31xuk3lAX1WCI-3tkOnydWx2AeGUaq-y5Q9IEfiT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cellulose+Depolymerization+over+Heterogeneous+Catalysts&rft.jtitle=Accounts+of+chemical+research&rft.au=Shrotri%2C+Abhijit&rft.au=Kobayashi%2C+Hirokazu&rft.au=Fukuoka%2C+Atsushi&rft.date=2018-03-20&rft.pub=American+Chemical+Society&rft.issn=0001-4842&rft.eissn=1520-4898&rft.volume=51&rft.issue=3&rft.spage=761&rft.epage=768&rft_id=info:doi/10.1021%2Facs.accounts.7b00614&rft.externalDocID=b28881455
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon