Excitation of Plasmonic Waves in Graphene by Guided-Mode Resonances
We propose an active plasmonic device based on graphene. Highly confined plasmonic waves in monolayer graphene are efficiently excited using an etched diffractive grating on silicon. The guided-wave resonance of the combined structure creates a sharp notch on the normal-incidence transmission spectr...
Saved in:
Published in | ACS nano Vol. 6; no. 9; pp. 7806 - 7813 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
25.09.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We propose an active plasmonic device based on graphene. Highly confined plasmonic waves in monolayer graphene are efficiently excited using an etched diffractive grating on silicon. The guided-wave resonance of the combined structure creates a sharp notch on the normal-incidence transmission spectra, as the incident optical wave couples to the graphene plasmonic wave. This structure can be used as a highly tunable optical filter or a broad-band modulator because the resonant wavelength can be quickly tuned over a wide wavelength range by a small change in the Fermi energy level of the graphene. In this paper, we analyze the performance of this device with finite-difference time-domain simulations. We compare the proposed structure with recently demonstrated graphene nanoribbons based on bound plasmonic oscillations. |
---|---|
AbstractList | We propose an active plasmonic device based on graphene. Highly confined plasmonic waves in monolayer graphene are efficiently excited using an etched diffractive grating on silicon. The guided-wave resonance of the combined structure creates a sharp notch on the normal-incidence transmission spectra, as the incident optical wave couples to the graphene plasmonic wave. This structure can be used as a highly tunable optical filter or a broad-band modulator because the resonant wavelength can be quickly tuned over a wide wavelength range by a small change in the Fermi energy level of the graphene. In this paper, we analyze the performance of this device with finite-difference time-domain simulations. We compare the proposed structure with recently demonstrated graphene nanoribbons based on bound plasmonic oscillations. We propose an active plasmonic device based on graphene. Highly confined plasmonic waves in monolayer graphene are efficiently excited using an etched diffractive grating on silicon. The guided-wave resonance of the combined structure creates a sharp notch on the normal-incidence transmission spectra, as the incident optical wave couples to the graphene plasmonic wave. This structure can be used as a highly tunable optical filter or a broad-band modulator because the resonant wavelength can be quickly tuned over a wide wavelength range by a small change in the Fermi energy level of the graphene. In this paper, we analyze the performance of this device with finite-difference time-domain simulations. We compare the proposed structure with recently demonstrated graphene nanoribbons based on bound plasmonic oscillations.We propose an active plasmonic device based on graphene. Highly confined plasmonic waves in monolayer graphene are efficiently excited using an etched diffractive grating on silicon. The guided-wave resonance of the combined structure creates a sharp notch on the normal-incidence transmission spectra, as the incident optical wave couples to the graphene plasmonic wave. This structure can be used as a highly tunable optical filter or a broad-band modulator because the resonant wavelength can be quickly tuned over a wide wavelength range by a small change in the Fermi energy level of the graphene. In this paper, we analyze the performance of this device with finite-difference time-domain simulations. We compare the proposed structure with recently demonstrated graphene nanoribbons based on bound plasmonic oscillations. |
Author | Qiu, Ciyuan Xu, Qianfan Gao, Weilu Shu, Jie |
AuthorAffiliation | Rice University |
AuthorAffiliation_xml | – name: Rice University |
Author_xml | – sequence: 1 givenname: Weilu surname: Gao fullname: Gao, Weilu – sequence: 2 givenname: Jie surname: Shu fullname: Shu, Jie – sequence: 3 givenname: Ciyuan surname: Qiu fullname: Qiu, Ciyuan – sequence: 4 givenname: Qianfan surname: Xu fullname: Xu, Qianfan email: qianfan@rice.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22862147$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1LwzAYxoNM3Ice_AckF0EPdUnapulRxpzCRBFFbyVN3mBHm8ymFfff27GPgww8ve_h9_wOzzNEPessIHROyQ0ljI6tDQkVQsARGtA05AER_KO3_2PaR0PvF4TEiUj4CeozJjijUTJAk-mPKhrZFM5iZ_BzKX3lbKHwu_wGjwuLZ7VcfoIFnK_wrC006ODRacAv4J2VVoE_RcdGlh7OtneE3u6mr5P7YP40e5jczgMZ0agJZJzomHFQirMkSlUUhoaABkNprFgiUiUI0YabXKaKG6GAg6acaKA5iIiFI3S18S5r99WCb7Kq8ArKUlpwrc9owhmJaZyK_1EiCKcsFmvrxRZt8wp0tqyLStarbNdRB4w3gKqd9zWYbNdYU8ui7FzZeoVsv0KXuP6T2EkPsZcbViqfLVxb267CA9wvDeSSAQ |
CitedBy_id | crossref_primary_10_1039_C8NR09157A crossref_primary_10_1088_1361_6463_aae75f crossref_primary_10_1364_OE_25_023880 crossref_primary_10_1364_JOSAB_34_001848 crossref_primary_10_3390_app10051750 crossref_primary_10_1063_1_4894090 crossref_primary_10_1117_1_JNP_11_026011 crossref_primary_10_1364_OL_42_000563 crossref_primary_10_1007_s11468_016_0251_0 crossref_primary_10_1021_nl401591k crossref_primary_10_15407_nnn_20_01_001 crossref_primary_10_1016_j_optcom_2018_03_012 crossref_primary_10_3390_nano9081101 crossref_primary_10_1021_ph400090p crossref_primary_10_1007_s12034_020_02226_z crossref_primary_10_1109_JLT_2014_2350487 crossref_primary_10_1007_s11468_014_9736_x crossref_primary_10_1016_j_optcom_2015_05_002 crossref_primary_10_1364_OE_24_004714 crossref_primary_10_1007_s11051_016_3696_3 crossref_primary_10_1021_nn500508c crossref_primary_10_1088_2053_1591_aae2ed crossref_primary_10_1557_opl_2015_358 crossref_primary_10_1364_AO_56_007243 crossref_primary_10_1109_TAP_2013_2282535 crossref_primary_10_1002_jnm_2911 crossref_primary_10_1088_1361_6463_aab8bd crossref_primary_10_1364_JOSAA_31_000691 crossref_primary_10_1016_j_optcom_2018_04_067 crossref_primary_10_1007_s12596_016_0330_9 crossref_primary_10_1021_acsphotonics_2c01411 crossref_primary_10_1209_0295_5075_119_47002 crossref_primary_10_1016_j_optcom_2014_04_069 crossref_primary_10_1016_j_mser_2013_09_001 crossref_primary_10_1016_j_optcom_2018_03_020 crossref_primary_10_1016_j_physe_2023_115889 crossref_primary_10_1038_s41598_017_07254_0 crossref_primary_10_1016_j_optcom_2017_01_018 crossref_primary_10_1103_PhysRevB_94_205419 crossref_primary_10_1088_0022_3727_47_13_135106 crossref_primary_10_1088_0957_4484_26_50_505203 crossref_primary_10_1109_TAP_2013_2260517 crossref_primary_10_1364_OE_21_024856 crossref_primary_10_1088_1361_6463_aa7e6b crossref_primary_10_1103_PhysRevB_96_165431 crossref_primary_10_3390_nano9101496 crossref_primary_10_1088_1757_899X_840_1_012003 crossref_primary_10_3938_jkps_70_967 crossref_primary_10_1364_OL_41_002129 crossref_primary_10_1039_C6CP03731C crossref_primary_10_1021_acs_nanolett_5b05166 crossref_primary_10_3390_nano12071144 crossref_primary_10_1134_S1063784216020122 crossref_primary_10_1186_s11671_019_3237_y crossref_primary_10_1364_AO_58_004762 crossref_primary_10_1209_0295_5075_116_44004 crossref_primary_10_1016_j_device_2024_100572 crossref_primary_10_1016_j_optcom_2018_03_037 crossref_primary_10_3390_nano10030533 crossref_primary_10_1039_C4NR03143A crossref_primary_10_1109_JLT_2014_2350481 crossref_primary_10_29026_oea_2022_200098 crossref_primary_10_1016_j_spmi_2019_02_003 crossref_primary_10_1007_s40820_015_0037_5 crossref_primary_10_1016_j_diamond_2023_110374 crossref_primary_10_1016_j_rinp_2021_104020 crossref_primary_10_1364_OE_25_031478 crossref_primary_10_1364_JOSAB_438124 crossref_primary_10_1002_adfm_201303368 crossref_primary_10_1088_2040_8986_aa8c56 crossref_primary_10_1364_OE_24_011466 crossref_primary_10_1088_2040_8986_ab2971 crossref_primary_10_1002_pssb_202200491 crossref_primary_10_1021_acsphotonics_5b00209 crossref_primary_10_3390_nano12152562 crossref_primary_10_1103_PhysRevLett_111_237404 crossref_primary_10_1007_s11468_016_0439_3 crossref_primary_10_1088_1674_1056_26_3_030301 crossref_primary_10_1364_OE_25_009579 crossref_primary_10_1063_1_4817592 crossref_primary_10_1016_j_rinp_2023_107287 crossref_primary_10_1109_JLT_2018_2840847 crossref_primary_10_1016_j_jmmm_2018_08_033 crossref_primary_10_1088_1361_6463_abe899 crossref_primary_10_1016_j_ijleo_2017_09_045 crossref_primary_10_1364_OE_24_027882 crossref_primary_10_1016_j_optcom_2017_09_079 crossref_primary_10_1016_j_commatsci_2017_03_004 crossref_primary_10_1109_JSTQE_2016_2574306 crossref_primary_10_1016_j_optcom_2017_11_042 crossref_primary_10_1109_TTHZ_2013_2294538 crossref_primary_10_3390_polym15143060 crossref_primary_10_1088_0957_4484_26_36_365201 crossref_primary_10_1088_1367_2630_15_6_063020 crossref_primary_10_1109_JLT_2016_2645239 crossref_primary_10_1016_j_diamond_2022_109260 crossref_primary_10_1063_1_4885442 crossref_primary_10_1016_j_optmat_2018_12_052 crossref_primary_10_1007_s00339_017_1247_0 crossref_primary_10_1109_JLT_2020_2980862 crossref_primary_10_1364_OE_23_007809 crossref_primary_10_1364_OL_42_002659 crossref_primary_10_1039_D3NR04656G crossref_primary_10_1109_JPHOT_2018_2876681 crossref_primary_10_7567_APEX_11_035101 crossref_primary_10_1364_OE_22_031511 crossref_primary_10_35848_1882_0786_ac727c crossref_primary_10_1007_s11468_015_0151_8 crossref_primary_10_1016_j_optcom_2016_06_007 crossref_primary_10_1109_TNANO_2021_3066452 crossref_primary_10_7567_APEX_9_052001 crossref_primary_10_1109_TNANO_2018_2875000 crossref_primary_10_1007_s11468_017_0607_0 crossref_primary_10_1117_1_JNP_11_036015 crossref_primary_10_1364_OE_26_007358 crossref_primary_10_1109_LPT_2016_2558494 crossref_primary_10_1515_nanoph_2015_0012 crossref_primary_10_1364_AO_434412 crossref_primary_10_3390_mi14040715 crossref_primary_10_1364_AO_57_009770 crossref_primary_10_1088_1402_4896_ac9560 crossref_primary_10_1007_s11468_024_02708_4 crossref_primary_10_1088_2040_8978_15_5_055003 crossref_primary_10_1007_s11468_023_02094_3 crossref_primary_10_1002_smll_201400515 crossref_primary_10_1039_C4NR03152K crossref_primary_10_1088_2053_1583_2_3_032005 crossref_primary_10_1364_OE_24_001480 crossref_primary_10_3390_nano9010007 crossref_primary_10_1364_OE_26_022528 crossref_primary_10_1021_acs_jpcc_9b07576 crossref_primary_10_1109_JLT_2019_2898701 crossref_primary_10_1364_OE_26_023854 crossref_primary_10_1364_OL_42_003840 crossref_primary_10_1007_s11468_015_0173_2 crossref_primary_10_1364_OL_39_005909 crossref_primary_10_1140_epjd_s10053_022_00410_w crossref_primary_10_1209_0295_5075_119_24003 crossref_primary_10_1063_1_4966577 crossref_primary_10_1016_j_diamond_2023_110210 crossref_primary_10_1016_j_optcom_2017_12_080 crossref_primary_10_1364_OE_382485 crossref_primary_10_1088_2515_7647_ab8f1f crossref_primary_10_1364_OE_24_016961 crossref_primary_10_1364_OE_27_005253 crossref_primary_10_1364_OE_22_006680 crossref_primary_10_1088_0253_6102_71_1_97 crossref_primary_10_1038_srep08443 crossref_primary_10_1088_2040_8978_16_1_015004 crossref_primary_10_1364_AO_56_000434 crossref_primary_10_1364_OSAC_391962 crossref_primary_10_1364_PRJ_481020 crossref_primary_10_1088_2040_8986_aaacc0 crossref_primary_10_1364_OE_26_029509 crossref_primary_10_1088_1361_6528_ac2fe6 crossref_primary_10_1063_1_4903965 crossref_primary_10_1103_PhysRevA_95_053850 crossref_primary_10_7567_1882_0786_ab27f9 crossref_primary_10_1364_JOSAB_33_001842 crossref_primary_10_1364_OE_23_023357 crossref_primary_10_3390_photonics10070712 crossref_primary_10_1039_c4ra03431g crossref_primary_10_7567_APEX_9_125102 crossref_primary_10_1109_JPHOT_2018_2789894 crossref_primary_10_1016_j_cpc_2016_06_007 crossref_primary_10_1364_OL_416493 crossref_primary_10_1088_1402_4896_ad7abd crossref_primary_10_1109_JPHOT_2019_2893382 crossref_primary_10_1088_2053_1591_aabbf7 crossref_primary_10_1016_j_sse_2015_03_005 crossref_primary_10_1063_1_4927824 crossref_primary_10_1016_j_carbon_2018_03_051 crossref_primary_10_1109_JSEN_2021_3079179 crossref_primary_10_1515_nanoph_2021_0709 crossref_primary_10_1016_j_optlastec_2020_106775 crossref_primary_10_1063_1_5029546 crossref_primary_10_1021_acsphotonics_8b01640 crossref_primary_10_1088_1361_6463_acff03 crossref_primary_10_1016_j_optcom_2016_05_019 crossref_primary_10_1007_s10043_020_00589_6 crossref_primary_10_1039_C4CP02299H crossref_primary_10_1103_PhysRevB_106_155422 crossref_primary_10_1021_acsphotonics_8b00875 crossref_primary_10_1016_j_optcom_2019_01_062 crossref_primary_10_1007_s11468_017_0586_1 crossref_primary_10_1016_j_rinp_2020_103382 crossref_primary_10_1364_OL_41_005470 crossref_primary_10_1063_1_4980029 crossref_primary_10_1088_1361_6528_ac0ac6 crossref_primary_10_1088_1674_1056_abaee2 crossref_primary_10_35848_1882_0786_ac7dda crossref_primary_10_1002_apxr_202300144 crossref_primary_10_1002_adom_202001520 crossref_primary_10_1016_j_ijleo_2021_168351 crossref_primary_10_1364_JOSAB_36_000697 crossref_primary_10_1038_s41598_018_33609_2 crossref_primary_10_1103_PhysRevB_108_035414 crossref_primary_10_1109_LPT_2014_2368192 crossref_primary_10_1016_j_apsusc_2018_03_086 crossref_primary_10_1088_2040_8978_18_6_065001 crossref_primary_10_1039_C5NR01343G crossref_primary_10_1088_2040_8986_aaa1b7 crossref_primary_10_1016_j_carbon_2018_10_002 crossref_primary_10_1021_acsphotonics_6b00566 crossref_primary_10_1039_D0NR02047H crossref_primary_10_1007_s11467_021_1060_2 crossref_primary_10_1364_OE_22_026487 crossref_primary_10_1007_s11468_024_02691_w crossref_primary_10_1016_j_optcom_2016_07_077 crossref_primary_10_1016_j_rinp_2021_104780 crossref_primary_10_1364_OE_455595 crossref_primary_10_1103_PhysRevApplied_14_034044 crossref_primary_10_1007_s11468_019_00984_z crossref_primary_10_3390_s21165262 crossref_primary_10_1063_5_0152664 crossref_primary_10_1088_1402_4896_acc3c9 crossref_primary_10_1364_AO_58_007503 crossref_primary_10_1016_j_physleta_2015_12_020 crossref_primary_10_1063_1_5057372 crossref_primary_10_1109_TAP_2017_2768081 crossref_primary_10_1007_s11468_016_0265_7 crossref_primary_10_1364_OE_22_027880 crossref_primary_10_1007_s11468_024_02703_9 crossref_primary_10_1016_j_optlastec_2022_108066 crossref_primary_10_1038_s41598_018_21365_2 crossref_primary_10_1016_j_revip_2021_100054 crossref_primary_10_1109_JLT_2017_2768037 crossref_primary_10_1364_AO_383637 crossref_primary_10_1002_adom_202001895 crossref_primary_10_1007_s11468_017_0566_5 crossref_primary_10_1103_PhysRevB_90_085409 crossref_primary_10_1002_adfm_202101959 crossref_primary_10_1007_s11082_022_04535_5 crossref_primary_10_1126_science_abb5144 crossref_primary_10_1063_1_4800931 crossref_primary_10_1016_j_ijleo_2018_10_106 crossref_primary_10_1080_09205071_2018_1518161 crossref_primary_10_1109_LPT_2017_2776945 crossref_primary_10_1088_2040_8986_abceaa crossref_primary_10_1515_nanoph_2019_0108 crossref_primary_10_1021_acsphotonics_5b00510 crossref_primary_10_1109_JLT_2018_2876374 crossref_primary_10_1016_j_susc_2014_11_002 crossref_primary_10_1364_OE_385450 crossref_primary_10_1007_s10853_020_05437_1 crossref_primary_10_1007_s11468_024_02572_2 crossref_primary_10_1039_C5NR03458B crossref_primary_10_1109_JLT_2017_2750200 crossref_primary_10_1364_PRJ_5_000377 crossref_primary_10_1109_TNANO_2018_2822277 crossref_primary_10_1007_s11082_020_02350_4 crossref_primary_10_1016_j_optlastec_2014_04_021 crossref_primary_10_1364_OE_474901 crossref_primary_10_1021_nn406015d crossref_primary_10_1063_1_4948417 crossref_primary_10_1088_1674_1056_27_8_088104 crossref_primary_10_1364_OE_515152 crossref_primary_10_1364_AO_55_005095 crossref_primary_10_1109_JLT_2016_2613904 crossref_primary_10_3390_nano12081353 crossref_primary_10_1002_adom_202001443 crossref_primary_10_1021_ph5000117 crossref_primary_10_1007_s11468_016_0389_9 crossref_primary_10_1063_1_4978383 crossref_primary_10_1016_j_apmt_2018_06_009 crossref_primary_10_1016_j_optcom_2016_06_086 crossref_primary_10_1021_acsnano_8b06601 crossref_primary_10_3390_photonics11111016 crossref_primary_10_1016_j_physe_2018_10_026 crossref_primary_10_1364_OE_26_006214 crossref_primary_10_1364_AO_56_009536 crossref_primary_10_1021_nn403282x crossref_primary_10_1109_JLT_2016_2618371 crossref_primary_10_1016_j_ijheatmasstransfer_2019_05_102 crossref_primary_10_1021_acsphotonics_9b00956 crossref_primary_10_1088_1361_6463_acbc2f crossref_primary_10_1109_JPHOT_2014_2326667 crossref_primary_10_1007_s11468_019_00986_x crossref_primary_10_1364_OE_401694 crossref_primary_10_1088_1361_6463_ab36dc crossref_primary_10_1016_j_diamond_2023_110728 crossref_primary_10_1364_JOSAB_30_002461 crossref_primary_10_1364_PRJ_6_000692 crossref_primary_10_1007_s11468_017_0530_4 crossref_primary_10_1364_OE_24_000427 crossref_primary_10_1016_j_carbon_2018_10_059 crossref_primary_10_1364_OE_504132 crossref_primary_10_1063_5_0048291 crossref_primary_10_1038_srep28799 crossref_primary_10_1088_2040_8986_ac47b3 crossref_primary_10_1117_1_JNP_13_026012 crossref_primary_10_1002_adfm_202316863 crossref_primary_10_1364_JOSAB_435889 crossref_primary_10_1364_OE_23_024730 crossref_primary_10_1007_s11468_021_01505_7 crossref_primary_10_3390_biophysica2040045 crossref_primary_10_1039_C7NR07045D crossref_primary_10_1039_c3cp51952j crossref_primary_10_1063_1_4868358 crossref_primary_10_1021_nn406627u crossref_primary_10_1007_s11468_017_0557_6 crossref_primary_10_1016_j_optcom_2023_129506 crossref_primary_10_1038_lsa_2016_52 crossref_primary_10_1186_s11671_016_1633_0 crossref_primary_10_1021_acsphotonics_6b00866 crossref_primary_10_1364_OE_450606 crossref_primary_10_1021_nl502363u crossref_primary_10_1103_PhysRevApplied_11_064002 crossref_primary_10_1364_OL_416543 crossref_primary_10_1364_AO_55_005598 crossref_primary_10_1109_LPT_2016_2577781 crossref_primary_10_4191_kcers_2017_54_5_10 crossref_primary_10_1364_OE_22_024322 crossref_primary_10_1016_j_optcom_2020_125319 crossref_primary_10_1016_j_optmat_2016_02_006 crossref_primary_10_1007_s11082_019_2138_8 crossref_primary_10_1103_PhysRevA_109_013504 crossref_primary_10_1007_s11468_015_0124_y crossref_primary_10_1021_acs_chemrev_9b00592 crossref_primary_10_1021_nl500943r crossref_primary_10_1039_C6RA08086C crossref_primary_10_1364_AO_58_001824 crossref_primary_10_2528_PIER15120201 crossref_primary_10_1063_1_4895633 crossref_primary_10_1021_acs_jpcc_9b04693 crossref_primary_10_1049_mnl_2018_5079 crossref_primary_10_3390_mi13111945 crossref_primary_10_1007_s11468_024_02721_7 crossref_primary_10_1364_AO_399286 crossref_primary_10_1002_lpor_201300199 crossref_primary_10_1364_AO_540780 crossref_primary_10_1016_j_carbon_2019_03_086 crossref_primary_10_1364_OSAC_2_001296 crossref_primary_10_7567_JJAP_53_08MG01 crossref_primary_10_1016_j_physb_2024_416767 crossref_primary_10_1109_LAWP_2017_2676121 crossref_primary_10_1016_j_sse_2017_06_024 crossref_primary_10_1109_TNANO_2014_2344973 crossref_primary_10_1016_j_optcom_2017_06_042 crossref_primary_10_1038_srep41788 crossref_primary_10_1364_OE_21_028628 crossref_primary_10_1364_OE_21_003486 crossref_primary_10_1016_j_optcom_2015_02_032 crossref_primary_10_1364_OE_27_020165 crossref_primary_10_1016_j_cap_2025_02_009 crossref_primary_10_1016_j_optcom_2022_129140 crossref_primary_10_1364_OE_25_026221 crossref_primary_10_7567_APEX_9_012001 crossref_primary_10_1088_1361_6528_ab34e4 crossref_primary_10_1063_1_4962454 crossref_primary_10_1364_AO_57_006916 crossref_primary_10_1021_acsphotonics_7b00384 crossref_primary_10_1364_OE_27_000567 crossref_primary_10_1002_adom_202001809 crossref_primary_10_1016_j_cocis_2015_11_007 crossref_primary_10_1063_1_4799173 crossref_primary_10_1088_2040_8986_ac881c crossref_primary_10_1002_adom_201701378 crossref_primary_10_1038_srep32616 crossref_primary_10_1103_PhysRevB_106_075401 crossref_primary_10_1016_j_optcom_2018_07_062 crossref_primary_10_1016_j_photonics_2018_12_001 crossref_primary_10_7567_APEX_11_052002 crossref_primary_10_1088_2040_8978_17_12_125012 crossref_primary_10_1016_j_optcom_2019_02_002 crossref_primary_10_1016_j_carbon_2015_09_053 crossref_primary_10_1016_j_ijleo_2019_163420 crossref_primary_10_1364_JOSAB_33_002051 crossref_primary_10_1016_j_matcom_2020_05_019 crossref_primary_10_1016_j_optcom_2017_05_067 crossref_primary_10_1021_acsphotonics_7b01341 crossref_primary_10_1021_acsanm_8b01631 crossref_primary_10_1103_PhysRevE_96_022703 crossref_primary_10_1364_OE_27_023576 crossref_primary_10_1098_rsta_2016_0066 crossref_primary_10_1109_JPHOT_2019_2914932 crossref_primary_10_1364_OE_23_016071 crossref_primary_10_1002_adom_201600201 crossref_primary_10_1088_1361_6463_aa8ac6 crossref_primary_10_1109_JSEN_2019_2949617 crossref_primary_10_1109_JSTQE_2023_3321608 crossref_primary_10_1007_s11468_015_0028_x crossref_primary_10_1016_j_optcom_2019_04_087 crossref_primary_10_3390_nano10071410 crossref_primary_10_1364_JOSAB_32_000701 crossref_primary_10_1021_acsphotonics_7b01207 crossref_primary_10_1088_2040_8978_17_12_125009 crossref_primary_10_3390_s16060773 crossref_primary_10_1364_OE_23_032420 crossref_primary_10_1021_acs_chemrev_7b00252 crossref_primary_10_1016_j_physleta_2023_128708 crossref_primary_10_7498_aps_65_105201 crossref_primary_10_1038_srep11195 crossref_primary_10_1016_j_diamond_2022_108977 crossref_primary_10_1016_j_optcom_2018_06_015 crossref_primary_10_1038_s41467_023_38214_0 crossref_primary_10_1007_s11468_016_0336_9 crossref_primary_10_1364_OE_499904 crossref_primary_10_3390_mi10030194 crossref_primary_10_1364_AO_55_006137 crossref_primary_10_1364_OE_23_000545 crossref_primary_10_1364_OE_395098 crossref_primary_10_3390_nano10010039 crossref_primary_10_1364_OE_23_008348 crossref_primary_10_1039_C6NR05500A crossref_primary_10_1186_s11671_019_3121_9 crossref_primary_10_1016_j_micrna_2022_207331 crossref_primary_10_1016_j_ijleo_2020_164703 crossref_primary_10_1007_s11468_023_02079_2 crossref_primary_10_1063_5_0153032 crossref_primary_10_1103_PhysRevB_88_115439 crossref_primary_10_1364_OE_389573 crossref_primary_10_1021_acs_nanolett_5b02494 crossref_primary_10_1038_nphys3545 crossref_primary_10_1088_1674_1056_ab9cbf crossref_primary_10_1007_s11468_015_0003_6 crossref_primary_10_1364_OE_24_029216 crossref_primary_10_1364_JOSAB_35_000575 crossref_primary_10_1109_JPHOT_2022_3211885 crossref_primary_10_1515_nanoph_2019_0400 crossref_primary_10_1364_OE_25_026148 crossref_primary_10_1007_s11468_022_01720_w crossref_primary_10_1016_j_micrna_2023_207646 crossref_primary_10_1088_2040_8986_ab8911 crossref_primary_10_1016_j_optcom_2017_04_023 crossref_primary_10_1039_C6NR04239B crossref_primary_10_1063_5_0086515 crossref_primary_10_1088_2040_8978_16_10_105004 crossref_primary_10_1364_AO_497603 crossref_primary_10_1063_1_5032297 crossref_primary_10_3390_coatings14010056 crossref_primary_10_1007_s11082_023_05614_x crossref_primary_10_1088_1361_6528_aa7128 crossref_primary_10_1109_LPT_2015_2399655 crossref_primary_10_1080_02678292_2018_1500651 crossref_primary_10_1007_s11467_016_0551_z crossref_primary_10_1016_j_ijleo_2021_167837 crossref_primary_10_1364_OE_418836 crossref_primary_10_1007_s12596_020_00662_y crossref_primary_10_1364_AO_57_009550 crossref_primary_10_1109_JPHOT_2014_2331248 crossref_primary_10_1364_OL_41_000567 crossref_primary_10_1364_OE_24_017886 crossref_primary_10_1016_j_jlumin_2022_119332 crossref_primary_10_1007_s11468_018_0703_9 crossref_primary_10_1109_LPT_2015_2413363 crossref_primary_10_1364_OL_39_000271 crossref_primary_10_1007_s11468_016_0293_3 crossref_primary_10_1016_j_hybadv_2023_100046 crossref_primary_10_1088_1361_6463_aae9cc crossref_primary_10_1021_acsphotonics_9b00193 crossref_primary_10_1063_5_0089686 crossref_primary_10_1364_OL_43_003160 crossref_primary_10_1007_s00340_017_6646_6 crossref_primary_10_1038_srep04073 crossref_primary_10_1007_s00339_019_2474_3 crossref_primary_10_1016_j_optcom_2021_126994 crossref_primary_10_7567_APEX_7_024301 crossref_primary_10_1007_s11468_014_9863_4 crossref_primary_10_1088_0953_8984_25_12_125303 crossref_primary_10_1109_LPT_2024_3351788 crossref_primary_10_1364_OME_7_000569 crossref_primary_10_1088_1361_6463_ac357e crossref_primary_10_7567_APEX_7_125101 crossref_primary_10_1007_s13204_021_01748_0 crossref_primary_10_1021_acsami_7b16600 crossref_primary_10_1016_j_physleta_2016_10_034 crossref_primary_10_1103_PhysRevB_96_205140 crossref_primary_10_1109_JSTQE_2016_2537267 crossref_primary_10_1016_j_photonics_2018_05_001 crossref_primary_10_1364_OE_416430 crossref_primary_10_1039_D1RA06807E crossref_primary_10_1364_OME_493380 crossref_primary_10_1038_s41598_017_11231_y crossref_primary_10_1364_AO_58_000571 crossref_primary_10_1103_PhysRevB_99_035417 crossref_primary_10_1063_1_5101000 crossref_primary_10_1038_srep26796 crossref_primary_10_1109_JSEN_2019_2906759 crossref_primary_10_1109_JPHOT_2017_2743226 crossref_primary_10_1088_1742_6596_1092_1_012017 crossref_primary_10_1364_OE_21_013533 crossref_primary_10_1364_OL_41_000348 crossref_primary_10_1364_OE_27_033869 crossref_primary_10_1364_OE_23_00A240 crossref_primary_10_1007_s11468_015_0149_2 crossref_primary_10_1080_10420150_2019_1577427 crossref_primary_10_1016_j_ijleo_2016_07_051 crossref_primary_10_1117_1_OE_57_3_037107 crossref_primary_10_1038_s41377_018_0002_4 crossref_primary_10_3390_s16122039 crossref_primary_10_1364_OME_5_002174 crossref_primary_10_7567_1882_0786_ab2656 crossref_primary_10_1364_OE_22_014819 crossref_primary_10_1364_OL_41_003623 crossref_primary_10_1364_OE_27_035914 crossref_primary_10_1364_OE_26_029183 crossref_primary_10_1109_LPT_2018_2800729 crossref_primary_10_1002_adom_201701081 crossref_primary_10_1016_j_ijheatmasstransfer_2020_119346 crossref_primary_10_1364_OME_8_000884 crossref_primary_10_1103_PhysRevApplied_9_044026 crossref_primary_10_1134_S0030400X18120111 crossref_primary_10_1016_j_apsusc_2019_145070 crossref_primary_10_1364_JOSAB_33_002129 crossref_primary_10_1364_OE_26_001633 crossref_primary_10_1016_j_talanta_2018_07_087 crossref_primary_10_1364_AO_416918 crossref_primary_10_1007_s11468_018_0729_z crossref_primary_10_3390_nano10020232 crossref_primary_10_1103_PhysRevB_94_035435 crossref_primary_10_1039_C6NR02619B crossref_primary_10_1364_OL_40_000001 crossref_primary_10_1016_j_ssc_2018_06_005 crossref_primary_10_1116_6_0003588 crossref_primary_10_1364_OE_22_023836 crossref_primary_10_1364_OE_26_015935 crossref_primary_10_1007_s11468_014_9774_4 crossref_primary_10_1016_j_optcom_2017_09_102 crossref_primary_10_1038_s41377_020_0311_2 crossref_primary_10_3390_app9122528 crossref_primary_10_1038_srep27550 crossref_primary_10_1364_OE_419614 crossref_primary_10_1007_s00340_017_6813_9 crossref_primary_10_1063_1_4982074 crossref_primary_10_1088_2040_8978_18_2_025002 crossref_primary_10_1016_j_physleta_2018_11_030 crossref_primary_10_1021_acsami_4c19242 crossref_primary_10_1063_1_5001864 crossref_primary_10_1364_OE_26_003709 crossref_primary_10_1016_j_optcom_2018_04_021 crossref_primary_10_1088_0256_307X_32_2_025202 crossref_primary_10_1007_s11468_014_9861_6 crossref_primary_10_1007_s11468_016_0381_4 crossref_primary_10_1103_PhysRevB_97_085406 crossref_primary_10_1002_adpr_202100048 crossref_primary_10_3390_nano10020229 crossref_primary_10_1016_j_optcom_2017_02_018 crossref_primary_10_1007_s11082_019_1750_y crossref_primary_10_1364_OE_440797 crossref_primary_10_1109_JSTQE_2015_2493958 crossref_primary_10_1016_j_physe_2017_12_002 crossref_primary_10_1007_s11468_017_0603_4 crossref_primary_10_2139_ssrn_4051775 crossref_primary_10_1007_s11082_018_1450_z crossref_primary_10_1039_C8NR04996C crossref_primary_10_1007_s11468_015_0050_z crossref_primary_10_1016_j_optcom_2017_10_074 crossref_primary_10_1016_j_optlastec_2022_108519 crossref_primary_10_1088_1361_6463_aa64ff crossref_primary_10_1364_OE_444706 crossref_primary_10_1038_srep29984 crossref_primary_10_1016_j_mee_2015_03_010 crossref_primary_10_1007_s00340_014_5954_3 crossref_primary_10_1016_j_physe_2024_115928 crossref_primary_10_1186_s11671_020_03374_1 crossref_primary_10_1364_OE_24_016336 crossref_primary_10_1364_OL_45_000264 crossref_primary_10_1364_AO_57_00D130 crossref_primary_10_1088_0957_4484_25_32_322001 crossref_primary_10_1016_j_optlastec_2024_111370 crossref_primary_10_1088_1674_1056_25_5_057803 crossref_primary_10_1016_j_physe_2021_115132 crossref_primary_10_1002_adsr_202300054 crossref_primary_10_1109_ACCESS_2020_2999395 crossref_primary_10_1080_09500340_2017_1376717 crossref_primary_10_1209_0295_5075_104_37001 crossref_primary_10_1364_BOE_428537 crossref_primary_10_1364_OE_25_001242 crossref_primary_10_1016_j_optcom_2017_02_033 crossref_primary_10_1109_TMAG_2017_2775190 crossref_primary_10_1557_opl_2015_730 crossref_primary_10_1364_OE_24_026241 crossref_primary_10_1021_acsami_0c12525 crossref_primary_10_1364_OE_25_016867 crossref_primary_10_1364_OL_553323 crossref_primary_10_1117_1_OE_57_5_057104 crossref_primary_10_1186_s11671_016_1791_0 crossref_primary_10_1109_TTHZ_2015_2477600 crossref_primary_10_1364_JOSAB_32_001176 crossref_primary_10_1364_OE_512302 crossref_primary_10_1016_j_carbon_2019_01_058 crossref_primary_10_1364_OE_391237 crossref_primary_10_1007_s11468_015_9975_5 crossref_primary_10_1364_OE_25_005972 crossref_primary_10_1002_adom_202100695 crossref_primary_10_1364_OE_22_020214 crossref_primary_10_1088_1361_6463_ac3f5b |
Cites_doi | 10.1103/PhysRevB.80.155417 10.1038/nnano.2010.89 10.1103/PhysRevLett.99.147401 10.1143/JJAP.46.L151 10.1109/JLT.2004.833278 10.1038/nphoton.2011.102 10.1038/nnano.2011.146 10.1038/nphys989 10.1126/science.1102896 10.1364/JOSAA.14.000588 10.1109/TNANO.2007.910334 10.1038/nphoton.2008.249 10.1063/1.3599708 10.1021/nn2037626 10.1038/nature10067 10.1103/PhysRevB.85.081405 10.1038/nmat1849 10.1103/PhysRevLett.104.156806 10.1021/nl0808839 10.1021/nl102991v 10.1038/nphoton.2012.27 10.1103/PhysRevB.82.195414 10.1063/1.3309408 10.1021/nl803868k 10.1109/3.641320 10.1002/adma.201102456 10.1038/nmat3161 10.1021/nl201771h 10.1103/PhysRevB.80.245435 10.1038/nature11254 10.1126/science.1202691 10.1038/nature11253 10.1016/j.ssc.2008.02.024 10.1103/PhysRevB.84.045432 10.1103/PhysRevLett.108.167401 10.1103/RevModPhys.81.109 10.1103/PhysRevLett.105.055501 |
ContentType | Journal Article |
Copyright | Copyright © 2012 American Chemical Society |
Copyright_xml | – notice: Copyright © 2012 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1021/nn301888e |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | MEDLINE Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 7813 |
ExternalDocumentID | 22862147 10_1021_nn301888e a986603998 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GroupedDBID | - 23M 4.4 53G 55A 5GY 5VS 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ LG6 P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV AHGAQ BAANH CITATION CUPRZ GGK CGR CUY CVF ECM EIF NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-a414t-a57d526ecc62749c433f0edef115c2789c800df6fba9c6f8ce6ed160de1be8423 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Fri Jul 11 07:05:23 EDT 2025 Thu Jul 10 23:34:26 EDT 2025 Mon Jul 21 05:56:00 EDT 2025 Tue Jul 01 01:33:26 EDT 2025 Thu Apr 24 22:50:21 EDT 2025 Thu Feb 04 21:42:53 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | nanophotonics tunable filters graphene plasmonics mid-infrared devices optoelectronics active plasmonics |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a414t-a57d526ecc62749c433f0edef115c2789c800df6fba9c6f8ce6ed160de1be8423 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 22862147 |
PQID | 1080612582 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1762051598 proquest_miscellaneous_1080612582 pubmed_primary_22862147 crossref_citationtrail_10_1021_nn301888e crossref_primary_10_1021_nn301888e acs_journals_10_1021_nn301888e |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-09-25 |
PublicationDateYYYYMMDD | 2012-09-25 |
PublicationDate_xml | – month: 09 year: 2012 text: 2012-09-25 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2012 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Nikitin A. Y. (ref37/cit37) 2012; 85 Gannett W. (ref29/cit29) 2011; 98 Liu M. (ref14/cit14) 2011; 474 Peres N. M. R. (ref25/cit25) 2010; 105 Grushin A. G. (ref27/cit27) 2009; 80 Rosenblatt D. (ref16/cit16) 1977; 33 Mishchenko E. G. (ref5/cit5) 2010; 104 Koppens F. H. L. (ref8/cit8) 2011; 11 Li T. (ref31/cit31) 2012; 108 Castro Neto A. H. (ref3/cit3) 2009; 81 Schwierz F. (ref13/cit13) 2010; 5 ref28/cit28 Pala R. A. (ref10/cit10) 2008; 8 Li Z. Q. (ref24/cit24) 2008; 4 Fei Z. (ref26/cit26) 2012; 487 Novoselov K. S. (ref2/cit2) 2004; 306 Bolotin K. I. (ref19/cit19) 2008; 146 Wu C. H. (ref20/cit20) 2012; 11 Vakil A (ref18/cit18) 2011; 332 Lee W. (ref35/cit35) 2004; 22 Rana F. (ref9/cit9) 2008; 7 Sharon A. (ref17/cit17) 1997; 14 Falkovsky L. A. (ref38/cit38) 2008; 129 MacDonald K. F. (ref11/cit11) 2009; 3 Ju L. (ref6/cit6) 2011; 6 Wu W. (ref30/cit30) 2011; 23 Ruzicka B. A. (ref34/cit34) 2010; 82 Verellen N. (ref21/cit21) 2011; 11 Dragoman D. (ref33/cit33) 2010; 107 Bao Q. L. (ref7/cit7) 2011; 5 Mikhailov S. A. (ref15/cit15) 2011; 84 Tassin P. (ref23/cit23) 2012; 6 Jablan M. (ref4/cit4) 2009; 80 Fedotov V. A. (ref22/cit22) 2007; 99 Ryzhii M. (ref32/cit32) 2007; 46 Christensen J. (ref36/cit36) 2012; 6 Geim A. K. (ref1/cit1) 2007; 6 Dionne J. A. (ref12/cit12) 2009; 9 |
References_xml | – volume: 80 start-page: 155417 year: 2009 ident: ref27/cit27 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.80.155417 – volume: 5 start-page: 487 year: 2010 ident: ref13/cit13 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.89 – volume: 99 start-page: 147401 year: 2007 ident: ref22/cit22 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.147401 – volume: 46 start-page: L151 year: 2007 ident: ref32/cit32 publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.46.L151 – volume: 22 start-page: 2359 year: 2004 ident: ref35/cit35 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2004.833278 – volume: 5 start-page: 411 year: 2011 ident: ref7/cit7 publication-title: Nat. Photonics doi: 10.1038/nphoton.2011.102 – volume: 6 start-page: 630 year: 2011 ident: ref6/cit6 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2011.146 – volume: 4 start-page: 532 year: 2008 ident: ref24/cit24 publication-title: Nat. Phys. doi: 10.1038/nphys989 – volume: 306 start-page: 666 year: 2004 ident: ref2/cit2 publication-title: Science doi: 10.1126/science.1102896 – volume: 14 start-page: 588 year: 1997 ident: ref17/cit17 publication-title: J. Opt. Soc. Am. A doi: 10.1364/JOSAA.14.000588 – volume: 7 start-page: 91 year: 2008 ident: ref9/cit9 publication-title: IEEE Trans. Nanotechnol. doi: 10.1109/TNANO.2007.910334 – volume: 3 start-page: 55 year: 2009 ident: ref11/cit11 publication-title: Nat. Photonics doi: 10.1038/nphoton.2008.249 – volume: 98 start-page: 242105 year: 2011 ident: ref29/cit29 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3599708 – volume: 6 start-page: 431 year: 2012 ident: ref36/cit36 publication-title: ACS Nano doi: 10.1021/nn2037626 – volume: 474 start-page: 64 year: 2011 ident: ref14/cit14 publication-title: Nature doi: 10.1038/nature10067 – volume: 85 start-page: 081405 year: 2012 ident: ref37/cit37 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.081405 – volume: 6 start-page: 183 year: 2007 ident: ref1/cit1 publication-title: Nat. Mater. doi: 10.1038/nmat1849 – volume: 104 start-page: 156806 year: 2010 ident: ref5/cit5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.156806 – volume: 8 start-page: 1506 year: 2008 ident: ref10/cit10 publication-title: Nano Lett. doi: 10.1021/nl0808839 – volume: 11 start-page: 391 year: 2011 ident: ref21/cit21 publication-title: Nano Lett. doi: 10.1021/nl102991v – volume: 6 start-page: 259 year: 2012 ident: ref23/cit23 publication-title: Nat. Photonics doi: 10.1038/nphoton.2012.27 – volume: 82 start-page: 195414 year: 2010 ident: ref34/cit34 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.195414 – volume: 107 start-page: 044312 year: 2010 ident: ref33/cit33 publication-title: J. Appl. Phys. doi: 10.1063/1.3309408 – volume: 9 start-page: 897 year: 2009 ident: ref12/cit12 publication-title: Nano Lett. doi: 10.1021/nl803868k – volume: 33 start-page: 2038 year: 1977 ident: ref16/cit16 publication-title: IEEE J. Quantum Electron. doi: 10.1109/3.641320 – volume: 23 start-page: 4898 year: 2011 ident: ref30/cit30 publication-title: Adv. Mater. doi: 10.1002/adma.201102456 – volume: 11 start-page: 69 year: 2012 ident: ref20/cit20 publication-title: Nat. Mater. doi: 10.1038/nmat3161 – volume: 11 start-page: 3370 year: 2011 ident: ref8/cit8 publication-title: Nano Lett. doi: 10.1021/nl201771h – volume: 80 start-page: 245435 year: 2009 ident: ref4/cit4 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.80.245435 – ident: ref28/cit28 doi: 10.1038/nature11254 – volume: 332 start-page: 1291 year: 2011 ident: ref18/cit18 publication-title: Science doi: 10.1126/science.1202691 – volume: 487 start-page: 82 year: 2012 ident: ref26/cit26 publication-title: Nature doi: 10.1038/nature11253 – volume: 146 start-page: 351 year: 2008 ident: ref19/cit19 publication-title: Solid State Commun. doi: 10.1016/j.ssc.2008.02.024 – volume: 84 start-page: 045432 year: 2011 ident: ref15/cit15 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.045432 – volume: 108 start-page: 167401 year: 2012 ident: ref31/cit31 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.167401 – volume: 81 start-page: 109 year: 2009 ident: ref3/cit3 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.81.109 – volume: 129 start-page: 012004 year: 2008 ident: ref38/cit38 publication-title: J. Phys.: Conf. Ser. – volume: 105 start-page: 055501 year: 2010 ident: ref25/cit25 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.055501 |
SSID | ssj0057876 |
Score | 2.5895617 |
Snippet | We propose an active plasmonic device based on graphene. Highly confined plasmonic waves in monolayer graphene are efficiently excited using an etched... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7806 |
SubjectTerms | Computer-Aided Design Devices Diffraction gratings Equipment Design Equipment Failure Analysis Excitation Fermi surfaces Graphene Graphite - chemistry Gratings (spectra) Light Nanostructure Nanostructures - chemistry Nanostructures - ultrastructure Nanotechnology - instrumentation Particle Size Plasmonics Refractometry - instrumentation Scattering, Radiation Surface Plasmon Resonance - instrumentation Wavelengths |
Title | Excitation of Plasmonic Waves in Graphene by Guided-Mode Resonances |
URI | http://dx.doi.org/10.1021/nn301888e https://www.ncbi.nlm.nih.gov/pubmed/22862147 https://www.proquest.com/docview/1080612582 https://www.proquest.com/docview/1762051598 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT8MwDLbGuMCB92M8pvA4cCksaZu1RzTGEBIICRDcqjZ1pAnoEN0Q8Oux13Ua4nV31caP-HOdfAbYD12jXRO4juVZqZ7rek7gY-po3Uht7Ft0kTu6F5f67NY7v_fvK7D3SwdfyaMsIx-kOg2nYFppCl7GP63rcrtlj9NF65hKY8IPJX3Q5KOcekz-NfX8gieHeeV0Hk7K2znFcZKHw0E_OTQf38ka__rkBZgb4UpxXDjCIlQwW4LZCbbBZWi138yIkVv0rLgi3PzExLjiLn7FXHQz0WH2atr8RPIuOoNuStrkWWmC__EzMQfmK3B72r5pnTmjGQpO7Emv78R-M_WVJkPxkJ3QkDVsA1O0hAQN34I1hBhTq20Sh0bbwKDGVJKhUCYYENZahWrWy3AdhFKInmyitX7sNXUSqxADLVGalFBS2KhBnZQcjWIgj4btbSWjsTZqcFDqPyrXy4MwHn8S3R2LPhe0Gz8J7ZRGjCgouNMRZ9gb5EPWU4ZugfpDhtIAD7gJgxqsFR4wfpVSVOhJr7nx35I2YYYQlOIDJMrfgmr_ZYDbhFL6SX3opZ8swd-C |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZT8MwDI44HoAH7mOcAfHAS8eStln7iCa2cQwhMQRvVZs6EgI6RDcE_HrsHuMQ17vbOrYTf6mTz4zt-rZWtvZsy1CvVMe2HctzIbaUqsUmdA3YQBXdzplqXzrH1-51QZNDd2FQiRTflGZF_Hd2AbGfJBiKuF2DUTaOIERSNB80LspVlwJP5RVk3CEjjChZhD4-ShlIp58z0A-wMksvzZm8T1GmWHaq5LY66EdV_fqFs_F_ms-y6QJl8oM8LObYCCTzbOoD9-ACaxw-64Kfm_cMP0cUfU80ufwqfIKU3yS8RVzWuBTy6IW3Bjcx2pY6p3H64080HZAussvmYbfRtoqOClboCKdvhW49RtOh26jljq_RN6YGMRjEhZruxGrEj7FRJgp9rYynQUEs0G0gIvAQeS2xsaSXwArjUgI4og7GuKFTV1EoffCUAKFjxEx-rcI20RhBMSPSICt2SxEMrVFhe6UbgnK81Bbj7jvRnaHoQ07C8Z3QdunLAKcI1T3CBHqDNONAJSDnyV9kMClQuxvfq7DlPBCGn5ISt33Cqa_-NaQtNtHudk6D06OzkzU2idhK0tES6a6zsf7jADYQv_SjzSxw3wC5jufj |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED8NJiH2MBhjo3zNQzzwEqidxE0eq0JhgwESQ_AWJfZZQoMUkXYC_nru0qQqiK_3S2L77ny_y9m_A1iPfaN9E_me416pge8HXhSi9bRuWpeGDn3kiu6fQ713Gvw-D8-rRJHvwtAgCnpTURbx2auvrasYBuRWnpM5UsqGE_CRy3Vs0e3OSb3zsvHpYRWZsmSCEjWT0PijHIVM8TgKvQAtyxDTnYGj0eDKkyX_Ngf9bNPcP-FtfP_oZ-FzhTZFe2geX-AD5nPwaYyD8Ct0dm5NxdMtek4cE5q-YrpccZb-x0Jc5GKXOa1pSxTZndgdXFhaY-6gJvjPP9N1YDEPp92dv509r-qs4KWBDPpeGrZsqDSpj1vvxIZ05Jpo0RE-NHw31hCOtE67LI2NdpFBjVaS-lBmGBEC-waTeS_HBRBKIQayhc6FadDSWapijLREaSxhp7jZgFVakKTyjCIpi95KJqPVaMBGrYqkni-3x7h8TnRtJHo9JON4Tuhnrc-EXIXrH2mOvUFRcqEyoIvUKzIUHLjtTRw14PvQGEafUorSPxm0Ft-a0g-YOt7uJge_DveXYJogluITJipchsn-zQBXCMb0s9XSdh8AZRbqZg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Excitation+of+plasmonic+waves+in+graphene+by+guided-mode+resonances&rft.jtitle=ACS+nano&rft.au=Gao%2C+Weilu&rft.au=Shu%2C+Jie&rft.au=Qiu%2C+Ciyuan&rft.au=Xu%2C+Qianfan&rft.date=2012-09-25&rft.eissn=1936-086X&rft.volume=6&rft.issue=9&rft.spage=7806&rft_id=info:doi/10.1021%2Fnn301888e&rft_id=info%3Apmid%2F22862147&rft.externalDocID=22862147 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |