Anodic Oxidation for the Stereoselective Synthesis of Heterocycles
Conspectus Stereodefined aliphatic heterocycles are one of the fundamental structural motifs observed in natural products and biologically active compounds. Various strategies for the synthesis of these building blocks based on transition metal catalysis, organocatalysis, and noncatalytic conditions...
Saved in:
Published in | Accounts of chemical research Vol. 53; no. 1; pp. 105 - 120 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
21.01.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Conspectus Stereodefined aliphatic heterocycles are one of the fundamental structural motifs observed in natural products and biologically active compounds. Various strategies for the synthesis of these building blocks based on transition metal catalysis, organocatalysis, and noncatalytic conditions have been developed. Although electrosynthesis has also been utilized for the functionalization of aliphatic heterocycles, stereoselective transformations under electrochemical conditions are still a challenging field in electroorganic chemistry. This Account consists of four main topics related to our recent efforts on the diastereo- and/or enantioselective synthesis of aliphatic heterocycles, especially N-heterocycles, using anodic oxidations as key steps. The first topic is the development of stereoselective synthetic methods for multisubstituted piperidines and pyrrolidines from anodically prepared α-methoxy cyclic amines. Our strategies were based primarily on N-acyliminium ion chemistry, and the key electrochemical transformations were diastereoselective anodic methoxylation, diastereoselective arylation, and anodic deallylative methoxylation. Furthermore, we found a unique property of the N-cyano protecting group that enabled the electrochemical α-methoxylation of α-substituted cyclic amines. The second topic of investigation is memory of chirality in electrochemical decarboxylative methoxylation. We observed that the electrochemical decarboxylative methoxylation of oxazolidine and thiazolidine derivatives with the appropriate N-protecting group occurred in a stereospecific manner even though the reaction proceeded through an sp2 planar carbon center. Our findings demonstrated the first example of memory of chirality in N-acyliminium ion chemistry. The third topic is the synthesis of chiral azabicyclo-N-oxyls and their application to chiral organocatalysis in the electrochemical oxidative kinetic resolution of secondary alcohols. The final topic is stereoselective transformations utilizing anodically generated halogen cations. We investigated the oxidative kinetic resolution of amino alcohol derivatives using anodically generated bromo cations. We also developed an intramolecular C–C bond formation of keto amides, a diastereoselective bromoiminolactonization of α-allyl malonamides, and an oxidative ring expansion reaction of allyl alcohols. It is noteworthy that most of the electrochemical reactions were performed in undivided cells under constant-current conditions, which avoided a complicated reaction setup and was beneficial for a large-scale reaction. In addition, we developed some enantioselective electrochemical transformations that are still challenges in electroorganic chemistry. We hope that our research will contribute to the further development of diastereo- and/or enantioselective transformations and the construction of valuable heterocyclic compounds using an electrochemical approach. |
---|---|
AbstractList | Stereodefined aliphatic heterocycles are one of the fundamental structural motifs observed in natural products and biologically active compounds. Various strategies for the synthesis of these building blocks based on transition metal catalysis, organocatalysis, and noncatalytic conditions have been developed. Although electrosynthesis has also been utilized for the functionalization of aliphatic heterocycles, stereoselective transformations under electrochemical conditions are still a challenging field in electroorganic chemistry. This Account consists of four main topics related to our recent efforts on the diastereo- and/or enantioselective synthesis of aliphatic heterocycles, especially N-heterocycles, using anodic oxidations as key steps. The first topic is the development of stereoselective synthetic methods for multisubstituted piperidines and pyrrolidines from anodically prepared α-methoxy cyclic amines. Our strategies were based primarily on N-acyliminium ion chemistry, and the key electrochemical transformations were diastereoselective anodic methoxylation, diastereoselective arylation, and anodic deallylative methoxylation. Furthermore, we found a unique property of the N-cyano protecting group that enabled the electrochemical α-methoxylation of α-substituted cyclic amines. The second topic of investigation is memory of chirality in electrochemical decarboxylative methoxylation. We observed that the electrochemical decarboxylative methoxylation of oxazolidine and thiazolidine derivatives with the appropriate N-protecting group occurred in a stereospecific manner even though the reaction proceeded through an sp2 planar carbon center. Our findings demonstrated the first example of memory of chirality in N-acyliminium ion chemistry. The third topic is the synthesis of chiral azabicyclo-N-oxyls and their application to chiral organocatalysis in the electrochemical oxidative kinetic resolution of secondary alcohols. The final topic is stereoselective transformations utilizing anodically generated halogen cations. We investigated the oxidative kinetic resolution of amino alcohol derivatives using anodically generated bromo cations. We also developed an intramolecular C-C bond formation of keto amides, a diastereoselective bromoiminolactonization of α-allyl malonamides, and an oxidative ring expansion reaction of allyl alcohols. It is noteworthy that most of the electrochemical reactions were performed in undivided cells under constant-current conditions, which avoided a complicated reaction setup and was beneficial for a large-scale reaction. In addition, we developed some enantioselective electrochemical transformations that are still challenges in electroorganic chemistry. We hope that our research will contribute to the further development of diastereo- and/or enantioselective transformations and the construction of valuable heterocyclic compounds using an electrochemical approach.Stereodefined aliphatic heterocycles are one of the fundamental structural motifs observed in natural products and biologically active compounds. Various strategies for the synthesis of these building blocks based on transition metal catalysis, organocatalysis, and noncatalytic conditions have been developed. Although electrosynthesis has also been utilized for the functionalization of aliphatic heterocycles, stereoselective transformations under electrochemical conditions are still a challenging field in electroorganic chemistry. This Account consists of four main topics related to our recent efforts on the diastereo- and/or enantioselective synthesis of aliphatic heterocycles, especially N-heterocycles, using anodic oxidations as key steps. The first topic is the development of stereoselective synthetic methods for multisubstituted piperidines and pyrrolidines from anodically prepared α-methoxy cyclic amines. Our strategies were based primarily on N-acyliminium ion chemistry, and the key electrochemical transformations were diastereoselective anodic methoxylation, diastereoselective arylation, and anodic deallylative methoxylation. Furthermore, we found a unique property of the N-cyano protecting group that enabled the electrochemical α-methoxylation of α-substituted cyclic amines. The second topic of investigation is memory of chirality in electrochemical decarboxylative methoxylation. We observed that the electrochemical decarboxylative methoxylation of oxazolidine and thiazolidine derivatives with the appropriate N-protecting group occurred in a stereospecific manner even though the reaction proceeded through an sp2 planar carbon center. Our findings demonstrated the first example of memory of chirality in N-acyliminium ion chemistry. The third topic is the synthesis of chiral azabicyclo-N-oxyls and their application to chiral organocatalysis in the electrochemical oxidative kinetic resolution of secondary alcohols. The final topic is stereoselective transformations utilizing anodically generated halogen cations. We investigated the oxidative kinetic resolution of amino alcohol derivatives using anodically generated bromo cations. We also developed an intramolecular C-C bond formation of keto amides, a diastereoselective bromoiminolactonization of α-allyl malonamides, and an oxidative ring expansion reaction of allyl alcohols. It is noteworthy that most of the electrochemical reactions were performed in undivided cells under constant-current conditions, which avoided a complicated reaction setup and was beneficial for a large-scale reaction. In addition, we developed some enantioselective electrochemical transformations that are still challenges in electroorganic chemistry. We hope that our research will contribute to the further development of diastereo- and/or enantioselective transformations and the construction of valuable heterocyclic compounds using an electrochemical approach. Conspectus Stereodefined aliphatic heterocycles are one of the fundamental structural motifs observed in natural products and biologically active compounds. Various strategies for the synthesis of these building blocks based on transition metal catalysis, organocatalysis, and noncatalytic conditions have been developed. Although electrosynthesis has also been utilized for the functionalization of aliphatic heterocycles, stereoselective transformations under electrochemical conditions are still a challenging field in electroorganic chemistry. This Account consists of four main topics related to our recent efforts on the diastereo- and/or enantioselective synthesis of aliphatic heterocycles, especially N-heterocycles, using anodic oxidations as key steps. The first topic is the development of stereoselective synthetic methods for multisubstituted piperidines and pyrrolidines from anodically prepared α-methoxy cyclic amines. Our strategies were based primarily on N-acyliminium ion chemistry, and the key electrochemical transformations were diastereoselective anodic methoxylation, diastereoselective arylation, and anodic deallylative methoxylation. Furthermore, we found a unique property of the N-cyano protecting group that enabled the electrochemical α-methoxylation of α-substituted cyclic amines. The second topic of investigation is memory of chirality in electrochemical decarboxylative methoxylation. We observed that the electrochemical decarboxylative methoxylation of oxazolidine and thiazolidine derivatives with the appropriate N-protecting group occurred in a stereospecific manner even though the reaction proceeded through an sp2 planar carbon center. Our findings demonstrated the first example of memory of chirality in N-acyliminium ion chemistry. The third topic is the synthesis of chiral azabicyclo-N-oxyls and their application to chiral organocatalysis in the electrochemical oxidative kinetic resolution of secondary alcohols. The final topic is stereoselective transformations utilizing anodically generated halogen cations. We investigated the oxidative kinetic resolution of amino alcohol derivatives using anodically generated bromo cations. We also developed an intramolecular C–C bond formation of keto amides, a diastereoselective bromoiminolactonization of α-allyl malonamides, and an oxidative ring expansion reaction of allyl alcohols. It is noteworthy that most of the electrochemical reactions were performed in undivided cells under constant-current conditions, which avoided a complicated reaction setup and was beneficial for a large-scale reaction. In addition, we developed some enantioselective electrochemical transformations that are still challenges in electroorganic chemistry. We hope that our research will contribute to the further development of diastereo- and/or enantioselective transformations and the construction of valuable heterocyclic compounds using an electrochemical approach. Stereodefined aliphatic heterocycles are one of the fundamental structural motifs observed in natural products and biologically active compounds. Various strategies for the synthesis of these building blocks based on transition metal catalysis, organocatalysis, and noncatalytic conditions have been developed. Although electrosynthesis has also been utilized for the functionalization of aliphatic heterocycles, stereoselective transformations under electrochemical conditions are still a challenging field in electroorganic chemistry. This Account consists of four main topics related to our recent efforts on the diastereo- and/or enantioselective synthesis of aliphatic heterocycles, especially N-heterocycles, using anodic oxidations as key steps. The first topic is the development of stereoselective synthetic methods for multisubstituted piperidines and pyrrolidines from anodically prepared α-methoxy cyclic amines. Our strategies were based primarily on -acyliminium ion chemistry, and the key electrochemical transformations were diastereoselective anodic methoxylation, diastereoselective arylation, and anodic deallylative methoxylation. Furthermore, we found a unique property of the -cyano protecting group that enabled the electrochemical α-methoxylation of α-substituted cyclic amines. The second topic of investigation is memory of chirality in electrochemical decarboxylative methoxylation. We observed that the electrochemical decarboxylative methoxylation of oxazolidine and thiazolidine derivatives with the appropriate N-protecting group occurred in a stereospecific manner even though the reaction proceeded through an sp planar carbon center. Our findings demonstrated the first example of memory of chirality in -acyliminium ion chemistry. The third topic is the synthesis of chiral azabicyclo- -oxyls and their application to chiral organocatalysis in the electrochemical oxidative kinetic resolution of secondary alcohols. The final topic is stereoselective transformations utilizing anodically generated halogen cations. We investigated the oxidative kinetic resolution of amino alcohol derivatives using anodically generated bromo cations. We also developed an intramolecular C-C bond formation of keto amides, a diastereoselective bromoiminolactonization of α-allyl malonamides, and an oxidative ring expansion reaction of allyl alcohols. It is noteworthy that most of the electrochemical reactions were performed in undivided cells under constant-current conditions, which avoided a complicated reaction setup and was beneficial for a large-scale reaction. In addition, we developed some enantioselective electrochemical transformations that are still challenges in electroorganic chemistry. We hope that our research will contribute to the further development of diastereo- and/or enantioselective transformations and the construction of valuable heterocyclic compounds using an electrochemical approach. |
Author | Onomura, Osamu Yamamoto, Kosuke Kuriyama, Masami |
AuthorAffiliation | Graduate School of Biomedical Sciences |
AuthorAffiliation_xml | – name: Graduate School of Biomedical Sciences |
Author_xml | – sequence: 1 givenname: Kosuke orcidid: 0000-0002-8189-7141 surname: Yamamoto fullname: Yamamoto, Kosuke – sequence: 2 givenname: Masami orcidid: 0000-0002-4871-6273 surname: Kuriyama fullname: Kuriyama, Masami – sequence: 3 givenname: Osamu orcidid: 0000-0003-3703-1401 surname: Onomura fullname: Onomura, Osamu email: onomura@nagasaki-u.ac.jp |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31872753$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkLFOwzAQhi1UBG3hDRDKyJJi-5wmZisIKFKlDsAcOc5FGKVxsR1E3x5DWwYGmOy7-37L943IoLMdEnLG6IRRzi6V9hOlte274CeyojRjcECGLOM0FYUsBmRIKWXxLvgxGXn_GksupvkROQZW5DzPYEiuZ52tjU6WH6ZWwdguaaxLwgsmjwEdWo8t6mDeY73pYtsbn9gmmWOcWr3RLfoTctio1uPp7hyT57vbp5t5uljeP9zMFqkSTIRUioYWmBdaqzr-AxgImWkQFVScC4VSS1EU9RS0hDqiOscmr4RsoMgpNBLG5GL77trZtx59KFfGa2xb1aHtfckBKEAGnEb0fIf21Qrrcu3MSrlNud87AmILaGe9d9j8IIyWX3rLqLfc6y13emPs6ldMm_CtLThl2v_CdBv-mr7a3nXR1t-RT9eQlQg |
CitedBy_id | crossref_primary_10_1039_D2QO01664H crossref_primary_10_1002_ejoc_202100988 crossref_primary_10_1039_D2QO01498J crossref_primary_10_1039_D2CS00013J crossref_primary_10_1186_s13065_024_01245_9 crossref_primary_10_1002_anie_202417439 crossref_primary_10_1002_bkcs_12218 crossref_primary_10_1055_a_2050_9368 crossref_primary_10_1021_acs_joc_0c03026 crossref_primary_10_1002_ange_202014289 crossref_primary_10_1002_adsc_202100366 crossref_primary_10_1002_anie_202016310 crossref_primary_10_1002_tcr_202100036 crossref_primary_10_1002_celc_202200954 crossref_primary_10_1002_chem_202401303 crossref_primary_10_1039_D3GC02283H crossref_primary_10_3390_molecules28073059 crossref_primary_10_1021_acs_joc_2c00856 crossref_primary_10_1002_ange_202416126 crossref_primary_10_1039_D3GC02831C crossref_primary_10_1021_acs_joc_1c02947 crossref_primary_10_1016_j_nanoen_2024_109884 crossref_primary_10_1039_D2GC03829C crossref_primary_10_1002_ange_202413030 crossref_primary_10_1002_anie_202005099 crossref_primary_10_1055_a_1828_1217 crossref_primary_10_1002_cssc_202201662 crossref_primary_10_1021_acs_chemrev_1c00471 crossref_primary_10_1039_D2OB01501C crossref_primary_10_1002_ajoc_202200486 crossref_primary_10_1002_anie_202422876 crossref_primary_10_1002_anie_202017359 crossref_primary_10_1002_anie_202006903 crossref_primary_10_1021_acs_joc_2c01816 crossref_primary_10_1039_D1QO00912E crossref_primary_10_1039_D2SC03288K crossref_primary_10_1039_D4QO01899K crossref_primary_10_1002_tcr_202100025 crossref_primary_10_1039_D2QO01394K crossref_primary_10_1002_anie_202203666 crossref_primary_10_1002_ange_202001510 crossref_primary_10_1002_anie_202110616 crossref_primary_10_1021_acs_joc_1c02275 crossref_primary_10_1002_adsc_202000996 crossref_primary_10_1038_s41467_022_35073_z crossref_primary_10_1002_adsc_202101062 crossref_primary_10_1016_j_cclet_2023_108902 crossref_primary_10_1002_anie_202212131 crossref_primary_10_1016_j_cclet_2022_108097 crossref_primary_10_1039_D0QO01068E crossref_primary_10_1039_D1OB01208H crossref_primary_10_1002_chem_202101132 crossref_primary_10_1021_acs_joc_3c00790 crossref_primary_10_1002_anie_202003364 crossref_primary_10_1016_j_chempr_2020_08_025 crossref_primary_10_1021_acs_orglett_0c04296 crossref_primary_10_1055_a_2089_0485 crossref_primary_10_1021_acs_orglett_3c02997 crossref_primary_10_1002_ange_202422876 crossref_primary_10_1021_acs_orglett_1c02128 crossref_primary_10_1002_adsc_202300281 crossref_primary_10_1002_ajoc_202100607 crossref_primary_10_1021_jacs_1c09214 crossref_primary_10_1016_j_tetlet_2023_154410 crossref_primary_10_1021_acs_chemrev_2c00591 crossref_primary_10_1021_acs_orglett_0c03205 crossref_primary_10_1038_s41467_023_36704_9 crossref_primary_10_1002_ajoc_202200531 crossref_primary_10_1021_acs_joc_4c02567 crossref_primary_10_1016_j_scp_2023_101207 crossref_primary_10_1002_ange_202203666 crossref_primary_10_1002_adsc_202000228 crossref_primary_10_1002_ange_202212131 crossref_primary_10_1039_D1SC07124F crossref_primary_10_1002_adsc_202100022 crossref_primary_10_1039_D0QO00901F crossref_primary_10_1002_ange_202417439 crossref_primary_10_1002_ange_202003364 crossref_primary_10_1039_D4CC02033B crossref_primary_10_1002_adsc_202200470 crossref_primary_10_1039_D2QO00996J crossref_primary_10_1002_ajoc_202200009 crossref_primary_10_1039_D2QO00091A crossref_primary_10_1039_D3GC04723G crossref_primary_10_1002_cssc_202400028 crossref_primary_10_1002_ange_202304434 crossref_primary_10_1021_acs_orglett_3c02744 crossref_primary_10_1039_D5QO00289C crossref_primary_10_1021_acs_joc_0c02429 crossref_primary_10_1038_s41467_021_25005_8 crossref_primary_10_1002_ajoc_202200547 crossref_primary_10_1002_adsc_202201338 crossref_primary_10_1002_adsc_202101249 crossref_primary_10_1039_D3QO00290J crossref_primary_10_1039_D3GC01601C crossref_primary_10_1021_acs_orglett_2c02101 crossref_primary_10_1039_D1SC02636D crossref_primary_10_1039_D0GC00321B crossref_primary_10_1002_tcr_202100047 crossref_primary_10_1039_D1NJ04819H crossref_primary_10_1039_D4OB01081G crossref_primary_10_1002_ange_202006903 crossref_primary_10_1039_D3GC03389A crossref_primary_10_1002_cctc_202100304 crossref_primary_10_1039_D0GC01025A crossref_primary_10_1002_celc_202300493 crossref_primary_10_6023_cjoc202107042 crossref_primary_10_1002_anie_202304434 crossref_primary_10_1002_adsc_202201332 crossref_primary_10_1002_ange_202005099 crossref_primary_10_1007_s11426_022_1360_3 crossref_primary_10_1016_j_mcat_2023_113663 crossref_primary_10_6023_cjoc202310024 crossref_primary_10_1038_s41467_023_43698_x crossref_primary_10_1039_D4OB01673D crossref_primary_10_1002_ange_202017359 crossref_primary_10_1039_D0OB02459G crossref_primary_10_1007_s11426_020_9938_9 crossref_primary_10_1039_D3QO01690K crossref_primary_10_1002_adsc_202301395 crossref_primary_10_1002_adsc_202401276 crossref_primary_10_1021_acs_orglett_4c03348 crossref_primary_10_1039_D2GC01129H crossref_primary_10_1246_bcsj_20200362 crossref_primary_10_1039_D2CC02641D crossref_primary_10_6023_A22060260 crossref_primary_10_1021_acs_joc_3c00223 crossref_primary_10_1039_D1QO00168J crossref_primary_10_1002_anie_202207660 crossref_primary_10_2174_1385272826666220516113152 crossref_primary_10_1016_j_tet_2023_133383 crossref_primary_10_1002_tcr_202000116 crossref_primary_10_1039_D3OB00744H crossref_primary_10_1039_D3QO00370A crossref_primary_10_1002_cjoc_202200245 crossref_primary_10_1021_acscatal_1c06012 crossref_primary_10_1021_jacs_3c08479 crossref_primary_10_6023_cjoc202309022 crossref_primary_10_1002_ajoc_202200685 crossref_primary_10_1002_ange_202016310 crossref_primary_10_1038_s41467_023_36000_6 crossref_primary_10_1002_anie_202014289 crossref_primary_10_1038_s42004_023_00910_9 crossref_primary_10_1039_D0GC00375A crossref_primary_10_1039_D4CC06472K crossref_primary_10_1134_S1070428024130025 crossref_primary_10_1039_D2SC03951F crossref_primary_10_1039_D3SC05229J crossref_primary_10_1021_acs_joc_3c02931 crossref_primary_10_1039_D3OB00313B crossref_primary_10_1039_D4GC01595A crossref_primary_10_1002_adfm_202315675 crossref_primary_10_1002_anie_202115178 crossref_primary_10_1002_anie_202416126 crossref_primary_10_1021_acs_orglett_3c02309 crossref_primary_10_1039_D4GC04495A crossref_primary_10_1002_ejoc_202100368 crossref_primary_10_1021_acsomega_3c09790 crossref_primary_10_1039_D4CC00919C crossref_primary_10_1002_ejoc_202000688 crossref_primary_10_1039_D0OB01425G crossref_primary_10_1002_advs_202411964 crossref_primary_10_1016_j_tetlet_2021_153567 crossref_primary_10_1002_adsc_202400761 crossref_primary_10_1002_anie_202001510 crossref_primary_10_1002_asia_202300122 crossref_primary_10_1039_D2OB01849G crossref_primary_10_1002_cssc_202100682 crossref_primary_10_1021_acs_chemrev_1c00614 crossref_primary_10_1055_a_2004_6485 crossref_primary_10_1016_j_jelechem_2022_116629 crossref_primary_10_1002_ange_202115178 crossref_primary_10_1016_j_scib_2021_07_011 crossref_primary_10_1016_j_matt_2023_12_014 crossref_primary_10_1055_a_2039_1728 crossref_primary_10_1002_ejoc_202101189 crossref_primary_10_1002_adsc_202301343 crossref_primary_10_1002_adma_202304716 crossref_primary_10_1002_ange_202110616 crossref_primary_10_1002_slct_202004340 crossref_primary_10_1021_jacs_9b13117 crossref_primary_10_1021_jacs_1c08671 crossref_primary_10_1039_D0GC04362A crossref_primary_10_1039_D3QO00662J crossref_primary_10_5796_electrochemistry_20_00088 crossref_primary_10_1002_ange_202207660 crossref_primary_10_1016_j_tet_2025_134467 crossref_primary_10_1039_D4QO00846D crossref_primary_10_1080_00397911_2022_2028843 crossref_primary_10_1002_anie_202413030 crossref_primary_10_1038_s41467_023_37965_0 crossref_primary_10_1039_D0GC01247E |
Cites_doi | 10.1016/j.tet.2008.02.060 10.1016/S0040-4039(01)83864-8 10.1021/acs.accounts.6b00163 10.1055/s-0037-1611791 10.3987/REV-12-744 10.1002/(SICI)1521-3765(19980310)4:3<373::AID-CHEM373>3.0.CO;2-O 10.1021/acs.chemrev.7b00353 10.1016/j.tet.2008.06.004 10.1021/acs.orglett.8b03081 10.1021/ja983801z 10.1002/ejoc.200700054 10.1021/acs.chemrev.7b00397 10.1002/chem.200900159 10.1021/ja00398a058 10.1016/S0013-4686(03)00361-X 10.1016/S0008-6215(00)00018-5 10.1246/cl.1988.1065 10.1016/S0040-4020(00)00159-9 10.1016/j.tetlet.2004.05.140 10.1248/cpb.55.349 10.3987/COM-13-S(S)27 10.1021/jo100714y 10.1039/C6GC00666C 10.1002/(SICI)1099-0690(199809)1998:9<1955::AID-EJOC1955>3.0.CO;2-U 10.1016/j.tet.2010.07.009 10.1002/(SICI)1099-0690(199910)1999:10<2645::AID-EJOC2645>3.0.CO;2-4 10.1039/C5NP00096C 10.1021/acscatal.8b01682 10.1021/jm4017625 10.1021/cr000433k 10.1039/C6SC02117D 10.1021/acscatal.6b01725 10.1021/jacs.8b00391 10.1039/C7CS00619E 10.1021/acs.chemrev.7b00532 10.3987/COM-08-S(D)10 10.1021/acs.orglett.8b04090 10.1021/acscatal.8b01697 10.1002/adsc.201600644 10.1039/C7CS00449D 10.1021/ol9905046 10.1055/s-0037-1610682 10.1016/j.tetlet.2006.05.158 10.1016/0040-4020(95)00842-X 10.1039/C4CC05906A 10.1021/acs.chemrev.7b00656 10.5796/electrochemistry.81.374 10.1039/c3cs60464k 10.1016/j.tetlet.2007.04.010 10.1055/s-0037-1611942 10.1016/S0022-0728(01)00389-8 10.1039/C5OB01336D 10.1021/acs.chemrev.7b00271 10.1021/ol025865r 10.1055/s-2006-944214 10.1002/adsc.201300961 10.1002/ejoc.201700948 10.1002/cctc.201402366 10.1038/s41929-018-0083-8 10.1021/acscatal.9b02230 10.5796/electrochemistry.74.645 10.1016/S0022-0728(01)00404-1 10.1002/9783527664412 10.1002/anie.199312441 10.1021/ja0289402 10.1021/cr068072h 10.1016/j.drudis.2010.08.017 10.1002/ejoc.200500076 10.1016/S0960-894X(01)80280-8 10.1055/s-0035-1562441 10.3987/COM-09-S(S)101 10.1021/ja00415a034 10.1002/chem.201804157 10.1016/S0040-4039(00)01342-3 10.1016/j.tetlet.2008.06.028 10.1021/ja804048a 10.1002/chem.201804708 10.3987/COM-05-S(T)34 10.1002/anie.201505748 10.1016/S0040-4039(02)00449-5 10.1021/cr300389u 10.3987/COM-18-S(F)68 10.1002/9780470517437 10.1021/cr020095i 10.1002/prac.18470410118 10.1021/ja0172215 10.1021/ja016885b 10.1149/1.2426086 10.1021/jm501100b 10.1016/S0040-4020(00)00653-0 10.1016/j.jfluchem.2019.01.007 10.1039/c0gc00382d 10.1016/j.tet.2015.04.020 10.1016/j.tet.2006.01.071 10.1021/jo026421b 10.1021/ja9032296 10.1039/C5GC02626A 10.1021/acs.chemrev.7b00475 10.1039/c3cs35525j 10.1055/s-2002-32967 10.1002/jlac.18480640346 10.1002/anie.200503656 10.1002/chem.201901284 10.1002/chir.10151 10.1016/j.trechm.2019.01.011 10.1002/ejoc.201801305 10.1021/jacs.6b08667 10.1016/S0040-4020(02)00122-9 10.1016/j.tetlet.2004.09.036 10.1016/j.jfluchem.2015.04.011 10.3987/COM-18-S(T)43 10.1021/acs.joc.5b01909 10.1016/j.tetasy.2009.11.028 10.1016/S0040-4039(00)01749-4 10.1016/S0040-4020(97)01018-1 10.1016/j.tet.2011.09.080 10.1002/anie.200350892 10.1002/anie.199416991 10.1021/cr040679f 10.1002/chem.200903512 10.1016/j.tet.2008.05.015 10.1016/S0040-4020(01)87042-3 10.1021/ol802984n 10.3987/COM-08-S(N)26 10.1002/1521-3765(20020617)8:12<2650::AID-CHEM2650>3.0.CO;2-S 10.1002/chem.200902634 10.1021/acscatal.9b01785 10.1016/j.jelechem.2015.02.001 10.1016/j.tet.2009.09.087 10.1002/0471224499.ch3 10.3762/bjoc.10.323 10.1002/celc.201900172 10.1021/acs.chemrev.7b00763 10.1021/acs.jmedchem.8b00876 10.1055/s-0037-1611568 10.1039/c2ra01254e 10.1021/jacs.8b08592 10.1002/anie.201803887 10.1016/j.tetasy.2008.12.011 10.1021/ol0066274 10.1016/S0040-4039(97)10709-2 10.1002/anie.201900956 10.1039/C5OB02560E 10.1039/C39830001169 10.1021/acs.accounts.7b00406 10.1016/S0040-4039(00)01790-1 10.1016/j.jorganchem.2006.04.039 10.1021/ar010075n 10.1021/ja00454a050 10.1055/s-2004-834931 10.1016/S0040-4020(01)91472-3 10.1016/0040-4039(94)88092-1 10.1016/j.tetlet.2008.06.112 10.1039/C5OB00520E 10.1039/B816598J 10.1002/celc.201900682 10.1016/S0040-4039(97)00099-3 10.1021/cr100287w 10.1002/ejoc.201501203 10.1149/1.2401038 10.1248/cpb.c13-00456 10.1016/j.tet.2015.01.029 10.1039/c1cc00049g 10.1021/ol005795t 10.1021/acscatal.8b01069 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1021/acs.accounts.9b00513 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-4898 |
EndPage | 120 |
ExternalDocumentID | 31872753 10_1021_acs_accounts_9b00513 a697124595 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | - .K2 02 23M 53G 55A 5GY 5VS 7~N 85S AABXI ABFLS ABMVS ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DZ EBS ED ED~ F5P GNL IH9 JG JG~ K2 LG6 P2P RNS ROL TWZ UI2 UPT VF5 VG9 W1F WH7 X YZZ --- -DZ -~X 4.4 5ZA 6J9 6P2 AAYXX ABBLG ABJNI ABLBI ABQRX ACGFO ADHLV AFXLT AGXLV AHGAQ CITATION CUPRZ GGK IH2 XSW ZCA ~02 CGR CUY CVF ECM EIF NPM YIN 7X8 |
ID | FETCH-LOGICAL-a414t-94f08e78ccad024313495c34b3b224ae9c9488d63c93df08c7ef7b49f38703f93 |
IEDL.DBID | ACS |
ISSN | 0001-4842 1520-4898 |
IngestDate | Thu Jul 10 22:59:13 EDT 2025 Wed Feb 19 02:30:15 EST 2025 Tue Jul 01 03:16:04 EDT 2025 Thu Apr 24 22:52:48 EDT 2025 Thu Aug 27 22:10:49 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a414t-94f08e78ccad024313495c34b3b224ae9c9488d63c93df08c7ef7b49f38703f93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-4871-6273 0000-0002-8189-7141 0000-0003-3703-1401 |
PMID | 31872753 |
PQID | 2330335320 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2330335320 pubmed_primary_31872753 crossref_primary_10_1021_acs_accounts_9b00513 crossref_citationtrail_10_1021_acs_accounts_9b00513 acs_journals_10_1021_acs_accounts_9b00513 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-21 |
PublicationDateYYYYMMDD | 2020-01-21 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Accounts of chemical research |
PublicationTitleAlternate | Acc. Chem. Res |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref17/cit17b ref63/cit63b ref45/cit45 ref1/cit1e ref1/cit1d ref37/cit37b ref17/cit17a ref37/cit37a ref52/cit52 ref23/cit23 Evans D. A. (ref20/cit20b) 2007 ref1/cit1c ref57/cit57b ref57/cit57c ref48/cit48 ref57/cit57a ref5/cit5b ref5/cit5a ref16/cit16c ref16/cit16b ref36/cit36a ref16/cit16a ref36/cit36b ref36/cit36c ref19/cit19 ref3/cit3b ref22/cit22a ref3/cit3a ref22/cit22d ref22/cit22c ref13/cit13 ref22/cit22b ref61/cit61 ref42/cit42b ref42/cit42a ref6/cit6 ref10/cit10h ref65/cit65 ref10/cit10d ref29/cit29c ref10/cit10e ref29/cit29b ref10/cit10f ref29/cit29a ref10/cit10g ref8/cit8a ref10/cit10a ref8/cit8c ref10/cit10b ref29/cit29e Lamberth C. (ref1/cit1b) 2012 ref8/cit8b ref10/cit10c ref29/cit29d ref21/cit21b ref41/cit41f ref49/cit49a ref41/cit41e ref49/cit49b ref21/cit21a ref39/cit39a ref41/cit41d ref49/cit49c ref39/cit39b ref39/cit39c ref43/cit43 ref28/cit28 ref41/cit41c ref41/cit41b ref41/cit41a ref18/cit18b ref18/cit18a ref38/cit38b ref38/cit38a ref66/cit66 ref30/cit30a ref20/cit20a ref40/cit40b ref30/cit30b ref40/cit40c ref33/cit33 ref58/cit58d ref58/cit58c ref40/cit40a ref58/cit58b ref58/cit58a ref53/cit53a ref27/cit27 ref53/cit53c ref53/cit53b ref63/cit63 ref56/cit56 ref12/cit12g ref12/cit12f ref12/cit12e ref12/cit12d ref12/cit12c ref12/cit12b ref12/cit12a ref2/cit2b ref31/cit31 ref59/cit59 ref2/cit2a Lamberth C. (ref1/cit1a) 2012 ref34/cit34 ref60/cit60 ref52/cit52b ref52/cit52c ref11/cit11g ref11/cit11f ref11/cit11h ref11/cit11c ref11/cit11b ref11/cit11e ref11/cit11d ref11/cit11a ref32/cit32b ref32/cit32a ref46/cit46a ref46/cit46b ref50/cit50 ref35/cit35a ref35/cit35e ref55/cit55b ref35/cit35d ref55/cit55c Compain P. (ref35/cit35c) 2007 ref35/cit35b ref9/cit9c ref9/cit9b ref9/cit9a ref25/cit25 ref9/cit9g ref9/cit9f ref9/cit9e ref9/cit9d ref51/cit51 ref55/cit55a ref54/cit54c ref64/cit64e ref44/cit44a ref54/cit54b ref64/cit64d ref54/cit54a ref64/cit64c ref26/cit26 ref64/cit64b ref64/cit64a ref54/cit54f ref54/cit54e ref54/cit54d ref14/cit14a ref24/cit24c ref24/cit24b ref14/cit14c ref14/cit14b ref15/cit15 ref14/cit14e ref14/cit14d ref14/cit14g ref24/cit24a ref62/cit62 ref14/cit14f ref4/cit4 ref47/cit47 ref44/cit44b ref7/cit7 ref44/cit44c |
References_xml | – ident: ref47/cit47 doi: 10.1016/j.tet.2008.02.060 – ident: ref23/cit23 doi: 10.1016/S0040-4039(01)83864-8 – ident: ref39/cit39c doi: 10.1021/acs.accounts.6b00163 – ident: ref65/cit65 doi: 10.1055/s-0037-1611791 – ident: ref16/cit16b doi: 10.3987/REV-12-744 – ident: ref52/cit52 doi: 10.1002/(SICI)1521-3765(19980310)4:3<373::AID-CHEM373>3.0.CO;2-O – ident: ref18/cit18b doi: 10.1021/acs.chemrev.7b00353 – ident: ref27/cit27 doi: 10.1016/j.tet.2008.06.004 – ident: ref9/cit9b doi: 10.1021/acs.orglett.8b03081 – ident: ref30/cit30a doi: 10.1021/ja983801z – ident: ref49/cit49b doi: 10.1002/ejoc.200700054 – ident: ref14/cit14c doi: 10.1021/acs.chemrev.7b00397 – ident: ref58/cit58b doi: 10.1002/chem.200900159 – ident: ref20/cit20a doi: 10.1021/ja00398a058 – ident: ref54/cit54d doi: 10.1016/S0013-4686(03)00361-X – ident: ref35/cit35a doi: 10.1016/S0008-6215(00)00018-5 – ident: ref61/cit61 doi: 10.1246/cl.1988.1065 – ident: ref15/cit15 doi: 10.1016/S0040-4020(00)00159-9 – ident: ref36/cit36b doi: 10.1016/j.tetlet.2004.05.140 – ident: ref39/cit39b doi: 10.1248/cpb.55.349 – ident: ref33/cit33 doi: 10.3987/COM-13-S(S)27 – ident: ref41/cit41f doi: 10.1021/jo100714y – ident: ref11/cit11f doi: 10.1039/C6GC00666C – ident: ref46/cit46b doi: 10.1002/(SICI)1099-0690(199809)1998:9<1955::AID-EJOC1955>3.0.CO;2-U – ident: ref22/cit22d doi: 10.1016/j.tet.2010.07.009 – ident: ref41/cit41a doi: 10.1002/(SICI)1099-0690(199910)1999:10<2645::AID-EJOC2645>3.0.CO;2-4 – ident: ref44/cit44c doi: 10.1039/C5NP00096C – ident: ref8/cit8a doi: 10.1021/acscatal.8b01682 – ident: ref1/cit1c doi: 10.1021/jm4017625 – ident: ref35/cit35b doi: 10.1021/cr000433k – ident: ref12/cit12g doi: 10.1039/C6SC02117D – ident: ref19/cit19 doi: 10.1021/acscatal.6b01725 – ident: ref9/cit9c doi: 10.1021/jacs.8b00391 – ident: ref14/cit14f doi: 10.1039/C7CS00619E – ident: ref18/cit18a doi: 10.1021/acs.chemrev.7b00532 – ident: ref54/cit54e doi: 10.3987/COM-08-S(D)10 – ident: ref10/cit10h doi: 10.1021/acs.orglett.8b04090 – ident: ref8/cit8b doi: 10.1021/acscatal.8b01697 – ident: ref3/cit3a doi: 10.1002/adsc.201600644 – ident: ref49/cit49c doi: 10.1039/C7CS00449D – ident: ref21/cit21a doi: 10.1021/ol9905046 – ident: ref51/cit51 doi: 10.1055/s-0037-1610682 – ident: ref25/cit25 doi: 10.1016/j.tetlet.2006.05.158 – ident: ref63/cit63b doi: 10.1016/0040-4020(95)00842-X – ident: ref12/cit12e doi: 10.1039/C4CC05906A – ident: ref14/cit14e doi: 10.1021/acs.chemrev.7b00656 – ident: ref58/cit58c doi: 10.5796/electrochemistry.81.374 – ident: ref14/cit14b doi: 10.1039/c3cs60464k – ident: ref41/cit41c doi: 10.1016/j.tetlet.2007.04.010 – ident: ref10/cit10g doi: 10.1055/s-0037-1611942 – ident: ref11/cit11a doi: 10.1016/S0022-0728(01)00389-8 – ident: ref40/cit40c doi: 10.1039/C5OB01336D – ident: ref14/cit14d doi: 10.1021/acs.chemrev.7b00271 – ident: ref54/cit54c doi: 10.1021/ol025865r – ident: ref41/cit41b doi: 10.1055/s-2006-944214 – ident: ref58/cit58d doi: 10.1002/adsc.201300961 – ident: ref29/cit29d doi: 10.1002/ejoc.201700948 – ident: ref10/cit10b doi: 10.1002/cctc.201402366 – ident: ref11/cit11g doi: 10.1038/s41929-018-0083-8 – ident: ref10/cit10f doi: 10.1021/acscatal.9b02230 – ident: ref45/cit45 doi: 10.5796/electrochemistry.74.645 – ident: ref54/cit54b doi: 10.1016/S0022-0728(01)00404-1 – volume-title: Bioactive Heterocyclic Compound Classes: Agrochemicals year: 2012 ident: ref1/cit1b doi: 10.1002/9783527664412 – ident: ref40/cit40a doi: 10.1002/anie.199312441 – ident: ref59/cit59 doi: 10.1021/ja0289402 – ident: ref14/cit14a doi: 10.1021/cr068072h – ident: ref35/cit35d doi: 10.1016/j.drudis.2010.08.017 – ident: ref49/cit49a doi: 10.1002/ejoc.200500076 – ident: ref32/cit32b doi: 10.1016/S0960-894X(01)80280-8 – ident: ref32/cit32a – ident: ref53/cit53b doi: 10.1055/s-0035-1562441 – ident: ref54/cit54f doi: 10.3987/COM-09-S(S)101 – ident: ref42/cit42b doi: 10.1021/ja00415a034 – ident: ref9/cit9e doi: 10.1002/chem.201804157 – ident: ref38/cit38b doi: 10.1016/S0040-4039(00)01342-3 – ident: ref41/cit41d doi: 10.1016/j.tetlet.2008.06.028 – ident: ref41/cit41e doi: 10.1021/ja804048a – ident: ref11/cit11h doi: 10.1002/chem.201804708 – ident: ref26/cit26 doi: 10.3987/COM-05-S(T)34 – ident: ref64/cit64c doi: 10.1002/anie.201505748 – ident: ref24/cit24a doi: 10.1016/S0040-4039(02)00449-5 – ident: ref2/cit2b doi: 10.1021/cr300389u – ident: ref57/cit57c doi: 10.3987/COM-18-S(F)68 – volume-title: Iminosugars: From Synthesis to Therapeutics Applications year: 2007 ident: ref35/cit35c doi: 10.1002/9780470517437 – ident: ref2/cit2a doi: 10.1021/cr020095i – ident: ref5/cit5a doi: 10.1002/prac.18470410118 – ident: ref9/cit9a doi: 10.1021/ja0172215 – ident: ref12/cit12a doi: 10.1021/ja016885b – ident: ref6/cit6 doi: 10.1149/1.2426086 – ident: ref1/cit1d doi: 10.1021/jm501100b – volume-title: Bioactive Heterocyclic Compound Classes: Pharmaceuticals year: 2012 ident: ref1/cit1a doi: 10.1002/9783527664412 – ident: ref21/cit21b doi: 10.1016/S0040-4020(00)00653-0 – ident: ref29/cit29e doi: 10.1016/j.jfluchem.2019.01.007 – ident: ref7/cit7 doi: 10.1039/c0gc00382d – ident: ref11/cit11c doi: 10.1016/j.tet.2015.04.020 – ident: ref44/cit44a doi: 10.1016/j.tet.2006.01.071 – ident: ref10/cit10a doi: 10.1021/jo026421b – ident: ref12/cit12c doi: 10.1021/ja9032296 – start-page: 1 volume-title: Encyclopedia of Reagents for Organic Synthesis year: 2007 ident: ref20/cit20b – ident: ref11/cit11e doi: 10.1039/C5GC02626A – ident: ref17/cit17b doi: 10.1021/acs.chemrev.7b00475 – ident: ref35/cit35e doi: 10.1039/c3cs35525j – ident: ref36/cit36a doi: 10.1055/s-2002-32967 – ident: ref5/cit5b doi: 10.1002/jlac.18480640346 – ident: ref12/cit12b doi: 10.1002/anie.200503656 – ident: ref13/cit13 doi: 10.1002/chem.201901284 – ident: ref24/cit24b doi: 10.1002/chir.10151 – ident: ref14/cit14g doi: 10.1016/j.trechm.2019.01.011 – ident: ref53/cit53c doi: 10.1002/ejoc.201801305 – ident: ref11/cit11d doi: 10.1021/jacs.6b08667 – ident: ref39/cit39a doi: 10.1016/S0040-4020(02)00122-9 – ident: ref37/cit37a doi: 10.1016/j.tetlet.2004.09.036 – ident: ref64/cit64a doi: 10.1016/j.jfluchem.2015.04.011 – ident: ref64/cit64e doi: 10.3987/COM-18-S(T)43 – ident: ref64/cit64b doi: 10.1021/acs.joc.5b01909 – ident: ref37/cit37b doi: 10.1016/j.tetasy.2009.11.028 – ident: ref22/cit22c doi: 10.1016/S0040-4039(00)01749-4 – ident: ref22/cit22b doi: 10.1016/S0040-4020(97)01018-1 – ident: ref28/cit28 doi: 10.1016/j.tet.2011.09.080 – ident: ref11/cit11b doi: 10.1002/anie.200350892 – ident: ref40/cit40b doi: 10.1002/anie.199416991 – ident: ref55/cit55b doi: 10.1021/cr040679f – ident: ref48/cit48 doi: 10.1002/chem.200903512 – ident: ref60/cit60 doi: 10.1016/j.tet.2008.05.015 – ident: ref63/cit63 doi: 10.1016/S0040-4020(01)87042-3 – ident: ref12/cit12d doi: 10.1021/ol802984n – ident: ref50/cit50 doi: 10.3987/COM-08-S(N)26 – ident: ref17/cit17a doi: 10.1002/1521-3765(20020617)8:12<2650::AID-CHEM2650>3.0.CO;2-S – ident: ref29/cit29a doi: 10.1002/chem.200902634 – ident: ref10/cit10e doi: 10.1021/acscatal.9b01785 – ident: ref12/cit12f doi: 10.1016/j.jelechem.2015.02.001 – ident: ref62/cit62 doi: 10.1016/j.tet.2009.09.087 – ident: ref52/cit52b doi: 10.1002/0471224499.ch3 – ident: ref16/cit16c doi: 10.3762/bjoc.10.323 – ident: ref66/cit66 doi: 10.1002/celc.201900172 – ident: ref56/cit56 doi: 10.1021/acs.chemrev.7b00763 – ident: ref1/cit1e doi: 10.1021/acs.jmedchem.8b00876 – ident: ref8/cit8c doi: 10.1055/s-0037-1611568 – ident: ref31/cit31 doi: 10.1039/c2ra01254e – ident: ref9/cit9d doi: 10.1021/jacs.8b08592 – ident: ref10/cit10c doi: 10.1002/anie.201803887 – ident: ref57/cit57b doi: 10.1016/j.tetasy.2008.12.011 – ident: ref53/cit53a doi: 10.1021/ol0066274 – ident: ref58/cit58a doi: 10.1016/S0040-4039(97)10709-2 – ident: ref10/cit10d doi: 10.1002/anie.201900956 – ident: ref36/cit36c doi: 10.1039/C5OB02560E – ident: ref38/cit38a doi: 10.1039/C39830001169 – ident: ref3/cit3b doi: 10.1021/acs.accounts.7b00406 – ident: ref30/cit30b doi: 10.1016/S0040-4039(00)01790-1 – ident: ref24/cit24c doi: 10.1016/j.jorganchem.2006.04.039 – ident: ref55/cit55a doi: 10.1021/ar010075n – ident: ref42/cit42a doi: 10.1021/ja00454a050 – ident: ref52/cit52c doi: 10.1055/s-2004-834931 – ident: ref16/cit16a doi: 10.1016/S0040-4020(01)91472-3 – ident: ref22/cit22a doi: 10.1016/0040-4039(94)88092-1 – ident: ref57/cit57a doi: 10.1016/j.tetlet.2008.06.112 – ident: ref64/cit64d doi: 10.1039/C5OB00520E – ident: ref43/cit43 doi: 10.1039/B816598J – ident: ref9/cit9g doi: 10.1002/celc.201900682 – ident: ref46/cit46a doi: 10.1016/S0040-4039(97)00099-3 – ident: ref4/cit4 doi: 10.1021/cr100287w – ident: ref29/cit29c doi: 10.1002/ejoc.201501203 – ident: ref34/cit34 doi: 10.1149/1.2401038 – ident: ref55/cit55c doi: 10.1248/cpb.c13-00456 – ident: ref29/cit29b doi: 10.1016/j.tet.2015.01.029 – ident: ref44/cit44b doi: 10.1039/c1cc00049g – ident: ref54/cit54a doi: 10.1021/ol005795t – ident: ref9/cit9f doi: 10.1021/acscatal.8b01069 |
SSID | ssj0002467 |
Score | 2.6501725 |
SecondaryResourceType | review_article |
Snippet | Conspectus Stereodefined aliphatic heterocycles are one of the fundamental structural motifs observed in natural products and biologically active compounds.... Stereodefined aliphatic heterocycles are one of the fundamental structural motifs observed in natural products and biologically active compounds. Various... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 105 |
SubjectTerms | Electrodes Heterocyclic Compounds - chemical synthesis Heterocyclic Compounds - chemistry Molecular Structure Oxidation-Reduction Stereoisomerism |
Title | Anodic Oxidation for the Stereoselective Synthesis of Heterocycles |
URI | http://dx.doi.org/10.1021/acs.accounts.9b00513 https://www.ncbi.nlm.nih.gov/pubmed/31872753 https://www.proquest.com/docview/2330335320 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5SD3rx_agvInjxsLWbZF_HWixF0B5qobclTyjKrpgWrL_eyT4qKqV6DclAJjOZGZL5PoSuoNpSgQZHYpQKjwXKeIng2jNSBEEswjjirt_54THsj9j9OBh_FYo_X_CJf8OlBdEFc4JtFQh-jqR2nYAYV2x1usPFzUtYWGJkQonMYkbqVrklUlxAkvZ7QFqSZRbRpreNBnXPTvnJ5Lk1m4qW_PgN4fjHjeygrSrxxJ3SUnbRms720Ea35nvbR7edLFcTiQfvk5JnCUM-iyE_xEPQvc5twZgDlyMezjMYthOLc4P77j9NLufud90BGvXunrp9r2JY8Djz2dRLmGnHOorhGJWDJnRYhYGkTFABoZ3rRCbg4CqkMqEKpspIm0iwxFBwc2oSeogaWZ7pY4TbgdERMS7-KUjRDPcFAdGUST9URvMmugYFpJWH2LR4_CZ-6gZrraSVVpqI1keSygqq3DFmvKxY5S1WvZZQHSvmX9annYKq3UMJz3Q-symhENipo8xooqPSDBYS4Q6ElC-gJ__YzynaJK5MB7Mk_hlqTN9m-hxymam4KAz4EyfT8Pg |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5ED_Xi-1GfEbx42OrmsY9jLUp9H6ribdlkEyjKrpgW1F_vZB8VBZFeQzIkk5nMNyT5BuAQs61MaHQkzpj0uMiMF8tUe0ZJISIZRGHq_jvf3Ab9B375JJ5mQDR_YXASFiXZ8hL_m13AP3ZtaVVAwXZKIj9Xq3YO8Qh1OVe3N5gcwJQHFVUmZso84rT5MfeHFBeXlP0Zl_4Am2XQOV-Ex8l0y7cmz53xSHbU5y8mx6nXswQLNQwl3cpulmFG5yvQ6jXV31bhtJsX2VCRu_dhVXWJILoliBbJAHdCF7asn4NHJRl85Nhsh5YUhvTd65pCfbi3dmvwcH523-t7db0FL-U-H3kxNyeRDiPc1MwRFTrmQqEYl0xioE91rGJ09yxgKmYZdlWhNqHksWHo9MzEbB1m8yLXm0BOhNEhNS4aZgjYTOpLiqIZV36QGZ224QgVkNT-YpPyKpz6iWtstJLUWmkDa3YmUTVxuauf8fLPKG8y6rUi7vin_0Gz6Qmq2l2bpLkuxjahDMM8cwU02rBRWcNEIp6ICAAF25piPfvQ6t_fXCfXF7dX2zBPXQKPlkr9HZgdvY31LqKckdwrbfoLW2D5WQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZSwMxEA6ioL54H_WM4IsPW7ub7PVYq6XeQhXEl2VzQVF2xbSg_npn9igqiOhrSIZkjswMk8xHyD5kW8rXYEicMeFwXxknFql2jBS-H4kgClP873x5FfTu-Nm9f_8J6gs2YYGSLYr4aNXPylQdBtxDHE9LEAXbLJr5IV7tFFbuMO9qd_rjS9jjQdkuE7JlHnGv_jX3AxX0TdJ-9U0_BJyF4-nOk4fxlov3Jo_N0VA05fu3bo7_OtMCmavCUdou9WeRTOhsicx0ahS4ZXLUznI1kPT6dVCiL1GIcilEjbQPEtG5LXB04Mqk_bcMhu3A0tzQHr6yyeUbvrlbIXfdk9tOz6lwF5yUu3zoxNy0Ih1GIFyFDQuxg6EvGRdMgMNPdSxjMHsVMBkzBVNlqE0oeGwYGD8zMVslk1me6XVCW77RoWfQKyoI3EzqCg9IMy7dQBmdNsgBMCCp7MYmRUnccxMcrLmSVFxpEFZLJ5FVA3PE0Xj6ZZUzXvVcNvD4Zf5eLfgEWI3lkzTT-cgmHgN3zxBIo0HWSo0YU4SbEQJBn2384Ty7ZPrmuJtcnF6db5JZD_N4UFbP3SKTw5eR3oZgZyh2CrX-AGgG-9w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anodic+Oxidation+for+the+Stereoselective+Synthesis+of+Heterocycles&rft.jtitle=Accounts+of+chemical+research&rft.au=Yamamoto%2C+Kosuke&rft.au=Kuriyama%2C+Masami&rft.au=Onomura%2C+Osamu&rft.date=2020-01-21&rft.eissn=1520-4898&rft.volume=53&rft.issue=1&rft.spage=105&rft_id=info:doi/10.1021%2Facs.accounts.9b00513&rft_id=info%3Apmid%2F31872753&rft.externalDocID=31872753 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon |