Upgrading Cross-Coupling Reactions for Biaryl Syntheses

Conspectus Transition-metal catalyzed cross-coupling reactions have emerged as a powerful tool for constructing biaryl compounds. Aryl halides and aryl metallic reagents (typically prepared from aryl halides) are used as coupling partners. It would be desirable to replace either aryl halide or aryl...

Full description

Saved in:
Bibliographic Details
Published inAccounts of chemical research Vol. 52; no. 1; pp. 161 - 169
Main Authors Zhang, Yun-Fei, Shi, Zhang-Jie
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 15.01.2019
Online AccessGet full text

Cover

Loading…
Abstract Conspectus Transition-metal catalyzed cross-coupling reactions have emerged as a powerful tool for constructing biaryl compounds. Aryl halides and aryl metallic reagents (typically prepared from aryl halides) are used as coupling partners. It would be desirable to replace either aryl halide or aryl metallic reagents used in cross-couplings reactions with more readily available surrogates. Oxidative dehydrogenative cross-coupling between two different “inert” aryl C–H bonds represents an ideal system that would revolutionize cross-coupling chemistry. Furthermore, cross-coupling reactions might be improved by developing new catalytic protocols based on cheap transition-metal catalysts or even transition-metal-free systems to decrease costs and avoid the use of heavy metal and noble transition metals. It would be desirable to promote both catalytic systems and replace either or both coupling partners. We have used different strategies to improve cross-coupling reactions for constructing biaryls, which we categorized into four groups as follows. First, we focused on developing methodologies to be applied to easily produced and naturally abundant arenol-based electrophiles in cross-coupling via C–O activation. We have extended coupling partners to aryl carboxylates and arenols. Direct application of arenes as surrogates for organohalides and organometallic reagents avoids the tedious preparation of these reagents from arenes and considerably reduces the cost of starting materials. We have also explored cross-coupling reactions of arenes with various organometallic reagents, such as arylboronic acids, arylsilanes, and aryl Grignard reagents. Second, we summarize oxidative cross-coupling reactions based on C–H activation with aryl metallic reagents. On the basis of the reactivity patterns of different organometallic reagents, we adapted different catalytic systems to achieve effective cross-coupling reactions. Third, we improved a well-developed cross-coupling between arenes and organohalides through a strategy of replacing one coupling partner and using a new catalytic system. We have applied earth-abundant transition metals, such as Fe, and Co, and even developed transition-metal-free catalytic systems. Finally, our ultimate goal is to construct biaryls by cross dehydrogenative arylation between two different arenes. Owing to the structural similarity of both arenes, in particular two substituted benzenes, the greatest challenges are not only achieving regio- and chemo-selective C–H activation reactions but also matching both the reactivities and selectivities of both substrates to avoid homocouplings of either arene. Through our efforts, we have developed and applied four different strategies by introducing directing groups, controlling electronic and steric properties, and using dual directing strategies. We hope our studies will stimulate interest and new thinking on cross-couplings reactions for building carbon–carbon bonds from readily available and inexpensive chemicals from basic petroleum chemistry and nature.
AbstractList Transition-metal catalyzed cross-coupling reactions have emerged as a powerful tool for constructing biaryl compounds. Aryl halides and aryl metallic reagents (typically prepared from aryl halides) are used as coupling partners. It would be desirable to replace either aryl halide or aryl metallic reagents used in cross-couplings reactions with more readily available surrogates. Oxidative dehydrogenative cross-coupling between two different "inert" aryl C-H bonds represents an ideal system that would revolutionize cross-coupling chemistry. Furthermore, cross-coupling reactions might be improved by developing new catalytic protocols based on cheap transition-metal catalysts or even transition-metal-free systems to decrease costs and avoid the use of heavy metal and noble transition metals. It would be desirable to promote both catalytic systems and replace either or both coupling partners. We have used different strategies to improve cross-coupling reactions for constructing biaryls, which we categorized into four groups as follows. First, we focused on developing methodologies to be applied to easily produced and naturally abundant arenol-based electrophiles in cross-coupling via C-O activation. We have extended coupling partners to aryl carboxylates and arenols. Direct application of arenes as surrogates for organohalides and organometallic reagents avoids the tedious preparation of these reagents from arenes and considerably reduces the cost of starting materials. We have also explored cross-coupling reactions of arenes with various organometallic reagents, such as arylboronic acids, arylsilanes, and aryl Grignard reagents. Second, we summarize oxidative cross-coupling reactions based on C-H activation with aryl metallic reagents. On the basis of the reactivity patterns of different organometallic reagents, we adapted different catalytic systems to achieve effective cross-coupling reactions. Third, we improved a well-developed cross-coupling between arenes and organohalides through a strategy of replacing one coupling partner and using a new catalytic system. We have applied earth-abundant transition metals, such as Fe, and Co, and even developed transition-metal-free catalytic systems. Finally, our ultimate goal is to construct biaryls by cross dehydrogenative arylation between two different arenes. Owing to the structural similarity of both arenes, in particular two substituted benzenes, the greatest challenges are not only achieving regio- and chemo-selective C-H activation reactions but also matching both the reactivities and selectivities of both substrates to avoid homocouplings of either arene. Through our efforts, we have developed and applied four different strategies by introducing directing groups, controlling electronic and steric properties, and using dual directing strategies. We hope our studies will stimulate interest and new thinking on cross-couplings reactions for building carbon-carbon bonds from readily available and inexpensive chemicals from basic petroleum chemistry and nature.
Conspectus Transition-metal catalyzed cross-coupling reactions have emerged as a powerful tool for constructing biaryl compounds. Aryl halides and aryl metallic reagents (typically prepared from aryl halides) are used as coupling partners. It would be desirable to replace either aryl halide or aryl metallic reagents used in cross-couplings reactions with more readily available surrogates. Oxidative dehydrogenative cross-coupling between two different “inert” aryl C–H bonds represents an ideal system that would revolutionize cross-coupling chemistry. Furthermore, cross-coupling reactions might be improved by developing new catalytic protocols based on cheap transition-metal catalysts or even transition-metal-free systems to decrease costs and avoid the use of heavy metal and noble transition metals. It would be desirable to promote both catalytic systems and replace either or both coupling partners. We have used different strategies to improve cross-coupling reactions for constructing biaryls, which we categorized into four groups as follows. First, we focused on developing methodologies to be applied to easily produced and naturally abundant arenol-based electrophiles in cross-coupling via C–O activation. We have extended coupling partners to aryl carboxylates and arenols. Direct application of arenes as surrogates for organohalides and organometallic reagents avoids the tedious preparation of these reagents from arenes and considerably reduces the cost of starting materials. We have also explored cross-coupling reactions of arenes with various organometallic reagents, such as arylboronic acids, arylsilanes, and aryl Grignard reagents. Second, we summarize oxidative cross-coupling reactions based on C–H activation with aryl metallic reagents. On the basis of the reactivity patterns of different organometallic reagents, we adapted different catalytic systems to achieve effective cross-coupling reactions. Third, we improved a well-developed cross-coupling between arenes and organohalides through a strategy of replacing one coupling partner and using a new catalytic system. We have applied earth-abundant transition metals, such as Fe, and Co, and even developed transition-metal-free catalytic systems. Finally, our ultimate goal is to construct biaryls by cross dehydrogenative arylation between two different arenes. Owing to the structural similarity of both arenes, in particular two substituted benzenes, the greatest challenges are not only achieving regio- and chemo-selective C–H activation reactions but also matching both the reactivities and selectivities of both substrates to avoid homocouplings of either arene. Through our efforts, we have developed and applied four different strategies by introducing directing groups, controlling electronic and steric properties, and using dual directing strategies. We hope our studies will stimulate interest and new thinking on cross-couplings reactions for building carbon–carbon bonds from readily available and inexpensive chemicals from basic petroleum chemistry and nature.
Transition-metal catalyzed cross-coupling reactions have emerged as a powerful tool for constructing biaryl compounds. Aryl halides and aryl metallic reagents (typically prepared from aryl halides) are used as coupling partners. It would be desirable to replace either aryl halide or aryl metallic reagents used in cross-couplings reactions with more readily available surrogates. Oxidative dehydrogenative cross-coupling between two different "inert" aryl C-H bonds represents an ideal system that would revolutionize cross-coupling chemistry. Furthermore, cross-coupling reactions might be improved by developing new catalytic protocols based on cheap transition-metal catalysts or even transition-metal-free systems to decrease costs and avoid the use of heavy metal and noble transition metals. It would be desirable to promote both catalytic systems and replace either or both coupling partners. We have used different strategies to improve cross-coupling reactions for constructing biaryls, which we categorized into four groups as follows. First, we focused on developing methodologies to be applied to easily produced and naturally abundant arenol-based electrophiles in cross-coupling via C-O activation. We have extended coupling partners to aryl carboxylates and arenols. Direct application of arenes as surrogates for organohalides and organometallic reagents avoids the tedious preparation of these reagents from arenes and considerably reduces the cost of starting materials. We have also explored cross-coupling reactions of arenes with various organometallic reagents, such as arylboronic acids, arylsilanes, and aryl Grignard reagents. Second, we summarize oxidative cross-coupling reactions based on C-H activation with aryl metallic reagents. On the basis of the reactivity patterns of different organometallic reagents, we adapted different catalytic systems to achieve effective cross-coupling reactions. Third, we improved a well-developed cross-coupling between arenes and organohalides through a strategy of replacing one coupling partner and using a new catalytic system. We have applied earth-abundant transition metals, such as Fe, and Co, and even developed transition-metal-free catalytic systems. Finally, our ultimate goal is to construct biaryls by cross dehydrogenative arylation between two different arenes. Owing to the structural similarity of both arenes, in particular two substituted benzenes, the greatest challenges are not only achieving regio- and chemo-selective C-H activation reactions but also matching both the reactivities and selectivities of both substrates to avoid homocouplings of either arene. Through our efforts, we have developed and applied four different strategies by introducing directing groups, controlling electronic and steric properties, and using dual directing strategies. We hope our studies will stimulate interest and new thinking on cross-couplings reactions for building carbon-carbon bonds from readily available and inexpensive chemicals from basic petroleum chemistry and nature.Transition-metal catalyzed cross-coupling reactions have emerged as a powerful tool for constructing biaryl compounds. Aryl halides and aryl metallic reagents (typically prepared from aryl halides) are used as coupling partners. It would be desirable to replace either aryl halide or aryl metallic reagents used in cross-couplings reactions with more readily available surrogates. Oxidative dehydrogenative cross-coupling between two different "inert" aryl C-H bonds represents an ideal system that would revolutionize cross-coupling chemistry. Furthermore, cross-coupling reactions might be improved by developing new catalytic protocols based on cheap transition-metal catalysts or even transition-metal-free systems to decrease costs and avoid the use of heavy metal and noble transition metals. It would be desirable to promote both catalytic systems and replace either or both coupling partners. We have used different strategies to improve cross-coupling reactions for constructing biaryls, which we categorized into four groups as follows. First, we focused on developing methodologies to be applied to easily produced and naturally abundant arenol-based electrophiles in cross-coupling via C-O activation. We have extended coupling partners to aryl carboxylates and arenols. Direct application of arenes as surrogates for organohalides and organometallic reagents avoids the tedious preparation of these reagents from arenes and considerably reduces the cost of starting materials. We have also explored cross-coupling reactions of arenes with various organometallic reagents, such as arylboronic acids, arylsilanes, and aryl Grignard reagents. Second, we summarize oxidative cross-coupling reactions based on C-H activation with aryl metallic reagents. On the basis of the reactivity patterns of different organometallic reagents, we adapted different catalytic systems to achieve effective cross-coupling reactions. Third, we improved a well-developed cross-coupling between arenes and organohalides through a strategy of replacing one coupling partner and using a new catalytic system. We have applied earth-abundant transition metals, such as Fe, and Co, and even developed transition-metal-free catalytic systems. Finally, our ultimate goal is to construct biaryls by cross dehydrogenative arylation between two different arenes. Owing to the structural similarity of both arenes, in particular two substituted benzenes, the greatest challenges are not only achieving regio- and chemo-selective C-H activation reactions but also matching both the reactivities and selectivities of both substrates to avoid homocouplings of either arene. Through our efforts, we have developed and applied four different strategies by introducing directing groups, controlling electronic and steric properties, and using dual directing strategies. We hope our studies will stimulate interest and new thinking on cross-couplings reactions for building carbon-carbon bonds from readily available and inexpensive chemicals from basic petroleum chemistry and nature.
Author Shi, Zhang-Jie
Zhang, Yun-Fei
AuthorAffiliation Department of Chemistry
College of Chemistry and Molecular Engineering
Nankai University
Fudan University
State Key Laboratory Elemento-Organic Chemistry
State Key Laborotary of Organometallic Chemistry, CAS
AuthorAffiliation_xml – name: Fudan University
– name: Department of Chemistry
– name: State Key Laboratory Elemento-Organic Chemistry
– name: State Key Laborotary of Organometallic Chemistry, CAS
– name: College of Chemistry and Molecular Engineering
– name: Nankai University
Author_xml – sequence: 1
  givenname: Yun-Fei
  surname: Zhang
  fullname: Zhang, Yun-Fei
  organization: College of Chemistry and Molecular Engineering
– sequence: 2
  givenname: Zhang-Jie
  orcidid: 0000-0002-0919-752X
  surname: Shi
  fullname: Shi, Zhang-Jie
  email: zjshi@fudan.edu.cn
  organization: Nankai University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30376296$$D View this record in MEDLINE/PubMed
BookMark eNqFkDtPwzAYRS0Eog_4BwhlZEnxK7bDBhEvqRIS0NlyHLukSu1gJ0P_PYnaLgww2Z98zyffMwOnzjsDwBWCCwQxulU6LpTWvnddXIgSQgrFCZiiDMOUilycgimEEA13iidgFuNmGDFl_BxMCCSc4ZxNAV-166Cq2q2TIvgY08L3bTOO70bprvYuJtaH5KFWYdckHzvXfZlo4gU4s6qJ5vJwzsHq6fGzeEmXb8-vxf0yVRTRLi0hyw1C2gqSEVpSy4xAmPEKlznlWHNLM80FzSyxXGTIZFgTDqtSc0Z5VZE5uNnvbYP_7k3s5LaO2jSNcsb3UWKEOctygvEQvT5E-3JrKtmGejt8Wh7LDoG7fUCPTYOxUtedGjt2QdWNRFCOZuVgVh7NyoPZAaa_4OP-fzC4x8bXje-DG2z9jfwAFOaQjA
CitedBy_id crossref_primary_10_1246_cl_200475
crossref_primary_10_1039_D2GC00467D
crossref_primary_10_1002_adsc_201801733
crossref_primary_10_1021_acscatal_3c03112
crossref_primary_10_1039_D4SC02178A
crossref_primary_10_1002_adsc_202500031
crossref_primary_10_1002_chem_202005282
crossref_primary_10_1021_acs_orglett_1c04002
crossref_primary_10_1039_D4CC00003J
crossref_primary_10_1002_asia_202200103
crossref_primary_10_1002_cjoc_202100396
crossref_primary_10_1038_s41467_021_22084_5
crossref_primary_10_1039_D4SC04979A
crossref_primary_10_1021_acs_orglett_0c03354
crossref_primary_10_1038_s41467_022_29327_z
crossref_primary_10_1039_C9CC09879H
crossref_primary_10_1016_j_tetlet_2024_155353
crossref_primary_10_1021_acs_organomet_9b00668
crossref_primary_10_1021_acs_orglett_2c03932
crossref_primary_10_1038_s42004_022_00764_7
crossref_primary_10_1021_jacs_4c00825
crossref_primary_10_1016_j_tetlet_2023_154569
crossref_primary_10_1021_acscatal_2c00267
crossref_primary_10_1002_chem_202100288
crossref_primary_10_1021_acs_orglett_9b02504
crossref_primary_10_1039_D0RA08068C
crossref_primary_10_1073_pnas_2303564120
crossref_primary_10_1002_ejoc_201900474
crossref_primary_10_1039_D4CY00694A
crossref_primary_10_1038_s41467_022_31967_0
crossref_primary_10_1002_ajoc_201900069
crossref_primary_10_1002_cctc_201902150
crossref_primary_10_1021_acs_joc_9b01113
crossref_primary_10_1002_slct_202404742
crossref_primary_10_1039_C9QO00227H
crossref_primary_10_1002_chem_201905157
crossref_primary_10_1039_C9OB00995G
crossref_primary_10_3390_molecules26154426
crossref_primary_10_1021_acs_analchem_0c02384
crossref_primary_10_1039_D4DT01453G
crossref_primary_10_1002_ejoc_202100683
crossref_primary_10_1039_D4OB00020J
crossref_primary_10_1016_j_cclet_2024_109677
crossref_primary_10_1021_acs_orglett_5c00875
crossref_primary_10_1039_D1SC06268A
crossref_primary_10_3390_polym14020231
crossref_primary_10_1039_D3OB00398A
crossref_primary_10_1039_D1QO00380A
crossref_primary_10_1002_tcr_202100050
crossref_primary_10_1021_acs_orglett_9b00633
crossref_primary_10_1021_jacs_9b02312
crossref_primary_10_1039_D2QO01813F
crossref_primary_10_1002_slct_202203111
crossref_primary_10_1021_acs_orglett_0c01398
crossref_primary_10_1039_D1CC00965F
crossref_primary_10_1039_D1CY00312G
crossref_primary_10_1021_acs_joc_4c01641
crossref_primary_10_1021_acs_orglett_0c02408
crossref_primary_10_1002_ajoc_202300508
crossref_primary_10_1002_ajoc_202400043
crossref_primary_10_1016_j_tetlet_2022_153831
crossref_primary_10_1021_acs_orglett_3c01083
crossref_primary_10_1021_acs_orglett_4c03935
crossref_primary_10_1021_acscatal_0c03494
crossref_primary_10_1021_acs_accounts_2c00496
crossref_primary_10_1039_D0SC00085J
crossref_primary_10_1021_acs_organomet_3c00132
crossref_primary_10_1039_D0CY01679A
crossref_primary_10_1039_D2OB01900K
crossref_primary_10_1002_ajoc_202200311
crossref_primary_10_1039_D2OB01710E
crossref_primary_10_1039_D2OB00778A
crossref_primary_10_1002_adsc_202100448
crossref_primary_10_1039_D2OB02322A
crossref_primary_10_1002_asia_202000763
crossref_primary_10_3390_molecules28155833
crossref_primary_10_1002_adsc_202100682
crossref_primary_10_1016_j_checat_2025_101297
crossref_primary_10_1021_acs_joc_1c03031
crossref_primary_10_6023_cjoc202104004
crossref_primary_10_1002_anie_201904934
crossref_primary_10_1039_D1QO00168J
crossref_primary_10_1002_adsc_202001498
crossref_primary_10_1021_acs_accounts_3c00230
crossref_primary_10_1016_j_tetlet_2021_153021
crossref_primary_10_1021_jacs_9b04711
crossref_primary_10_1002_chem_202301595
crossref_primary_10_1038_s41929_021_00598_x
crossref_primary_10_1021_acscatal_3c00576
crossref_primary_10_1021_acs_accounts_1c00050
crossref_primary_10_1039_C9DT00473D
crossref_primary_10_1021_acsomega_1c01736
crossref_primary_10_1021_acs_orglett_1c03066
crossref_primary_10_1016_j_mseb_2024_117671
crossref_primary_10_1021_acs_chemrev_0c00088
crossref_primary_10_1039_D1CY02159A
crossref_primary_10_1021_acs_orglett_0c02749
crossref_primary_10_1039_D2CC04655E
crossref_primary_10_1016_j_jorganchem_2025_123509
crossref_primary_10_1021_acs_orglett_9b03116
crossref_primary_10_1039_D0GC00917B
crossref_primary_10_1021_acs_organomet_2c00322
crossref_primary_10_1016_j_checat_2021_11_001
crossref_primary_10_1002_anie_202002595
crossref_primary_10_1002_cjoc_201900506
crossref_primary_10_1016_j_gresc_2020_05_001
crossref_primary_10_1021_acs_orglett_9b00927
crossref_primary_10_1021_jacs_4c10776
crossref_primary_10_1021_jacsau_2c00597
crossref_primary_10_1021_acs_orglett_0c02155
crossref_primary_10_1021_acs_orglett_1c00782
crossref_primary_10_1039_D1SC03865F
crossref_primary_10_1039_C9OB00418A
crossref_primary_10_6023_cjoc202208034
crossref_primary_10_1021_acscatal_1c03314
crossref_primary_10_1016_j_jics_2021_100247
crossref_primary_10_1021_acs_organomet_1c00328
crossref_primary_10_1002_ange_202002595
crossref_primary_10_1039_D0SC05844K
crossref_primary_10_1016_j_tet_2021_132152
crossref_primary_10_1039_D2SC00886F
crossref_primary_10_1002_ajoc_202200589
crossref_primary_10_1002_ejoc_202201036
crossref_primary_10_1016_j_jcat_2023_07_004
crossref_primary_10_1016_j_mcat_2023_113777
crossref_primary_10_1007_s41061_020_0285_9
crossref_primary_10_1016_j_chempr_2019_12_010
crossref_primary_10_1021_acs_joc_4c03106
crossref_primary_10_1021_acs_orglett_1c03484
crossref_primary_10_1039_D0RA01845G
crossref_primary_10_1039_D1CC06557B
crossref_primary_10_1021_jacs_0c08205
crossref_primary_10_1039_D2RA05697F
crossref_primary_10_1002_ange_201904934
crossref_primary_10_1016_j_tetlet_2022_153754
crossref_primary_10_1039_D0CY01159B
crossref_primary_10_3390_catal9121061
crossref_primary_10_1021_acs_orglett_4c00624
crossref_primary_10_1039_C9NJ03946E
crossref_primary_10_1002_hlca_202100056
crossref_primary_10_1016_j_tet_2025_134585
Cites_doi 10.1021/ja075802+
10.1039/c2sc00923d
10.1002/anie.201202466
10.1002/anie.200700590
10.1021/acs.orglett.6b00819
10.1039/a806790b
10.1002/chem.201002309
10.1021/ja103050x
10.1039/c0dt00486c
10.1021/cr020033s
10.1021/cr00078a005
10.1002/anie.201500220
10.1021/ja0701614
10.1002/anie.200704092
10.1021/ja109383e
10.1021/ja029273f
10.1021/ja070767s
10.1002/anie.200801447
10.1007/s11426-011-4381-0
10.1021/ja050058j
10.1021/ja800818b
10.1021/ol900159a
10.1021/ja055353i
10.1021/ja00502a074
10.1002/anie.200907359
10.1039/c2cc34344d
10.1002/anie.201101380
10.1039/c1cc13907j
10.1021/om300284t
10.1021/ja210249h
10.1021/ja065718e
10.1021/ol801897m
10.1021/ja8056503
10.1016/j.chempr.2017.10.001
10.1021/ol302181z
10.1038/nchem.862
10.1021/cr00039a007
10.1021/ja074395z
10.1021/cr100259t
10.1021/ja0646747
10.1021/ol902552v
10.1021/ol900778m
10.1021/acs.orglett.7b00177
10.1002/anie.200704619
10.1002/anie.201101461
10.1021/ja806244b
10.1021/jo00199a030
10.1002/anie.201500486
10.1021/ol8019764
10.1021/ar100082d
10.1021/ja409803x
10.1021/ol102688e
10.1126/science.1141956
10.1021/ja1080822
10.1021/ja060232j
10.1002/anie.200453765
10.1021/ja106814p
10.1021/cr0509760
10.1002/1615-4169(200107)343:5<455::AID-ADSC455>3.0.CO;2-O
10.1002/chem.201002290
10.1038/s41467-017-00078-6
10.1002/anie.201005394
10.1021/ol9001587
10.1021/om060889d
10.1002/anie.200803814
10.1021/ja408486v
10.1021/ol071308z
10.1002/asia.201403292
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acs.accounts.8b00408
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-4898
EndPage 169
ExternalDocumentID 30376296
10_1021_acs_accounts_8b00408
c294763599
Genre Journal Article
GroupedDBID -
.K2
02
23M
53G
55A
5GY
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
RNS
ROL
TWZ
UI2
UPT
VF5
VG9
W1F
WH7
X
YZZ
---
-DZ
-~X
4.4
5ZA
6J9
6P2
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
AFXLT
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
ZCA
~02
NPM
YIN
7X8
ID FETCH-LOGICAL-a414t-b069e11cf83534b4f6e81267d2b9472c7f45c7845f3f7851e52c370dbc7647dd3
IEDL.DBID ACS
ISSN 0001-4842
1520-4898
IngestDate Fri Jul 11 16:42:41 EDT 2025
Wed Feb 19 02:36:22 EST 2025
Tue Jul 01 03:16:02 EDT 2025
Thu Apr 24 22:50:42 EDT 2025
Thu Aug 27 13:44:00 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a414t-b069e11cf83534b4f6e81267d2b9472c7f45c7845f3f7851e52c370dbc7647dd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0919-752X
PMID 30376296
PQID 2127659322
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2127659322
pubmed_primary_30376296
crossref_citationtrail_10_1021_acs_accounts_8b00408
crossref_primary_10_1021_acs_accounts_8b00408
acs_journals_10_1021_acs_accounts_8b00408
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-15
PublicationDateYYYYMMDD 2019-01-15
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Accounts of chemical research
PublicationTitleAlternate Acc. Chem. Res
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref36/cit36
  doi: 10.1021/ja075802+
– ident: ref68/cit68
  doi: 10.1039/c2sc00923d
– ident: ref40/cit40
  doi: 10.1002/anie.201202466
– ident: ref21/cit21
  doi: 10.1002/anie.200700590
– ident: ref41/cit41
  doi: 10.1021/acs.orglett.6b00819
– ident: ref29/cit29
  doi: 10.1039/a806790b
– ident: ref37/cit37
  doi: 10.1002/chem.201002309
– ident: ref46/cit46
  doi: 10.1021/ja103050x
– ident: ref16/cit16
  doi: 10.1039/c0dt00486c
– ident: ref3/cit3
  doi: 10.1021/cr020033s
– ident: ref49/cit49
  doi: 10.1021/cr00078a005
– ident: ref63/cit63
  doi: 10.1002/anie.201500220
– ident: ref22/cit22
  doi: 10.1021/ja0701614
– ident: ref54/cit54
  doi: 10.1002/anie.200704092
– ident: ref58/cit58
  doi: 10.1021/ja109383e
– ident: ref17/cit17
  doi: 10.1021/ja029273f
– ident: ref20/cit20
  doi: 10.1021/ja070767s
– ident: ref11/cit11
  doi: 10.1002/anie.200801447
– ident: ref31/cit31
  doi: 10.1007/s11426-011-4381-0
– ident: ref50/cit50
  doi: 10.1021/ja050058j
– ident: ref30/cit30
  doi: 10.1021/ja800818b
– ident: ref34/cit34
  doi: 10.1021/ol900159a
– ident: ref56/cit56
  doi: 10.1021/ja055353i
– ident: ref5/cit5
  doi: 10.1021/ja00502a074
– ident: ref14/cit14
  doi: 10.1002/anie.200907359
– ident: ref61/cit61
  doi: 10.1039/c2cc34344d
– ident: ref2/cit2
  doi: 10.1002/anie.201101380
– ident: ref45/cit45
  doi: 10.1039/c1cc13907j
– ident: ref26/cit26
  doi: 10.1021/om300284t
– ident: ref39/cit39
  doi: 10.1021/ja210249h
– ident: ref55/cit55
  doi: 10.1021/ja065718e
– ident: ref43/cit43
  doi: 10.1021/ol801897m
– ident: ref8/cit8
  doi: 10.1021/ja8056503
– ident: ref66/cit66
  doi: 10.1016/j.chempr.2017.10.001
– ident: ref60/cit60
  doi: 10.1021/ol302181z
– ident: ref42/cit42
  doi: 10.1038/nchem.862
– ident: ref1/cit1
  doi: 10.1021/cr00039a007
– ident: ref57/cit57
  doi: 10.1021/ja074395z
– ident: ref7/cit7
  doi: 10.1021/cr100259t
– ident: ref18/cit18
  doi: 10.1021/ja0646747
– ident: ref23/cit23
  doi: 10.1021/ol902552v
– ident: ref35/cit35
  doi: 10.1021/ol900778m
– ident: ref64/cit64
  doi: 10.1021/acs.orglett.7b00177
– ident: ref25/cit25
  doi: 10.1002/anie.200704619
– ident: ref15/cit15
  doi: 10.1002/anie.201101461
– ident: ref9/cit9
  doi: 10.1021/ja806244b
– ident: ref13/cit13
  doi: 10.1021/jo00199a030
– ident: ref62/cit62
  doi: 10.1002/anie.201500486
– ident: ref44/cit44
  doi: 10.1021/ol8019764
– ident: ref4/cit4
  doi: 10.1021/ar100082d
– ident: ref12/cit12
  doi: 10.1021/ja409803x
– ident: ref59/cit59
  doi: 10.1021/ol102688e
– ident: ref52/cit52
  doi: 10.1126/science.1141956
– ident: ref47/cit47
  doi: 10.1021/ja1080822
– ident: ref19/cit19
  doi: 10.1021/ja060232j
– ident: ref6/cit6
  doi: 10.1002/anie.200453765
– ident: ref27/cit27
  doi: 10.1021/ja106814p
– ident: ref32/cit32
  doi: 10.1021/cr0509760
– ident: ref48/cit48
  doi: 10.1002/1615-4169(200107)343:5<455::AID-ADSC455>3.0.CO;2-O
– ident: ref38/cit38
  doi: 10.1002/chem.201002290
– ident: ref67/cit67
  doi: 10.1038/s41467-017-00078-6
– ident: ref28/cit28
  doi: 10.1002/anie.201005394
– ident: ref33/cit33
  doi: 10.1021/ol9001587
– ident: ref51/cit51
  doi: 10.1021/om060889d
– ident: ref10/cit10
  doi: 10.1002/anie.200803814
– ident: ref65/cit65
  doi: 10.1021/ja408486v
– ident: ref53/cit53
  doi: 10.1021/ol071308z
– ident: ref24/cit24
  doi: 10.1002/asia.201403292
SSID ssj0002467
Score 2.6168652
Snippet Conspectus Transition-metal catalyzed cross-coupling reactions have emerged as a powerful tool for constructing biaryl compounds. Aryl halides and aryl...
Transition-metal catalyzed cross-coupling reactions have emerged as a powerful tool for constructing biaryl compounds. Aryl halides and aryl metallic reagents...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 161
Title Upgrading Cross-Coupling Reactions for Biaryl Syntheses
URI http://dx.doi.org/10.1021/acs.accounts.8b00408
https://www.ncbi.nlm.nih.gov/pubmed/30376296
https://www.proquest.com/docview/2127659322
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60HvTi-1FfRPDiYWuzu9lNjjVYiqCCtdBb2Gw2RSxpaZJD_fXO5lFRKdVryC6Zx-b7htmZQegaXIRJN6I4EkJi4yTYi0IPc00VoIVsK9sUOD8-8d6APQyd4Veg-DODT-xbqVLYupickLbcwuvcdbRBuCtMsNXx-4s_L2G87JEJITJzGalL5ZbsYgBJpd8BaQnLLNCmu4Oe65qd8pLJeyvPwpb6-N3C8Y-C7KLtinhandJT9tCaTvbRpl_PeztAYjAdzYob9ZZvvhT7k9yU646sF11WP6QWMFzr7k3O5mOrP0-AO6Y6PUSD7v2r38PVWAUsmc0yHLa5p21bxUC-KAtZzDWgPBcRCT0miBIxc5RwmRPTWAAh0w5RVLSjUAnORBTRI9RIJok-QRYlwEBi6Ziuaow50lVRLKjLgGZyBVSoiW5A6qA6FmlQZLyJHZiHtSqCShVNRGs7BKrqT27GZIxXrMKLVdOyP8eK969qEwegX5MdkYme5GlgWt1zB-gsaaLj0vaLHQHnATQ8fvoPec7QFpArcxkN2845amSzXF8AgcnCy8JrPwHEE-ri
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LT9wwEB4BPcClpZTS5dEGqT1w8LKxHTs5cIBQtDwPhZW4pY7jIATKovWuquX_8Ff4XYzzWAQSQj0gcbViy_k89nyWZ74B-IkmwlWYMZJJqYgzEhJlaUSEYRq9hepo3yU4H5-Ibo8fnAfnU3DX5MLgJCyOZMtH_Ed1AX_TtamqgIJth6XxhXUs5aEZ_8Obmt3a38Vl_UXp3u-zuEvqYgJEcZ8PSdoRkfF9nSPlYDzluTDo24TMaBpxSbXMeaBlyIOc5a5gvQmoZrKTpVoKLrOM4bjT8AH5D3V3vO34dHLgUy4qaU68mfOQ0yZD74VZOz-o7VM_-AK5LZ3c3ie4n8BTxrZctUfDtK1vnylHvnv85uFjTbO97WpffIYpUyzAbNxUt_sCsndzMSjzB7zYAUTi_sglJ194f0yV62E95PPezqUajK-903GBTNkauwi9N5n3V5gp-oX5Bh6jyLdyFTgNOc4DFeoslyzkSKqFRuLXgg1EOakPAZuU7_vUT1xjA31SQ98C1ix_oms1dlcU5PqVXmTS66ZSI3nl-_XGshLE170FqcL0RzZxwv4iQPJOW7BUmdxkRGQ16CIjsfwf__MDZrtnx0fJ0f7J4QrMIa10YXjED1ZhZjgYmTWkbsP0e7lxPPj71pb2AJwfS8I
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9wwEB0BlQoXKG2BbWmbSuXQg5eN7djJgQMNXfHRogq6Erfg2A5CoOxqvatq-4_6V_qrGOdjpVZCqAcOvVqx5Tw_e541nhmAD0gRrmLDiJFSEU8Skpg8IcIyjdZC9XToA5y_norDAT--iC4W4FcbC4OTcDiSq5z4flePTNFkGAh3fbuqiyi4blwRMG7eU57Y2Q-8rbm9owNc2h1K-5-_p4ekKShAFA_5hOQ9kdgw1AXKDsZzXgiL9k1IQ_OES6plwSMtYx4VrPBF621ENZM9k2spuDSG4biL8MR7Cv09bz89nx_6lIs6PSfeznnMaRuld8-svS3U7k9beI_ArQxdfw1-zyGq3rfcdKeTvKt__pU98r_A8BmsNnI72K_3xzos2PI5LKdtlbsXIAejq3EVRxCkHiSSDqc-SPkqOLN1zIcLUNcHn67VeHYbnM9KVMzOupcweJR5b8BSOSztFgSMou4qVORzyXEeqVibQrKYo7gWGgVgBz4iyllzGLis8vPTMPONLfRZA30HWEuBTDdZ2X1xkNsHepF5r1GdleSB79-37MoQX-8TUqUdTl3mE_yLCEU87cBmTbv5iKhu0FQm4tU__M87ePrtoJ99OTo9eQ0rqC79azwSRtuwNBlP7RtUcJP8bbV3Arh8bKLdAaa7TkU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Upgrading+Cross-Coupling+Reactions+for+Biaryl+Syntheses&rft.jtitle=Accounts+of+chemical+research&rft.au=Zhang%2C+Yun-Fei&rft.au=Shi%2C+Zhang-Jie&rft.date=2019-01-15&rft.issn=0001-4842&rft.eissn=1520-4898&rft.volume=52&rft.issue=1&rft.spage=161&rft.epage=169&rft_id=info:doi/10.1021%2Facs.accounts.8b00408&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_accounts_8b00408
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon