Excitation of Plasmonic Waves in Graphene by Guided-Mode Resonances

We propose an active plasmonic device based on graphene. Highly confined plasmonic waves in monolayer graphene are efficiently excited using an etched diffractive grating on silicon. The guided-wave resonance of the combined structure creates a sharp notch on the normal-incidence transmission spectr...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 6; no. 9; pp. 7806 - 7813
Main Authors Gao, Weilu, Shu, Jie, Qiu, Ciyuan, Xu, Qianfan
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 25.09.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We propose an active plasmonic device based on graphene. Highly confined plasmonic waves in monolayer graphene are efficiently excited using an etched diffractive grating on silicon. The guided-wave resonance of the combined structure creates a sharp notch on the normal-incidence transmission spectra, as the incident optical wave couples to the graphene plasmonic wave. This structure can be used as a highly tunable optical filter or a broad-band modulator because the resonant wavelength can be quickly tuned over a wide wavelength range by a small change in the Fermi energy level of the graphene. In this paper, we analyze the performance of this device with finite-difference time-domain simulations. We compare the proposed structure with recently demonstrated graphene nanoribbons based on bound plasmonic oscillations.
AbstractList We propose an active plasmonic device based on graphene. Highly confined plasmonic waves in monolayer graphene are efficiently excited using an etched diffractive grating on silicon. The guided-wave resonance of the combined structure creates a sharp notch on the normal-incidence transmission spectra, as the incident optical wave couples to the graphene plasmonic wave. This structure can be used as a highly tunable optical filter or a broad-band modulator because the resonant wavelength can be quickly tuned over a wide wavelength range by a small change in the Fermi energy level of the graphene. In this paper, we analyze the performance of this device with finite-difference time-domain simulations. We compare the proposed structure with recently demonstrated graphene nanoribbons based on bound plasmonic oscillations.
We propose an active plasmonic device based on graphene. Highly confined plasmonic waves in monolayer graphene are efficiently excited using an etched diffractive grating on silicon. The guided-wave resonance of the combined structure creates a sharp notch on the normal-incidence transmission spectra, as the incident optical wave couples to the graphene plasmonic wave. This structure can be used as a highly tunable optical filter or a broad-band modulator because the resonant wavelength can be quickly tuned over a wide wavelength range by a small change in the Fermi energy level of the graphene. In this paper, we analyze the performance of this device with finite-difference time-domain simulations. We compare the proposed structure with recently demonstrated graphene nanoribbons based on bound plasmonic oscillations.We propose an active plasmonic device based on graphene. Highly confined plasmonic waves in monolayer graphene are efficiently excited using an etched diffractive grating on silicon. The guided-wave resonance of the combined structure creates a sharp notch on the normal-incidence transmission spectra, as the incident optical wave couples to the graphene plasmonic wave. This structure can be used as a highly tunable optical filter or a broad-band modulator because the resonant wavelength can be quickly tuned over a wide wavelength range by a small change in the Fermi energy level of the graphene. In this paper, we analyze the performance of this device with finite-difference time-domain simulations. We compare the proposed structure with recently demonstrated graphene nanoribbons based on bound plasmonic oscillations.
Author Qiu, Ciyuan
Xu, Qianfan
Gao, Weilu
Shu, Jie
AuthorAffiliation Rice University
AuthorAffiliation_xml – name: Rice University
Author_xml – sequence: 1
  givenname: Weilu
  surname: Gao
  fullname: Gao, Weilu
– sequence: 2
  givenname: Jie
  surname: Shu
  fullname: Shu, Jie
– sequence: 3
  givenname: Ciyuan
  surname: Qiu
  fullname: Qiu, Ciyuan
– sequence: 4
  givenname: Qianfan
  surname: Xu
  fullname: Xu, Qianfan
  email: qianfan@rice.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22862147$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1LwzAYxoNM3Ice_AckF0EPdUnapulRxpzCRBFFbyVN3mBHm8ymFfff27GPgww8ve_h9_wOzzNEPessIHROyQ0ljI6tDQkVQsARGtA05AER_KO3_2PaR0PvF4TEiUj4CeozJjijUTJAk-mPKhrZFM5iZ_BzKX3lbKHwu_wGjwuLZ7VcfoIFnK_wrC006ODRacAv4J2VVoE_RcdGlh7OtneE3u6mr5P7YP40e5jczgMZ0agJZJzomHFQirMkSlUUhoaABkNprFgiUiUI0YabXKaKG6GAg6acaKA5iIiFI3S18S5r99WCb7Kq8ArKUlpwrc9owhmJaZyK_1EiCKcsFmvrxRZt8wp0tqyLStarbNdRB4w3gKqd9zWYbNdYU8ui7FzZeoVsv0KXuP6T2EkPsZcbViqfLVxb267CA9wvDeSSAQ
CitedBy_id crossref_primary_10_1039_C8NR09157A
crossref_primary_10_1088_1361_6463_aae75f
crossref_primary_10_1364_OE_25_023880
crossref_primary_10_1364_JOSAB_34_001848
crossref_primary_10_3390_app10051750
crossref_primary_10_1063_1_4894090
crossref_primary_10_1117_1_JNP_11_026011
crossref_primary_10_1364_OL_42_000563
crossref_primary_10_1007_s11468_016_0251_0
crossref_primary_10_1021_nl401591k
crossref_primary_10_15407_nnn_20_01_001
crossref_primary_10_1016_j_optcom_2018_03_012
crossref_primary_10_3390_nano9081101
crossref_primary_10_1021_ph400090p
crossref_primary_10_1007_s12034_020_02226_z
crossref_primary_10_1109_JLT_2014_2350487
crossref_primary_10_1007_s11468_014_9736_x
crossref_primary_10_1016_j_optcom_2015_05_002
crossref_primary_10_1364_OE_24_004714
crossref_primary_10_1007_s11051_016_3696_3
crossref_primary_10_1021_nn500508c
crossref_primary_10_1088_2053_1591_aae2ed
crossref_primary_10_1557_opl_2015_358
crossref_primary_10_1364_AO_56_007243
crossref_primary_10_1109_TAP_2013_2282535
crossref_primary_10_1002_jnm_2911
crossref_primary_10_1088_1361_6463_aab8bd
crossref_primary_10_1364_JOSAA_31_000691
crossref_primary_10_1016_j_optcom_2018_04_067
crossref_primary_10_1007_s12596_016_0330_9
crossref_primary_10_1021_acsphotonics_2c01411
crossref_primary_10_1209_0295_5075_119_47002
crossref_primary_10_1016_j_optcom_2014_04_069
crossref_primary_10_1016_j_mser_2013_09_001
crossref_primary_10_1016_j_optcom_2018_03_020
crossref_primary_10_1016_j_physe_2023_115889
crossref_primary_10_1038_s41598_017_07254_0
crossref_primary_10_1016_j_optcom_2017_01_018
crossref_primary_10_1103_PhysRevB_94_205419
crossref_primary_10_1088_0022_3727_47_13_135106
crossref_primary_10_1088_0957_4484_26_50_505203
crossref_primary_10_1109_TAP_2013_2260517
crossref_primary_10_1364_OE_21_024856
crossref_primary_10_1088_1361_6463_aa7e6b
crossref_primary_10_1103_PhysRevB_96_165431
crossref_primary_10_3390_nano9101496
crossref_primary_10_1088_1757_899X_840_1_012003
crossref_primary_10_3938_jkps_70_967
crossref_primary_10_1364_OL_41_002129
crossref_primary_10_1039_C6CP03731C
crossref_primary_10_1021_acs_nanolett_5b05166
crossref_primary_10_3390_nano12071144
crossref_primary_10_1134_S1063784216020122
crossref_primary_10_1186_s11671_019_3237_y
crossref_primary_10_1364_AO_58_004762
crossref_primary_10_1209_0295_5075_116_44004
crossref_primary_10_1016_j_device_2024_100572
crossref_primary_10_1016_j_optcom_2018_03_037
crossref_primary_10_3390_nano10030533
crossref_primary_10_1039_C4NR03143A
crossref_primary_10_1109_JLT_2014_2350481
crossref_primary_10_29026_oea_2022_200098
crossref_primary_10_1016_j_spmi_2019_02_003
crossref_primary_10_1007_s40820_015_0037_5
crossref_primary_10_1016_j_diamond_2023_110374
crossref_primary_10_1016_j_rinp_2021_104020
crossref_primary_10_1364_OE_25_031478
crossref_primary_10_1364_JOSAB_438124
crossref_primary_10_1002_adfm_201303368
crossref_primary_10_1088_2040_8986_aa8c56
crossref_primary_10_1364_OE_24_011466
crossref_primary_10_1088_2040_8986_ab2971
crossref_primary_10_1002_pssb_202200491
crossref_primary_10_1021_acsphotonics_5b00209
crossref_primary_10_3390_nano12152562
crossref_primary_10_1103_PhysRevLett_111_237404
crossref_primary_10_1007_s11468_016_0439_3
crossref_primary_10_1088_1674_1056_26_3_030301
crossref_primary_10_1364_OE_25_009579
crossref_primary_10_1063_1_4817592
crossref_primary_10_1016_j_rinp_2023_107287
crossref_primary_10_1109_JLT_2018_2840847
crossref_primary_10_1016_j_jmmm_2018_08_033
crossref_primary_10_1088_1361_6463_abe899
crossref_primary_10_1016_j_ijleo_2017_09_045
crossref_primary_10_1364_OE_24_027882
crossref_primary_10_1016_j_optcom_2017_09_079
crossref_primary_10_1016_j_commatsci_2017_03_004
crossref_primary_10_1109_JSTQE_2016_2574306
crossref_primary_10_1016_j_optcom_2017_11_042
crossref_primary_10_1109_TTHZ_2013_2294538
crossref_primary_10_3390_polym15143060
crossref_primary_10_1088_0957_4484_26_36_365201
crossref_primary_10_1088_1367_2630_15_6_063020
crossref_primary_10_1109_JLT_2016_2645239
crossref_primary_10_1016_j_diamond_2022_109260
crossref_primary_10_1063_1_4885442
crossref_primary_10_1016_j_optmat_2018_12_052
crossref_primary_10_1007_s00339_017_1247_0
crossref_primary_10_1109_JLT_2020_2980862
crossref_primary_10_1364_OE_23_007809
crossref_primary_10_1364_OL_42_002659
crossref_primary_10_1039_D3NR04656G
crossref_primary_10_1109_JPHOT_2018_2876681
crossref_primary_10_7567_APEX_11_035101
crossref_primary_10_1364_OE_22_031511
crossref_primary_10_35848_1882_0786_ac727c
crossref_primary_10_1007_s11468_015_0151_8
crossref_primary_10_1016_j_optcom_2016_06_007
crossref_primary_10_1109_TNANO_2021_3066452
crossref_primary_10_7567_APEX_9_052001
crossref_primary_10_1109_TNANO_2018_2875000
crossref_primary_10_1007_s11468_017_0607_0
crossref_primary_10_1117_1_JNP_11_036015
crossref_primary_10_1364_OE_26_007358
crossref_primary_10_1109_LPT_2016_2558494
crossref_primary_10_1515_nanoph_2015_0012
crossref_primary_10_1364_AO_434412
crossref_primary_10_3390_mi14040715
crossref_primary_10_1364_AO_57_009770
crossref_primary_10_1088_1402_4896_ac9560
crossref_primary_10_1007_s11468_024_02708_4
crossref_primary_10_1088_2040_8978_15_5_055003
crossref_primary_10_1007_s11468_023_02094_3
crossref_primary_10_1002_smll_201400515
crossref_primary_10_1039_C4NR03152K
crossref_primary_10_1088_2053_1583_2_3_032005
crossref_primary_10_1364_OE_24_001480
crossref_primary_10_3390_nano9010007
crossref_primary_10_1364_OE_26_022528
crossref_primary_10_1021_acs_jpcc_9b07576
crossref_primary_10_1109_JLT_2019_2898701
crossref_primary_10_1364_OE_26_023854
crossref_primary_10_1364_OL_42_003840
crossref_primary_10_1007_s11468_015_0173_2
crossref_primary_10_1364_OL_39_005909
crossref_primary_10_1140_epjd_s10053_022_00410_w
crossref_primary_10_1209_0295_5075_119_24003
crossref_primary_10_1063_1_4966577
crossref_primary_10_1016_j_diamond_2023_110210
crossref_primary_10_1016_j_optcom_2017_12_080
crossref_primary_10_1364_OE_382485
crossref_primary_10_1088_2515_7647_ab8f1f
crossref_primary_10_1364_OE_24_016961
crossref_primary_10_1364_OE_27_005253
crossref_primary_10_1364_OE_22_006680
crossref_primary_10_1088_0253_6102_71_1_97
crossref_primary_10_1038_srep08443
crossref_primary_10_1088_2040_8978_16_1_015004
crossref_primary_10_1364_AO_56_000434
crossref_primary_10_1364_OSAC_391962
crossref_primary_10_1364_PRJ_481020
crossref_primary_10_1088_2040_8986_aaacc0
crossref_primary_10_1364_OE_26_029509
crossref_primary_10_1088_1361_6528_ac2fe6
crossref_primary_10_1063_1_4903965
crossref_primary_10_1103_PhysRevA_95_053850
crossref_primary_10_7567_1882_0786_ab27f9
crossref_primary_10_1364_JOSAB_33_001842
crossref_primary_10_1364_OE_23_023357
crossref_primary_10_3390_photonics10070712
crossref_primary_10_1039_c4ra03431g
crossref_primary_10_7567_APEX_9_125102
crossref_primary_10_1109_JPHOT_2018_2789894
crossref_primary_10_1016_j_cpc_2016_06_007
crossref_primary_10_1364_OL_416493
crossref_primary_10_1088_1402_4896_ad7abd
crossref_primary_10_1109_JPHOT_2019_2893382
crossref_primary_10_1088_2053_1591_aabbf7
crossref_primary_10_1016_j_sse_2015_03_005
crossref_primary_10_1063_1_4927824
crossref_primary_10_1016_j_carbon_2018_03_051
crossref_primary_10_1109_JSEN_2021_3079179
crossref_primary_10_1515_nanoph_2021_0709
crossref_primary_10_1016_j_optlastec_2020_106775
crossref_primary_10_1063_1_5029546
crossref_primary_10_1021_acsphotonics_8b01640
crossref_primary_10_1088_1361_6463_acff03
crossref_primary_10_1016_j_optcom_2016_05_019
crossref_primary_10_1007_s10043_020_00589_6
crossref_primary_10_1039_C4CP02299H
crossref_primary_10_1103_PhysRevB_106_155422
crossref_primary_10_1021_acsphotonics_8b00875
crossref_primary_10_1016_j_optcom_2019_01_062
crossref_primary_10_1007_s11468_017_0586_1
crossref_primary_10_1016_j_rinp_2020_103382
crossref_primary_10_1364_OL_41_005470
crossref_primary_10_1063_1_4980029
crossref_primary_10_1088_1361_6528_ac0ac6
crossref_primary_10_1088_1674_1056_abaee2
crossref_primary_10_35848_1882_0786_ac7dda
crossref_primary_10_1002_apxr_202300144
crossref_primary_10_1002_adom_202001520
crossref_primary_10_1016_j_ijleo_2021_168351
crossref_primary_10_1364_JOSAB_36_000697
crossref_primary_10_1038_s41598_018_33609_2
crossref_primary_10_1103_PhysRevB_108_035414
crossref_primary_10_1109_LPT_2014_2368192
crossref_primary_10_1016_j_apsusc_2018_03_086
crossref_primary_10_1088_2040_8978_18_6_065001
crossref_primary_10_1039_C5NR01343G
crossref_primary_10_1088_2040_8986_aaa1b7
crossref_primary_10_1016_j_carbon_2018_10_002
crossref_primary_10_1021_acsphotonics_6b00566
crossref_primary_10_1039_D0NR02047H
crossref_primary_10_1007_s11467_021_1060_2
crossref_primary_10_1364_OE_22_026487
crossref_primary_10_1007_s11468_024_02691_w
crossref_primary_10_1016_j_optcom_2016_07_077
crossref_primary_10_1016_j_rinp_2021_104780
crossref_primary_10_1364_OE_455595
crossref_primary_10_1103_PhysRevApplied_14_034044
crossref_primary_10_1007_s11468_019_00984_z
crossref_primary_10_3390_s21165262
crossref_primary_10_1063_5_0152664
crossref_primary_10_1088_1402_4896_acc3c9
crossref_primary_10_1364_AO_58_007503
crossref_primary_10_1016_j_physleta_2015_12_020
crossref_primary_10_1063_1_5057372
crossref_primary_10_1109_TAP_2017_2768081
crossref_primary_10_1007_s11468_016_0265_7
crossref_primary_10_1364_OE_22_027880
crossref_primary_10_1007_s11468_024_02703_9
crossref_primary_10_1016_j_optlastec_2022_108066
crossref_primary_10_1038_s41598_018_21365_2
crossref_primary_10_1016_j_revip_2021_100054
crossref_primary_10_1109_JLT_2017_2768037
crossref_primary_10_1364_AO_383637
crossref_primary_10_1002_adom_202001895
crossref_primary_10_1007_s11468_017_0566_5
crossref_primary_10_1103_PhysRevB_90_085409
crossref_primary_10_1002_adfm_202101959
crossref_primary_10_1007_s11082_022_04535_5
crossref_primary_10_1126_science_abb5144
crossref_primary_10_1063_1_4800931
crossref_primary_10_1016_j_ijleo_2018_10_106
crossref_primary_10_1080_09205071_2018_1518161
crossref_primary_10_1109_LPT_2017_2776945
crossref_primary_10_1088_2040_8986_abceaa
crossref_primary_10_1515_nanoph_2019_0108
crossref_primary_10_1021_acsphotonics_5b00510
crossref_primary_10_1109_JLT_2018_2876374
crossref_primary_10_1016_j_susc_2014_11_002
crossref_primary_10_1364_OE_385450
crossref_primary_10_1007_s10853_020_05437_1
crossref_primary_10_1007_s11468_024_02572_2
crossref_primary_10_1039_C5NR03458B
crossref_primary_10_1109_JLT_2017_2750200
crossref_primary_10_1364_PRJ_5_000377
crossref_primary_10_1109_TNANO_2018_2822277
crossref_primary_10_1007_s11082_020_02350_4
crossref_primary_10_1016_j_optlastec_2014_04_021
crossref_primary_10_1364_OE_474901
crossref_primary_10_1021_nn406015d
crossref_primary_10_1063_1_4948417
crossref_primary_10_1088_1674_1056_27_8_088104
crossref_primary_10_1364_OE_515152
crossref_primary_10_1364_AO_55_005095
crossref_primary_10_1109_JLT_2016_2613904
crossref_primary_10_3390_nano12081353
crossref_primary_10_1002_adom_202001443
crossref_primary_10_1021_ph5000117
crossref_primary_10_1007_s11468_016_0389_9
crossref_primary_10_1063_1_4978383
crossref_primary_10_1016_j_apmt_2018_06_009
crossref_primary_10_1016_j_optcom_2016_06_086
crossref_primary_10_1021_acsnano_8b06601
crossref_primary_10_3390_photonics11111016
crossref_primary_10_1016_j_physe_2018_10_026
crossref_primary_10_1364_OE_26_006214
crossref_primary_10_1364_AO_56_009536
crossref_primary_10_1021_nn403282x
crossref_primary_10_1109_JLT_2016_2618371
crossref_primary_10_1016_j_ijheatmasstransfer_2019_05_102
crossref_primary_10_1021_acsphotonics_9b00956
crossref_primary_10_1088_1361_6463_acbc2f
crossref_primary_10_1109_JPHOT_2014_2326667
crossref_primary_10_1007_s11468_019_00986_x
crossref_primary_10_1364_OE_401694
crossref_primary_10_1088_1361_6463_ab36dc
crossref_primary_10_1016_j_diamond_2023_110728
crossref_primary_10_1364_JOSAB_30_002461
crossref_primary_10_1364_PRJ_6_000692
crossref_primary_10_1007_s11468_017_0530_4
crossref_primary_10_1364_OE_24_000427
crossref_primary_10_1016_j_carbon_2018_10_059
crossref_primary_10_1364_OE_504132
crossref_primary_10_1063_5_0048291
crossref_primary_10_1038_srep28799
crossref_primary_10_1088_2040_8986_ac47b3
crossref_primary_10_1117_1_JNP_13_026012
crossref_primary_10_1002_adfm_202316863
crossref_primary_10_1364_JOSAB_435889
crossref_primary_10_1364_OE_23_024730
crossref_primary_10_1007_s11468_021_01505_7
crossref_primary_10_3390_biophysica2040045
crossref_primary_10_1039_C7NR07045D
crossref_primary_10_1039_c3cp51952j
crossref_primary_10_1063_1_4868358
crossref_primary_10_1021_nn406627u
crossref_primary_10_1007_s11468_017_0557_6
crossref_primary_10_1016_j_optcom_2023_129506
crossref_primary_10_1038_lsa_2016_52
crossref_primary_10_1186_s11671_016_1633_0
crossref_primary_10_1021_acsphotonics_6b00866
crossref_primary_10_1364_OE_450606
crossref_primary_10_1021_nl502363u
crossref_primary_10_1103_PhysRevApplied_11_064002
crossref_primary_10_1364_OL_416543
crossref_primary_10_1364_AO_55_005598
crossref_primary_10_1109_LPT_2016_2577781
crossref_primary_10_4191_kcers_2017_54_5_10
crossref_primary_10_1364_OE_22_024322
crossref_primary_10_1016_j_optcom_2020_125319
crossref_primary_10_1016_j_optmat_2016_02_006
crossref_primary_10_1007_s11082_019_2138_8
crossref_primary_10_1103_PhysRevA_109_013504
crossref_primary_10_1007_s11468_015_0124_y
crossref_primary_10_1021_acs_chemrev_9b00592
crossref_primary_10_1021_nl500943r
crossref_primary_10_1039_C6RA08086C
crossref_primary_10_1364_AO_58_001824
crossref_primary_10_2528_PIER15120201
crossref_primary_10_1063_1_4895633
crossref_primary_10_1021_acs_jpcc_9b04693
crossref_primary_10_1049_mnl_2018_5079
crossref_primary_10_3390_mi13111945
crossref_primary_10_1007_s11468_024_02721_7
crossref_primary_10_1364_AO_399286
crossref_primary_10_1002_lpor_201300199
crossref_primary_10_1364_AO_540780
crossref_primary_10_1016_j_carbon_2019_03_086
crossref_primary_10_1364_OSAC_2_001296
crossref_primary_10_7567_JJAP_53_08MG01
crossref_primary_10_1016_j_physb_2024_416767
crossref_primary_10_1109_LAWP_2017_2676121
crossref_primary_10_1016_j_sse_2017_06_024
crossref_primary_10_1109_TNANO_2014_2344973
crossref_primary_10_1016_j_optcom_2017_06_042
crossref_primary_10_1038_srep41788
crossref_primary_10_1364_OE_21_028628
crossref_primary_10_1364_OE_21_003486
crossref_primary_10_1016_j_optcom_2015_02_032
crossref_primary_10_1364_OE_27_020165
crossref_primary_10_1016_j_cap_2025_02_009
crossref_primary_10_1016_j_optcom_2022_129140
crossref_primary_10_1364_OE_25_026221
crossref_primary_10_7567_APEX_9_012001
crossref_primary_10_1088_1361_6528_ab34e4
crossref_primary_10_1063_1_4962454
crossref_primary_10_1364_AO_57_006916
crossref_primary_10_1021_acsphotonics_7b00384
crossref_primary_10_1364_OE_27_000567
crossref_primary_10_1002_adom_202001809
crossref_primary_10_1016_j_cocis_2015_11_007
crossref_primary_10_1063_1_4799173
crossref_primary_10_1088_2040_8986_ac881c
crossref_primary_10_1002_adom_201701378
crossref_primary_10_1038_srep32616
crossref_primary_10_1103_PhysRevB_106_075401
crossref_primary_10_1016_j_optcom_2018_07_062
crossref_primary_10_1016_j_photonics_2018_12_001
crossref_primary_10_7567_APEX_11_052002
crossref_primary_10_1088_2040_8978_17_12_125012
crossref_primary_10_1016_j_optcom_2019_02_002
crossref_primary_10_1016_j_carbon_2015_09_053
crossref_primary_10_1016_j_ijleo_2019_163420
crossref_primary_10_1364_JOSAB_33_002051
crossref_primary_10_1016_j_matcom_2020_05_019
crossref_primary_10_1016_j_optcom_2017_05_067
crossref_primary_10_1021_acsphotonics_7b01341
crossref_primary_10_1021_acsanm_8b01631
crossref_primary_10_1103_PhysRevE_96_022703
crossref_primary_10_1364_OE_27_023576
crossref_primary_10_1098_rsta_2016_0066
crossref_primary_10_1109_JPHOT_2019_2914932
crossref_primary_10_1364_OE_23_016071
crossref_primary_10_1002_adom_201600201
crossref_primary_10_1088_1361_6463_aa8ac6
crossref_primary_10_1109_JSEN_2019_2949617
crossref_primary_10_1109_JSTQE_2023_3321608
crossref_primary_10_1007_s11468_015_0028_x
crossref_primary_10_1016_j_optcom_2019_04_087
crossref_primary_10_3390_nano10071410
crossref_primary_10_1364_JOSAB_32_000701
crossref_primary_10_1021_acsphotonics_7b01207
crossref_primary_10_1088_2040_8978_17_12_125009
crossref_primary_10_3390_s16060773
crossref_primary_10_1364_OE_23_032420
crossref_primary_10_1021_acs_chemrev_7b00252
crossref_primary_10_1016_j_physleta_2023_128708
crossref_primary_10_7498_aps_65_105201
crossref_primary_10_1038_srep11195
crossref_primary_10_1016_j_diamond_2022_108977
crossref_primary_10_1016_j_optcom_2018_06_015
crossref_primary_10_1038_s41467_023_38214_0
crossref_primary_10_1007_s11468_016_0336_9
crossref_primary_10_1364_OE_499904
crossref_primary_10_3390_mi10030194
crossref_primary_10_1364_AO_55_006137
crossref_primary_10_1364_OE_23_000545
crossref_primary_10_1364_OE_395098
crossref_primary_10_3390_nano10010039
crossref_primary_10_1364_OE_23_008348
crossref_primary_10_1039_C6NR05500A
crossref_primary_10_1186_s11671_019_3121_9
crossref_primary_10_1016_j_micrna_2022_207331
crossref_primary_10_1016_j_ijleo_2020_164703
crossref_primary_10_1007_s11468_023_02079_2
crossref_primary_10_1063_5_0153032
crossref_primary_10_1103_PhysRevB_88_115439
crossref_primary_10_1364_OE_389573
crossref_primary_10_1021_acs_nanolett_5b02494
crossref_primary_10_1038_nphys3545
crossref_primary_10_1088_1674_1056_ab9cbf
crossref_primary_10_1007_s11468_015_0003_6
crossref_primary_10_1364_OE_24_029216
crossref_primary_10_1364_JOSAB_35_000575
crossref_primary_10_1109_JPHOT_2022_3211885
crossref_primary_10_1515_nanoph_2019_0400
crossref_primary_10_1364_OE_25_026148
crossref_primary_10_1007_s11468_022_01720_w
crossref_primary_10_1016_j_micrna_2023_207646
crossref_primary_10_1088_2040_8986_ab8911
crossref_primary_10_1016_j_optcom_2017_04_023
crossref_primary_10_1039_C6NR04239B
crossref_primary_10_1063_5_0086515
crossref_primary_10_1088_2040_8978_16_10_105004
crossref_primary_10_1364_AO_497603
crossref_primary_10_1063_1_5032297
crossref_primary_10_3390_coatings14010056
crossref_primary_10_1007_s11082_023_05614_x
crossref_primary_10_1088_1361_6528_aa7128
crossref_primary_10_1109_LPT_2015_2399655
crossref_primary_10_1080_02678292_2018_1500651
crossref_primary_10_1007_s11467_016_0551_z
crossref_primary_10_1016_j_ijleo_2021_167837
crossref_primary_10_1364_OE_418836
crossref_primary_10_1007_s12596_020_00662_y
crossref_primary_10_1364_AO_57_009550
crossref_primary_10_1109_JPHOT_2014_2331248
crossref_primary_10_1364_OL_41_000567
crossref_primary_10_1364_OE_24_017886
crossref_primary_10_1016_j_jlumin_2022_119332
crossref_primary_10_1007_s11468_018_0703_9
crossref_primary_10_1109_LPT_2015_2413363
crossref_primary_10_1364_OL_39_000271
crossref_primary_10_1007_s11468_016_0293_3
crossref_primary_10_1016_j_hybadv_2023_100046
crossref_primary_10_1088_1361_6463_aae9cc
crossref_primary_10_1021_acsphotonics_9b00193
crossref_primary_10_1063_5_0089686
crossref_primary_10_1364_OL_43_003160
crossref_primary_10_1007_s00340_017_6646_6
crossref_primary_10_1038_srep04073
crossref_primary_10_1007_s00339_019_2474_3
crossref_primary_10_1016_j_optcom_2021_126994
crossref_primary_10_7567_APEX_7_024301
crossref_primary_10_1007_s11468_014_9863_4
crossref_primary_10_1088_0953_8984_25_12_125303
crossref_primary_10_1109_LPT_2024_3351788
crossref_primary_10_1364_OME_7_000569
crossref_primary_10_1088_1361_6463_ac357e
crossref_primary_10_7567_APEX_7_125101
crossref_primary_10_1007_s13204_021_01748_0
crossref_primary_10_1021_acsami_7b16600
crossref_primary_10_1016_j_physleta_2016_10_034
crossref_primary_10_1103_PhysRevB_96_205140
crossref_primary_10_1109_JSTQE_2016_2537267
crossref_primary_10_1016_j_photonics_2018_05_001
crossref_primary_10_1364_OE_416430
crossref_primary_10_1039_D1RA06807E
crossref_primary_10_1364_OME_493380
crossref_primary_10_1038_s41598_017_11231_y
crossref_primary_10_1364_AO_58_000571
crossref_primary_10_1103_PhysRevB_99_035417
crossref_primary_10_1063_1_5101000
crossref_primary_10_1038_srep26796
crossref_primary_10_1109_JSEN_2019_2906759
crossref_primary_10_1109_JPHOT_2017_2743226
crossref_primary_10_1088_1742_6596_1092_1_012017
crossref_primary_10_1364_OE_21_013533
crossref_primary_10_1364_OL_41_000348
crossref_primary_10_1364_OE_27_033869
crossref_primary_10_1364_OE_23_00A240
crossref_primary_10_1007_s11468_015_0149_2
crossref_primary_10_1080_10420150_2019_1577427
crossref_primary_10_1016_j_ijleo_2016_07_051
crossref_primary_10_1117_1_OE_57_3_037107
crossref_primary_10_1038_s41377_018_0002_4
crossref_primary_10_3390_s16122039
crossref_primary_10_1364_OME_5_002174
crossref_primary_10_7567_1882_0786_ab2656
crossref_primary_10_1364_OE_22_014819
crossref_primary_10_1364_OL_41_003623
crossref_primary_10_1364_OE_27_035914
crossref_primary_10_1364_OE_26_029183
crossref_primary_10_1109_LPT_2018_2800729
crossref_primary_10_1002_adom_201701081
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119346
crossref_primary_10_1364_OME_8_000884
crossref_primary_10_1103_PhysRevApplied_9_044026
crossref_primary_10_1134_S0030400X18120111
crossref_primary_10_1016_j_apsusc_2019_145070
crossref_primary_10_1364_JOSAB_33_002129
crossref_primary_10_1364_OE_26_001633
crossref_primary_10_1016_j_talanta_2018_07_087
crossref_primary_10_1364_AO_416918
crossref_primary_10_1007_s11468_018_0729_z
crossref_primary_10_3390_nano10020232
crossref_primary_10_1103_PhysRevB_94_035435
crossref_primary_10_1039_C6NR02619B
crossref_primary_10_1364_OL_40_000001
crossref_primary_10_1016_j_ssc_2018_06_005
crossref_primary_10_1116_6_0003588
crossref_primary_10_1364_OE_22_023836
crossref_primary_10_1364_OE_26_015935
crossref_primary_10_1007_s11468_014_9774_4
crossref_primary_10_1016_j_optcom_2017_09_102
crossref_primary_10_1038_s41377_020_0311_2
crossref_primary_10_3390_app9122528
crossref_primary_10_1038_srep27550
crossref_primary_10_1364_OE_419614
crossref_primary_10_1007_s00340_017_6813_9
crossref_primary_10_1063_1_4982074
crossref_primary_10_1088_2040_8978_18_2_025002
crossref_primary_10_1016_j_physleta_2018_11_030
crossref_primary_10_1021_acsami_4c19242
crossref_primary_10_1063_1_5001864
crossref_primary_10_1364_OE_26_003709
crossref_primary_10_1016_j_optcom_2018_04_021
crossref_primary_10_1088_0256_307X_32_2_025202
crossref_primary_10_1007_s11468_014_9861_6
crossref_primary_10_1007_s11468_016_0381_4
crossref_primary_10_1103_PhysRevB_97_085406
crossref_primary_10_1002_adpr_202100048
crossref_primary_10_3390_nano10020229
crossref_primary_10_1016_j_optcom_2017_02_018
crossref_primary_10_1007_s11082_019_1750_y
crossref_primary_10_1364_OE_440797
crossref_primary_10_1109_JSTQE_2015_2493958
crossref_primary_10_1016_j_physe_2017_12_002
crossref_primary_10_1007_s11468_017_0603_4
crossref_primary_10_2139_ssrn_4051775
crossref_primary_10_1007_s11082_018_1450_z
crossref_primary_10_1039_C8NR04996C
crossref_primary_10_1007_s11468_015_0050_z
crossref_primary_10_1016_j_optcom_2017_10_074
crossref_primary_10_1016_j_optlastec_2022_108519
crossref_primary_10_1088_1361_6463_aa64ff
crossref_primary_10_1364_OE_444706
crossref_primary_10_1038_srep29984
crossref_primary_10_1016_j_mee_2015_03_010
crossref_primary_10_1007_s00340_014_5954_3
crossref_primary_10_1016_j_physe_2024_115928
crossref_primary_10_1186_s11671_020_03374_1
crossref_primary_10_1364_OE_24_016336
crossref_primary_10_1364_OL_45_000264
crossref_primary_10_1364_AO_57_00D130
crossref_primary_10_1088_0957_4484_25_32_322001
crossref_primary_10_1016_j_optlastec_2024_111370
crossref_primary_10_1088_1674_1056_25_5_057803
crossref_primary_10_1016_j_physe_2021_115132
crossref_primary_10_1002_adsr_202300054
crossref_primary_10_1109_ACCESS_2020_2999395
crossref_primary_10_1080_09500340_2017_1376717
crossref_primary_10_1209_0295_5075_104_37001
crossref_primary_10_1364_BOE_428537
crossref_primary_10_1364_OE_25_001242
crossref_primary_10_1016_j_optcom_2017_02_033
crossref_primary_10_1109_TMAG_2017_2775190
crossref_primary_10_1557_opl_2015_730
crossref_primary_10_1364_OE_24_026241
crossref_primary_10_1021_acsami_0c12525
crossref_primary_10_1364_OE_25_016867
crossref_primary_10_1364_OL_553323
crossref_primary_10_1117_1_OE_57_5_057104
crossref_primary_10_1186_s11671_016_1791_0
crossref_primary_10_1109_TTHZ_2015_2477600
crossref_primary_10_1364_JOSAB_32_001176
crossref_primary_10_1364_OE_512302
crossref_primary_10_1016_j_carbon_2019_01_058
crossref_primary_10_1364_OE_391237
crossref_primary_10_1007_s11468_015_9975_5
crossref_primary_10_1364_OE_25_005972
crossref_primary_10_1002_adom_202100695
crossref_primary_10_1364_OE_22_020214
crossref_primary_10_1088_1361_6463_ac3f5b
Cites_doi 10.1103/PhysRevB.80.155417
10.1038/nnano.2010.89
10.1103/PhysRevLett.99.147401
10.1143/JJAP.46.L151
10.1109/JLT.2004.833278
10.1038/nphoton.2011.102
10.1038/nnano.2011.146
10.1038/nphys989
10.1126/science.1102896
10.1364/JOSAA.14.000588
10.1109/TNANO.2007.910334
10.1038/nphoton.2008.249
10.1063/1.3599708
10.1021/nn2037626
10.1038/nature10067
10.1103/PhysRevB.85.081405
10.1038/nmat1849
10.1103/PhysRevLett.104.156806
10.1021/nl0808839
10.1021/nl102991v
10.1038/nphoton.2012.27
10.1103/PhysRevB.82.195414
10.1063/1.3309408
10.1021/nl803868k
10.1109/3.641320
10.1002/adma.201102456
10.1038/nmat3161
10.1021/nl201771h
10.1103/PhysRevB.80.245435
10.1038/nature11254
10.1126/science.1202691
10.1038/nature11253
10.1016/j.ssc.2008.02.024
10.1103/PhysRevB.84.045432
10.1103/PhysRevLett.108.167401
10.1103/RevModPhys.81.109
10.1103/PhysRevLett.105.055501
ContentType Journal Article
Copyright Copyright © 2012 American Chemical Society
Copyright_xml – notice: Copyright © 2012 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1021/nn301888e
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList MEDLINE
Materials Research Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 7813
ExternalDocumentID 22862147
10_1021_nn301888e
a986603998
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID -
23M
4.4
53G
55A
5GY
5VS
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
LG6
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-a414t-a57d526ecc62749c433f0edef115c2789c800df6fba9c6f8ce6ed160de1be8423
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Fri Jul 11 07:05:23 EDT 2025
Thu Jul 10 23:34:26 EDT 2025
Mon Jul 21 05:56:00 EDT 2025
Tue Jul 01 01:33:26 EDT 2025
Thu Apr 24 22:50:21 EDT 2025
Thu Feb 04 21:42:53 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords nanophotonics
tunable filters
graphene plasmonics
mid-infrared devices
optoelectronics
active plasmonics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a414t-a57d526ecc62749c433f0edef115c2789c800df6fba9c6f8ce6ed160de1be8423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 22862147
PQID 1080612582
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_1762051598
proquest_miscellaneous_1080612582
pubmed_primary_22862147
crossref_citationtrail_10_1021_nn301888e
crossref_primary_10_1021_nn301888e
acs_journals_10_1021_nn301888e
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-09-25
PublicationDateYYYYMMDD 2012-09-25
PublicationDate_xml – month: 09
  year: 2012
  text: 2012-09-25
  day: 25
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2012
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Nikitin A. Y. (ref37/cit37) 2012; 85
Gannett W. (ref29/cit29) 2011; 98
Liu M. (ref14/cit14) 2011; 474
Peres N. M. R. (ref25/cit25) 2010; 105
Grushin A. G. (ref27/cit27) 2009; 80
Rosenblatt D. (ref16/cit16) 1977; 33
Mishchenko E. G. (ref5/cit5) 2010; 104
Koppens F. H. L. (ref8/cit8) 2011; 11
Li T. (ref31/cit31) 2012; 108
Castro Neto A. H. (ref3/cit3) 2009; 81
Schwierz F. (ref13/cit13) 2010; 5
ref28/cit28
Pala R. A. (ref10/cit10) 2008; 8
Li Z. Q. (ref24/cit24) 2008; 4
Fei Z. (ref26/cit26) 2012; 487
Novoselov K. S. (ref2/cit2) 2004; 306
Bolotin K. I. (ref19/cit19) 2008; 146
Wu C. H. (ref20/cit20) 2012; 11
Vakil A (ref18/cit18) 2011; 332
Lee W. (ref35/cit35) 2004; 22
Rana F. (ref9/cit9) 2008; 7
Sharon A. (ref17/cit17) 1997; 14
Falkovsky L. A. (ref38/cit38) 2008; 129
MacDonald K. F. (ref11/cit11) 2009; 3
Ju L. (ref6/cit6) 2011; 6
Wu W. (ref30/cit30) 2011; 23
Ruzicka B. A. (ref34/cit34) 2010; 82
Verellen N. (ref21/cit21) 2011; 11
Dragoman D. (ref33/cit33) 2010; 107
Bao Q. L. (ref7/cit7) 2011; 5
Mikhailov S. A. (ref15/cit15) 2011; 84
Tassin P. (ref23/cit23) 2012; 6
Jablan M. (ref4/cit4) 2009; 80
Fedotov V. A. (ref22/cit22) 2007; 99
Ryzhii M. (ref32/cit32) 2007; 46
Christensen J. (ref36/cit36) 2012; 6
Geim A. K. (ref1/cit1) 2007; 6
Dionne J. A. (ref12/cit12) 2009; 9
References_xml – volume: 80
  start-page: 155417
  year: 2009
  ident: ref27/cit27
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.80.155417
– volume: 5
  start-page: 487
  year: 2010
  ident: ref13/cit13
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.89
– volume: 99
  start-page: 147401
  year: 2007
  ident: ref22/cit22
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.147401
– volume: 46
  start-page: L151
  year: 2007
  ident: ref32/cit32
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.46.L151
– volume: 22
  start-page: 2359
  year: 2004
  ident: ref35/cit35
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2004.833278
– volume: 5
  start-page: 411
  year: 2011
  ident: ref7/cit7
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2011.102
– volume: 6
  start-page: 630
  year: 2011
  ident: ref6/cit6
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2011.146
– volume: 4
  start-page: 532
  year: 2008
  ident: ref24/cit24
  publication-title: Nat. Phys.
  doi: 10.1038/nphys989
– volume: 306
  start-page: 666
  year: 2004
  ident: ref2/cit2
  publication-title: Science
  doi: 10.1126/science.1102896
– volume: 14
  start-page: 588
  year: 1997
  ident: ref17/cit17
  publication-title: J. Opt. Soc. Am. A
  doi: 10.1364/JOSAA.14.000588
– volume: 7
  start-page: 91
  year: 2008
  ident: ref9/cit9
  publication-title: IEEE Trans. Nanotechnol.
  doi: 10.1109/TNANO.2007.910334
– volume: 3
  start-page: 55
  year: 2009
  ident: ref11/cit11
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2008.249
– volume: 98
  start-page: 242105
  year: 2011
  ident: ref29/cit29
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3599708
– volume: 6
  start-page: 431
  year: 2012
  ident: ref36/cit36
  publication-title: ACS Nano
  doi: 10.1021/nn2037626
– volume: 474
  start-page: 64
  year: 2011
  ident: ref14/cit14
  publication-title: Nature
  doi: 10.1038/nature10067
– volume: 85
  start-page: 081405
  year: 2012
  ident: ref37/cit37
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.081405
– volume: 6
  start-page: 183
  year: 2007
  ident: ref1/cit1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1849
– volume: 104
  start-page: 156806
  year: 2010
  ident: ref5/cit5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.156806
– volume: 8
  start-page: 1506
  year: 2008
  ident: ref10/cit10
  publication-title: Nano Lett.
  doi: 10.1021/nl0808839
– volume: 11
  start-page: 391
  year: 2011
  ident: ref21/cit21
  publication-title: Nano Lett.
  doi: 10.1021/nl102991v
– volume: 6
  start-page: 259
  year: 2012
  ident: ref23/cit23
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2012.27
– volume: 82
  start-page: 195414
  year: 2010
  ident: ref34/cit34
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.195414
– volume: 107
  start-page: 044312
  year: 2010
  ident: ref33/cit33
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3309408
– volume: 9
  start-page: 897
  year: 2009
  ident: ref12/cit12
  publication-title: Nano Lett.
  doi: 10.1021/nl803868k
– volume: 33
  start-page: 2038
  year: 1977
  ident: ref16/cit16
  publication-title: IEEE J. Quantum Electron.
  doi: 10.1109/3.641320
– volume: 23
  start-page: 4898
  year: 2011
  ident: ref30/cit30
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201102456
– volume: 11
  start-page: 69
  year: 2012
  ident: ref20/cit20
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3161
– volume: 11
  start-page: 3370
  year: 2011
  ident: ref8/cit8
  publication-title: Nano Lett.
  doi: 10.1021/nl201771h
– volume: 80
  start-page: 245435
  year: 2009
  ident: ref4/cit4
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.80.245435
– ident: ref28/cit28
  doi: 10.1038/nature11254
– volume: 332
  start-page: 1291
  year: 2011
  ident: ref18/cit18
  publication-title: Science
  doi: 10.1126/science.1202691
– volume: 487
  start-page: 82
  year: 2012
  ident: ref26/cit26
  publication-title: Nature
  doi: 10.1038/nature11253
– volume: 146
  start-page: 351
  year: 2008
  ident: ref19/cit19
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2008.02.024
– volume: 84
  start-page: 045432
  year: 2011
  ident: ref15/cit15
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.045432
– volume: 108
  start-page: 167401
  year: 2012
  ident: ref31/cit31
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.167401
– volume: 81
  start-page: 109
  year: 2009
  ident: ref3/cit3
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.81.109
– volume: 129
  start-page: 012004
  year: 2008
  ident: ref38/cit38
  publication-title: J. Phys.: Conf. Ser.
– volume: 105
  start-page: 055501
  year: 2010
  ident: ref25/cit25
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.055501
SSID ssj0057876
Score 2.5895617
Snippet We propose an active plasmonic device based on graphene. Highly confined plasmonic waves in monolayer graphene are efficiently excited using an etched...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7806
SubjectTerms Computer-Aided Design
Devices
Diffraction gratings
Equipment Design
Equipment Failure Analysis
Excitation
Fermi surfaces
Graphene
Graphite - chemistry
Gratings (spectra)
Light
Nanostructure
Nanostructures - chemistry
Nanostructures - ultrastructure
Nanotechnology - instrumentation
Particle Size
Plasmonics
Refractometry - instrumentation
Scattering, Radiation
Surface Plasmon Resonance - instrumentation
Wavelengths
Title Excitation of Plasmonic Waves in Graphene by Guided-Mode Resonances
URI http://dx.doi.org/10.1021/nn301888e
https://www.ncbi.nlm.nih.gov/pubmed/22862147
https://www.proquest.com/docview/1080612582
https://www.proquest.com/docview/1762051598
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT8MwDLbGuMCB92M8pvA4cCksaZu1RzTGEBIICRDcqjZ1pAnoEN0Q8Oux13Ua4nV31caP-HOdfAbYD12jXRO4juVZqZ7rek7gY-po3Uht7Ft0kTu6F5f67NY7v_fvK7D3SwdfyaMsIx-kOg2nYFppCl7GP63rcrtlj9NF65hKY8IPJX3Q5KOcekz-NfX8gieHeeV0Hk7K2znFcZKHw0E_OTQf38ka__rkBZgb4UpxXDjCIlQwW4LZCbbBZWi138yIkVv0rLgi3PzExLjiLn7FXHQz0WH2atr8RPIuOoNuStrkWWmC__EzMQfmK3B72r5pnTmjGQpO7Emv78R-M_WVJkPxkJ3QkDVsA1O0hAQN34I1hBhTq20Sh0bbwKDGVJKhUCYYENZahWrWy3AdhFKInmyitX7sNXUSqxADLVGalFBS2KhBnZQcjWIgj4btbSWjsTZqcFDqPyrXy4MwHn8S3R2LPhe0Gz8J7ZRGjCgouNMRZ9gb5EPWU4ZugfpDhtIAD7gJgxqsFR4wfpVSVOhJr7nx35I2YYYQlOIDJMrfgmr_ZYDbhFL6SX3opZ8swd-C
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZT8MwDI44HoAH7mOcAfHAS8eStln7iCa2cQwhMQRvVZs6EgI6RDcE_HrsHuMQ17vbOrYTf6mTz4zt-rZWtvZsy1CvVMe2HctzIbaUqsUmdA3YQBXdzplqXzrH1-51QZNDd2FQiRTflGZF_Hd2AbGfJBiKuF2DUTaOIERSNB80LspVlwJP5RVk3CEjjChZhD4-ShlIp58z0A-wMksvzZm8T1GmWHaq5LY66EdV_fqFs_F_ms-y6QJl8oM8LObYCCTzbOoD9-ACaxw-64Kfm_cMP0cUfU80ufwqfIKU3yS8RVzWuBTy6IW3Bjcx2pY6p3H64080HZAussvmYbfRtoqOClboCKdvhW49RtOh26jljq_RN6YGMRjEhZruxGrEj7FRJgp9rYynQUEs0G0gIvAQeS2xsaSXwArjUgI4og7GuKFTV1EoffCUAKFjxEx-rcI20RhBMSPSICt2SxEMrVFhe6UbgnK81Bbj7jvRnaHoQ07C8Z3QdunLAKcI1T3CBHqDNONAJSDnyV9kMClQuxvfq7DlPBCGn5ISt33Cqa_-NaQtNtHudk6D06OzkzU2idhK0tES6a6zsf7jADYQv_SjzSxw3wC5jufj
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED8NJiH2MBhjo3zNQzzwEqidxE0eq0JhgwESQ_AWJfZZQoMUkXYC_nru0qQqiK_3S2L77ny_y9m_A1iPfaN9E_me416pge8HXhSi9bRuWpeGDn3kiu6fQ713Gvw-D8-rRJHvwtAgCnpTURbx2auvrasYBuRWnpM5UsqGE_CRy3Vs0e3OSb3zsvHpYRWZsmSCEjWT0PijHIVM8TgKvQAtyxDTnYGj0eDKkyX_Ngf9bNPcP-FtfP_oZ-FzhTZFe2geX-AD5nPwaYyD8Ct0dm5NxdMtek4cE5q-YrpccZb-x0Jc5GKXOa1pSxTZndgdXFhaY-6gJvjPP9N1YDEPp92dv509r-qs4KWBDPpeGrZsqDSpj1vvxIZ05Jpo0RE-NHw31hCOtE67LI2NdpFBjVaS-lBmGBEC-waTeS_HBRBKIQayhc6FadDSWapijLREaSxhp7jZgFVakKTyjCIpi95KJqPVaMBGrYqkni-3x7h8TnRtJHo9JON4Tuhnrc-EXIXrH2mOvUFRcqEyoIvUKzIUHLjtTRw14PvQGEafUorSPxm0Ft-a0g-YOt7uJge_DveXYJogluITJipchsn-zQBXCMb0s9XSdh8AZRbqZg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Excitation+of+plasmonic+waves+in+graphene+by+guided-mode+resonances&rft.jtitle=ACS+nano&rft.au=Gao%2C+Weilu&rft.au=Shu%2C+Jie&rft.au=Qiu%2C+Ciyuan&rft.au=Xu%2C+Qianfan&rft.date=2012-09-25&rft.eissn=1936-086X&rft.volume=6&rft.issue=9&rft.spage=7806&rft_id=info:doi/10.1021%2Fnn301888e&rft_id=info%3Apmid%2F22862147&rft.externalDocID=22862147
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon