Upgrading Cross-Coupling Reactions for Biaryl Syntheses
Conspectus Transition-metal catalyzed cross-coupling reactions have emerged as a powerful tool for constructing biaryl compounds. Aryl halides and aryl metallic reagents (typically prepared from aryl halides) are used as coupling partners. It would be desirable to replace either aryl halide or aryl...
Saved in:
Published in | Accounts of chemical research Vol. 52; no. 1; pp. 161 - 169 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
15.01.2019
|
Online Access | Get full text |
Cover
Loading…
Abstract | Conspectus Transition-metal catalyzed cross-coupling reactions have emerged as a powerful tool for constructing biaryl compounds. Aryl halides and aryl metallic reagents (typically prepared from aryl halides) are used as coupling partners. It would be desirable to replace either aryl halide or aryl metallic reagents used in cross-couplings reactions with more readily available surrogates. Oxidative dehydrogenative cross-coupling between two different “inert” aryl C–H bonds represents an ideal system that would revolutionize cross-coupling chemistry. Furthermore, cross-coupling reactions might be improved by developing new catalytic protocols based on cheap transition-metal catalysts or even transition-metal-free systems to decrease costs and avoid the use of heavy metal and noble transition metals. It would be desirable to promote both catalytic systems and replace either or both coupling partners. We have used different strategies to improve cross-coupling reactions for constructing biaryls, which we categorized into four groups as follows. First, we focused on developing methodologies to be applied to easily produced and naturally abundant arenol-based electrophiles in cross-coupling via C–O activation. We have extended coupling partners to aryl carboxylates and arenols. Direct application of arenes as surrogates for organohalides and organometallic reagents avoids the tedious preparation of these reagents from arenes and considerably reduces the cost of starting materials. We have also explored cross-coupling reactions of arenes with various organometallic reagents, such as arylboronic acids, arylsilanes, and aryl Grignard reagents. Second, we summarize oxidative cross-coupling reactions based on C–H activation with aryl metallic reagents. On the basis of the reactivity patterns of different organometallic reagents, we adapted different catalytic systems to achieve effective cross-coupling reactions. Third, we improved a well-developed cross-coupling between arenes and organohalides through a strategy of replacing one coupling partner and using a new catalytic system. We have applied earth-abundant transition metals, such as Fe, and Co, and even developed transition-metal-free catalytic systems. Finally, our ultimate goal is to construct biaryls by cross dehydrogenative arylation between two different arenes. Owing to the structural similarity of both arenes, in particular two substituted benzenes, the greatest challenges are not only achieving regio- and chemo-selective C–H activation reactions but also matching both the reactivities and selectivities of both substrates to avoid homocouplings of either arene. Through our efforts, we have developed and applied four different strategies by introducing directing groups, controlling electronic and steric properties, and using dual directing strategies. We hope our studies will stimulate interest and new thinking on cross-couplings reactions for building carbon–carbon bonds from readily available and inexpensive chemicals from basic petroleum chemistry and nature. |
---|---|
AbstractList | Transition-metal catalyzed cross-coupling reactions have emerged as a powerful tool for constructing biaryl compounds. Aryl halides and aryl metallic reagents (typically prepared from aryl halides) are used as coupling partners. It would be desirable to replace either aryl halide or aryl metallic reagents used in cross-couplings reactions with more readily available surrogates. Oxidative dehydrogenative cross-coupling between two different "inert" aryl C-H bonds represents an ideal system that would revolutionize cross-coupling chemistry. Furthermore, cross-coupling reactions might be improved by developing new catalytic protocols based on cheap transition-metal catalysts or even transition-metal-free systems to decrease costs and avoid the use of heavy metal and noble transition metals. It would be desirable to promote both catalytic systems and replace either or both coupling partners. We have used different strategies to improve cross-coupling reactions for constructing biaryls, which we categorized into four groups as follows. First, we focused on developing methodologies to be applied to easily produced and naturally abundant arenol-based electrophiles in cross-coupling via C-O activation. We have extended coupling partners to aryl carboxylates and arenols. Direct application of arenes as surrogates for organohalides and organometallic reagents avoids the tedious preparation of these reagents from arenes and considerably reduces the cost of starting materials. We have also explored cross-coupling reactions of arenes with various organometallic reagents, such as arylboronic acids, arylsilanes, and aryl Grignard reagents. Second, we summarize oxidative cross-coupling reactions based on C-H activation with aryl metallic reagents. On the basis of the reactivity patterns of different organometallic reagents, we adapted different catalytic systems to achieve effective cross-coupling reactions. Third, we improved a well-developed cross-coupling between arenes and organohalides through a strategy of replacing one coupling partner and using a new catalytic system. We have applied earth-abundant transition metals, such as Fe, and Co, and even developed transition-metal-free catalytic systems. Finally, our ultimate goal is to construct biaryls by cross dehydrogenative arylation between two different arenes. Owing to the structural similarity of both arenes, in particular two substituted benzenes, the greatest challenges are not only achieving regio- and chemo-selective C-H activation reactions but also matching both the reactivities and selectivities of both substrates to avoid homocouplings of either arene. Through our efforts, we have developed and applied four different strategies by introducing directing groups, controlling electronic and steric properties, and using dual directing strategies. We hope our studies will stimulate interest and new thinking on cross-couplings reactions for building carbon-carbon bonds from readily available and inexpensive chemicals from basic petroleum chemistry and nature. Conspectus Transition-metal catalyzed cross-coupling reactions have emerged as a powerful tool for constructing biaryl compounds. Aryl halides and aryl metallic reagents (typically prepared from aryl halides) are used as coupling partners. It would be desirable to replace either aryl halide or aryl metallic reagents used in cross-couplings reactions with more readily available surrogates. Oxidative dehydrogenative cross-coupling between two different “inert” aryl C–H bonds represents an ideal system that would revolutionize cross-coupling chemistry. Furthermore, cross-coupling reactions might be improved by developing new catalytic protocols based on cheap transition-metal catalysts or even transition-metal-free systems to decrease costs and avoid the use of heavy metal and noble transition metals. It would be desirable to promote both catalytic systems and replace either or both coupling partners. We have used different strategies to improve cross-coupling reactions for constructing biaryls, which we categorized into four groups as follows. First, we focused on developing methodologies to be applied to easily produced and naturally abundant arenol-based electrophiles in cross-coupling via C–O activation. We have extended coupling partners to aryl carboxylates and arenols. Direct application of arenes as surrogates for organohalides and organometallic reagents avoids the tedious preparation of these reagents from arenes and considerably reduces the cost of starting materials. We have also explored cross-coupling reactions of arenes with various organometallic reagents, such as arylboronic acids, arylsilanes, and aryl Grignard reagents. Second, we summarize oxidative cross-coupling reactions based on C–H activation with aryl metallic reagents. On the basis of the reactivity patterns of different organometallic reagents, we adapted different catalytic systems to achieve effective cross-coupling reactions. Third, we improved a well-developed cross-coupling between arenes and organohalides through a strategy of replacing one coupling partner and using a new catalytic system. We have applied earth-abundant transition metals, such as Fe, and Co, and even developed transition-metal-free catalytic systems. Finally, our ultimate goal is to construct biaryls by cross dehydrogenative arylation between two different arenes. Owing to the structural similarity of both arenes, in particular two substituted benzenes, the greatest challenges are not only achieving regio- and chemo-selective C–H activation reactions but also matching both the reactivities and selectivities of both substrates to avoid homocouplings of either arene. Through our efforts, we have developed and applied four different strategies by introducing directing groups, controlling electronic and steric properties, and using dual directing strategies. We hope our studies will stimulate interest and new thinking on cross-couplings reactions for building carbon–carbon bonds from readily available and inexpensive chemicals from basic petroleum chemistry and nature. Transition-metal catalyzed cross-coupling reactions have emerged as a powerful tool for constructing biaryl compounds. Aryl halides and aryl metallic reagents (typically prepared from aryl halides) are used as coupling partners. It would be desirable to replace either aryl halide or aryl metallic reagents used in cross-couplings reactions with more readily available surrogates. Oxidative dehydrogenative cross-coupling between two different "inert" aryl C-H bonds represents an ideal system that would revolutionize cross-coupling chemistry. Furthermore, cross-coupling reactions might be improved by developing new catalytic protocols based on cheap transition-metal catalysts or even transition-metal-free systems to decrease costs and avoid the use of heavy metal and noble transition metals. It would be desirable to promote both catalytic systems and replace either or both coupling partners. We have used different strategies to improve cross-coupling reactions for constructing biaryls, which we categorized into four groups as follows. First, we focused on developing methodologies to be applied to easily produced and naturally abundant arenol-based electrophiles in cross-coupling via C-O activation. We have extended coupling partners to aryl carboxylates and arenols. Direct application of arenes as surrogates for organohalides and organometallic reagents avoids the tedious preparation of these reagents from arenes and considerably reduces the cost of starting materials. We have also explored cross-coupling reactions of arenes with various organometallic reagents, such as arylboronic acids, arylsilanes, and aryl Grignard reagents. Second, we summarize oxidative cross-coupling reactions based on C-H activation with aryl metallic reagents. On the basis of the reactivity patterns of different organometallic reagents, we adapted different catalytic systems to achieve effective cross-coupling reactions. Third, we improved a well-developed cross-coupling between arenes and organohalides through a strategy of replacing one coupling partner and using a new catalytic system. We have applied earth-abundant transition metals, such as Fe, and Co, and even developed transition-metal-free catalytic systems. Finally, our ultimate goal is to construct biaryls by cross dehydrogenative arylation between two different arenes. Owing to the structural similarity of both arenes, in particular two substituted benzenes, the greatest challenges are not only achieving regio- and chemo-selective C-H activation reactions but also matching both the reactivities and selectivities of both substrates to avoid homocouplings of either arene. Through our efforts, we have developed and applied four different strategies by introducing directing groups, controlling electronic and steric properties, and using dual directing strategies. We hope our studies will stimulate interest and new thinking on cross-couplings reactions for building carbon-carbon bonds from readily available and inexpensive chemicals from basic petroleum chemistry and nature.Transition-metal catalyzed cross-coupling reactions have emerged as a powerful tool for constructing biaryl compounds. Aryl halides and aryl metallic reagents (typically prepared from aryl halides) are used as coupling partners. It would be desirable to replace either aryl halide or aryl metallic reagents used in cross-couplings reactions with more readily available surrogates. Oxidative dehydrogenative cross-coupling between two different "inert" aryl C-H bonds represents an ideal system that would revolutionize cross-coupling chemistry. Furthermore, cross-coupling reactions might be improved by developing new catalytic protocols based on cheap transition-metal catalysts or even transition-metal-free systems to decrease costs and avoid the use of heavy metal and noble transition metals. It would be desirable to promote both catalytic systems and replace either or both coupling partners. We have used different strategies to improve cross-coupling reactions for constructing biaryls, which we categorized into four groups as follows. First, we focused on developing methodologies to be applied to easily produced and naturally abundant arenol-based electrophiles in cross-coupling via C-O activation. We have extended coupling partners to aryl carboxylates and arenols. Direct application of arenes as surrogates for organohalides and organometallic reagents avoids the tedious preparation of these reagents from arenes and considerably reduces the cost of starting materials. We have also explored cross-coupling reactions of arenes with various organometallic reagents, such as arylboronic acids, arylsilanes, and aryl Grignard reagents. Second, we summarize oxidative cross-coupling reactions based on C-H activation with aryl metallic reagents. On the basis of the reactivity patterns of different organometallic reagents, we adapted different catalytic systems to achieve effective cross-coupling reactions. Third, we improved a well-developed cross-coupling between arenes and organohalides through a strategy of replacing one coupling partner and using a new catalytic system. We have applied earth-abundant transition metals, such as Fe, and Co, and even developed transition-metal-free catalytic systems. Finally, our ultimate goal is to construct biaryls by cross dehydrogenative arylation between two different arenes. Owing to the structural similarity of both arenes, in particular two substituted benzenes, the greatest challenges are not only achieving regio- and chemo-selective C-H activation reactions but also matching both the reactivities and selectivities of both substrates to avoid homocouplings of either arene. Through our efforts, we have developed and applied four different strategies by introducing directing groups, controlling electronic and steric properties, and using dual directing strategies. We hope our studies will stimulate interest and new thinking on cross-couplings reactions for building carbon-carbon bonds from readily available and inexpensive chemicals from basic petroleum chemistry and nature. |
Author | Shi, Zhang-Jie Zhang, Yun-Fei |
AuthorAffiliation | Department of Chemistry College of Chemistry and Molecular Engineering Nankai University Fudan University State Key Laboratory Elemento-Organic Chemistry State Key Laborotary of Organometallic Chemistry, CAS |
AuthorAffiliation_xml | – name: Fudan University – name: Department of Chemistry – name: State Key Laboratory Elemento-Organic Chemistry – name: State Key Laborotary of Organometallic Chemistry, CAS – name: College of Chemistry and Molecular Engineering – name: Nankai University |
Author_xml | – sequence: 1 givenname: Yun-Fei surname: Zhang fullname: Zhang, Yun-Fei organization: College of Chemistry and Molecular Engineering – sequence: 2 givenname: Zhang-Jie orcidid: 0000-0002-0919-752X surname: Shi fullname: Shi, Zhang-Jie email: zjshi@fudan.edu.cn organization: Nankai University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30376296$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkDtPwzAYRS0Eog_4BwhlZEnxK7bDBhEvqRIS0NlyHLukSu1gJ0P_PYnaLgww2Z98zyffMwOnzjsDwBWCCwQxulU6LpTWvnddXIgSQgrFCZiiDMOUilycgimEEA13iidgFuNmGDFl_BxMCCSc4ZxNAV-166Cq2q2TIvgY08L3bTOO70bprvYuJtaH5KFWYdckHzvXfZlo4gU4s6qJ5vJwzsHq6fGzeEmXb8-vxf0yVRTRLi0hyw1C2gqSEVpSy4xAmPEKlznlWHNLM80FzSyxXGTIZFgTDqtSc0Z5VZE5uNnvbYP_7k3s5LaO2jSNcsb3UWKEOctygvEQvT5E-3JrKtmGejt8Wh7LDoG7fUCPTYOxUtedGjt2QdWNRFCOZuVgVh7NyoPZAaa_4OP-fzC4x8bXje-DG2z9jfwAFOaQjA |
CitedBy_id | crossref_primary_10_1246_cl_200475 crossref_primary_10_1039_D2GC00467D crossref_primary_10_1002_adsc_201801733 crossref_primary_10_1021_acscatal_3c03112 crossref_primary_10_1039_D4SC02178A crossref_primary_10_1002_adsc_202500031 crossref_primary_10_1002_chem_202005282 crossref_primary_10_1021_acs_orglett_1c04002 crossref_primary_10_1039_D4CC00003J crossref_primary_10_1002_asia_202200103 crossref_primary_10_1002_cjoc_202100396 crossref_primary_10_1038_s41467_021_22084_5 crossref_primary_10_1039_D4SC04979A crossref_primary_10_1021_acs_orglett_0c03354 crossref_primary_10_1038_s41467_022_29327_z crossref_primary_10_1039_C9CC09879H crossref_primary_10_1016_j_tetlet_2024_155353 crossref_primary_10_1021_acs_organomet_9b00668 crossref_primary_10_1021_acs_orglett_2c03932 crossref_primary_10_1038_s42004_022_00764_7 crossref_primary_10_1021_jacs_4c00825 crossref_primary_10_1016_j_tetlet_2023_154569 crossref_primary_10_1021_acscatal_2c00267 crossref_primary_10_1002_chem_202100288 crossref_primary_10_1021_acs_orglett_9b02504 crossref_primary_10_1039_D0RA08068C crossref_primary_10_1073_pnas_2303564120 crossref_primary_10_1002_ejoc_201900474 crossref_primary_10_1039_D4CY00694A crossref_primary_10_1038_s41467_022_31967_0 crossref_primary_10_1002_ajoc_201900069 crossref_primary_10_1002_cctc_201902150 crossref_primary_10_1021_acs_joc_9b01113 crossref_primary_10_1002_slct_202404742 crossref_primary_10_1039_C9QO00227H crossref_primary_10_1002_chem_201905157 crossref_primary_10_1039_C9OB00995G crossref_primary_10_3390_molecules26154426 crossref_primary_10_1021_acs_analchem_0c02384 crossref_primary_10_1039_D4DT01453G crossref_primary_10_1002_ejoc_202100683 crossref_primary_10_1039_D4OB00020J crossref_primary_10_1016_j_cclet_2024_109677 crossref_primary_10_1021_acs_orglett_5c00875 crossref_primary_10_1039_D1SC06268A crossref_primary_10_3390_polym14020231 crossref_primary_10_1039_D3OB00398A crossref_primary_10_1039_D1QO00380A crossref_primary_10_1002_tcr_202100050 crossref_primary_10_1021_acs_orglett_9b00633 crossref_primary_10_1021_jacs_9b02312 crossref_primary_10_1039_D2QO01813F crossref_primary_10_1002_slct_202203111 crossref_primary_10_1021_acs_orglett_0c01398 crossref_primary_10_1039_D1CC00965F crossref_primary_10_1039_D1CY00312G crossref_primary_10_1021_acs_joc_4c01641 crossref_primary_10_1021_acs_orglett_0c02408 crossref_primary_10_1002_ajoc_202300508 crossref_primary_10_1002_ajoc_202400043 crossref_primary_10_1016_j_tetlet_2022_153831 crossref_primary_10_1021_acs_orglett_3c01083 crossref_primary_10_1021_acs_orglett_4c03935 crossref_primary_10_1021_acscatal_0c03494 crossref_primary_10_1021_acs_accounts_2c00496 crossref_primary_10_1039_D0SC00085J crossref_primary_10_1021_acs_organomet_3c00132 crossref_primary_10_1039_D0CY01679A crossref_primary_10_1039_D2OB01900K crossref_primary_10_1002_ajoc_202200311 crossref_primary_10_1039_D2OB01710E crossref_primary_10_1039_D2OB00778A crossref_primary_10_1002_adsc_202100448 crossref_primary_10_1039_D2OB02322A crossref_primary_10_1002_asia_202000763 crossref_primary_10_3390_molecules28155833 crossref_primary_10_1002_adsc_202100682 crossref_primary_10_1016_j_checat_2025_101297 crossref_primary_10_1021_acs_joc_1c03031 crossref_primary_10_6023_cjoc202104004 crossref_primary_10_1002_anie_201904934 crossref_primary_10_1039_D1QO00168J crossref_primary_10_1002_adsc_202001498 crossref_primary_10_1021_acs_accounts_3c00230 crossref_primary_10_1016_j_tetlet_2021_153021 crossref_primary_10_1021_jacs_9b04711 crossref_primary_10_1002_chem_202301595 crossref_primary_10_1038_s41929_021_00598_x crossref_primary_10_1021_acscatal_3c00576 crossref_primary_10_1021_acs_accounts_1c00050 crossref_primary_10_1039_C9DT00473D crossref_primary_10_1021_acsomega_1c01736 crossref_primary_10_1021_acs_orglett_1c03066 crossref_primary_10_1016_j_mseb_2024_117671 crossref_primary_10_1021_acs_chemrev_0c00088 crossref_primary_10_1039_D1CY02159A crossref_primary_10_1021_acs_orglett_0c02749 crossref_primary_10_1039_D2CC04655E crossref_primary_10_1016_j_jorganchem_2025_123509 crossref_primary_10_1021_acs_orglett_9b03116 crossref_primary_10_1039_D0GC00917B crossref_primary_10_1021_acs_organomet_2c00322 crossref_primary_10_1016_j_checat_2021_11_001 crossref_primary_10_1002_anie_202002595 crossref_primary_10_1002_cjoc_201900506 crossref_primary_10_1016_j_gresc_2020_05_001 crossref_primary_10_1021_acs_orglett_9b00927 crossref_primary_10_1021_jacs_4c10776 crossref_primary_10_1021_jacsau_2c00597 crossref_primary_10_1021_acs_orglett_0c02155 crossref_primary_10_1021_acs_orglett_1c00782 crossref_primary_10_1039_D1SC03865F crossref_primary_10_1039_C9OB00418A crossref_primary_10_6023_cjoc202208034 crossref_primary_10_1021_acscatal_1c03314 crossref_primary_10_1016_j_jics_2021_100247 crossref_primary_10_1021_acs_organomet_1c00328 crossref_primary_10_1002_ange_202002595 crossref_primary_10_1039_D0SC05844K crossref_primary_10_1016_j_tet_2021_132152 crossref_primary_10_1039_D2SC00886F crossref_primary_10_1002_ajoc_202200589 crossref_primary_10_1002_ejoc_202201036 crossref_primary_10_1016_j_jcat_2023_07_004 crossref_primary_10_1016_j_mcat_2023_113777 crossref_primary_10_1007_s41061_020_0285_9 crossref_primary_10_1016_j_chempr_2019_12_010 crossref_primary_10_1021_acs_joc_4c03106 crossref_primary_10_1021_acs_orglett_1c03484 crossref_primary_10_1039_D0RA01845G crossref_primary_10_1039_D1CC06557B crossref_primary_10_1021_jacs_0c08205 crossref_primary_10_1039_D2RA05697F crossref_primary_10_1002_ange_201904934 crossref_primary_10_1016_j_tetlet_2022_153754 crossref_primary_10_1039_D0CY01159B crossref_primary_10_3390_catal9121061 crossref_primary_10_1021_acs_orglett_4c00624 crossref_primary_10_1039_C9NJ03946E crossref_primary_10_1002_hlca_202100056 crossref_primary_10_1016_j_tet_2025_134585 |
Cites_doi | 10.1021/ja075802+ 10.1039/c2sc00923d 10.1002/anie.201202466 10.1002/anie.200700590 10.1021/acs.orglett.6b00819 10.1039/a806790b 10.1002/chem.201002309 10.1021/ja103050x 10.1039/c0dt00486c 10.1021/cr020033s 10.1021/cr00078a005 10.1002/anie.201500220 10.1021/ja0701614 10.1002/anie.200704092 10.1021/ja109383e 10.1021/ja029273f 10.1021/ja070767s 10.1002/anie.200801447 10.1007/s11426-011-4381-0 10.1021/ja050058j 10.1021/ja800818b 10.1021/ol900159a 10.1021/ja055353i 10.1021/ja00502a074 10.1002/anie.200907359 10.1039/c2cc34344d 10.1002/anie.201101380 10.1039/c1cc13907j 10.1021/om300284t 10.1021/ja210249h 10.1021/ja065718e 10.1021/ol801897m 10.1021/ja8056503 10.1016/j.chempr.2017.10.001 10.1021/ol302181z 10.1038/nchem.862 10.1021/cr00039a007 10.1021/ja074395z 10.1021/cr100259t 10.1021/ja0646747 10.1021/ol902552v 10.1021/ol900778m 10.1021/acs.orglett.7b00177 10.1002/anie.200704619 10.1002/anie.201101461 10.1021/ja806244b 10.1021/jo00199a030 10.1002/anie.201500486 10.1021/ol8019764 10.1021/ar100082d 10.1021/ja409803x 10.1021/ol102688e 10.1126/science.1141956 10.1021/ja1080822 10.1021/ja060232j 10.1002/anie.200453765 10.1021/ja106814p 10.1021/cr0509760 10.1002/1615-4169(200107)343:5<455::AID-ADSC455>3.0.CO;2-O 10.1002/chem.201002290 10.1038/s41467-017-00078-6 10.1002/anie.201005394 10.1021/ol9001587 10.1021/om060889d 10.1002/anie.200803814 10.1021/ja408486v 10.1021/ol071308z 10.1002/asia.201403292 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acs.accounts.8b00408 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-4898 |
EndPage | 169 |
ExternalDocumentID | 30376296 10_1021_acs_accounts_8b00408 c294763599 |
Genre | Journal Article |
GroupedDBID | - .K2 02 23M 53G 55A 5GY 5VS 7~N 85S AABXI ABFLS ABMVS ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 P2P RNS ROL TWZ UI2 UPT VF5 VG9 W1F WH7 X YZZ --- -DZ -~X 4.4 5ZA 6J9 6P2 AAYXX ABBLG ABJNI ABLBI ABQRX ACGFO ADHLV AFXLT AGXLV AHGAQ CITATION CUPRZ GGK IH2 XSW ZCA ~02 NPM YIN 7X8 |
ID | FETCH-LOGICAL-a414t-b069e11cf83534b4f6e81267d2b9472c7f45c7845f3f7851e52c370dbc7647dd3 |
IEDL.DBID | ACS |
ISSN | 0001-4842 1520-4898 |
IngestDate | Fri Jul 11 16:42:41 EDT 2025 Wed Feb 19 02:36:22 EST 2025 Tue Jul 01 03:16:02 EDT 2025 Thu Apr 24 22:50:42 EDT 2025 Thu Aug 27 13:44:00 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a414t-b069e11cf83534b4f6e81267d2b9472c7f45c7845f3f7851e52c370dbc7647dd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0919-752X |
PMID | 30376296 |
PQID | 2127659322 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2127659322 pubmed_primary_30376296 crossref_citationtrail_10_1021_acs_accounts_8b00408 crossref_primary_10_1021_acs_accounts_8b00408 acs_journals_10_1021_acs_accounts_8b00408 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-01-15 |
PublicationDateYYYYMMDD | 2019-01-15 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Accounts of chemical research |
PublicationTitleAlternate | Acc. Chem. Res |
PublicationYear | 2019 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref36/cit36 doi: 10.1021/ja075802+ – ident: ref68/cit68 doi: 10.1039/c2sc00923d – ident: ref40/cit40 doi: 10.1002/anie.201202466 – ident: ref21/cit21 doi: 10.1002/anie.200700590 – ident: ref41/cit41 doi: 10.1021/acs.orglett.6b00819 – ident: ref29/cit29 doi: 10.1039/a806790b – ident: ref37/cit37 doi: 10.1002/chem.201002309 – ident: ref46/cit46 doi: 10.1021/ja103050x – ident: ref16/cit16 doi: 10.1039/c0dt00486c – ident: ref3/cit3 doi: 10.1021/cr020033s – ident: ref49/cit49 doi: 10.1021/cr00078a005 – ident: ref63/cit63 doi: 10.1002/anie.201500220 – ident: ref22/cit22 doi: 10.1021/ja0701614 – ident: ref54/cit54 doi: 10.1002/anie.200704092 – ident: ref58/cit58 doi: 10.1021/ja109383e – ident: ref17/cit17 doi: 10.1021/ja029273f – ident: ref20/cit20 doi: 10.1021/ja070767s – ident: ref11/cit11 doi: 10.1002/anie.200801447 – ident: ref31/cit31 doi: 10.1007/s11426-011-4381-0 – ident: ref50/cit50 doi: 10.1021/ja050058j – ident: ref30/cit30 doi: 10.1021/ja800818b – ident: ref34/cit34 doi: 10.1021/ol900159a – ident: ref56/cit56 doi: 10.1021/ja055353i – ident: ref5/cit5 doi: 10.1021/ja00502a074 – ident: ref14/cit14 doi: 10.1002/anie.200907359 – ident: ref61/cit61 doi: 10.1039/c2cc34344d – ident: ref2/cit2 doi: 10.1002/anie.201101380 – ident: ref45/cit45 doi: 10.1039/c1cc13907j – ident: ref26/cit26 doi: 10.1021/om300284t – ident: ref39/cit39 doi: 10.1021/ja210249h – ident: ref55/cit55 doi: 10.1021/ja065718e – ident: ref43/cit43 doi: 10.1021/ol801897m – ident: ref8/cit8 doi: 10.1021/ja8056503 – ident: ref66/cit66 doi: 10.1016/j.chempr.2017.10.001 – ident: ref60/cit60 doi: 10.1021/ol302181z – ident: ref42/cit42 doi: 10.1038/nchem.862 – ident: ref1/cit1 doi: 10.1021/cr00039a007 – ident: ref57/cit57 doi: 10.1021/ja074395z – ident: ref7/cit7 doi: 10.1021/cr100259t – ident: ref18/cit18 doi: 10.1021/ja0646747 – ident: ref23/cit23 doi: 10.1021/ol902552v – ident: ref35/cit35 doi: 10.1021/ol900778m – ident: ref64/cit64 doi: 10.1021/acs.orglett.7b00177 – ident: ref25/cit25 doi: 10.1002/anie.200704619 – ident: ref15/cit15 doi: 10.1002/anie.201101461 – ident: ref9/cit9 doi: 10.1021/ja806244b – ident: ref13/cit13 doi: 10.1021/jo00199a030 – ident: ref62/cit62 doi: 10.1002/anie.201500486 – ident: ref44/cit44 doi: 10.1021/ol8019764 – ident: ref4/cit4 doi: 10.1021/ar100082d – ident: ref12/cit12 doi: 10.1021/ja409803x – ident: ref59/cit59 doi: 10.1021/ol102688e – ident: ref52/cit52 doi: 10.1126/science.1141956 – ident: ref47/cit47 doi: 10.1021/ja1080822 – ident: ref19/cit19 doi: 10.1021/ja060232j – ident: ref6/cit6 doi: 10.1002/anie.200453765 – ident: ref27/cit27 doi: 10.1021/ja106814p – ident: ref32/cit32 doi: 10.1021/cr0509760 – ident: ref48/cit48 doi: 10.1002/1615-4169(200107)343:5<455::AID-ADSC455>3.0.CO;2-O – ident: ref38/cit38 doi: 10.1002/chem.201002290 – ident: ref67/cit67 doi: 10.1038/s41467-017-00078-6 – ident: ref28/cit28 doi: 10.1002/anie.201005394 – ident: ref33/cit33 doi: 10.1021/ol9001587 – ident: ref51/cit51 doi: 10.1021/om060889d – ident: ref10/cit10 doi: 10.1002/anie.200803814 – ident: ref65/cit65 doi: 10.1021/ja408486v – ident: ref53/cit53 doi: 10.1021/ol071308z – ident: ref24/cit24 doi: 10.1002/asia.201403292 |
SSID | ssj0002467 |
Score | 2.6168652 |
Snippet | Conspectus Transition-metal catalyzed cross-coupling reactions have emerged as a powerful tool for constructing biaryl compounds. Aryl halides and aryl... Transition-metal catalyzed cross-coupling reactions have emerged as a powerful tool for constructing biaryl compounds. Aryl halides and aryl metallic reagents... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 161 |
Title | Upgrading Cross-Coupling Reactions for Biaryl Syntheses |
URI | http://dx.doi.org/10.1021/acs.accounts.8b00408 https://www.ncbi.nlm.nih.gov/pubmed/30376296 https://www.proquest.com/docview/2127659322 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60HvTi-1FfRPDiYWuzu9lNjjVYiqCCtdBb2Gw2RSxpaZJD_fXO5lFRKdVryC6Zx-b7htmZQegaXIRJN6I4EkJi4yTYi0IPc00VoIVsK9sUOD8-8d6APQyd4Veg-DODT-xbqVLYupickLbcwuvcdbRBuCtMsNXx-4s_L2G87JEJITJzGalL5ZbsYgBJpd8BaQnLLNCmu4Oe65qd8pLJeyvPwpb6-N3C8Y-C7KLtinhandJT9tCaTvbRpl_PeztAYjAdzYob9ZZvvhT7k9yU646sF11WP6QWMFzr7k3O5mOrP0-AO6Y6PUSD7v2r38PVWAUsmc0yHLa5p21bxUC-KAtZzDWgPBcRCT0miBIxc5RwmRPTWAAh0w5RVLSjUAnORBTRI9RIJok-QRYlwEBi6Ziuaow50lVRLKjLgGZyBVSoiW5A6qA6FmlQZLyJHZiHtSqCShVNRGs7BKrqT27GZIxXrMKLVdOyP8eK969qEwegX5MdkYme5GlgWt1zB-gsaaLj0vaLHQHnATQ8fvoPec7QFpArcxkN2845amSzXF8AgcnCy8JrPwHEE-ri |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LT9wwEB4BPcClpZTS5dEGqT1w8LKxHTs5cIBQtDwPhZW4pY7jIATKovWuquX_8Ff4XYzzWAQSQj0gcbViy_k89nyWZ74B-IkmwlWYMZJJqYgzEhJlaUSEYRq9hepo3yU4H5-Ibo8fnAfnU3DX5MLgJCyOZMtH_Ed1AX_TtamqgIJth6XxhXUs5aEZ_8Obmt3a38Vl_UXp3u-zuEvqYgJEcZ8PSdoRkfF9nSPlYDzluTDo24TMaBpxSbXMeaBlyIOc5a5gvQmoZrKTpVoKLrOM4bjT8AH5D3V3vO34dHLgUy4qaU68mfOQ0yZD74VZOz-o7VM_-AK5LZ3c3ie4n8BTxrZctUfDtK1vnylHvnv85uFjTbO97WpffIYpUyzAbNxUt_sCsndzMSjzB7zYAUTi_sglJ194f0yV62E95PPezqUajK-903GBTNkauwi9N5n3V5gp-oX5Bh6jyLdyFTgNOc4DFeoslyzkSKqFRuLXgg1EOakPAZuU7_vUT1xjA31SQ98C1ix_oms1dlcU5PqVXmTS66ZSI3nl-_XGshLE170FqcL0RzZxwv4iQPJOW7BUmdxkRGQ16CIjsfwf__MDZrtnx0fJ0f7J4QrMIa10YXjED1ZhZjgYmTWkbsP0e7lxPPj71pb2AJwfS8I |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9wwEB0BlQoXKG2BbWmbSuXQg5eN7djJgQMNXfHRogq6Erfg2A5CoOxqvatq-4_6V_qrGOdjpVZCqAcOvVqx5Tw_e541nhmAD0gRrmLDiJFSEU8Skpg8IcIyjdZC9XToA5y_norDAT--iC4W4FcbC4OTcDiSq5z4flePTNFkGAh3fbuqiyi4blwRMG7eU57Y2Q-8rbm9owNc2h1K-5-_p4ekKShAFA_5hOQ9kdgw1AXKDsZzXgiL9k1IQ_OES6plwSMtYx4VrPBF621ENZM9k2spuDSG4biL8MR7Cv09bz89nx_6lIs6PSfeznnMaRuld8-svS3U7k9beI_ArQxdfw1-zyGq3rfcdKeTvKt__pU98r_A8BmsNnI72K_3xzos2PI5LKdtlbsXIAejq3EVRxCkHiSSDqc-SPkqOLN1zIcLUNcHn67VeHYbnM9KVMzOupcweJR5b8BSOSztFgSMou4qVORzyXEeqVibQrKYo7gWGgVgBz4iyllzGLis8vPTMPONLfRZA30HWEuBTDdZ2X1xkNsHepF5r1GdleSB79-37MoQX-8TUqUdTl3mE_yLCEU87cBmTbv5iKhu0FQm4tU__M87ePrtoJ99OTo9eQ0rqC79azwSRtuwNBlP7RtUcJP8bbV3Arh8bKLdAaa7TkU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Upgrading+Cross-Coupling+Reactions+for+Biaryl+Syntheses&rft.jtitle=Accounts+of+chemical+research&rft.au=Zhang%2C+Yun-Fei&rft.au=Shi%2C+Zhang-Jie&rft.date=2019-01-15&rft.issn=0001-4842&rft.eissn=1520-4898&rft.volume=52&rft.issue=1&rft.spage=161&rft.epage=169&rft_id=info:doi/10.1021%2Facs.accounts.8b00408&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_accounts_8b00408 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon |