Combating Concentration Quenching in Upconversion Nanoparticles
Conspectus Lanthanide-doped upconversion nanoparticles (UCNPs) are a special class of luminescent nanomaterials that convert multiwavelength near-infrared (NIR) excitation into tunable emissions spanning the deep ultraviolet (UV) to NIR regions. In addition to large anti-Stokes shift, UCNPs also fea...
Saved in:
Published in | Accounts of chemical research Vol. 53; no. 2; pp. 358 - 367 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
18.02.2020
|
Online Access | Get full text |
Cover
Loading…
Abstract | Conspectus Lanthanide-doped upconversion nanoparticles (UCNPs) are a special class of luminescent nanomaterials that convert multiwavelength near-infrared (NIR) excitation into tunable emissions spanning the deep ultraviolet (UV) to NIR regions. In addition to large anti-Stokes shift, UCNPs also feature a sharp emission bandwidth, long excited-state lifetime, as well as high resistance to optical blinking and photobleaching. Therefore, UCNPs have been identified as promising candidates to solve many challenging problems in fields ranging from biological imaging and therapeutics to photovoltaics and photonics. Nevertheless, the progress of utilizing an upconversion process is being hindered by the limited emission intensity, principally due to low oscillator strength in these nanoparticles. UCNPs essentially resemble the optical characteristics of their bulk counterparts, which take advantage of electronic transition within the 4f configuration of the lanthanide dopants to realize photon energy conversions. In general, a high dopant concentration promotes upconversion luminescence by providing a high density of optical centers to collect and to sustain the energy of the excitation light. However, an increase in dopant concentration induces self-quenching processes that offset the emission gain and may eventually result in attenuation of the overall emission intensity. This phenomenon known as concentration quenching represents a major obstacle to constructing bright UCNPs. In recent years, advances in nanoparticle research have led to the emergence of several strategies for mitigating energy loss at elevated dopant concentrations. In consequence, doping high levels of lanthanide ions in UCNPs has become a viable solution to boosting the emission intensity of photon upconversion. On account of extensive energy exchange interaction in heavily doped UCNPs, the spectrum tunability of photon upconversion is also greatly enhanced. These advances have largely expanded the scope of upconversion research. To provide guidelines for enhancing upconversion through heavy doping, we attempt to review recent advances in the understanding and control of concentration quenching in UCNPs. With significant advancements made in the chemical synthesis, we are now able to exquisitely control the doping of lanthanide ions in various nanoparticles of well-defined size, morphology, and core–shell structure. We show that, by confining energy transfer in nanostructured host materials in conjunction with innovative excitation schemes, concentration quenching of upconversion luminescence is largely alleviated. As a result, unusually high dopant concentrations can be used to construct UCNPs displaying high brightness and large anti-Stokes shift. We demonstrate that the development of heavily doped UCNPs enables advanced bioimaging and photonic applications that can hardly be fulfilled by conventional UCNPs comprising low concentrations of lanthanide dopants. |
---|---|
AbstractList | Lanthanide-doped upconversion nanoparticles (UCNPs) are a special class of luminescent nanomaterials that convert multiwavelength near-infrared (NIR) excitation into tunable emissions spanning the deep ultraviolet (UV) to NIR regions. In addition to large anti-Stokes shift, UCNPs also feature a sharp emission bandwidth, long excited-state lifetime, as well as high resistance to optical blinking and photobleaching. Therefore, UCNPs have been identified as promising candidates to solve many challenging problems in fields ranging from biological imaging and therapeutics to photovoltaics and photonics. Nevertheless, the progress of utilizing an upconversion process is being hindered by the limited emission intensity, principally due to low oscillator strength in these nanoparticles. UCNPs essentially resemble the optical characteristics of their bulk counterparts, which take advantage of electronic transition within the 4
configuration of the lanthanide dopants to realize photon energy conversions. In general, a high dopant concentration promotes upconversion luminescence by providing a high density of optical centers to collect and to sustain the energy of the excitation light. However, an increase in dopant concentration induces self-quenching processes that offset the emission gain and may eventually result in attenuation of the overall emission intensity. This phenomenon known as concentration quenching represents a major obstacle to constructing bright UCNPs. In recent years, advances in nanoparticle research have led to the emergence of several strategies for mitigating energy loss at elevated dopant concentrations. In consequence, doping high levels of lanthanide ions in UCNPs has become a viable solution to boosting the emission intensity of photon upconversion. On account of extensive energy exchange interaction in heavily doped UCNPs, the spectrum tunability of photon upconversion is also greatly enhanced. These advances have largely expanded the scope of upconversion research. To provide guidelines for enhancing upconversion through heavy doping, we attempt to review recent advances in the understanding and control of concentration quenching in UCNPs. With significant advancements made in the chemical synthesis, we are now able to exquisitely control the doping of lanthanide ions in various nanoparticles of well-defined size, morphology, and core-shell structure. We show that, by confining energy transfer in nanostructured host materials in conjunction with innovative excitation schemes, concentration quenching of upconversion luminescence is largely alleviated. As a result, unusually high dopant concentrations can be used to construct UCNPs displaying high brightness and large anti-Stokes shift. We demonstrate that the development of heavily doped UCNPs enables advanced bioimaging and photonic applications that can hardly be fulfilled by conventional UCNPs comprising low concentrations of lanthanide dopants. Lanthanide-doped upconversion nanoparticles (UCNPs) are a special class of luminescent nanomaterials that convert multiwavelength near-infrared (NIR) excitation into tunable emissions spanning the deep ultraviolet (UV) to NIR regions. In addition to large anti-Stokes shift, UCNPs also feature a sharp emission bandwidth, long excited-state lifetime, as well as high resistance to optical blinking and photobleaching. Therefore, UCNPs have been identified as promising candidates to solve many challenging problems in fields ranging from biological imaging and therapeutics to photovoltaics and photonics. Nevertheless, the progress of utilizing an upconversion process is being hindered by the limited emission intensity, principally due to low oscillator strength in these nanoparticles. UCNPs essentially resemble the optical characteristics of their bulk counterparts, which take advantage of electronic transition within the 4f configuration of the lanthanide dopants to realize photon energy conversions. In general, a high dopant concentration promotes upconversion luminescence by providing a high density of optical centers to collect and to sustain the energy of the excitation light. However, an increase in dopant concentration induces self-quenching processes that offset the emission gain and may eventually result in attenuation of the overall emission intensity. This phenomenon known as concentration quenching represents a major obstacle to constructing bright UCNPs. In recent years, advances in nanoparticle research have led to the emergence of several strategies for mitigating energy loss at elevated dopant concentrations. In consequence, doping high levels of lanthanide ions in UCNPs has become a viable solution to boosting the emission intensity of photon upconversion. On account of extensive energy exchange interaction in heavily doped UCNPs, the spectrum tunability of photon upconversion is also greatly enhanced. These advances have largely expanded the scope of upconversion research. To provide guidelines for enhancing upconversion through heavy doping, we attempt to review recent advances in the understanding and control of concentration quenching in UCNPs. With significant advancements made in the chemical synthesis, we are now able to exquisitely control the doping of lanthanide ions in various nanoparticles of well-defined size, morphology, and core-shell structure. We show that, by confining energy transfer in nanostructured host materials in conjunction with innovative excitation schemes, concentration quenching of upconversion luminescence is largely alleviated. As a result, unusually high dopant concentrations can be used to construct UCNPs displaying high brightness and large anti-Stokes shift. We demonstrate that the development of heavily doped UCNPs enables advanced bioimaging and photonic applications that can hardly be fulfilled by conventional UCNPs comprising low concentrations of lanthanide dopants.Lanthanide-doped upconversion nanoparticles (UCNPs) are a special class of luminescent nanomaterials that convert multiwavelength near-infrared (NIR) excitation into tunable emissions spanning the deep ultraviolet (UV) to NIR regions. In addition to large anti-Stokes shift, UCNPs also feature a sharp emission bandwidth, long excited-state lifetime, as well as high resistance to optical blinking and photobleaching. Therefore, UCNPs have been identified as promising candidates to solve many challenging problems in fields ranging from biological imaging and therapeutics to photovoltaics and photonics. Nevertheless, the progress of utilizing an upconversion process is being hindered by the limited emission intensity, principally due to low oscillator strength in these nanoparticles. UCNPs essentially resemble the optical characteristics of their bulk counterparts, which take advantage of electronic transition within the 4f configuration of the lanthanide dopants to realize photon energy conversions. In general, a high dopant concentration promotes upconversion luminescence by providing a high density of optical centers to collect and to sustain the energy of the excitation light. However, an increase in dopant concentration induces self-quenching processes that offset the emission gain and may eventually result in attenuation of the overall emission intensity. This phenomenon known as concentration quenching represents a major obstacle to constructing bright UCNPs. In recent years, advances in nanoparticle research have led to the emergence of several strategies for mitigating energy loss at elevated dopant concentrations. In consequence, doping high levels of lanthanide ions in UCNPs has become a viable solution to boosting the emission intensity of photon upconversion. On account of extensive energy exchange interaction in heavily doped UCNPs, the spectrum tunability of photon upconversion is also greatly enhanced. These advances have largely expanded the scope of upconversion research. To provide guidelines for enhancing upconversion through heavy doping, we attempt to review recent advances in the understanding and control of concentration quenching in UCNPs. With significant advancements made in the chemical synthesis, we are now able to exquisitely control the doping of lanthanide ions in various nanoparticles of well-defined size, morphology, and core-shell structure. We show that, by confining energy transfer in nanostructured host materials in conjunction with innovative excitation schemes, concentration quenching of upconversion luminescence is largely alleviated. As a result, unusually high dopant concentrations can be used to construct UCNPs displaying high brightness and large anti-Stokes shift. We demonstrate that the development of heavily doped UCNPs enables advanced bioimaging and photonic applications that can hardly be fulfilled by conventional UCNPs comprising low concentrations of lanthanide dopants. Conspectus Lanthanide-doped upconversion nanoparticles (UCNPs) are a special class of luminescent nanomaterials that convert multiwavelength near-infrared (NIR) excitation into tunable emissions spanning the deep ultraviolet (UV) to NIR regions. In addition to large anti-Stokes shift, UCNPs also feature a sharp emission bandwidth, long excited-state lifetime, as well as high resistance to optical blinking and photobleaching. Therefore, UCNPs have been identified as promising candidates to solve many challenging problems in fields ranging from biological imaging and therapeutics to photovoltaics and photonics. Nevertheless, the progress of utilizing an upconversion process is being hindered by the limited emission intensity, principally due to low oscillator strength in these nanoparticles. UCNPs essentially resemble the optical characteristics of their bulk counterparts, which take advantage of electronic transition within the 4f configuration of the lanthanide dopants to realize photon energy conversions. In general, a high dopant concentration promotes upconversion luminescence by providing a high density of optical centers to collect and to sustain the energy of the excitation light. However, an increase in dopant concentration induces self-quenching processes that offset the emission gain and may eventually result in attenuation of the overall emission intensity. This phenomenon known as concentration quenching represents a major obstacle to constructing bright UCNPs. In recent years, advances in nanoparticle research have led to the emergence of several strategies for mitigating energy loss at elevated dopant concentrations. In consequence, doping high levels of lanthanide ions in UCNPs has become a viable solution to boosting the emission intensity of photon upconversion. On account of extensive energy exchange interaction in heavily doped UCNPs, the spectrum tunability of photon upconversion is also greatly enhanced. These advances have largely expanded the scope of upconversion research. To provide guidelines for enhancing upconversion through heavy doping, we attempt to review recent advances in the understanding and control of concentration quenching in UCNPs. With significant advancements made in the chemical synthesis, we are now able to exquisitely control the doping of lanthanide ions in various nanoparticles of well-defined size, morphology, and core–shell structure. We show that, by confining energy transfer in nanostructured host materials in conjunction with innovative excitation schemes, concentration quenching of upconversion luminescence is largely alleviated. As a result, unusually high dopant concentrations can be used to construct UCNPs displaying high brightness and large anti-Stokes shift. We demonstrate that the development of heavily doped UCNPs enables advanced bioimaging and photonic applications that can hardly be fulfilled by conventional UCNPs comprising low concentrations of lanthanide dopants. |
Author | Chen, Bing Wang, Feng |
AuthorAffiliation | Department of Materials Science and Engineering City University of Hong Kong Shenzhen Research Institute City University of Hong Kong |
AuthorAffiliation_xml | – name: City University of Hong Kong – name: City University of Hong Kong Shenzhen Research Institute – name: Department of Materials Science and Engineering |
Author_xml | – sequence: 1 givenname: Bing surname: Chen fullname: Chen, Bing organization: City University of Hong Kong Shenzhen Research Institute – sequence: 2 givenname: Feng orcidid: 0000-0001-9471-4386 surname: Wang fullname: Wang, Feng email: fwang24@cityu.edu.hk organization: City University of Hong Kong Shenzhen Research Institute |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31633900$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkMtOwzAQRS1URB_wBwh1ySZl7DgvNghFvKQKhETX0cSZQqrULnaCxN_j0JYFC9jYHs-5I80Zs4E2mhg75TDjIPgFKjdDpUynWzfLSgAZhQdsxCMBgUyzdMBGAMD9W4ohGzu38qWQcXLEhiGPwzADGLGr3KxLbGv9Os2NVqRb6yujp88dafXW_9d6utgooz_Iur7ziNps0La1asgds8MlNo5OdveELW5vXvL7YP5095BfzwOUXLYBJoCpzLCkNMpEJihSYVbiMkXgaRlnMcUCuD9omVQKZVqFiFEVIXGSfqNwws63czfWvHfk2mJdO0VNg5pM5woRQpJIASL26NkO7co1VcXG1mu0n8V-aQ_ILaCscc7S8gfhUPRuC--22Lstdm597PJXTNXttyzvrG7-C8M23HdXprPa2_o78gX65pTh |
CitedBy_id | crossref_primary_10_1016_j_mtadv_2022_100326 crossref_primary_10_1021_acsami_4c00531 crossref_primary_10_1002_adfm_202406424 crossref_primary_10_1002_lpor_202400475 crossref_primary_10_1021_acs_chemmater_2c01273 crossref_primary_10_1039_D0NR08488C crossref_primary_10_1016_j_ccr_2020_213642 crossref_primary_10_1016_j_ccr_2022_214977 crossref_primary_10_1021_acssuschemeng_2c07205 crossref_primary_10_1021_acsami_3c04125 crossref_primary_10_1016_j_jlumin_2022_119175 crossref_primary_10_1002_adma_202201562 crossref_primary_10_1002_advs_202408287 crossref_primary_10_1039_D4TB01787K crossref_primary_10_1002_adom_202401498 crossref_primary_10_1002_anie_202415383 crossref_primary_10_1002_adpr_202000089 crossref_primary_10_1002_adma_202004142 crossref_primary_10_1039_D5DT00219B crossref_primary_10_1002_adma_202306517 crossref_primary_10_1039_D1TC00617G crossref_primary_10_1016_j_jallcom_2025_179033 crossref_primary_10_1088_1612_202X_abbede crossref_primary_10_1039_D2TC05455H crossref_primary_10_1039_D1CS00753J crossref_primary_10_1039_D0TC00902D crossref_primary_10_1016_j_jfluchem_2023_110209 crossref_primary_10_1002_adom_202301873 crossref_primary_10_1039_C9QI01358J crossref_primary_10_1016_j_jallcom_2023_172887 crossref_primary_10_1002_adom_202202307 crossref_primary_10_1016_j_jallcom_2024_175852 crossref_primary_10_1007_s12274_022_4570_5 crossref_primary_10_1039_D4NR03096F crossref_primary_10_1021_acsphotonics_1c01695 crossref_primary_10_1016_j_jlumin_2024_120823 crossref_primary_10_1021_acsnano_0c02601 crossref_primary_10_1021_acsaom_3c00051 crossref_primary_10_1039_D0NR04809G crossref_primary_10_1021_acssensors_4c03202 crossref_primary_10_1002_chem_202400911 crossref_primary_10_1002_smll_202311729 crossref_primary_10_1039_D0NR02172E crossref_primary_10_1016_j_jallcom_2025_178513 crossref_primary_10_1016_j_solener_2022_03_037 crossref_primary_10_1016_j_jre_2024_06_043 crossref_primary_10_1364_OE_549575 crossref_primary_10_1016_j_mtchem_2023_101874 crossref_primary_10_1021_acsami_3c00673 crossref_primary_10_1039_D3DT03213B crossref_primary_10_1002_anie_202306585 crossref_primary_10_1002_adma_202403076 crossref_primary_10_1039_D0NR08603G crossref_primary_10_1002_smll_202200464 crossref_primary_10_1021_acsami_1c07809 crossref_primary_10_1039_D3TB02542J crossref_primary_10_1039_D1NR01745D crossref_primary_10_1016_j_mtcomm_2023_107258 crossref_primary_10_1002_ange_202306585 crossref_primary_10_1016_j_ceramint_2024_11_496 crossref_primary_10_1016_j_cej_2023_146433 crossref_primary_10_1021_acsami_0c07683 crossref_primary_10_1002_anie_202217100 crossref_primary_10_1039_D1NR07329J crossref_primary_10_1166_sam_2024_4682 crossref_primary_10_1021_acs_jpcc_3c00623 crossref_primary_10_1002_adom_202300477 crossref_primary_10_1002_lpor_202300542 crossref_primary_10_1111_1541_4337_13369 crossref_primary_10_1021_acsaom_4c00013 crossref_primary_10_1016_j_inoche_2024_112775 crossref_primary_10_1016_j_jlumin_2020_117627 crossref_primary_10_1002_smtd_202301309 crossref_primary_10_1016_j_ceramint_2025_01_092 crossref_primary_10_1039_D0TC01360A crossref_primary_10_1002_adfm_202310270 crossref_primary_10_3389_fphot_2024_1363223 crossref_primary_10_1016_j_jlumin_2024_120535 crossref_primary_10_15541_jim20240058 crossref_primary_10_1021_acsmaterialslett_2c00528 crossref_primary_10_1039_D3CS00611E crossref_primary_10_1002_smll_202107976 crossref_primary_10_1021_acsenergylett_3c02069 crossref_primary_10_1016_j_jechem_2024_07_037 crossref_primary_10_3390_molecules29174177 crossref_primary_10_1002_ange_202312308 crossref_primary_10_1016_j_ccr_2024_215922 crossref_primary_10_1021_acsaom_3c00251 crossref_primary_10_1021_acs_chemrev_0c01140 crossref_primary_10_1039_D2QI00877G crossref_primary_10_1002_cplu_202100459 crossref_primary_10_1002_bio_4636 crossref_primary_10_1016_j_nantod_2020_100956 crossref_primary_10_1016_j_jre_2023_02_022 crossref_primary_10_1039_D4DT02195A crossref_primary_10_1016_j_jallcom_2024_175209 crossref_primary_10_1039_D0TA11387E crossref_primary_10_1039_D4TC01063A crossref_primary_10_1002_ange_202217100 crossref_primary_10_1021_acsaem_3c00113 crossref_primary_10_1002_adpr_202200098 crossref_primary_10_1016_j_jallcom_2024_176893 crossref_primary_10_1039_D3SC06099C crossref_primary_10_1021_acs_chemmater_3c00466 crossref_primary_10_1016_j_snb_2023_134260 crossref_primary_10_3389_fmats_2021_768087 crossref_primary_10_1016_j_cej_2023_143814 crossref_primary_10_1002_open_202000073 crossref_primary_10_1021_acs_nanolett_3c00747 crossref_primary_10_1002_solr_202300518 crossref_primary_10_1021_acs_jpclett_3c02859 crossref_primary_10_1007_s00339_021_04462_4 crossref_primary_10_1007_s12274_021_3727_y crossref_primary_10_1038_s41467_022_33660_8 crossref_primary_10_1021_jacs_3c14527 crossref_primary_10_1039_C9TC06840F crossref_primary_10_1002_adpr_202000213 crossref_primary_10_1002_adma_202004788 crossref_primary_10_1016_j_cej_2023_148139 crossref_primary_10_1021_acssuschemeng_3c01838 crossref_primary_10_1016_j_jece_2022_108352 crossref_primary_10_1149_2162_8777_accd1e crossref_primary_10_1002_lpor_202100211 crossref_primary_10_1002_smll_202003799 crossref_primary_10_1016_j_ijbiomac_2024_136444 crossref_primary_10_1021_acsnano_2c12523 crossref_primary_10_1016_j_ijleo_2022_170287 crossref_primary_10_1039_D0CC07699F crossref_primary_10_1016_j_mtcomm_2024_110301 crossref_primary_10_3390_nano10101992 crossref_primary_10_1016_j_jre_2022_04_015 crossref_primary_10_1007_s12274_021_3454_4 crossref_primary_10_1016_j_mtchem_2020_100326 crossref_primary_10_1002_anie_202312308 crossref_primary_10_1002_adma_202406882 crossref_primary_10_1016_j_aca_2024_343429 crossref_primary_10_1016_j_ceramint_2023_11_181 crossref_primary_10_1039_D2NR01680J crossref_primary_10_1021_acs_nanolett_3c02826 crossref_primary_10_1016_j_ccr_2024_216069 crossref_primary_10_1016_j_physb_2021_413340 crossref_primary_10_1039_D2CE01206E crossref_primary_10_1021_acs_nanolett_1c02404 crossref_primary_10_1039_D3CP02218H crossref_primary_10_1002_adma_202305140 crossref_primary_10_1021_acsami_0c20757 crossref_primary_10_1002_adom_202202704 crossref_primary_10_1016_j_jre_2021_06_013 crossref_primary_10_1039_D1DT01878G crossref_primary_10_1002_ange_202415383 crossref_primary_10_1186_s40712_024_00187_3 crossref_primary_10_3390_photonics11010038 crossref_primary_10_1021_acsmaterialslett_0c00377 crossref_primary_10_1016_j_optmat_2023_114682 crossref_primary_10_1007_s12274_021_3350_y crossref_primary_10_1016_j_ijleo_2024_171832 crossref_primary_10_1007_s10853_024_10289_0 crossref_primary_10_1021_acsanm_2c03466 crossref_primary_10_1016_j_trechm_2022_05_001 crossref_primary_10_1002_adom_202400423 crossref_primary_10_1016_j_clay_2024_107685 crossref_primary_10_3389_fchem_2020_00836 crossref_primary_10_1016_j_ccr_2024_216407 crossref_primary_10_1021_acs_analchem_3c00449 crossref_primary_10_1016_j_ccr_2022_214423 crossref_primary_10_1002_smll_202103241 crossref_primary_10_1002_advs_202203669 crossref_primary_10_1007_s11051_024_06186_x crossref_primary_10_1002_adom_202301254 crossref_primary_10_1021_acsami_0c22112 crossref_primary_10_1038_s41467_022_28701_1 crossref_primary_10_1021_acs_chemrev_1c00644 crossref_primary_10_1002_adom_202201716 crossref_primary_10_1002_smll_202002454 crossref_primary_10_1016_j_jre_2022_08_006 crossref_primary_10_1016_j_ceramint_2023_06_107 crossref_primary_10_1007_s12274_023_6319_1 crossref_primary_10_1016_j_rinma_2023_100447 crossref_primary_10_1016_j_mtphys_2021_100520 crossref_primary_10_1007_s00216_022_04057_9 crossref_primary_10_1016_j_optmat_2024_115993 crossref_primary_10_1039_D0PY01550D crossref_primary_10_1021_acs_jpclett_0c00628 crossref_primary_10_1016_j_nantod_2022_101460 crossref_primary_10_1016_j_pmatsci_2021_100814 crossref_primary_10_1021_acs_inorgchem_3c03756 crossref_primary_10_1016_j_scib_2024_04_062 crossref_primary_10_1016_j_snb_2024_135351 crossref_primary_10_1002_adom_202301827 crossref_primary_10_1021_acs_jpcc_3c04020 crossref_primary_10_1016_j_addr_2022_114457 crossref_primary_10_1016_j_jallcom_2020_156116 crossref_primary_10_1016_j_jnoncrysol_2023_122329 crossref_primary_10_1007_s10965_023_03844_x crossref_primary_10_1039_D0TC03775C crossref_primary_10_1021_acs_inorgchem_3c01423 crossref_primary_10_1021_acs_analchem_1c02679 crossref_primary_10_1021_acsami_0c11202 crossref_primary_10_1016_j_xcrp_2021_100436 crossref_primary_10_1002_adom_202001434 crossref_primary_10_1016_j_cej_2022_139649 crossref_primary_10_1021_acs_chemmater_0c03124 crossref_primary_10_1039_D1TC05042G crossref_primary_10_1557_jmr_2020_253 crossref_primary_10_1039_D3TC01215H crossref_primary_10_1002_adom_202400184 crossref_primary_10_1038_s41377_024_01607_x crossref_primary_10_1088_1742_6596_2809_1_012016 crossref_primary_10_1002_INMD_20240078 crossref_primary_10_1002_advs_202304942 crossref_primary_10_1016_j_jallcom_2023_170192 crossref_primary_10_1002_advs_202306684 crossref_primary_10_1016_j_jcis_2024_11_167 crossref_primary_10_1039_D3RE00168G crossref_primary_10_1016_j_ceramint_2023_06_114 crossref_primary_10_3390_nano12203641 crossref_primary_10_1021_acs_jpcc_3c03500 crossref_primary_10_1016_j_ceramint_2023_12_349 crossref_primary_10_1016_j_optmat_2024_115186 crossref_primary_10_1007_s00604_022_05180_1 crossref_primary_10_1039_D1AN01582F crossref_primary_10_1039_D0NR03374J crossref_primary_10_1007_s11426_021_1179_7 crossref_primary_10_1016_j_cclet_2021_06_007 crossref_primary_10_1016_j_matlet_2023_135121 crossref_primary_10_1002_smll_202004552 |
Cites_doi | 10.1021/jacs.7b07496 10.1021/jacs.5b01504 10.1021/ja207078s 10.1039/C4CS00168K 10.1063/1.4760248 10.1021/cr020357g 10.1038/s41467-019-09850-2 10.1038/s41566-018-0156-x 10.1021/ar400218t 10.1039/C7NR01403A 10.1021/ed039p333 10.1021/nn505051d 10.1002/anie.201904182 10.1038/nnano.2014.29 10.1038/s41467-017-01141-y 10.1021/ja302717u 10.1039/C7NR04877G 10.1021/acs.nanolett.7b04339 10.1021/cm3033498 10.1039/b003031g 10.1002/adom.201800690 10.1038/s41467-017-00917-6 10.1021/acsnano.7b00559 10.1021/acsami.8b07090 10.1002/anie.201005159 10.1038/nature21366 10.1021/jacs.8b07086 10.1039/C6NR07687D 10.1038/nm.2933 10.1038/nmat3149 10.1021/cm031124o 10.1002/anie.201703012 10.1039/C8NR05552A 10.1021/acsnano.7b07393 10.1021/acs.chemmater.9b01050 10.1021/acs.jpcc.8b09371 10.1088/1361-6463/ab29c7 10.1039/C7TC05742C 10.1038/s41565-018-0221-0 10.1002/anie.201703600 10.1039/C8CC09031A 10.1039/C5NR08477F 10.1038/nmat3804 10.1038/s41467-018-05577-8 10.1038/nnano.2013.171 10.1038/ncomms8127 10.1038/ncomms10304 10.1021/nn405387t 10.1126/science.aaq1144 10.1002/anie.201306811 10.1021/jacs.7b00223 10.1002/adfm.201705057 10.1021/jacs.6b09474 10.1002/adma.201807079 10.1038/s41467-018-05842-w 10.1002/lpor.201700144 10.1038/nmeth1108 10.1021/nn302972r 10.1002/anie.201802889 10.1038/nphoton.2013.322 10.1038/s41467-018-04813-5 10.1002/smll.201370117 10.1021/acs.jpclett.6b02210 10.1007/978-3-642-32970-8 10.1021/acsphotonics.6b00475 10.1021/acs.chemmater.7b04700 10.1002/adfm.201903295 10.1021/acsnano.7b07120 10.1063/1.3421535 10.1002/anie.201106686 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acs.accounts.9b00453 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-4898 |
EndPage | 367 |
ExternalDocumentID | 31633900 10_1021_acs_accounts_9b00453 a608307437 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 23M 53G 55A 5GY 5VS 7~N 85S AABXI ABFLS ABMVS ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DZ EBS ED ED~ F5P GNL IH9 JG JG~ K2 LG6 P2P RNS ROL TWZ UI2 UPT VF5 VG9 W1F WH7 X YZZ --- -DZ -~X 4.4 5ZA 6J9 6P2 AAYXX ABBLG ABJNI ABLBI ABQRX ACGFO ADHLV AFXLT AGXLV AHGAQ CITATION CUPRZ GGK IH2 XSW ZCA ~02 NPM 7X8 |
ID | FETCH-LOGICAL-a414t-a70a849abe859292e5c39baf8a018b696e6201e62ef7dca48d3aa5d5ae1e45203 |
IEDL.DBID | ACS |
ISSN | 0001-4842 1520-4898 |
IngestDate | Fri Jul 11 08:33:07 EDT 2025 Thu Apr 03 06:53:33 EDT 2025 Thu Apr 24 23:12:28 EDT 2025 Tue Jul 01 03:16:04 EDT 2025 Thu Aug 27 22:10:51 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a414t-a70a849abe859292e5c39baf8a018b696e6201e62ef7dca48d3aa5d5ae1e45203 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9471-4386 |
PMID | 31633900 |
PQID | 2307742026 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2307742026 pubmed_primary_31633900 crossref_primary_10_1021_acs_accounts_9b00453 crossref_citationtrail_10_1021_acs_accounts_9b00453 acs_journals_10_1021_acs_accounts_9b00453 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-18 |
PublicationDateYYYYMMDD | 2020-02-18 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Accounts of chemical research |
PublicationTitleAlternate | Acc. Chem. Res |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref27/cit27 doi: 10.1021/jacs.7b07496 – ident: ref48/cit48 doi: 10.1021/jacs.5b01504 – ident: ref5/cit5 doi: 10.1021/ja207078s – ident: ref37/cit37 doi: 10.1039/C4CS00168K – ident: ref41/cit41 doi: 10.1063/1.4760248 – ident: ref2/cit2 doi: 10.1021/cr020357g – ident: ref45/cit45 doi: 10.1038/s41467-019-09850-2 – ident: ref46/cit46 doi: 10.1038/s41566-018-0156-x – ident: ref3/cit3 doi: 10.1021/ar400218t – ident: ref29/cit29 doi: 10.1039/C7NR01403A – ident: ref15/cit15 doi: 10.1021/ed039p333 – ident: ref33/cit33 doi: 10.1021/nn505051d – ident: ref67/cit67 doi: 10.1002/anie.201904182 – ident: ref43/cit43 doi: 10.1038/nnano.2014.29 – ident: ref62/cit62 doi: 10.1038/s41467-017-01141-y – ident: ref11/cit11 doi: 10.1021/ja302717u – ident: ref22/cit22 doi: 10.1039/C7NR04877G – ident: ref57/cit57 doi: 10.1021/acs.nanolett.7b04339 – ident: ref12/cit12 doi: 10.1021/cm3033498 – ident: ref1/cit1 doi: 10.1039/b003031g – ident: ref7/cit7 doi: 10.1002/adom.201800690 – ident: ref49/cit49 doi: 10.1038/s41467-017-00917-6 – ident: ref65/cit65 doi: 10.1021/acsnano.7b00559 – ident: ref51/cit51 doi: 10.1021/acsami.8b07090 – ident: ref4/cit4 doi: 10.1002/anie.201005159 – ident: ref59/cit59 doi: 10.1038/nature21366 – ident: ref28/cit28 doi: 10.1021/jacs.8b07086 – ident: ref31/cit31 doi: 10.1039/C6NR07687D – ident: ref52/cit52 doi: 10.1038/nm.2933 – ident: ref14/cit14 doi: 10.1038/nmat3149 – ident: ref18/cit18 doi: 10.1021/cm031124o – ident: ref35/cit35 doi: 10.1002/anie.201703012 – ident: ref32/cit32 doi: 10.1039/C8NR05552A – ident: ref10/cit10 doi: 10.1021/acsnano.7b07393 – ident: ref23/cit23 doi: 10.1021/acs.chemmater.9b01050 – ident: ref39/cit39 doi: 10.1021/acs.jpcc.8b09371 – ident: ref13/cit13 doi: 10.1088/1361-6463/ab29c7 – ident: ref36/cit36 doi: 10.1039/C7TC05742C – ident: ref66/cit66 doi: 10.1038/s41565-018-0221-0 – ident: ref9/cit9 doi: 10.1002/anie.201703600 – ident: ref20/cit20 doi: 10.1039/C8CC09031A – ident: ref16/cit16 doi: 10.1039/C5NR08477F – ident: ref34/cit34 doi: 10.1038/nmat3804 – ident: ref42/cit42 doi: 10.1038/s41467-018-05577-8 – ident: ref44/cit44 doi: 10.1038/nnano.2013.171 – ident: ref64/cit64 doi: 10.1038/ncomms8127 – ident: ref19/cit19 doi: 10.1038/ncomms10304 – ident: ref69/cit69 doi: 10.1021/nn405387t – ident: ref56/cit56 doi: 10.1126/science.aaq1144 – ident: ref53/cit53 doi: 10.1002/anie.201306811 – ident: ref24/cit24 doi: 10.1021/jacs.7b00223 – ident: ref61/cit61 doi: 10.1002/adfm.201705057 – ident: ref47/cit47 doi: 10.1021/jacs.6b09474 – ident: ref70/cit70 doi: 10.1002/adma.201807079 – ident: ref60/cit60 doi: 10.1038/s41467-018-05842-w – ident: ref38/cit38 doi: 10.1002/lpor.201700144 – ident: ref63/cit63 doi: 10.1038/nmeth1108 – ident: ref30/cit30 doi: 10.1021/nn302972r – ident: ref50/cit50 doi: 10.1002/anie.201802889 – ident: ref68/cit68 doi: 10.1038/nphoton.2013.322 – ident: ref17/cit17 doi: 10.1038/s41467-018-04813-5 – ident: ref55/cit55 doi: 10.1002/smll.201370117 – ident: ref21/cit21 doi: 10.1021/acs.jpclett.6b02210 – ident: ref26/cit26 doi: 10.1007/978-3-642-32970-8 – ident: ref58/cit58 doi: 10.1021/acsphotonics.6b00475 – ident: ref54/cit54 doi: 10.1021/acs.chemmater.7b04700 – ident: ref25/cit25 doi: 10.1002/adfm.201903295 – ident: ref6/cit6 doi: 10.1021/acsnano.7b07120 – ident: ref40/cit40 doi: 10.1063/1.3421535 – ident: ref8/cit8 doi: 10.1002/anie.201106686 |
SSID | ssj0002467 |
Score | 2.6671174 |
Snippet | Conspectus Lanthanide-doped upconversion nanoparticles (UCNPs) are a special class of luminescent nanomaterials that convert multiwavelength near-infrared... Lanthanide-doped upconversion nanoparticles (UCNPs) are a special class of luminescent nanomaterials that convert multiwavelength near-infrared (NIR)... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 358 |
Title | Combating Concentration Quenching in Upconversion Nanoparticles |
URI | http://dx.doi.org/10.1021/acs.accounts.9b00453 https://www.ncbi.nlm.nih.gov/pubmed/31633900 https://www.proquest.com/docview/2307742026 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA66HvTi-7G-qODFQ9c0jz5OIsVlEVREF_ZWJmkKonQX27346530saKyrFLooSRT8pr5Jpl8Q8i5zACyiGmXywAdFLQ5bqhU5lIKaaal0lCx69_d-4OhuB3J0Zej-PMEn3mXoAsUXWVOKHqWwU9IvkxWmI_r2EKh-GmmeZnwa45Man8rWHtVbo4Ua5B08d0gzUGZlbXpb5CH9s5OHWTy2puWqqc_flM4_rEhm2S9AZ7OdT1TtsiSybfJatzme9shV6gaFNgoaCe2dxnzhlDXebSx1najynnJneGkilOvNtkcVM3oczehdbtk2L95jgduk17BBeGJ0oWAQigiUCaUCJKYkZpHCrIQqBcqP_KNj-gAXyYLUkt-nnIAmUownhGSUb5HOvk4NwfEMUKxjAdGytRHq4heGI8kVZwpfESUdskFtj5plkeRVCffzEvsx7ZLkqZLuoS345Hohqfcpst4W1DLndWa1DwdC8qftUOdYD_bUxLIzXhaJDYyPhAMfdMu2a_nwEwiR_TKI0oP_9GeI7LGrI9uk8iEx6RTvk_NCQKZUp1Ws_cTPh_wXw |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFH6M40Ev7su4VvDioWOapctJpDiMOiOIjsytJG0KonQGO3Px1_vSTRRkkEIPIUmzvOZ9L3n5HsC5SKVMAxrbTHhooKDOsX2lUpsQmaSxULEs2PWHD25_xO_GYtwCUd-FwUbkWFNeHOJ_sws4lyZNlgEU8q4h8uOCLcEy4hFqBPs6fGoWYMrdkiqTmK9zWt-Y-6MWo5fi_Kde-gNsFkqntw4vTXMLX5O37nymuvHnLybHf_dnA9YqGGpdl3KzCS2dbcFKWEd_24YrXCiUND7RVmhuNmYVva71aDyvzbaV9ZpZo2nhtV5suVm4UKMFXjna7cCod_Mc9u0q2IItucNntvSI9HkglfYFQiaqRcwCJVNfEsdXbuBqF7ECvnTqJYYKPWFSikRI7WguKGG70M4mmd4HS3NFU-ZpIRIXdSTaZCwQRDGq8OFB0oEL7H1U_Sx5VJyDUycyifWQRNWQdIDV0xLFFWu5CZ7xvqCU3ZSalqwdC_Kf1TMe4TibMxOZ6ck8j4yfvMcpWqod2CtFoamRIZZlASEH_-jPKaz0n4eDaHD7cH8Iq9RY7ya8jH8E7dnHXB8jxJmpk0KgvwBbuPjA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB48QH3xPtazgi8-dE1z9HgSWV28UXRBfClJm4IodbG7L_56Z3osKogohT6EJGSSSWYmM_kGYE9lWmcRT1yhAjRQUOa4oTGZy5hOs0SZRJfo-lfX_mlPnj-oh0-pvnAQBfZUlE582tX9NKsRBrwDKtdVEoWiTWB-UolxmCTPHTH3UedudAhz6VdwmYxGIHnzau6HXkg2JcVX2fSDwlkKnu4cPI6GXMabPLeHA9NO3r-hOf6LpnmYrdVR56jinwUYs_kiTHeaLHBLcIgHhtEUG-106IVjXsPsOrcUgU3XV85T7vT6ZfR6efXm4IGNlngdcLcMve7JfefUrZMuuFp6cuDqgOlQRtrYUKHqxK1KRGR0FmrmhcaPfOujzoA_mwUpQaKnQmuVKm09KxVnYgUm8tfcroFjpeGZCKxSqY-yEm0zESlmBDf4yShtwT5SH9ebpohLfzj3YipspiSup6QFolmaOKnRyymJxssvrdxRq36F3vFL_d1m1WOcZ_Kd6Ny-DouY4uUDydFibcFqxQ6jHgXqtCJibP0P9OzA1M1xN748u77YgBlORjxlmQk3YWLwNrRbqOkMzHbJ0x9hfftD |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combating+Concentration+Quenching+in+Upconversion+Nanoparticles&rft.jtitle=Accounts+of+chemical+research&rft.au=Chen%2C+Bing&rft.au=Wang%2C+Feng&rft.date=2020-02-18&rft.pub=American+Chemical+Society&rft.issn=0001-4842&rft.eissn=1520-4898&rft.volume=53&rft.issue=2&rft.spage=358&rft.epage=367&rft_id=info:doi/10.1021%2Facs.accounts.9b00453&rft.externalDocID=a608307437 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon |