High Sulfur Loading Cathodes Fabricated Using Peapodlike, Large Pore Volume Mesoporous Carbon for Lithium–Sulfur Battery

Porous carbon materials with large pore volume are crucial in loading insulated sulfur with the purpose of achieving high performance for lithium–sulfur batteries. In our study, peapodlike mesoporous carbon with interconnected pore channels and large pore volume (4.69 cm3 g–1) was synthesized and us...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 5; no. 6; pp. 2208 - 2213
Main Authors Li, Duo, Han, Fei, Wang, Shuai, Cheng, Fei, Sun, Qiang, Li, Wen-Cui
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 27.03.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Porous carbon materials with large pore volume are crucial in loading insulated sulfur with the purpose of achieving high performance for lithium–sulfur batteries. In our study, peapodlike mesoporous carbon with interconnected pore channels and large pore volume (4.69 cm3 g–1) was synthesized and used as the matrix to fabricate carbon/sulfur (C/S) composite which served as attractive cathodes for lithium–sulfur batteries. Systematic investigation of the C/S composite reveals that the carbon matrix can hold a high but suitable sulfur loading of 84 wt %, which is beneficial for improving the bulk density in practical application. Such controllable sulfur-filling also effectively allows the volume expansion of active sulfur during Li+ insertion. Moreover, the thin carbon walls (3–4 nm) of carbon matrix not only are able to shorten the pathway of Li+ transfer and conduct electron to overcome the poor kinetics of sulfur cathode, but also are flexible to warrant structure stability. Importantly, the peapodlike carbon shell is beneficial to increase the electrical contact for improving electronic conductivity of active sulfur. Meanwhile, polymer modification with polypyrrole coating layer further restrains polysulfides dissolution and improves the cycle stability of carbon/sulfur composites.
AbstractList Porous carbon materials with large pore volume are crucial in loading insulated sulfur with the purpose of achieving high performance for lithium-sulfur batteries. In our study, peapodlike mesoporous carbon with interconnected pore channels and large pore volume (4.69 cm(3) g(-1)) was synthesized and used as the matrix to fabricate carbon/sulfur (C/S) composite which served as attractive cathodes for lithium-sulfur batteries. Systematic investigation of the C/S composite reveals that the carbon matrix can hold a high but suitable sulfur loading of 84 wt %, which is beneficial for improving the bulk density in practical application. Such controllable sulfur-filling also effectively allows the volume expansion of active sulfur during Li(+) insertion. Moreover, the thin carbon walls (3-4 nm) of carbon matrix not only are able to shorten the pathway of Li(+) transfer and conduct electron to overcome the poor kinetics of sulfur cathode, but also are flexible to warrant structure stability. Importantly, the peapodlike carbon shell is beneficial to increase the electrical contact for improving electronic conductivity of active sulfur. Meanwhile, polymer modification with polypyrrole coating layer further restrains polysulfides dissolution and improves the cycle stability of carbon/sulfur composites.Porous carbon materials with large pore volume are crucial in loading insulated sulfur with the purpose of achieving high performance for lithium-sulfur batteries. In our study, peapodlike mesoporous carbon with interconnected pore channels and large pore volume (4.69 cm(3) g(-1)) was synthesized and used as the matrix to fabricate carbon/sulfur (C/S) composite which served as attractive cathodes for lithium-sulfur batteries. Systematic investigation of the C/S composite reveals that the carbon matrix can hold a high but suitable sulfur loading of 84 wt %, which is beneficial for improving the bulk density in practical application. Such controllable sulfur-filling also effectively allows the volume expansion of active sulfur during Li(+) insertion. Moreover, the thin carbon walls (3-4 nm) of carbon matrix not only are able to shorten the pathway of Li(+) transfer and conduct electron to overcome the poor kinetics of sulfur cathode, but also are flexible to warrant structure stability. Importantly, the peapodlike carbon shell is beneficial to increase the electrical contact for improving electronic conductivity of active sulfur. Meanwhile, polymer modification with polypyrrole coating layer further restrains polysulfides dissolution and improves the cycle stability of carbon/sulfur composites.
Porous carbon materials with large pore volume are crucial in loading insulated sulfur with the purpose of achieving high performance for lithium-sulfur batteries. In our study, peapodlike mesoporous carbon with interconnected pore channels and large pore volume (4.69 cm(3) g(-1)) was synthesized and used as the matrix to fabricate carbon/sulfur (C/S) composite which served as attractive cathodes for lithium-sulfur batteries. Systematic investigation of the C/S composite reveals that the carbon matrix can hold a high but suitable sulfur loading of 84 wt %, which is beneficial for improving the bulk density in practical application. Such controllable sulfur-filling also effectively allows the volume expansion of active sulfur during Li(+) insertion. Moreover, the thin carbon walls (3-4 nm) of carbon matrix not only are able to shorten the pathway of Li(+) transfer and conduct electron to overcome the poor kinetics of sulfur cathode, but also are flexible to warrant structure stability. Importantly, the peapodlike carbon shell is beneficial to increase the electrical contact for improving electronic conductivity of active sulfur. Meanwhile, polymer modification with polypyrrole coating layer further restrains polysulfides dissolution and improves the cycle stability of carbon/sulfur composites.
Porous carbon materials with large pore volume are crucial in loading insulated sulfur with the purpose of achieving high performance for lithium–sulfur batteries. In our study, peapodlike mesoporous carbon with interconnected pore channels and large pore volume (4.69 cm3 g–1) was synthesized and used as the matrix to fabricate carbon/sulfur (C/S) composite which served as attractive cathodes for lithium–sulfur batteries. Systematic investigation of the C/S composite reveals that the carbon matrix can hold a high but suitable sulfur loading of 84 wt %, which is beneficial for improving the bulk density in practical application. Such controllable sulfur-filling also effectively allows the volume expansion of active sulfur during Li+ insertion. Moreover, the thin carbon walls (3–4 nm) of carbon matrix not only are able to shorten the pathway of Li+ transfer and conduct electron to overcome the poor kinetics of sulfur cathode, but also are flexible to warrant structure stability. Importantly, the peapodlike carbon shell is beneficial to increase the electrical contact for improving electronic conductivity of active sulfur. Meanwhile, polymer modification with polypyrrole coating layer further restrains polysulfides dissolution and improves the cycle stability of carbon/sulfur composites.
Porous carbon materials with large pore volume are crucial in loading insulated sulfur with the purpose of achieving high performance for lithium–sulfur batteries. In our study, peapodlike mesoporous carbon with interconnected pore channels and large pore volume (4.69 cm³ g–¹) was synthesized and used as the matrix to fabricate carbon/sulfur (C/S) composite which served as attractive cathodes for lithium–sulfur batteries. Systematic investigation of the C/S composite reveals that the carbon matrix can hold a high but suitable sulfur loading of 84 wt %, which is beneficial for improving the bulk density in practical application. Such controllable sulfur-filling also effectively allows the volume expansion of active sulfur during Li⁺ insertion. Moreover, the thin carbon walls (3–4 nm) of carbon matrix not only are able to shorten the pathway of Li⁺ transfer and conduct electron to overcome the poor kinetics of sulfur cathode, but also are flexible to warrant structure stability. Importantly, the peapodlike carbon shell is beneficial to increase the electrical contact for improving electronic conductivity of active sulfur. Meanwhile, polymer modification with polypyrrole coating layer further restrains polysulfides dissolution and improves the cycle stability of carbon/sulfur composites.
Author Han, Fei
Li, Wen-Cui
Sun, Qiang
Wang, Shuai
Cheng, Fei
Li, Duo
AuthorAffiliation Dalian University of Technology
AuthorAffiliation_xml – name: Dalian University of Technology
Author_xml – sequence: 1
  givenname: Duo
  surname: Li
  fullname: Li, Duo
– sequence: 2
  givenname: Fei
  surname: Han
  fullname: Han, Fei
– sequence: 3
  givenname: Shuai
  surname: Wang
  fullname: Wang, Shuai
– sequence: 4
  givenname: Fei
  surname: Cheng
  fullname: Cheng, Fei
– sequence: 5
  givenname: Qiang
  surname: Sun
  fullname: Sun, Qiang
– sequence: 6
  givenname: Wen-Cui
  surname: Li
  fullname: Li, Wen-Cui
  email: wencuili@dlut.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23452385$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1uEzEQxy1URD_gwAsgX5BAItSfu5sjRJQiBVEJytWa2OPEZXed2t5DOfEOvCFPgqukPaBKnDySf_Ob0X-OycEYRyTkOWdvORP8FAbFGNNSPyJHfK7UrBNaHNzXSh2S45yvGGukYPoJORRSaSE7fUR-nof1hn6dej8luozgwrimCyib6DDTM1ilYKGgo5f59ucCYRtdH37gG7qEtEZ6ERPS77GfBqSfMcdtTHHKVZFWcaQ-VmsomzANf3793o95D6VgunlKHnvoMz7bvyfk8uzDt8X5bPnl46fFu-UMFFdlBqhbp2ynW6U9CqaksoqjaKHRDr2bN0J6xVfQOCfaznspWg6NYvOus62V8oS82nm3KV5PmIsZQrbY9zBiXdWImp1iYt6q_6JcCi5lV9UVfbFHp9WAzmxTGCDdmLtoK3C6A2yKOSf0xoYCJcSxJAi94czcHs_cH692vP6n4076EPtyx4LN5ipOaawRPsD9BVbZpQg
CitedBy_id crossref_primary_10_1039_C5TB00921A
crossref_primary_10_1016_j_surfcoat_2020_126228
crossref_primary_10_1016_j_inoche_2025_114112
crossref_primary_10_1039_C9NJ05035C
crossref_primary_10_1016_j_nanoen_2015_08_004
crossref_primary_10_1002_er_8291
crossref_primary_10_1007_s12274_016_1244_1
crossref_primary_10_1002_ppsc_201300315
crossref_primary_10_1021_acsami_6b06890
crossref_primary_10_1021_acs_jpcc_8b10009
crossref_primary_10_1016_j_jechem_2020_06_009
crossref_primary_10_1016_j_jpowsour_2016_05_080
crossref_primary_10_1016_j_matlet_2014_09_044
crossref_primary_10_1039_C5RA07325A
crossref_primary_10_1002_cey2_116
crossref_primary_10_1016_j_apsusc_2014_04_036
crossref_primary_10_1039_C7TA04279E
crossref_primary_10_1039_C3TA13033A
crossref_primary_10_1016_j_apsusc_2019_143637
crossref_primary_10_1016_j_jpowsour_2017_03_063
crossref_primary_10_1016_j_materresbull_2014_03_023
crossref_primary_10_1021_acsnano_5b07340
crossref_primary_10_1021_cr500062v
crossref_primary_10_1039_c3ta13306k
crossref_primary_10_1016_j_electacta_2020_136529
crossref_primary_10_1039_C6RA19613F
crossref_primary_10_1002_advs_201400012
crossref_primary_10_1007_s12274_017_1454_1
crossref_primary_10_1016_j_ensm_2020_05_023
crossref_primary_10_1016_j_jallcom_2015_08_050
crossref_primary_10_1039_C5TA00651A
crossref_primary_10_1002_cctc_201900184
crossref_primary_10_1016_j_polymer_2017_02_021
crossref_primary_10_1016_j_jelechem_2019_03_041
crossref_primary_10_1007_s12598_017_0891_z
crossref_primary_10_1021_acsami_5b11327
crossref_primary_10_1002_aenm_201500118
crossref_primary_10_1039_C9TA11572B
crossref_primary_10_1007_s12274_019_2381_0
crossref_primary_10_1016_j_ceramint_2020_08_202
crossref_primary_10_1039_C3EE42918K
crossref_primary_10_3866_PKU_WHXB202303061
crossref_primary_10_1038_s43246_025_00734_1
crossref_primary_10_1016_j_carbon_2014_12_001
crossref_primary_10_3390_nano9111612
crossref_primary_10_1021_am503069j
crossref_primary_10_1016_j_jpowsour_2018_06_003
crossref_primary_10_1016_j_jcis_2014_08_036
crossref_primary_10_1002_smll_201700358
crossref_primary_10_1016_j_jpowsour_2019_04_084
crossref_primary_10_1002_ente_201900141
crossref_primary_10_1016_j_electacta_2015_10_102
crossref_primary_10_1039_C5RA06825H
crossref_primary_10_1039_C8SE00543E
crossref_primary_10_1021_am507660y
crossref_primary_10_1021_jp410385s
crossref_primary_10_1002_asia_201701343
crossref_primary_10_1007_s11581_021_03905_5
crossref_primary_10_1016_j_est_2024_112192
crossref_primary_10_1002_eem2_12017
crossref_primary_10_1016_j_matre_2022_100159
crossref_primary_10_1016_j_apsusc_2017_06_129
crossref_primary_10_1016_j_jelechem_2017_10_034
crossref_primary_10_1002_bkcs_10643
crossref_primary_10_1021_nn503985s
crossref_primary_10_1039_C5NR04768D
crossref_primary_10_3390_batteries2040033
crossref_primary_10_1002_adma_201601759
crossref_primary_10_1016_j_nanoen_2013_12_013
crossref_primary_10_1016_j_jechem_2015_06_011
crossref_primary_10_1002_aenm_201602733
crossref_primary_10_1002_chem_201504672
crossref_primary_10_1002_celc_202100165
crossref_primary_10_1002_adma_201405115
crossref_primary_10_1016_j_nanoen_2015_01_033
crossref_primary_10_1002_smll_202411744
crossref_primary_10_1039_C8RA07885H
crossref_primary_10_1016_j_electacta_2016_07_153
crossref_primary_10_1002_aesr_202100088
crossref_primary_10_1021_jp512062t
crossref_primary_10_1039_C7NJ04294A
crossref_primary_10_33961_jecst_2019_00423
crossref_primary_10_1016_j_jallcom_2021_163369
crossref_primary_10_15541_jim20190325
crossref_primary_10_1002_bkcs_11633
crossref_primary_10_1016_j_jpowsour_2014_10_042
crossref_primary_10_1039_c3ta15065h
crossref_primary_10_1039_C5RA10852G
crossref_primary_10_1002_adfm_201303296
crossref_primary_10_1016_j_materresbull_2014_12_025
crossref_primary_10_1039_C6RA22652C
crossref_primary_10_1021_acsapm_4c00272
crossref_primary_10_1016_j_jelechem_2021_115008
crossref_primary_10_1016_j_nanoen_2015_05_006
crossref_primary_10_1039_C6RA19356K
crossref_primary_10_1039_C9TA00544G
crossref_primary_10_1016_j_jpowsour_2021_229508
crossref_primary_10_1021_acsami_5b10300
crossref_primary_10_1021_acsnano_5b03488
crossref_primary_10_1016_j_progpolymsci_2016_04_003
crossref_primary_10_1149_2_0391903jes
crossref_primary_10_1021_acs_energyfuels_8b01453
crossref_primary_10_1039_C5TA00681C
crossref_primary_10_3390_en6073466
crossref_primary_10_1021_acsami_6b14687
crossref_primary_10_1039_C7SE00210F
crossref_primary_10_1016_j_inoche_2024_112855
crossref_primary_10_1016_j_ensm_2017_07_009
crossref_primary_10_1016_j_jelechem_2020_114565
crossref_primary_10_1002_vjch_201800070
crossref_primary_10_1016_j_jelechem_2017_08_026
crossref_primary_10_1016_j_jpowsour_2013_12_031
crossref_primary_10_1021_acs_nanolett_5b01294
crossref_primary_10_1002_ente_201700982
crossref_primary_10_1039_C5RA16104E
crossref_primary_10_1039_C6RA24156E
crossref_primary_10_1016_j_jallcom_2020_156832
crossref_primary_10_1021_acsami_7b06485
crossref_primary_10_3390_batteries9020079
crossref_primary_10_1016_j_jelechem_2014_11_007
crossref_primary_10_1039_C4RA15796F
crossref_primary_10_1016_j_jallcom_2017_05_206
crossref_primary_10_1021_acsami_6b09989
crossref_primary_10_1039_C8NJ05548C
crossref_primary_10_1016_j_jpowsour_2015_03_135
crossref_primary_10_1038_srep32433
crossref_primary_10_1039_C6NR06332B
crossref_primary_10_1002_adfm_201906117
crossref_primary_10_15541_jim20200690
crossref_primary_10_1039_C7TA01161J
crossref_primary_10_1016_j_electacta_2014_11_099
crossref_primary_10_1002_adfm_201303080
crossref_primary_10_1016_j_jpowsour_2017_04_065
crossref_primary_10_1002_slct_202001729
crossref_primary_10_1039_C4TA03823A
crossref_primary_10_1039_D3MA00022B
crossref_primary_10_1016_j_ceramint_2019_09_295
crossref_primary_10_1021_am4058088
crossref_primary_10_1021_nn503394u
crossref_primary_10_1149_2_0251910jes
crossref_primary_10_1021_acsami_5b07468
crossref_primary_10_1002_adfm_202100457
crossref_primary_10_1002_admi_201701212
crossref_primary_10_1039_C4TA00630E
crossref_primary_10_1038_s42004_019_0166_8
crossref_primary_10_1016_j_cej_2025_161227
crossref_primary_10_1016_j_matchemphys_2024_130330
crossref_primary_10_1002_celc_201801148
crossref_primary_10_1016_j_carbon_2015_03_008
crossref_primary_10_1016_j_matchemphys_2024_130211
crossref_primary_10_1007_s10853_020_05193_2
crossref_primary_10_1039_D1CC07087H
crossref_primary_10_1016_j_nanoen_2015_04_032
crossref_primary_10_1021_acsami_5b07978
crossref_primary_10_1016_j_jpowsour_2013_12_081
crossref_primary_10_1021_am5030116
crossref_primary_10_1002_adfm_201601897
crossref_primary_10_1021_acsami_5b04108
crossref_primary_10_1002_celc_201600696
crossref_primary_10_1002_er_6220
crossref_primary_10_1007_s13369_019_03760_7
crossref_primary_10_1039_C6TA07864H
crossref_primary_10_1002_smll_202006504
crossref_primary_10_1039_C4TA03503H
crossref_primary_10_1021_acs_jpcc_8b00478
crossref_primary_10_1007_s10934_019_00720_2
crossref_primary_10_1016_j_optmat_2024_115515
crossref_primary_10_1016_j_jallcom_2016_02_064
crossref_primary_10_1016_j_jelechem_2020_114900
crossref_primary_10_1021_acsaem_8b00638
crossref_primary_10_1016_j_cej_2016_12_081
crossref_primary_10_1039_D1TA06745A
crossref_primary_10_1016_j_cej_2019_05_038
crossref_primary_10_1039_C7TA00799J
crossref_primary_10_1039_C6RA04146A
crossref_primary_10_1039_C8NJ00652K
crossref_primary_10_1002_advs_201903168
crossref_primary_10_1016_j_renene_2020_03_153
crossref_primary_10_1016_j_ssi_2016_04_019
crossref_primary_10_1016_j_carbon_2018_09_067
crossref_primary_10_1002_adfm_201606663
crossref_primary_10_1002_admi_201701116
crossref_primary_10_1088_2516_1075_abea09
crossref_primary_10_1149_2_0151903jes
crossref_primary_10_1007_s11581_019_03285_x
crossref_primary_10_1039_C6RA26179E
crossref_primary_10_1039_C5TA00897B
crossref_primary_10_1016_j_mseb_2017_10_005
crossref_primary_10_1016_j_jelechem_2015_12_016
crossref_primary_10_1016_j_jpowsour_2016_12_062
crossref_primary_10_1016_j_jpowsour_2022_231482
crossref_primary_10_1007_s12274_014_0601_1
crossref_primary_10_1021_am402970x
crossref_primary_10_1002_celc_201600479
crossref_primary_10_1021_sc500459c
crossref_primary_10_1016_j_jallcom_2014_04_073
crossref_primary_10_1039_C7CC04229A
crossref_primary_10_1007_s11581_019_03065_7
crossref_primary_10_1002_cssc_201802186
crossref_primary_10_1016_j_matt_2023_12_018
crossref_primary_10_1016_j_nanoen_2016_12_060
crossref_primary_10_1039_C9QI00970A
crossref_primary_10_1088_1361_6528_aafe46
crossref_primary_10_1016_j_apsusc_2014_10_176
crossref_primary_10_1021_acs_jpcc_3c04835
crossref_primary_10_1002_aenm_201400196
crossref_primary_10_1002_aenm_201301988
crossref_primary_10_1016_j_electacta_2015_04_055
crossref_primary_10_1039_C5TA01515D
crossref_primary_10_1007_s11581_018_2597_0
Cites_doi 10.1016/j.carbon.2007.11.007
10.1021/nl202297p
10.1021/ar300094m
10.1149/1.1571532
10.1039/c2cp40808b
10.1039/c2cc17925c
10.1021/ja203857g
10.1039/c1ee01219c
10.1002/anie.201107817
10.1021/jp300950m
10.1149/1.3583375
10.1002/adma.201103392
10.1016/j.matchemphys.2004.05.023
10.1039/c1ee02256c
10.1021/jp207893d
10.1039/c002639e
10.1039/c2ee03495f
10.1002/anie.201100637
10.1557/mrs.2011.157
10.1149/1.1806394
10.1039/b925751a
10.1021/ar300179v
10.1039/c2jm31359f
10.1149/1.1503076
10.1038/ncomms2163
10.1021/am301688h
10.1039/c2jm16543k
10.1002/cssc.201200101
10.1021/ja308170k
10.1039/c2cc33945e
10.1002/anie.201205292
10.1038/nmat2460
10.1021/ja206333w
10.1021/cm902050j
10.1016/j.elecom.2008.09.012
10.1149/1.1571533
10.1002/adma.201103274
10.1021/nl200658a
10.1039/C2CC16726C
10.1021/nn203436j
10.1002/adfm.201202254
10.1021/ja206955k
ContentType Journal Article
Copyright Copyright © 2013 American Chemical Society
Copyright_xml – notice: Copyright © 2013 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1021/am4000535
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 2213
ExternalDocumentID 23452385
10_1021_am4000535
c491943344
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
23M
4.4
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
LG6
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
---
.K2
5VS
5ZA
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a414t-ae57d4c85745fe20434c41e27a65defd9623f41ba6dd278ff3271a640988c7c33
IEDL.DBID ACS
ISSN 1944-8244
1944-8252
IngestDate Fri Jul 11 11:52:16 EDT 2025
Fri Jul 11 13:29:32 EDT 2025
Mon Jul 21 06:04:57 EDT 2025
Tue Jul 01 04:12:01 EDT 2025
Thu Apr 24 22:59:44 EDT 2025
Thu Aug 27 13:43:07 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords lithium−sulfur battery
high sulfur loading cathode
peapodlike mesoporous carbon
carbon/sulfur composite
large pore volume
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a414t-ae57d4c85745fe20434c41e27a65defd9623f41ba6dd278ff3271a640988c7c33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 23452385
PQID 1321338098
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_2000402974
proquest_miscellaneous_1321338098
pubmed_primary_23452385
crossref_citationtrail_10_1021_am4000535
crossref_primary_10_1021_am4000535
acs_journals_10_1021_am4000535
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-03-27
PublicationDateYYYYMMDD 2013-03-27
PublicationDate_xml – month: 03
  year: 2013
  text: 2013-03-27
  day: 27
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2013
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Wang J. (ref8/cit8) 2008; 46
ref9/cit9
Xin S. (ref37/cit37) 2012; 45
ref3/cit3
Fu Y. (ref31/cit31) 2012; 116
Cheon S.-E. (ref10/cit10) 2003; 150
Jayaprakash N. (ref24/cit24) 2011; 50
Wang Q. (ref38/cit38) 2011; 158
Ji X. (ref21/cit21) 2009; 8
Wang D.-W. (ref39/cit39) 2012; 14
Sun M. (ref41/cit41) 2008; 10
Fu Y. (ref6/cit6) 2012; 4
Elazari R. (ref19/cit19) 2011; 23
Zhang B. (ref23/cit23) 2010; 3
Ji L. (ref27/cit27) 2011; 133
Liang C. (ref20/cit20) 2009; 21
Yang Y. (ref32/cit32) 2011; 5
Dörfler S. (ref16/cit16) 2012; 48
Guo J. (ref17/cit17) 2011; 11
Xin S. (ref7/cit7) 2012; 134
Yin L. (ref13/cit13) 2012; 5
Hao G.-P. (ref35/cit35) 2011; 133
ref40/cit40
Bruce P. G. (ref1/cit1) 2011; 36
Mikhaylik Y. V. (ref12/cit12) 2004; 151
Sun X.-G. (ref4/cit4) 2012; 5
He G. (ref22/cit22) 2011; 4
Schuster J. (ref25/cit25) 2012; 51
Zhang C. (ref14/cit14) 2012; 51
Wu F. (ref33/cit33) 2011; 115
Wang S. (ref34/cit34) 2011; 133
Su Y.-S. (ref15/cit15) 2012; 48
Ji L. (ref18/cit18) 2011; 4
Song G.-M. (ref42/cit42) 2004; 87
Han F. (ref36/cit36) 2012; 22
Xiao L. (ref30/cit30) 2012; 24
Wang H. (ref26/cit26) 2011; 11
Cheon S.-E. (ref11/cit11) 2003; 150
Zhang F. (ref29/cit29) 2012; 22
Shim J. (ref5/cit5) 2002; 149
Ji X. (ref2/cit2) 2010; 20
Evers S. (ref28/cit28) 2012; 48
References_xml – volume: 46
  start-page: 229
  year: 2008
  ident: ref8/cit8
  publication-title: Carbon
  doi: 10.1016/j.carbon.2007.11.007
– volume: 11
  start-page: 4288
  year: 2011
  ident: ref17/cit17
  publication-title: Nano Lett.
  doi: 10.1021/nl202297p
– volume: 45
  start-page: 1759
  year: 2012
  ident: ref37/cit37
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar300094m
– volume: 150
  start-page: A796
  year: 2003
  ident: ref10/cit10
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1571532
– volume: 14
  start-page: 8703
  year: 2012
  ident: ref39/cit39
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c2cp40808b
– volume: 48
  start-page: 4097
  year: 2012
  ident: ref16/cit16
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc17925c
– volume: 133
  start-page: 11378
  year: 2011
  ident: ref35/cit35
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja203857g
– volume: 4
  start-page: 2878
  year: 2011
  ident: ref22/cit22
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c1ee01219c
– volume: 51
  start-page: 3591
  year: 2012
  ident: ref25/cit25
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201107817
– volume: 116
  start-page: 8910
  year: 2012
  ident: ref31/cit31
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp300950m
– volume: 158
  start-page: A775
  year: 2011
  ident: ref38/cit38
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3583375
– volume: 24
  start-page: 1176
  year: 2012
  ident: ref30/cit30
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201103392
– volume: 87
  start-page: 162
  year: 2004
  ident: ref42/cit42
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2004.05.023
– volume: 4
  start-page: 5053
  year: 2011
  ident: ref18/cit18
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c1ee02256c
– volume: 115
  start-page: 24411
  year: 2011
  ident: ref33/cit33
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp207893d
– volume: 3
  start-page: 1531
  year: 2010
  ident: ref23/cit23
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c002639e
– volume: 5
  start-page: 6966
  year: 2012
  ident: ref13/cit13
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee03495f
– volume: 50
  start-page: 5904
  year: 2011
  ident: ref24/cit24
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201100637
– volume: 36
  start-page: 506
  year: 2011
  ident: ref1/cit1
  publication-title: MRS Bull.
  doi: 10.1557/mrs.2011.157
– volume: 151
  start-page: A1969
  year: 2004
  ident: ref12/cit12
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1806394
– volume: 20
  start-page: 9821
  year: 2010
  ident: ref2/cit2
  publication-title: J. Mater. Chem.
  doi: 10.1039/b925751a
– ident: ref3/cit3
  doi: 10.1021/ar300179v
– volume: 22
  start-page: 9645
  year: 2012
  ident: ref36/cit36
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm31359f
– volume: 149
  start-page: A1321
  year: 2002
  ident: ref5/cit5
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1503076
– ident: ref9/cit9
  doi: 10.1038/ncomms2163
– volume: 4
  start-page: 6046
  year: 2012
  ident: ref6/cit6
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am301688h
– volume: 22
  start-page: 11452
  year: 2012
  ident: ref29/cit29
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm16543k
– volume: 5
  start-page: 2079
  year: 2012
  ident: ref4/cit4
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201200101
– volume: 134
  start-page: 18510
  year: 2012
  ident: ref7/cit7
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja308170k
– volume: 48
  start-page: 8817
  year: 2012
  ident: ref15/cit15
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc33945e
– volume: 51
  start-page: 9592
  year: 2012
  ident: ref14/cit14
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201205292
– volume: 8
  start-page: 500
  year: 2009
  ident: ref21/cit21
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2460
– volume: 133
  start-page: 15304
  year: 2011
  ident: ref34/cit34
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja206333w
– volume: 21
  start-page: 4724
  year: 2009
  ident: ref20/cit20
  publication-title: Chem. Mater.
  doi: 10.1021/cm902050j
– volume: 10
  start-page: 1819
  year: 2008
  ident: ref41/cit41
  publication-title: J. Electrochem. Commun.
  doi: 10.1016/j.elecom.2008.09.012
– volume: 150
  start-page: A800
  year: 2003
  ident: ref11/cit11
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1571533
– volume: 23
  start-page: 5641
  year: 2011
  ident: ref19/cit19
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201103274
– volume: 11
  start-page: 2644
  year: 2011
  ident: ref26/cit26
  publication-title: Nano Lett.
  doi: 10.1021/nl200658a
– volume: 48
  start-page: 1233
  year: 2012
  ident: ref28/cit28
  publication-title: Chem. Commun.
  doi: 10.1039/C2CC16726C
– volume: 5
  start-page: 9187
  year: 2011
  ident: ref32/cit32
  publication-title: ACS Nano
  doi: 10.1021/nn203436j
– ident: ref40/cit40
  doi: 10.1002/adfm.201202254
– volume: 133
  start-page: 18522
  year: 2011
  ident: ref27/cit27
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja206955k
SSID ssj0063205
Score 2.5039394
Snippet Porous carbon materials with large pore volume are crucial in loading insulated sulfur with the purpose of achieving high performance for lithium–sulfur...
Porous carbon materials with large pore volume are crucial in loading insulated sulfur with the purpose of achieving high performance for lithium-sulfur...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2208
SubjectTerms batteries
bulk density
carbon
Carbon - chemistry
cathodes
Electric Power Supplies
Electrochemistry - methods
Electrodes
lithium
Lithium - chemistry
polymers
Porosity
porous media
sulfur
Sulfur - chemistry
Title High Sulfur Loading Cathodes Fabricated Using Peapodlike, Large Pore Volume Mesoporous Carbon for Lithium–Sulfur Battery
URI http://dx.doi.org/10.1021/am4000535
https://www.ncbi.nlm.nih.gov/pubmed/23452385
https://www.proquest.com/docview/1321338098
https://www.proquest.com/docview/2000402974
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELZKucCB92MLVOZx4IBLYju2e0SFVYW2CKkU9Rb5qa66TapNcmhP_Af-Ib-EsZOsiujCfRLH8WO-TzPzDUJvMueF85KRzDhKOFAIolkoSBaUyZxkJksR04MvYv-Ifz4ujjfQ6zURfJq_12e8VyG5gW5SAYc34p-9w_G6FYymPEUg45wocFajfNDVR6Prsc2frmcNnkx-ZXoXfRyrc_p0ktOdrjU79vJvscZ_ffI9dGfAlfhDvxHuow1fPUC3r6gNPkSXMacDH3aL0C3xrE7J8zhWANbON3iqTeoY5B1OaQQYLsvz2i3mp_4dnsV8cfy1Xnr8PV1n-MA3NUD3umvgFUtTVxjQL57N25N5d_brx89hmF6-8-IROpp--ra3T4bWC0TznLdE-0I6blUheRF8rJ_llueeSi0K54PbBdQUeG60cI5KFQKjMtcCyKJSVlrGHqPNqq78U4R5bL2eKeuNEVxYwAdFEED6Mq0C27V0grZhbcrh6DRliorTvFz9xAl6Oy5baQfh8tg_Y3Gd6auV6Xmv1nGd0ctx7Us4SzFAoisP_6sEZh4pO0xivU0sbeKx4xefoCf9xlkNRRkHXq-Krf9N6Rm6RVNbDUaofI4222XnXwC4ac122ty_AfXt8VA
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHIAD78dSKAZx4IBLYjuxe6wqVgtkK6S2qLfIT7HqNqk2yYGe-A_9h_0lHTvZpaBWcJ_4lbHnG83MNwi9S6zLrROMJNpSwsGFIIr5jCRe6sQKppMYMZ3u5pMD_uUwOxxockItDCyigZGaGMT_zS6QflTHvCcjuYluAQihQZu3d_aWr27OaExXBJ-cEwk2a8kidPnTYIFM86cFugZWRvMyvt_3KYoLi1klR5tdqzfN6V-cjf-38gfo3oAy8XavFg_RDVc9QncvcQ8-RqchwwPvdXPfLXBRx1R6HOoBa-saPFY69g9yFsekAgxP50lt57Mj9wEXIXscf6sXDn-PjxueuqYGIF93DQyx0HWFAQvjYtb-mHXH57_Ohml6Ms-fT9DB-NP-zoQMjRiI4ilviXKZsNzITPDMu1BNyw1PHRUqz6zzdgswlOepVrm1VEjvGRWpysF1lNIIw9hTtFbVlXuOMA-N2BNpnNY5zw2ghczn4AImSnq2ZegIbcAZlsNFasoYI6dpuTrEEXq__HulGWjMQzeN-VWib1eiJz13x1VCb5YqUMLNCuESVTk4rxL89ODAwyaulwmFTjz0_-Ij9KzXn9VUlHHw8mX24l9beo1uT_anRVl83v26ju7Q2HCDESpeorV20blXAHtavRH1_QKCCvmx
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSAgOvAvLoxjEgQMuie3Y7rEqrApsS6VS1Fvkp1h1m6w2yYGe-A_8Q34JYye7KqgV3Cd-ZeyZTzPzDUKvMueF85KRzDhKOEAIolkoSBaUyZxkJksR0719sXvEPx4XxwNQjLUwsIgGRmpSED_e6rkLA8NA_laf8p6Q5Cq6FsN1UaO3dw6XL69gNKUsAi7nRIHdWjIJnf80WiHb_GmFLnEtk4kZ30afV4tLmSUnm11rNu3ZX7yN_7_6O-jW4G3i7V497qIrvrqHbp7jILyPzmKmBz7sZqFb4EmdUupxrAusnW_wWJvUR8g7nJILMDyh89rNpif-DZ7ELHJ8UC88_poeObznmxoc-rprYIiFqSsMPjGeTNtv0-7014-fwzQ9qef3B-ho_P7Lzi4ZGjIQzXPeEu0L6bhVheRF8LGqllueeyq1KJwPbgt8qcBzo4VzVKoQGJW5FgAhlbLSMraO1qq68o8Q5rEhe6asN0ZwYcFrKIIAKJhpFdiWpSO0AedYDheqKVOsnObl6hBH6PXyD5Z2oDOPXTVmF4m-XInOew6Pi4ReLNWghBsWwya68nBeJeD1CORhE5fLxIInHvuA8RF62OvQairKOKB9VTz-15aeo-sH78bl5MP-pyfoBk19Nxih8ilaaxedfwbeT2s2ksr_BrfS_DQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+Sulfur+Loading+Cathodes+Fabricated+Using+Peapodlike%2C+Large+Pore+Volume+Mesoporous+Carbon+for+Lithium%E2%80%93Sulfur+Battery&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Li%2C+Duo&rft.au=Han%2C+Fei&rft.au=Wang%2C+Shuai&rft.au=Cheng%2C+Fei&rft.date=2013-03-27&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=5&rft.issue=6&rft.spage=2208&rft.epage=2213&rft_id=info:doi/10.1021%2Fam4000535&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_am4000535
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon