Combating Concentration Quenching in Upconversion Nanoparticles

Conspectus Lanthanide-doped upconversion nanoparticles (UCNPs) are a special class of luminescent nanomaterials that convert multiwavelength near-infrared (NIR) excitation into tunable emissions spanning the deep ultraviolet (UV) to NIR regions. In addition to large anti-Stokes shift, UCNPs also fea...

Full description

Saved in:
Bibliographic Details
Published inAccounts of chemical research Vol. 53; no. 2; pp. 358 - 367
Main Authors Chen, Bing, Wang, Feng
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 18.02.2020
Online AccessGet full text

Cover

Loading…
Abstract Conspectus Lanthanide-doped upconversion nanoparticles (UCNPs) are a special class of luminescent nanomaterials that convert multiwavelength near-infrared (NIR) excitation into tunable emissions spanning the deep ultraviolet (UV) to NIR regions. In addition to large anti-Stokes shift, UCNPs also feature a sharp emission bandwidth, long excited-state lifetime, as well as high resistance to optical blinking and photobleaching. Therefore, UCNPs have been identified as promising candidates to solve many challenging problems in fields ranging from biological imaging and therapeutics to photovoltaics and photonics. Nevertheless, the progress of utilizing an upconversion process is being hindered by the limited emission intensity, principally due to low oscillator strength in these nanoparticles. UCNPs essentially resemble the optical characteristics of their bulk counterparts, which take advantage of electronic transition within the 4f configuration of the lanthanide dopants to realize photon energy conversions. In general, a high dopant concentration promotes upconversion luminescence by providing a high density of optical centers to collect and to sustain the energy of the excitation light. However, an increase in dopant concentration induces self-quenching processes that offset the emission gain and may eventually result in attenuation of the overall emission intensity. This phenomenon known as concentration quenching represents a major obstacle to constructing bright UCNPs. In recent years, advances in nanoparticle research have led to the emergence of several strategies for mitigating energy loss at elevated dopant concentrations. In consequence, doping high levels of lanthanide ions in UCNPs has become a viable solution to boosting the emission intensity of photon upconversion. On account of extensive energy exchange interaction in heavily doped UCNPs, the spectrum tunability of photon upconversion is also greatly enhanced. These advances have largely expanded the scope of upconversion research. To provide guidelines for enhancing upconversion through heavy doping, we attempt to review recent advances in the understanding and control of concentration quenching in UCNPs. With significant advancements made in the chemical synthesis, we are now able to exquisitely control the doping of lanthanide ions in various nanoparticles of well-defined size, morphology, and core–shell structure. We show that, by confining energy transfer in nanostructured host materials in conjunction with innovative excitation schemes, concentration quenching of upconversion luminescence is largely alleviated. As a result, unusually high dopant concentrations can be used to construct UCNPs displaying high brightness and large anti-Stokes shift. We demonstrate that the development of heavily doped UCNPs enables advanced bioimaging and photonic applications that can hardly be fulfilled by conventional UCNPs comprising low concentrations of lanthanide dopants.
AbstractList Lanthanide-doped upconversion nanoparticles (UCNPs) are a special class of luminescent nanomaterials that convert multiwavelength near-infrared (NIR) excitation into tunable emissions spanning the deep ultraviolet (UV) to NIR regions. In addition to large anti-Stokes shift, UCNPs also feature a sharp emission bandwidth, long excited-state lifetime, as well as high resistance to optical blinking and photobleaching. Therefore, UCNPs have been identified as promising candidates to solve many challenging problems in fields ranging from biological imaging and therapeutics to photovoltaics and photonics. Nevertheless, the progress of utilizing an upconversion process is being hindered by the limited emission intensity, principally due to low oscillator strength in these nanoparticles. UCNPs essentially resemble the optical characteristics of their bulk counterparts, which take advantage of electronic transition within the 4 configuration of the lanthanide dopants to realize photon energy conversions. In general, a high dopant concentration promotes upconversion luminescence by providing a high density of optical centers to collect and to sustain the energy of the excitation light. However, an increase in dopant concentration induces self-quenching processes that offset the emission gain and may eventually result in attenuation of the overall emission intensity. This phenomenon known as concentration quenching represents a major obstacle to constructing bright UCNPs. In recent years, advances in nanoparticle research have led to the emergence of several strategies for mitigating energy loss at elevated dopant concentrations. In consequence, doping high levels of lanthanide ions in UCNPs has become a viable solution to boosting the emission intensity of photon upconversion. On account of extensive energy exchange interaction in heavily doped UCNPs, the spectrum tunability of photon upconversion is also greatly enhanced. These advances have largely expanded the scope of upconversion research. To provide guidelines for enhancing upconversion through heavy doping, we attempt to review recent advances in the understanding and control of concentration quenching in UCNPs. With significant advancements made in the chemical synthesis, we are now able to exquisitely control the doping of lanthanide ions in various nanoparticles of well-defined size, morphology, and core-shell structure. We show that, by confining energy transfer in nanostructured host materials in conjunction with innovative excitation schemes, concentration quenching of upconversion luminescence is largely alleviated. As a result, unusually high dopant concentrations can be used to construct UCNPs displaying high brightness and large anti-Stokes shift. We demonstrate that the development of heavily doped UCNPs enables advanced bioimaging and photonic applications that can hardly be fulfilled by conventional UCNPs comprising low concentrations of lanthanide dopants.
Lanthanide-doped upconversion nanoparticles (UCNPs) are a special class of luminescent nanomaterials that convert multiwavelength near-infrared (NIR) excitation into tunable emissions spanning the deep ultraviolet (UV) to NIR regions. In addition to large anti-Stokes shift, UCNPs also feature a sharp emission bandwidth, long excited-state lifetime, as well as high resistance to optical blinking and photobleaching. Therefore, UCNPs have been identified as promising candidates to solve many challenging problems in fields ranging from biological imaging and therapeutics to photovoltaics and photonics. Nevertheless, the progress of utilizing an upconversion process is being hindered by the limited emission intensity, principally due to low oscillator strength in these nanoparticles. UCNPs essentially resemble the optical characteristics of their bulk counterparts, which take advantage of electronic transition within the 4f configuration of the lanthanide dopants to realize photon energy conversions. In general, a high dopant concentration promotes upconversion luminescence by providing a high density of optical centers to collect and to sustain the energy of the excitation light. However, an increase in dopant concentration induces self-quenching processes that offset the emission gain and may eventually result in attenuation of the overall emission intensity. This phenomenon known as concentration quenching represents a major obstacle to constructing bright UCNPs. In recent years, advances in nanoparticle research have led to the emergence of several strategies for mitigating energy loss at elevated dopant concentrations. In consequence, doping high levels of lanthanide ions in UCNPs has become a viable solution to boosting the emission intensity of photon upconversion. On account of extensive energy exchange interaction in heavily doped UCNPs, the spectrum tunability of photon upconversion is also greatly enhanced. These advances have largely expanded the scope of upconversion research. To provide guidelines for enhancing upconversion through heavy doping, we attempt to review recent advances in the understanding and control of concentration quenching in UCNPs. With significant advancements made in the chemical synthesis, we are now able to exquisitely control the doping of lanthanide ions in various nanoparticles of well-defined size, morphology, and core-shell structure. We show that, by confining energy transfer in nanostructured host materials in conjunction with innovative excitation schemes, concentration quenching of upconversion luminescence is largely alleviated. As a result, unusually high dopant concentrations can be used to construct UCNPs displaying high brightness and large anti-Stokes shift. We demonstrate that the development of heavily doped UCNPs enables advanced bioimaging and photonic applications that can hardly be fulfilled by conventional UCNPs comprising low concentrations of lanthanide dopants.Lanthanide-doped upconversion nanoparticles (UCNPs) are a special class of luminescent nanomaterials that convert multiwavelength near-infrared (NIR) excitation into tunable emissions spanning the deep ultraviolet (UV) to NIR regions. In addition to large anti-Stokes shift, UCNPs also feature a sharp emission bandwidth, long excited-state lifetime, as well as high resistance to optical blinking and photobleaching. Therefore, UCNPs have been identified as promising candidates to solve many challenging problems in fields ranging from biological imaging and therapeutics to photovoltaics and photonics. Nevertheless, the progress of utilizing an upconversion process is being hindered by the limited emission intensity, principally due to low oscillator strength in these nanoparticles. UCNPs essentially resemble the optical characteristics of their bulk counterparts, which take advantage of electronic transition within the 4f configuration of the lanthanide dopants to realize photon energy conversions. In general, a high dopant concentration promotes upconversion luminescence by providing a high density of optical centers to collect and to sustain the energy of the excitation light. However, an increase in dopant concentration induces self-quenching processes that offset the emission gain and may eventually result in attenuation of the overall emission intensity. This phenomenon known as concentration quenching represents a major obstacle to constructing bright UCNPs. In recent years, advances in nanoparticle research have led to the emergence of several strategies for mitigating energy loss at elevated dopant concentrations. In consequence, doping high levels of lanthanide ions in UCNPs has become a viable solution to boosting the emission intensity of photon upconversion. On account of extensive energy exchange interaction in heavily doped UCNPs, the spectrum tunability of photon upconversion is also greatly enhanced. These advances have largely expanded the scope of upconversion research. To provide guidelines for enhancing upconversion through heavy doping, we attempt to review recent advances in the understanding and control of concentration quenching in UCNPs. With significant advancements made in the chemical synthesis, we are now able to exquisitely control the doping of lanthanide ions in various nanoparticles of well-defined size, morphology, and core-shell structure. We show that, by confining energy transfer in nanostructured host materials in conjunction with innovative excitation schemes, concentration quenching of upconversion luminescence is largely alleviated. As a result, unusually high dopant concentrations can be used to construct UCNPs displaying high brightness and large anti-Stokes shift. We demonstrate that the development of heavily doped UCNPs enables advanced bioimaging and photonic applications that can hardly be fulfilled by conventional UCNPs comprising low concentrations of lanthanide dopants.
Conspectus Lanthanide-doped upconversion nanoparticles (UCNPs) are a special class of luminescent nanomaterials that convert multiwavelength near-infrared (NIR) excitation into tunable emissions spanning the deep ultraviolet (UV) to NIR regions. In addition to large anti-Stokes shift, UCNPs also feature a sharp emission bandwidth, long excited-state lifetime, as well as high resistance to optical blinking and photobleaching. Therefore, UCNPs have been identified as promising candidates to solve many challenging problems in fields ranging from biological imaging and therapeutics to photovoltaics and photonics. Nevertheless, the progress of utilizing an upconversion process is being hindered by the limited emission intensity, principally due to low oscillator strength in these nanoparticles. UCNPs essentially resemble the optical characteristics of their bulk counterparts, which take advantage of electronic transition within the 4f configuration of the lanthanide dopants to realize photon energy conversions. In general, a high dopant concentration promotes upconversion luminescence by providing a high density of optical centers to collect and to sustain the energy of the excitation light. However, an increase in dopant concentration induces self-quenching processes that offset the emission gain and may eventually result in attenuation of the overall emission intensity. This phenomenon known as concentration quenching represents a major obstacle to constructing bright UCNPs. In recent years, advances in nanoparticle research have led to the emergence of several strategies for mitigating energy loss at elevated dopant concentrations. In consequence, doping high levels of lanthanide ions in UCNPs has become a viable solution to boosting the emission intensity of photon upconversion. On account of extensive energy exchange interaction in heavily doped UCNPs, the spectrum tunability of photon upconversion is also greatly enhanced. These advances have largely expanded the scope of upconversion research. To provide guidelines for enhancing upconversion through heavy doping, we attempt to review recent advances in the understanding and control of concentration quenching in UCNPs. With significant advancements made in the chemical synthesis, we are now able to exquisitely control the doping of lanthanide ions in various nanoparticles of well-defined size, morphology, and core–shell structure. We show that, by confining energy transfer in nanostructured host materials in conjunction with innovative excitation schemes, concentration quenching of upconversion luminescence is largely alleviated. As a result, unusually high dopant concentrations can be used to construct UCNPs displaying high brightness and large anti-Stokes shift. We demonstrate that the development of heavily doped UCNPs enables advanced bioimaging and photonic applications that can hardly be fulfilled by conventional UCNPs comprising low concentrations of lanthanide dopants.
Author Chen, Bing
Wang, Feng
AuthorAffiliation Department of Materials Science and Engineering
City University of Hong Kong Shenzhen Research Institute
City University of Hong Kong
AuthorAffiliation_xml – name: City University of Hong Kong
– name: City University of Hong Kong Shenzhen Research Institute
– name: Department of Materials Science and Engineering
Author_xml – sequence: 1
  givenname: Bing
  surname: Chen
  fullname: Chen, Bing
  organization: City University of Hong Kong Shenzhen Research Institute
– sequence: 2
  givenname: Feng
  orcidid: 0000-0001-9471-4386
  surname: Wang
  fullname: Wang, Feng
  email: fwang24@cityu.edu.hk
  organization: City University of Hong Kong Shenzhen Research Institute
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31633900$$D View this record in MEDLINE/PubMed
BookMark eNqFkMtOwzAQRS1URB_wBwh1ySZl7DgvNghFvKQKhETX0cSZQqrULnaCxN_j0JYFC9jYHs-5I80Zs4E2mhg75TDjIPgFKjdDpUynWzfLSgAZhQdsxCMBgUyzdMBGAMD9W4ohGzu38qWQcXLEhiGPwzADGLGr3KxLbGv9Os2NVqRb6yujp88dafXW_9d6utgooz_Iur7ziNps0La1asgds8MlNo5OdveELW5vXvL7YP5095BfzwOUXLYBJoCpzLCkNMpEJihSYVbiMkXgaRlnMcUCuD9omVQKZVqFiFEVIXGSfqNwws63czfWvHfk2mJdO0VNg5pM5woRQpJIASL26NkO7co1VcXG1mu0n8V-aQ_ILaCscc7S8gfhUPRuC--22Lstdm597PJXTNXttyzvrG7-C8M23HdXprPa2_o78gX65pTh
CitedBy_id crossref_primary_10_1016_j_mtadv_2022_100326
crossref_primary_10_1021_acsami_4c00531
crossref_primary_10_1002_adfm_202406424
crossref_primary_10_1002_lpor_202400475
crossref_primary_10_1021_acs_chemmater_2c01273
crossref_primary_10_1039_D0NR08488C
crossref_primary_10_1016_j_ccr_2020_213642
crossref_primary_10_1016_j_ccr_2022_214977
crossref_primary_10_1021_acssuschemeng_2c07205
crossref_primary_10_1021_acsami_3c04125
crossref_primary_10_1016_j_jlumin_2022_119175
crossref_primary_10_1002_adma_202201562
crossref_primary_10_1002_advs_202408287
crossref_primary_10_1039_D4TB01787K
crossref_primary_10_1002_adom_202401498
crossref_primary_10_1002_anie_202415383
crossref_primary_10_1002_adpr_202000089
crossref_primary_10_1002_adma_202004142
crossref_primary_10_1039_D5DT00219B
crossref_primary_10_1002_adma_202306517
crossref_primary_10_1039_D1TC00617G
crossref_primary_10_1016_j_jallcom_2025_179033
crossref_primary_10_1088_1612_202X_abbede
crossref_primary_10_1039_D2TC05455H
crossref_primary_10_1039_D1CS00753J
crossref_primary_10_1039_D0TC00902D
crossref_primary_10_1016_j_jfluchem_2023_110209
crossref_primary_10_1002_adom_202301873
crossref_primary_10_1039_C9QI01358J
crossref_primary_10_1016_j_jallcom_2023_172887
crossref_primary_10_1002_adom_202202307
crossref_primary_10_1016_j_jallcom_2024_175852
crossref_primary_10_1007_s12274_022_4570_5
crossref_primary_10_1039_D4NR03096F
crossref_primary_10_1021_acsphotonics_1c01695
crossref_primary_10_1016_j_jlumin_2024_120823
crossref_primary_10_1021_acsnano_0c02601
crossref_primary_10_1021_acsaom_3c00051
crossref_primary_10_1039_D0NR04809G
crossref_primary_10_1021_acssensors_4c03202
crossref_primary_10_1002_chem_202400911
crossref_primary_10_1002_smll_202311729
crossref_primary_10_1039_D0NR02172E
crossref_primary_10_1016_j_jallcom_2025_178513
crossref_primary_10_1016_j_solener_2022_03_037
crossref_primary_10_1016_j_jre_2024_06_043
crossref_primary_10_1364_OE_549575
crossref_primary_10_1016_j_mtchem_2023_101874
crossref_primary_10_1021_acsami_3c00673
crossref_primary_10_1039_D3DT03213B
crossref_primary_10_1002_anie_202306585
crossref_primary_10_1002_adma_202403076
crossref_primary_10_1039_D0NR08603G
crossref_primary_10_1002_smll_202200464
crossref_primary_10_1021_acsami_1c07809
crossref_primary_10_1039_D3TB02542J
crossref_primary_10_1039_D1NR01745D
crossref_primary_10_1016_j_mtcomm_2023_107258
crossref_primary_10_1002_ange_202306585
crossref_primary_10_1016_j_ceramint_2024_11_496
crossref_primary_10_1016_j_cej_2023_146433
crossref_primary_10_1021_acsami_0c07683
crossref_primary_10_1002_anie_202217100
crossref_primary_10_1039_D1NR07329J
crossref_primary_10_1166_sam_2024_4682
crossref_primary_10_1021_acs_jpcc_3c00623
crossref_primary_10_1002_adom_202300477
crossref_primary_10_1002_lpor_202300542
crossref_primary_10_1111_1541_4337_13369
crossref_primary_10_1021_acsaom_4c00013
crossref_primary_10_1016_j_inoche_2024_112775
crossref_primary_10_1016_j_jlumin_2020_117627
crossref_primary_10_1002_smtd_202301309
crossref_primary_10_1016_j_ceramint_2025_01_092
crossref_primary_10_1039_D0TC01360A
crossref_primary_10_1002_adfm_202310270
crossref_primary_10_3389_fphot_2024_1363223
crossref_primary_10_1016_j_jlumin_2024_120535
crossref_primary_10_15541_jim20240058
crossref_primary_10_1021_acsmaterialslett_2c00528
crossref_primary_10_1039_D3CS00611E
crossref_primary_10_1002_smll_202107976
crossref_primary_10_1021_acsenergylett_3c02069
crossref_primary_10_1016_j_jechem_2024_07_037
crossref_primary_10_3390_molecules29174177
crossref_primary_10_1002_ange_202312308
crossref_primary_10_1016_j_ccr_2024_215922
crossref_primary_10_1021_acsaom_3c00251
crossref_primary_10_1021_acs_chemrev_0c01140
crossref_primary_10_1039_D2QI00877G
crossref_primary_10_1002_cplu_202100459
crossref_primary_10_1002_bio_4636
crossref_primary_10_1016_j_nantod_2020_100956
crossref_primary_10_1016_j_jre_2023_02_022
crossref_primary_10_1039_D4DT02195A
crossref_primary_10_1016_j_jallcom_2024_175209
crossref_primary_10_1039_D0TA11387E
crossref_primary_10_1039_D4TC01063A
crossref_primary_10_1002_ange_202217100
crossref_primary_10_1021_acsaem_3c00113
crossref_primary_10_1002_adpr_202200098
crossref_primary_10_1016_j_jallcom_2024_176893
crossref_primary_10_1039_D3SC06099C
crossref_primary_10_1021_acs_chemmater_3c00466
crossref_primary_10_1016_j_snb_2023_134260
crossref_primary_10_3389_fmats_2021_768087
crossref_primary_10_1016_j_cej_2023_143814
crossref_primary_10_1002_open_202000073
crossref_primary_10_1021_acs_nanolett_3c00747
crossref_primary_10_1002_solr_202300518
crossref_primary_10_1021_acs_jpclett_3c02859
crossref_primary_10_1007_s00339_021_04462_4
crossref_primary_10_1007_s12274_021_3727_y
crossref_primary_10_1038_s41467_022_33660_8
crossref_primary_10_1021_jacs_3c14527
crossref_primary_10_1039_C9TC06840F
crossref_primary_10_1002_adpr_202000213
crossref_primary_10_1002_adma_202004788
crossref_primary_10_1016_j_cej_2023_148139
crossref_primary_10_1021_acssuschemeng_3c01838
crossref_primary_10_1016_j_jece_2022_108352
crossref_primary_10_1149_2162_8777_accd1e
crossref_primary_10_1002_lpor_202100211
crossref_primary_10_1002_smll_202003799
crossref_primary_10_1016_j_ijbiomac_2024_136444
crossref_primary_10_1021_acsnano_2c12523
crossref_primary_10_1016_j_ijleo_2022_170287
crossref_primary_10_1039_D0CC07699F
crossref_primary_10_1016_j_mtcomm_2024_110301
crossref_primary_10_3390_nano10101992
crossref_primary_10_1016_j_jre_2022_04_015
crossref_primary_10_1007_s12274_021_3454_4
crossref_primary_10_1016_j_mtchem_2020_100326
crossref_primary_10_1002_anie_202312308
crossref_primary_10_1002_adma_202406882
crossref_primary_10_1016_j_aca_2024_343429
crossref_primary_10_1016_j_ceramint_2023_11_181
crossref_primary_10_1039_D2NR01680J
crossref_primary_10_1021_acs_nanolett_3c02826
crossref_primary_10_1016_j_ccr_2024_216069
crossref_primary_10_1016_j_physb_2021_413340
crossref_primary_10_1039_D2CE01206E
crossref_primary_10_1021_acs_nanolett_1c02404
crossref_primary_10_1039_D3CP02218H
crossref_primary_10_1002_adma_202305140
crossref_primary_10_1021_acsami_0c20757
crossref_primary_10_1002_adom_202202704
crossref_primary_10_1016_j_jre_2021_06_013
crossref_primary_10_1039_D1DT01878G
crossref_primary_10_1002_ange_202415383
crossref_primary_10_1186_s40712_024_00187_3
crossref_primary_10_3390_photonics11010038
crossref_primary_10_1021_acsmaterialslett_0c00377
crossref_primary_10_1016_j_optmat_2023_114682
crossref_primary_10_1007_s12274_021_3350_y
crossref_primary_10_1016_j_ijleo_2024_171832
crossref_primary_10_1007_s10853_024_10289_0
crossref_primary_10_1021_acsanm_2c03466
crossref_primary_10_1016_j_trechm_2022_05_001
crossref_primary_10_1002_adom_202400423
crossref_primary_10_1016_j_clay_2024_107685
crossref_primary_10_3389_fchem_2020_00836
crossref_primary_10_1016_j_ccr_2024_216407
crossref_primary_10_1021_acs_analchem_3c00449
crossref_primary_10_1016_j_ccr_2022_214423
crossref_primary_10_1002_smll_202103241
crossref_primary_10_1002_advs_202203669
crossref_primary_10_1007_s11051_024_06186_x
crossref_primary_10_1002_adom_202301254
crossref_primary_10_1021_acsami_0c22112
crossref_primary_10_1038_s41467_022_28701_1
crossref_primary_10_1021_acs_chemrev_1c00644
crossref_primary_10_1002_adom_202201716
crossref_primary_10_1002_smll_202002454
crossref_primary_10_1016_j_jre_2022_08_006
crossref_primary_10_1016_j_ceramint_2023_06_107
crossref_primary_10_1007_s12274_023_6319_1
crossref_primary_10_1016_j_rinma_2023_100447
crossref_primary_10_1016_j_mtphys_2021_100520
crossref_primary_10_1007_s00216_022_04057_9
crossref_primary_10_1016_j_optmat_2024_115993
crossref_primary_10_1039_D0PY01550D
crossref_primary_10_1021_acs_jpclett_0c00628
crossref_primary_10_1016_j_nantod_2022_101460
crossref_primary_10_1016_j_pmatsci_2021_100814
crossref_primary_10_1021_acs_inorgchem_3c03756
crossref_primary_10_1016_j_scib_2024_04_062
crossref_primary_10_1016_j_snb_2024_135351
crossref_primary_10_1002_adom_202301827
crossref_primary_10_1021_acs_jpcc_3c04020
crossref_primary_10_1016_j_addr_2022_114457
crossref_primary_10_1016_j_jallcom_2020_156116
crossref_primary_10_1016_j_jnoncrysol_2023_122329
crossref_primary_10_1007_s10965_023_03844_x
crossref_primary_10_1039_D0TC03775C
crossref_primary_10_1021_acs_inorgchem_3c01423
crossref_primary_10_1021_acs_analchem_1c02679
crossref_primary_10_1021_acsami_0c11202
crossref_primary_10_1016_j_xcrp_2021_100436
crossref_primary_10_1002_adom_202001434
crossref_primary_10_1016_j_cej_2022_139649
crossref_primary_10_1021_acs_chemmater_0c03124
crossref_primary_10_1039_D1TC05042G
crossref_primary_10_1557_jmr_2020_253
crossref_primary_10_1039_D3TC01215H
crossref_primary_10_1002_adom_202400184
crossref_primary_10_1038_s41377_024_01607_x
crossref_primary_10_1088_1742_6596_2809_1_012016
crossref_primary_10_1002_INMD_20240078
crossref_primary_10_1002_advs_202304942
crossref_primary_10_1016_j_jallcom_2023_170192
crossref_primary_10_1002_advs_202306684
crossref_primary_10_1016_j_jcis_2024_11_167
crossref_primary_10_1039_D3RE00168G
crossref_primary_10_1016_j_ceramint_2023_06_114
crossref_primary_10_3390_nano12203641
crossref_primary_10_1021_acs_jpcc_3c03500
crossref_primary_10_1016_j_ceramint_2023_12_349
crossref_primary_10_1016_j_optmat_2024_115186
crossref_primary_10_1007_s00604_022_05180_1
crossref_primary_10_1039_D1AN01582F
crossref_primary_10_1039_D0NR03374J
crossref_primary_10_1007_s11426_021_1179_7
crossref_primary_10_1016_j_cclet_2021_06_007
crossref_primary_10_1016_j_matlet_2023_135121
crossref_primary_10_1002_smll_202004552
Cites_doi 10.1021/jacs.7b07496
10.1021/jacs.5b01504
10.1021/ja207078s
10.1039/C4CS00168K
10.1063/1.4760248
10.1021/cr020357g
10.1038/s41467-019-09850-2
10.1038/s41566-018-0156-x
10.1021/ar400218t
10.1039/C7NR01403A
10.1021/ed039p333
10.1021/nn505051d
10.1002/anie.201904182
10.1038/nnano.2014.29
10.1038/s41467-017-01141-y
10.1021/ja302717u
10.1039/C7NR04877G
10.1021/acs.nanolett.7b04339
10.1021/cm3033498
10.1039/b003031g
10.1002/adom.201800690
10.1038/s41467-017-00917-6
10.1021/acsnano.7b00559
10.1021/acsami.8b07090
10.1002/anie.201005159
10.1038/nature21366
10.1021/jacs.8b07086
10.1039/C6NR07687D
10.1038/nm.2933
10.1038/nmat3149
10.1021/cm031124o
10.1002/anie.201703012
10.1039/C8NR05552A
10.1021/acsnano.7b07393
10.1021/acs.chemmater.9b01050
10.1021/acs.jpcc.8b09371
10.1088/1361-6463/ab29c7
10.1039/C7TC05742C
10.1038/s41565-018-0221-0
10.1002/anie.201703600
10.1039/C8CC09031A
10.1039/C5NR08477F
10.1038/nmat3804
10.1038/s41467-018-05577-8
10.1038/nnano.2013.171
10.1038/ncomms8127
10.1038/ncomms10304
10.1021/nn405387t
10.1126/science.aaq1144
10.1002/anie.201306811
10.1021/jacs.7b00223
10.1002/adfm.201705057
10.1021/jacs.6b09474
10.1002/adma.201807079
10.1038/s41467-018-05842-w
10.1002/lpor.201700144
10.1038/nmeth1108
10.1021/nn302972r
10.1002/anie.201802889
10.1038/nphoton.2013.322
10.1038/s41467-018-04813-5
10.1002/smll.201370117
10.1021/acs.jpclett.6b02210
10.1007/978-3-642-32970-8
10.1021/acsphotonics.6b00475
10.1021/acs.chemmater.7b04700
10.1002/adfm.201903295
10.1021/acsnano.7b07120
10.1063/1.3421535
10.1002/anie.201106686
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acs.accounts.9b00453
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-4898
EndPage 367
ExternalDocumentID 31633900
10_1021_acs_accounts_9b00453
a608307437
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
23M
53G
55A
5GY
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DZ
EBS
ED
ED~
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
RNS
ROL
TWZ
UI2
UPT
VF5
VG9
W1F
WH7
X
YZZ
---
-DZ
-~X
4.4
5ZA
6J9
6P2
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
AFXLT
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
ZCA
~02
NPM
7X8
ID FETCH-LOGICAL-a414t-a70a849abe859292e5c39baf8a018b696e6201e62ef7dca48d3aa5d5ae1e45203
IEDL.DBID ACS
ISSN 0001-4842
1520-4898
IngestDate Fri Jul 11 08:33:07 EDT 2025
Thu Apr 03 06:53:33 EDT 2025
Thu Apr 24 23:12:28 EDT 2025
Tue Jul 01 03:16:04 EDT 2025
Thu Aug 27 22:10:51 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a414t-a70a849abe859292e5c39baf8a018b696e6201e62ef7dca48d3aa5d5ae1e45203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9471-4386
PMID 31633900
PQID 2307742026
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2307742026
pubmed_primary_31633900
crossref_primary_10_1021_acs_accounts_9b00453
crossref_citationtrail_10_1021_acs_accounts_9b00453
acs_journals_10_1021_acs_accounts_9b00453
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-18
PublicationDateYYYYMMDD 2020-02-18
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-18
  day: 18
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Accounts of chemical research
PublicationTitleAlternate Acc. Chem. Res
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref27/cit27
  doi: 10.1021/jacs.7b07496
– ident: ref48/cit48
  doi: 10.1021/jacs.5b01504
– ident: ref5/cit5
  doi: 10.1021/ja207078s
– ident: ref37/cit37
  doi: 10.1039/C4CS00168K
– ident: ref41/cit41
  doi: 10.1063/1.4760248
– ident: ref2/cit2
  doi: 10.1021/cr020357g
– ident: ref45/cit45
  doi: 10.1038/s41467-019-09850-2
– ident: ref46/cit46
  doi: 10.1038/s41566-018-0156-x
– ident: ref3/cit3
  doi: 10.1021/ar400218t
– ident: ref29/cit29
  doi: 10.1039/C7NR01403A
– ident: ref15/cit15
  doi: 10.1021/ed039p333
– ident: ref33/cit33
  doi: 10.1021/nn505051d
– ident: ref67/cit67
  doi: 10.1002/anie.201904182
– ident: ref43/cit43
  doi: 10.1038/nnano.2014.29
– ident: ref62/cit62
  doi: 10.1038/s41467-017-01141-y
– ident: ref11/cit11
  doi: 10.1021/ja302717u
– ident: ref22/cit22
  doi: 10.1039/C7NR04877G
– ident: ref57/cit57
  doi: 10.1021/acs.nanolett.7b04339
– ident: ref12/cit12
  doi: 10.1021/cm3033498
– ident: ref1/cit1
  doi: 10.1039/b003031g
– ident: ref7/cit7
  doi: 10.1002/adom.201800690
– ident: ref49/cit49
  doi: 10.1038/s41467-017-00917-6
– ident: ref65/cit65
  doi: 10.1021/acsnano.7b00559
– ident: ref51/cit51
  doi: 10.1021/acsami.8b07090
– ident: ref4/cit4
  doi: 10.1002/anie.201005159
– ident: ref59/cit59
  doi: 10.1038/nature21366
– ident: ref28/cit28
  doi: 10.1021/jacs.8b07086
– ident: ref31/cit31
  doi: 10.1039/C6NR07687D
– ident: ref52/cit52
  doi: 10.1038/nm.2933
– ident: ref14/cit14
  doi: 10.1038/nmat3149
– ident: ref18/cit18
  doi: 10.1021/cm031124o
– ident: ref35/cit35
  doi: 10.1002/anie.201703012
– ident: ref32/cit32
  doi: 10.1039/C8NR05552A
– ident: ref10/cit10
  doi: 10.1021/acsnano.7b07393
– ident: ref23/cit23
  doi: 10.1021/acs.chemmater.9b01050
– ident: ref39/cit39
  doi: 10.1021/acs.jpcc.8b09371
– ident: ref13/cit13
  doi: 10.1088/1361-6463/ab29c7
– ident: ref36/cit36
  doi: 10.1039/C7TC05742C
– ident: ref66/cit66
  doi: 10.1038/s41565-018-0221-0
– ident: ref9/cit9
  doi: 10.1002/anie.201703600
– ident: ref20/cit20
  doi: 10.1039/C8CC09031A
– ident: ref16/cit16
  doi: 10.1039/C5NR08477F
– ident: ref34/cit34
  doi: 10.1038/nmat3804
– ident: ref42/cit42
  doi: 10.1038/s41467-018-05577-8
– ident: ref44/cit44
  doi: 10.1038/nnano.2013.171
– ident: ref64/cit64
  doi: 10.1038/ncomms8127
– ident: ref19/cit19
  doi: 10.1038/ncomms10304
– ident: ref69/cit69
  doi: 10.1021/nn405387t
– ident: ref56/cit56
  doi: 10.1126/science.aaq1144
– ident: ref53/cit53
  doi: 10.1002/anie.201306811
– ident: ref24/cit24
  doi: 10.1021/jacs.7b00223
– ident: ref61/cit61
  doi: 10.1002/adfm.201705057
– ident: ref47/cit47
  doi: 10.1021/jacs.6b09474
– ident: ref70/cit70
  doi: 10.1002/adma.201807079
– ident: ref60/cit60
  doi: 10.1038/s41467-018-05842-w
– ident: ref38/cit38
  doi: 10.1002/lpor.201700144
– ident: ref63/cit63
  doi: 10.1038/nmeth1108
– ident: ref30/cit30
  doi: 10.1021/nn302972r
– ident: ref50/cit50
  doi: 10.1002/anie.201802889
– ident: ref68/cit68
  doi: 10.1038/nphoton.2013.322
– ident: ref17/cit17
  doi: 10.1038/s41467-018-04813-5
– ident: ref55/cit55
  doi: 10.1002/smll.201370117
– ident: ref21/cit21
  doi: 10.1021/acs.jpclett.6b02210
– ident: ref26/cit26
  doi: 10.1007/978-3-642-32970-8
– ident: ref58/cit58
  doi: 10.1021/acsphotonics.6b00475
– ident: ref54/cit54
  doi: 10.1021/acs.chemmater.7b04700
– ident: ref25/cit25
  doi: 10.1002/adfm.201903295
– ident: ref6/cit6
  doi: 10.1021/acsnano.7b07120
– ident: ref40/cit40
  doi: 10.1063/1.3421535
– ident: ref8/cit8
  doi: 10.1002/anie.201106686
SSID ssj0002467
Score 2.6671174
Snippet Conspectus Lanthanide-doped upconversion nanoparticles (UCNPs) are a special class of luminescent nanomaterials that convert multiwavelength near-infrared...
Lanthanide-doped upconversion nanoparticles (UCNPs) are a special class of luminescent nanomaterials that convert multiwavelength near-infrared (NIR)...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 358
Title Combating Concentration Quenching in Upconversion Nanoparticles
URI http://dx.doi.org/10.1021/acs.accounts.9b00453
https://www.ncbi.nlm.nih.gov/pubmed/31633900
https://www.proquest.com/docview/2307742026
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA66HvTi-7G-qODFQ9c0jz5OIsVlEVREF_ZWJmkKonQX27346530saKyrFLooSRT8pr5Jpl8Q8i5zACyiGmXywAdFLQ5bqhU5lIKaaal0lCx69_d-4OhuB3J0Zej-PMEn3mXoAsUXWVOKHqWwU9IvkxWmI_r2EKh-GmmeZnwa45Man8rWHtVbo4Ua5B08d0gzUGZlbXpb5CH9s5OHWTy2puWqqc_flM4_rEhm2S9AZ7OdT1TtsiSybfJatzme9shV6gaFNgoaCe2dxnzhlDXebSx1najynnJneGkilOvNtkcVM3oczehdbtk2L95jgduk17BBeGJ0oWAQigiUCaUCJKYkZpHCrIQqBcqP_KNj-gAXyYLUkt-nnIAmUownhGSUb5HOvk4NwfEMUKxjAdGytRHq4heGI8kVZwpfESUdskFtj5plkeRVCffzEvsx7ZLkqZLuoS345Hohqfcpst4W1DLndWa1DwdC8qftUOdYD_bUxLIzXhaJDYyPhAMfdMu2a_nwEwiR_TKI0oP_9GeI7LGrI9uk8iEx6RTvk_NCQKZUp1Ws_cTPh_wXw
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFH6M40Ev7su4VvDioWOapctJpDiMOiOIjsytJG0KonQGO3Px1_vSTRRkkEIPIUmzvOZ9L3n5HsC5SKVMAxrbTHhooKDOsX2lUpsQmaSxULEs2PWHD25_xO_GYtwCUd-FwUbkWFNeHOJ_sws4lyZNlgEU8q4h8uOCLcEy4hFqBPs6fGoWYMrdkiqTmK9zWt-Y-6MWo5fi_Kde-gNsFkqntw4vTXMLX5O37nymuvHnLybHf_dnA9YqGGpdl3KzCS2dbcFKWEd_24YrXCiUND7RVmhuNmYVva71aDyvzbaV9ZpZo2nhtV5suVm4UKMFXjna7cCod_Mc9u0q2IItucNntvSI9HkglfYFQiaqRcwCJVNfEsdXbuBqF7ECvnTqJYYKPWFSikRI7WguKGG70M4mmd4HS3NFU-ZpIRIXdSTaZCwQRDGq8OFB0oEL7H1U_Sx5VJyDUycyifWQRNWQdIDV0xLFFWu5CZ7xvqCU3ZSalqwdC_Kf1TMe4TibMxOZ6ck8j4yfvMcpWqod2CtFoamRIZZlASEH_-jPKaz0n4eDaHD7cH8Iq9RY7ya8jH8E7dnHXB8jxJmpk0KgvwBbuPjA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB48QH3xPtazgi8-dE1z9HgSWV28UXRBfClJm4IodbG7L_56Z3osKogohT6EJGSSSWYmM_kGYE9lWmcRT1yhAjRQUOa4oTGZy5hOs0SZRJfo-lfX_mlPnj-oh0-pvnAQBfZUlE582tX9NKsRBrwDKtdVEoWiTWB-UolxmCTPHTH3UedudAhz6VdwmYxGIHnzau6HXkg2JcVX2fSDwlkKnu4cPI6GXMabPLeHA9NO3r-hOf6LpnmYrdVR56jinwUYs_kiTHeaLHBLcIgHhtEUG-106IVjXsPsOrcUgU3XV85T7vT6ZfR6efXm4IGNlngdcLcMve7JfefUrZMuuFp6cuDqgOlQRtrYUKHqxK1KRGR0FmrmhcaPfOujzoA_mwUpQaKnQmuVKm09KxVnYgUm8tfcroFjpeGZCKxSqY-yEm0zESlmBDf4yShtwT5SH9ebpohLfzj3YipspiSup6QFolmaOKnRyymJxssvrdxRq36F3vFL_d1m1WOcZ_Kd6Ny-DouY4uUDydFibcFqxQ6jHgXqtCJibP0P9OzA1M1xN748u77YgBlORjxlmQk3YWLwNrRbqOkMzHbJ0x9hfftD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combating+Concentration+Quenching+in+Upconversion+Nanoparticles&rft.jtitle=Accounts+of+chemical+research&rft.au=Chen%2C+Bing&rft.au=Wang%2C+Feng&rft.date=2020-02-18&rft.pub=American+Chemical+Society&rft.issn=0001-4842&rft.eissn=1520-4898&rft.volume=53&rft.issue=2&rft.spage=358&rft.epage=367&rft_id=info:doi/10.1021%2Facs.accounts.9b00453&rft.externalDocID=a608307437
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon