High Sulfur Loading Cathodes Fabricated Using Peapodlike, Large Pore Volume Mesoporous Carbon for Lithium–Sulfur Battery
Porous carbon materials with large pore volume are crucial in loading insulated sulfur with the purpose of achieving high performance for lithium–sulfur batteries. In our study, peapodlike mesoporous carbon with interconnected pore channels and large pore volume (4.69 cm3 g–1) was synthesized and us...
Saved in:
Published in | ACS applied materials & interfaces Vol. 5; no. 6; pp. 2208 - 2213 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
27.03.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Porous carbon materials with large pore volume are crucial in loading insulated sulfur with the purpose of achieving high performance for lithium–sulfur batteries. In our study, peapodlike mesoporous carbon with interconnected pore channels and large pore volume (4.69 cm3 g–1) was synthesized and used as the matrix to fabricate carbon/sulfur (C/S) composite which served as attractive cathodes for lithium–sulfur batteries. Systematic investigation of the C/S composite reveals that the carbon matrix can hold a high but suitable sulfur loading of 84 wt %, which is beneficial for improving the bulk density in practical application. Such controllable sulfur-filling also effectively allows the volume expansion of active sulfur during Li+ insertion. Moreover, the thin carbon walls (3–4 nm) of carbon matrix not only are able to shorten the pathway of Li+ transfer and conduct electron to overcome the poor kinetics of sulfur cathode, but also are flexible to warrant structure stability. Importantly, the peapodlike carbon shell is beneficial to increase the electrical contact for improving electronic conductivity of active sulfur. Meanwhile, polymer modification with polypyrrole coating layer further restrains polysulfides dissolution and improves the cycle stability of carbon/sulfur composites. |
---|---|
AbstractList | Porous carbon materials with large pore volume are crucial in loading insulated sulfur with the purpose of achieving high performance for lithium-sulfur batteries. In our study, peapodlike mesoporous carbon with interconnected pore channels and large pore volume (4.69 cm(3) g(-1)) was synthesized and used as the matrix to fabricate carbon/sulfur (C/S) composite which served as attractive cathodes for lithium-sulfur batteries. Systematic investigation of the C/S composite reveals that the carbon matrix can hold a high but suitable sulfur loading of 84 wt %, which is beneficial for improving the bulk density in practical application. Such controllable sulfur-filling also effectively allows the volume expansion of active sulfur during Li(+) insertion. Moreover, the thin carbon walls (3-4 nm) of carbon matrix not only are able to shorten the pathway of Li(+) transfer and conduct electron to overcome the poor kinetics of sulfur cathode, but also are flexible to warrant structure stability. Importantly, the peapodlike carbon shell is beneficial to increase the electrical contact for improving electronic conductivity of active sulfur. Meanwhile, polymer modification with polypyrrole coating layer further restrains polysulfides dissolution and improves the cycle stability of carbon/sulfur composites.Porous carbon materials with large pore volume are crucial in loading insulated sulfur with the purpose of achieving high performance for lithium-sulfur batteries. In our study, peapodlike mesoporous carbon with interconnected pore channels and large pore volume (4.69 cm(3) g(-1)) was synthesized and used as the matrix to fabricate carbon/sulfur (C/S) composite which served as attractive cathodes for lithium-sulfur batteries. Systematic investigation of the C/S composite reveals that the carbon matrix can hold a high but suitable sulfur loading of 84 wt %, which is beneficial for improving the bulk density in practical application. Such controllable sulfur-filling also effectively allows the volume expansion of active sulfur during Li(+) insertion. Moreover, the thin carbon walls (3-4 nm) of carbon matrix not only are able to shorten the pathway of Li(+) transfer and conduct electron to overcome the poor kinetics of sulfur cathode, but also are flexible to warrant structure stability. Importantly, the peapodlike carbon shell is beneficial to increase the electrical contact for improving electronic conductivity of active sulfur. Meanwhile, polymer modification with polypyrrole coating layer further restrains polysulfides dissolution and improves the cycle stability of carbon/sulfur composites. Porous carbon materials with large pore volume are crucial in loading insulated sulfur with the purpose of achieving high performance for lithium-sulfur batteries. In our study, peapodlike mesoporous carbon with interconnected pore channels and large pore volume (4.69 cm(3) g(-1)) was synthesized and used as the matrix to fabricate carbon/sulfur (C/S) composite which served as attractive cathodes for lithium-sulfur batteries. Systematic investigation of the C/S composite reveals that the carbon matrix can hold a high but suitable sulfur loading of 84 wt %, which is beneficial for improving the bulk density in practical application. Such controllable sulfur-filling also effectively allows the volume expansion of active sulfur during Li(+) insertion. Moreover, the thin carbon walls (3-4 nm) of carbon matrix not only are able to shorten the pathway of Li(+) transfer and conduct electron to overcome the poor kinetics of sulfur cathode, but also are flexible to warrant structure stability. Importantly, the peapodlike carbon shell is beneficial to increase the electrical contact for improving electronic conductivity of active sulfur. Meanwhile, polymer modification with polypyrrole coating layer further restrains polysulfides dissolution and improves the cycle stability of carbon/sulfur composites. Porous carbon materials with large pore volume are crucial in loading insulated sulfur with the purpose of achieving high performance for lithium–sulfur batteries. In our study, peapodlike mesoporous carbon with interconnected pore channels and large pore volume (4.69 cm3 g–1) was synthesized and used as the matrix to fabricate carbon/sulfur (C/S) composite which served as attractive cathodes for lithium–sulfur batteries. Systematic investigation of the C/S composite reveals that the carbon matrix can hold a high but suitable sulfur loading of 84 wt %, which is beneficial for improving the bulk density in practical application. Such controllable sulfur-filling also effectively allows the volume expansion of active sulfur during Li+ insertion. Moreover, the thin carbon walls (3–4 nm) of carbon matrix not only are able to shorten the pathway of Li+ transfer and conduct electron to overcome the poor kinetics of sulfur cathode, but also are flexible to warrant structure stability. Importantly, the peapodlike carbon shell is beneficial to increase the electrical contact for improving electronic conductivity of active sulfur. Meanwhile, polymer modification with polypyrrole coating layer further restrains polysulfides dissolution and improves the cycle stability of carbon/sulfur composites. Porous carbon materials with large pore volume are crucial in loading insulated sulfur with the purpose of achieving high performance for lithium–sulfur batteries. In our study, peapodlike mesoporous carbon with interconnected pore channels and large pore volume (4.69 cm³ g–¹) was synthesized and used as the matrix to fabricate carbon/sulfur (C/S) composite which served as attractive cathodes for lithium–sulfur batteries. Systematic investigation of the C/S composite reveals that the carbon matrix can hold a high but suitable sulfur loading of 84 wt %, which is beneficial for improving the bulk density in practical application. Such controllable sulfur-filling also effectively allows the volume expansion of active sulfur during Li⁺ insertion. Moreover, the thin carbon walls (3–4 nm) of carbon matrix not only are able to shorten the pathway of Li⁺ transfer and conduct electron to overcome the poor kinetics of sulfur cathode, but also are flexible to warrant structure stability. Importantly, the peapodlike carbon shell is beneficial to increase the electrical contact for improving electronic conductivity of active sulfur. Meanwhile, polymer modification with polypyrrole coating layer further restrains polysulfides dissolution and improves the cycle stability of carbon/sulfur composites. |
Author | Han, Fei Li, Wen-Cui Sun, Qiang Wang, Shuai Cheng, Fei Li, Duo |
AuthorAffiliation | Dalian University of Technology |
AuthorAffiliation_xml | – name: Dalian University of Technology |
Author_xml | – sequence: 1 givenname: Duo surname: Li fullname: Li, Duo – sequence: 2 givenname: Fei surname: Han fullname: Han, Fei – sequence: 3 givenname: Shuai surname: Wang fullname: Wang, Shuai – sequence: 4 givenname: Fei surname: Cheng fullname: Cheng, Fei – sequence: 5 givenname: Qiang surname: Sun fullname: Sun, Qiang – sequence: 6 givenname: Wen-Cui surname: Li fullname: Li, Wen-Cui email: wencuili@dlut.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23452385$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1uEzEQxy1URD_gwAsgX5BAItSfu5sjRJQiBVEJytWa2OPEZXed2t5DOfEOvCFPgqukPaBKnDySf_Ob0X-OycEYRyTkOWdvORP8FAbFGNNSPyJHfK7UrBNaHNzXSh2S45yvGGukYPoJORRSaSE7fUR-nof1hn6dej8luozgwrimCyib6DDTM1ilYKGgo5f59ucCYRtdH37gG7qEtEZ6ERPS77GfBqSfMcdtTHHKVZFWcaQ-VmsomzANf3793o95D6VgunlKHnvoMz7bvyfk8uzDt8X5bPnl46fFu-UMFFdlBqhbp2ynW6U9CqaksoqjaKHRDr2bN0J6xVfQOCfaznspWg6NYvOus62V8oS82nm3KV5PmIsZQrbY9zBiXdWImp1iYt6q_6JcCi5lV9UVfbFHp9WAzmxTGCDdmLtoK3C6A2yKOSf0xoYCJcSxJAi94czcHs_cH692vP6n4076EPtyx4LN5ipOaawRPsD9BVbZpQg |
CitedBy_id | crossref_primary_10_1039_C5TB00921A crossref_primary_10_1016_j_surfcoat_2020_126228 crossref_primary_10_1016_j_inoche_2025_114112 crossref_primary_10_1039_C9NJ05035C crossref_primary_10_1016_j_nanoen_2015_08_004 crossref_primary_10_1002_er_8291 crossref_primary_10_1007_s12274_016_1244_1 crossref_primary_10_1002_ppsc_201300315 crossref_primary_10_1021_acsami_6b06890 crossref_primary_10_1021_acs_jpcc_8b10009 crossref_primary_10_1016_j_jechem_2020_06_009 crossref_primary_10_1016_j_jpowsour_2016_05_080 crossref_primary_10_1016_j_matlet_2014_09_044 crossref_primary_10_1039_C5RA07325A crossref_primary_10_1002_cey2_116 crossref_primary_10_1016_j_apsusc_2014_04_036 crossref_primary_10_1039_C7TA04279E crossref_primary_10_1039_C3TA13033A crossref_primary_10_1016_j_apsusc_2019_143637 crossref_primary_10_1016_j_jpowsour_2017_03_063 crossref_primary_10_1016_j_materresbull_2014_03_023 crossref_primary_10_1021_acsnano_5b07340 crossref_primary_10_1021_cr500062v crossref_primary_10_1039_c3ta13306k crossref_primary_10_1016_j_electacta_2020_136529 crossref_primary_10_1039_C6RA19613F crossref_primary_10_1002_advs_201400012 crossref_primary_10_1007_s12274_017_1454_1 crossref_primary_10_1016_j_ensm_2020_05_023 crossref_primary_10_1016_j_jallcom_2015_08_050 crossref_primary_10_1039_C5TA00651A crossref_primary_10_1002_cctc_201900184 crossref_primary_10_1016_j_polymer_2017_02_021 crossref_primary_10_1016_j_jelechem_2019_03_041 crossref_primary_10_1007_s12598_017_0891_z crossref_primary_10_1021_acsami_5b11327 crossref_primary_10_1002_aenm_201500118 crossref_primary_10_1039_C9TA11572B crossref_primary_10_1007_s12274_019_2381_0 crossref_primary_10_1016_j_ceramint_2020_08_202 crossref_primary_10_1039_C3EE42918K crossref_primary_10_3866_PKU_WHXB202303061 crossref_primary_10_1038_s43246_025_00734_1 crossref_primary_10_1016_j_carbon_2014_12_001 crossref_primary_10_3390_nano9111612 crossref_primary_10_1021_am503069j crossref_primary_10_1016_j_jpowsour_2018_06_003 crossref_primary_10_1016_j_jcis_2014_08_036 crossref_primary_10_1002_smll_201700358 crossref_primary_10_1016_j_jpowsour_2019_04_084 crossref_primary_10_1002_ente_201900141 crossref_primary_10_1016_j_electacta_2015_10_102 crossref_primary_10_1039_C5RA06825H crossref_primary_10_1039_C8SE00543E crossref_primary_10_1021_am507660y crossref_primary_10_1021_jp410385s crossref_primary_10_1002_asia_201701343 crossref_primary_10_1007_s11581_021_03905_5 crossref_primary_10_1016_j_est_2024_112192 crossref_primary_10_1002_eem2_12017 crossref_primary_10_1016_j_matre_2022_100159 crossref_primary_10_1016_j_apsusc_2017_06_129 crossref_primary_10_1016_j_jelechem_2017_10_034 crossref_primary_10_1002_bkcs_10643 crossref_primary_10_1021_nn503985s crossref_primary_10_1039_C5NR04768D crossref_primary_10_3390_batteries2040033 crossref_primary_10_1002_adma_201601759 crossref_primary_10_1016_j_nanoen_2013_12_013 crossref_primary_10_1016_j_jechem_2015_06_011 crossref_primary_10_1002_aenm_201602733 crossref_primary_10_1002_chem_201504672 crossref_primary_10_1002_celc_202100165 crossref_primary_10_1002_adma_201405115 crossref_primary_10_1016_j_nanoen_2015_01_033 crossref_primary_10_1002_smll_202411744 crossref_primary_10_1039_C8RA07885H crossref_primary_10_1016_j_electacta_2016_07_153 crossref_primary_10_1002_aesr_202100088 crossref_primary_10_1021_jp512062t crossref_primary_10_1039_C7NJ04294A crossref_primary_10_33961_jecst_2019_00423 crossref_primary_10_1016_j_jallcom_2021_163369 crossref_primary_10_15541_jim20190325 crossref_primary_10_1002_bkcs_11633 crossref_primary_10_1016_j_jpowsour_2014_10_042 crossref_primary_10_1039_c3ta15065h crossref_primary_10_1039_C5RA10852G crossref_primary_10_1002_adfm_201303296 crossref_primary_10_1016_j_materresbull_2014_12_025 crossref_primary_10_1039_C6RA22652C crossref_primary_10_1021_acsapm_4c00272 crossref_primary_10_1016_j_jelechem_2021_115008 crossref_primary_10_1016_j_nanoen_2015_05_006 crossref_primary_10_1039_C6RA19356K crossref_primary_10_1039_C9TA00544G crossref_primary_10_1016_j_jpowsour_2021_229508 crossref_primary_10_1021_acsami_5b10300 crossref_primary_10_1021_acsnano_5b03488 crossref_primary_10_1016_j_progpolymsci_2016_04_003 crossref_primary_10_1149_2_0391903jes crossref_primary_10_1021_acs_energyfuels_8b01453 crossref_primary_10_1039_C5TA00681C crossref_primary_10_3390_en6073466 crossref_primary_10_1021_acsami_6b14687 crossref_primary_10_1039_C7SE00210F crossref_primary_10_1016_j_inoche_2024_112855 crossref_primary_10_1016_j_ensm_2017_07_009 crossref_primary_10_1016_j_jelechem_2020_114565 crossref_primary_10_1002_vjch_201800070 crossref_primary_10_1016_j_jelechem_2017_08_026 crossref_primary_10_1016_j_jpowsour_2013_12_031 crossref_primary_10_1021_acs_nanolett_5b01294 crossref_primary_10_1002_ente_201700982 crossref_primary_10_1039_C5RA16104E crossref_primary_10_1039_C6RA24156E crossref_primary_10_1016_j_jallcom_2020_156832 crossref_primary_10_1021_acsami_7b06485 crossref_primary_10_3390_batteries9020079 crossref_primary_10_1016_j_jelechem_2014_11_007 crossref_primary_10_1039_C4RA15796F crossref_primary_10_1016_j_jallcom_2017_05_206 crossref_primary_10_1021_acsami_6b09989 crossref_primary_10_1039_C8NJ05548C crossref_primary_10_1016_j_jpowsour_2015_03_135 crossref_primary_10_1038_srep32433 crossref_primary_10_1039_C6NR06332B crossref_primary_10_1002_adfm_201906117 crossref_primary_10_15541_jim20200690 crossref_primary_10_1039_C7TA01161J crossref_primary_10_1016_j_electacta_2014_11_099 crossref_primary_10_1002_adfm_201303080 crossref_primary_10_1016_j_jpowsour_2017_04_065 crossref_primary_10_1002_slct_202001729 crossref_primary_10_1039_C4TA03823A crossref_primary_10_1039_D3MA00022B crossref_primary_10_1016_j_ceramint_2019_09_295 crossref_primary_10_1021_am4058088 crossref_primary_10_1021_nn503394u crossref_primary_10_1149_2_0251910jes crossref_primary_10_1021_acsami_5b07468 crossref_primary_10_1002_adfm_202100457 crossref_primary_10_1002_admi_201701212 crossref_primary_10_1039_C4TA00630E crossref_primary_10_1038_s42004_019_0166_8 crossref_primary_10_1016_j_cej_2025_161227 crossref_primary_10_1016_j_matchemphys_2024_130330 crossref_primary_10_1002_celc_201801148 crossref_primary_10_1016_j_carbon_2015_03_008 crossref_primary_10_1016_j_matchemphys_2024_130211 crossref_primary_10_1007_s10853_020_05193_2 crossref_primary_10_1039_D1CC07087H crossref_primary_10_1016_j_nanoen_2015_04_032 crossref_primary_10_1021_acsami_5b07978 crossref_primary_10_1016_j_jpowsour_2013_12_081 crossref_primary_10_1021_am5030116 crossref_primary_10_1002_adfm_201601897 crossref_primary_10_1021_acsami_5b04108 crossref_primary_10_1002_celc_201600696 crossref_primary_10_1002_er_6220 crossref_primary_10_1007_s13369_019_03760_7 crossref_primary_10_1039_C6TA07864H crossref_primary_10_1002_smll_202006504 crossref_primary_10_1039_C4TA03503H crossref_primary_10_1021_acs_jpcc_8b00478 crossref_primary_10_1007_s10934_019_00720_2 crossref_primary_10_1016_j_optmat_2024_115515 crossref_primary_10_1016_j_jallcom_2016_02_064 crossref_primary_10_1016_j_jelechem_2020_114900 crossref_primary_10_1021_acsaem_8b00638 crossref_primary_10_1016_j_cej_2016_12_081 crossref_primary_10_1039_D1TA06745A crossref_primary_10_1016_j_cej_2019_05_038 crossref_primary_10_1039_C7TA00799J crossref_primary_10_1039_C6RA04146A crossref_primary_10_1039_C8NJ00652K crossref_primary_10_1002_advs_201903168 crossref_primary_10_1016_j_renene_2020_03_153 crossref_primary_10_1016_j_ssi_2016_04_019 crossref_primary_10_1016_j_carbon_2018_09_067 crossref_primary_10_1002_adfm_201606663 crossref_primary_10_1002_admi_201701116 crossref_primary_10_1088_2516_1075_abea09 crossref_primary_10_1149_2_0151903jes crossref_primary_10_1007_s11581_019_03285_x crossref_primary_10_1039_C6RA26179E crossref_primary_10_1039_C5TA00897B crossref_primary_10_1016_j_mseb_2017_10_005 crossref_primary_10_1016_j_jelechem_2015_12_016 crossref_primary_10_1016_j_jpowsour_2016_12_062 crossref_primary_10_1016_j_jpowsour_2022_231482 crossref_primary_10_1007_s12274_014_0601_1 crossref_primary_10_1021_am402970x crossref_primary_10_1002_celc_201600479 crossref_primary_10_1021_sc500459c crossref_primary_10_1016_j_jallcom_2014_04_073 crossref_primary_10_1039_C7CC04229A crossref_primary_10_1007_s11581_019_03065_7 crossref_primary_10_1002_cssc_201802186 crossref_primary_10_1016_j_matt_2023_12_018 crossref_primary_10_1016_j_nanoen_2016_12_060 crossref_primary_10_1039_C9QI00970A crossref_primary_10_1088_1361_6528_aafe46 crossref_primary_10_1016_j_apsusc_2014_10_176 crossref_primary_10_1021_acs_jpcc_3c04835 crossref_primary_10_1002_aenm_201400196 crossref_primary_10_1002_aenm_201301988 crossref_primary_10_1016_j_electacta_2015_04_055 crossref_primary_10_1039_C5TA01515D crossref_primary_10_1007_s11581_018_2597_0 |
Cites_doi | 10.1016/j.carbon.2007.11.007 10.1021/nl202297p 10.1021/ar300094m 10.1149/1.1571532 10.1039/c2cp40808b 10.1039/c2cc17925c 10.1021/ja203857g 10.1039/c1ee01219c 10.1002/anie.201107817 10.1021/jp300950m 10.1149/1.3583375 10.1002/adma.201103392 10.1016/j.matchemphys.2004.05.023 10.1039/c1ee02256c 10.1021/jp207893d 10.1039/c002639e 10.1039/c2ee03495f 10.1002/anie.201100637 10.1557/mrs.2011.157 10.1149/1.1806394 10.1039/b925751a 10.1021/ar300179v 10.1039/c2jm31359f 10.1149/1.1503076 10.1038/ncomms2163 10.1021/am301688h 10.1039/c2jm16543k 10.1002/cssc.201200101 10.1021/ja308170k 10.1039/c2cc33945e 10.1002/anie.201205292 10.1038/nmat2460 10.1021/ja206333w 10.1021/cm902050j 10.1016/j.elecom.2008.09.012 10.1149/1.1571533 10.1002/adma.201103274 10.1021/nl200658a 10.1039/C2CC16726C 10.1021/nn203436j 10.1002/adfm.201202254 10.1021/ja206955k |
ContentType | Journal Article |
Copyright | Copyright © 2013 American Chemical Society |
Copyright_xml | – notice: Copyright © 2013 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1021/am4000535 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 2213 |
ExternalDocumentID | 23452385 10_1021_am4000535 c491943344 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 23M 4.4 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ LG6 P2P RNS ROL UI2 VF5 VG9 W1F XKZ --- .K2 5VS 5ZA 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ BAANH CITATION CUPRZ GGK CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a414t-ae57d4c85745fe20434c41e27a65defd9623f41ba6dd278ff3271a640988c7c33 |
IEDL.DBID | ACS |
ISSN | 1944-8244 1944-8252 |
IngestDate | Fri Jul 11 11:52:16 EDT 2025 Fri Jul 11 13:29:32 EDT 2025 Mon Jul 21 06:04:57 EDT 2025 Tue Jul 01 04:12:01 EDT 2025 Thu Apr 24 22:59:44 EDT 2025 Thu Aug 27 13:43:07 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | lithium−sulfur battery high sulfur loading cathode peapodlike mesoporous carbon carbon/sulfur composite large pore volume |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a414t-ae57d4c85745fe20434c41e27a65defd9623f41ba6dd278ff3271a640988c7c33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 23452385 |
PQID | 1321338098 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2000402974 proquest_miscellaneous_1321338098 pubmed_primary_23452385 crossref_citationtrail_10_1021_am4000535 crossref_primary_10_1021_am4000535 acs_journals_10_1021_am4000535 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-03-27 |
PublicationDateYYYYMMDD | 2013-03-27 |
PublicationDate_xml | – month: 03 year: 2013 text: 2013-03-27 day: 27 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
PublicationYear | 2013 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Wang J. (ref8/cit8) 2008; 46 ref9/cit9 Xin S. (ref37/cit37) 2012; 45 ref3/cit3 Fu Y. (ref31/cit31) 2012; 116 Cheon S.-E. (ref10/cit10) 2003; 150 Jayaprakash N. (ref24/cit24) 2011; 50 Wang Q. (ref38/cit38) 2011; 158 Ji X. (ref21/cit21) 2009; 8 Wang D.-W. (ref39/cit39) 2012; 14 Sun M. (ref41/cit41) 2008; 10 Fu Y. (ref6/cit6) 2012; 4 Elazari R. (ref19/cit19) 2011; 23 Zhang B. (ref23/cit23) 2010; 3 Ji L. (ref27/cit27) 2011; 133 Liang C. (ref20/cit20) 2009; 21 Yang Y. (ref32/cit32) 2011; 5 Dörfler S. (ref16/cit16) 2012; 48 Guo J. (ref17/cit17) 2011; 11 Xin S. (ref7/cit7) 2012; 134 Yin L. (ref13/cit13) 2012; 5 Hao G.-P. (ref35/cit35) 2011; 133 ref40/cit40 Bruce P. G. (ref1/cit1) 2011; 36 Mikhaylik Y. V. (ref12/cit12) 2004; 151 Sun X.-G. (ref4/cit4) 2012; 5 He G. (ref22/cit22) 2011; 4 Schuster J. (ref25/cit25) 2012; 51 Zhang C. (ref14/cit14) 2012; 51 Wu F. (ref33/cit33) 2011; 115 Wang S. (ref34/cit34) 2011; 133 Su Y.-S. (ref15/cit15) 2012; 48 Ji L. (ref18/cit18) 2011; 4 Song G.-M. (ref42/cit42) 2004; 87 Han F. (ref36/cit36) 2012; 22 Xiao L. (ref30/cit30) 2012; 24 Wang H. (ref26/cit26) 2011; 11 Cheon S.-E. (ref11/cit11) 2003; 150 Zhang F. (ref29/cit29) 2012; 22 Shim J. (ref5/cit5) 2002; 149 Ji X. (ref2/cit2) 2010; 20 Evers S. (ref28/cit28) 2012; 48 |
References_xml | – volume: 46 start-page: 229 year: 2008 ident: ref8/cit8 publication-title: Carbon doi: 10.1016/j.carbon.2007.11.007 – volume: 11 start-page: 4288 year: 2011 ident: ref17/cit17 publication-title: Nano Lett. doi: 10.1021/nl202297p – volume: 45 start-page: 1759 year: 2012 ident: ref37/cit37 publication-title: Acc. Chem. Res. doi: 10.1021/ar300094m – volume: 150 start-page: A796 year: 2003 ident: ref10/cit10 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1571532 – volume: 14 start-page: 8703 year: 2012 ident: ref39/cit39 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c2cp40808b – volume: 48 start-page: 4097 year: 2012 ident: ref16/cit16 publication-title: Chem. Commun. doi: 10.1039/c2cc17925c – volume: 133 start-page: 11378 year: 2011 ident: ref35/cit35 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja203857g – volume: 4 start-page: 2878 year: 2011 ident: ref22/cit22 publication-title: Energy Environ. Sci. doi: 10.1039/c1ee01219c – volume: 51 start-page: 3591 year: 2012 ident: ref25/cit25 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201107817 – volume: 116 start-page: 8910 year: 2012 ident: ref31/cit31 publication-title: J. Phys. Chem. C. doi: 10.1021/jp300950m – volume: 158 start-page: A775 year: 2011 ident: ref38/cit38 publication-title: J. Electrochem. Soc. doi: 10.1149/1.3583375 – volume: 24 start-page: 1176 year: 2012 ident: ref30/cit30 publication-title: Adv. Mater. doi: 10.1002/adma.201103392 – volume: 87 start-page: 162 year: 2004 ident: ref42/cit42 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2004.05.023 – volume: 4 start-page: 5053 year: 2011 ident: ref18/cit18 publication-title: Energy Environ. Sci. doi: 10.1039/c1ee02256c – volume: 115 start-page: 24411 year: 2011 ident: ref33/cit33 publication-title: J. Phys. Chem. C. doi: 10.1021/jp207893d – volume: 3 start-page: 1531 year: 2010 ident: ref23/cit23 publication-title: Energy Environ. Sci. doi: 10.1039/c002639e – volume: 5 start-page: 6966 year: 2012 ident: ref13/cit13 publication-title: Energy Environ. Sci. doi: 10.1039/c2ee03495f – volume: 50 start-page: 5904 year: 2011 ident: ref24/cit24 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201100637 – volume: 36 start-page: 506 year: 2011 ident: ref1/cit1 publication-title: MRS Bull. doi: 10.1557/mrs.2011.157 – volume: 151 start-page: A1969 year: 2004 ident: ref12/cit12 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1806394 – volume: 20 start-page: 9821 year: 2010 ident: ref2/cit2 publication-title: J. Mater. Chem. doi: 10.1039/b925751a – ident: ref3/cit3 doi: 10.1021/ar300179v – volume: 22 start-page: 9645 year: 2012 ident: ref36/cit36 publication-title: J. Mater. Chem. doi: 10.1039/c2jm31359f – volume: 149 start-page: A1321 year: 2002 ident: ref5/cit5 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1503076 – ident: ref9/cit9 doi: 10.1038/ncomms2163 – volume: 4 start-page: 6046 year: 2012 ident: ref6/cit6 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am301688h – volume: 22 start-page: 11452 year: 2012 ident: ref29/cit29 publication-title: J. Mater. Chem. doi: 10.1039/c2jm16543k – volume: 5 start-page: 2079 year: 2012 ident: ref4/cit4 publication-title: ChemSusChem doi: 10.1002/cssc.201200101 – volume: 134 start-page: 18510 year: 2012 ident: ref7/cit7 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja308170k – volume: 48 start-page: 8817 year: 2012 ident: ref15/cit15 publication-title: Chem. Commun. doi: 10.1039/c2cc33945e – volume: 51 start-page: 9592 year: 2012 ident: ref14/cit14 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201205292 – volume: 8 start-page: 500 year: 2009 ident: ref21/cit21 publication-title: Nat. Mater. doi: 10.1038/nmat2460 – volume: 133 start-page: 15304 year: 2011 ident: ref34/cit34 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja206333w – volume: 21 start-page: 4724 year: 2009 ident: ref20/cit20 publication-title: Chem. Mater. doi: 10.1021/cm902050j – volume: 10 start-page: 1819 year: 2008 ident: ref41/cit41 publication-title: J. Electrochem. Commun. doi: 10.1016/j.elecom.2008.09.012 – volume: 150 start-page: A800 year: 2003 ident: ref11/cit11 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1571533 – volume: 23 start-page: 5641 year: 2011 ident: ref19/cit19 publication-title: Adv. Mater. doi: 10.1002/adma.201103274 – volume: 11 start-page: 2644 year: 2011 ident: ref26/cit26 publication-title: Nano Lett. doi: 10.1021/nl200658a – volume: 48 start-page: 1233 year: 2012 ident: ref28/cit28 publication-title: Chem. Commun. doi: 10.1039/C2CC16726C – volume: 5 start-page: 9187 year: 2011 ident: ref32/cit32 publication-title: ACS Nano doi: 10.1021/nn203436j – ident: ref40/cit40 doi: 10.1002/adfm.201202254 – volume: 133 start-page: 18522 year: 2011 ident: ref27/cit27 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja206955k |
SSID | ssj0063205 |
Score | 2.5039394 |
Snippet | Porous carbon materials with large pore volume are crucial in loading insulated sulfur with the purpose of achieving high performance for lithium–sulfur... Porous carbon materials with large pore volume are crucial in loading insulated sulfur with the purpose of achieving high performance for lithium-sulfur... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2208 |
SubjectTerms | batteries bulk density carbon Carbon - chemistry cathodes Electric Power Supplies Electrochemistry - methods Electrodes lithium Lithium - chemistry polymers Porosity porous media sulfur Sulfur - chemistry |
Title | High Sulfur Loading Cathodes Fabricated Using Peapodlike, Large Pore Volume Mesoporous Carbon for Lithium–Sulfur Battery |
URI | http://dx.doi.org/10.1021/am4000535 https://www.ncbi.nlm.nih.gov/pubmed/23452385 https://www.proquest.com/docview/1321338098 https://www.proquest.com/docview/2000402974 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELZKucCB92MLVOZx4IBLYju2e0SFVYW2CKkU9Rb5qa66TapNcmhP_Af-Ib-EsZOsiujCfRLH8WO-TzPzDUJvMueF85KRzDhKOFAIolkoSBaUyZxkJksR04MvYv-Ifz4ujjfQ6zURfJq_12e8VyG5gW5SAYc34p-9w_G6FYymPEUg45wocFajfNDVR6Prsc2frmcNnkx-ZXoXfRyrc_p0ktOdrjU79vJvscZ_ffI9dGfAlfhDvxHuow1fPUC3r6gNPkSXMacDH3aL0C3xrE7J8zhWANbON3iqTeoY5B1OaQQYLsvz2i3mp_4dnsV8cfy1Xnr8PV1n-MA3NUD3umvgFUtTVxjQL57N25N5d_brx89hmF6-8-IROpp--ra3T4bWC0TznLdE-0I6blUheRF8rJ_llueeSi0K54PbBdQUeG60cI5KFQKjMtcCyKJSVlrGHqPNqq78U4R5bL2eKeuNEVxYwAdFEED6Mq0C27V0grZhbcrh6DRliorTvFz9xAl6Oy5baQfh8tg_Y3Gd6auV6Xmv1nGd0ctx7Us4SzFAoisP_6sEZh4pO0xivU0sbeKx4xefoCf9xlkNRRkHXq-Krf9N6Rm6RVNbDUaofI4222XnXwC4ac122ty_AfXt8VA |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHIAD78dSKAZx4IBLYjuxe6wqVgtkK6S2qLfIT7HqNqk2yYGe-A_9h_0lHTvZpaBWcJ_4lbHnG83MNwi9S6zLrROMJNpSwsGFIIr5jCRe6sQKppMYMZ3u5pMD_uUwOxxockItDCyigZGaGMT_zS6QflTHvCcjuYluAQihQZu3d_aWr27OaExXBJ-cEwk2a8kidPnTYIFM86cFugZWRvMyvt_3KYoLi1klR5tdqzfN6V-cjf-38gfo3oAy8XavFg_RDVc9QncvcQ8-RqchwwPvdXPfLXBRx1R6HOoBa-saPFY69g9yFsekAgxP50lt57Mj9wEXIXscf6sXDn-PjxueuqYGIF93DQyx0HWFAQvjYtb-mHXH57_Ohml6Ms-fT9DB-NP-zoQMjRiI4ilviXKZsNzITPDMu1BNyw1PHRUqz6zzdgswlOepVrm1VEjvGRWpysF1lNIIw9hTtFbVlXuOMA-N2BNpnNY5zw2ghczn4AImSnq2ZegIbcAZlsNFasoYI6dpuTrEEXq__HulGWjMQzeN-VWib1eiJz13x1VCb5YqUMLNCuESVTk4rxL89ODAwyaulwmFTjz0_-Ij9KzXn9VUlHHw8mX24l9beo1uT_anRVl83v26ju7Q2HCDESpeorV20blXAHtavRH1_QKCCvmx |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSAgOvAvLoxjEgQMuie3Y7rEqrApsS6VS1Fvkp1h1m6w2yYGe-A_8Q34JYye7KqgV3Cd-ZeyZTzPzDUKvMueF85KRzDhKOEAIolkoSBaUyZxkJksR0719sXvEPx4XxwNQjLUwsIgGRmpSED_e6rkLA8NA_laf8p6Q5Cq6FsN1UaO3dw6XL69gNKUsAi7nRIHdWjIJnf80WiHb_GmFLnEtk4kZ30afV4tLmSUnm11rNu3ZX7yN_7_6O-jW4G3i7V497qIrvrqHbp7jILyPzmKmBz7sZqFb4EmdUupxrAusnW_wWJvUR8g7nJILMDyh89rNpif-DZ7ELHJ8UC88_poeObznmxoc-rprYIiFqSsMPjGeTNtv0-7014-fwzQ9qef3B-ho_P7Lzi4ZGjIQzXPeEu0L6bhVheRF8LGqllueeyq1KJwPbgt8qcBzo4VzVKoQGJW5FgAhlbLSMraO1qq68o8Q5rEhe6asN0ZwYcFrKIIAKJhpFdiWpSO0AedYDheqKVOsnObl6hBH6PXyD5Z2oDOPXTVmF4m-XInOew6Pi4ReLNWghBsWwya68nBeJeD1CORhE5fLxIInHvuA8RF62OvQairKOKB9VTz-15aeo-sH78bl5MP-pyfoBk19Nxih8ilaaxedfwbeT2s2ksr_BrfS_DQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+Sulfur+Loading+Cathodes+Fabricated+Using+Peapodlike%2C+Large+Pore+Volume+Mesoporous+Carbon+for+Lithium%E2%80%93Sulfur+Battery&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Li%2C+Duo&rft.au=Han%2C+Fei&rft.au=Wang%2C+Shuai&rft.au=Cheng%2C+Fei&rft.date=2013-03-27&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=5&rft.issue=6&rft.spage=2208&rft.epage=2213&rft_id=info:doi/10.1021%2Fam4000535&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_am4000535 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |