Anodic Oxidation for the Stereoselective Synthesis of Heterocycles

Conspectus Stereodefined aliphatic heterocycles are one of the fundamental structural motifs observed in natural products and biologically active compounds. Various strategies for the synthesis of these building blocks based on transition metal catalysis, organocatalysis, and noncatalytic conditions...

Full description

Saved in:
Bibliographic Details
Published inAccounts of chemical research Vol. 53; no. 1; pp. 105 - 120
Main Authors Yamamoto, Kosuke, Kuriyama, Masami, Onomura, Osamu
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 21.01.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Conspectus Stereodefined aliphatic heterocycles are one of the fundamental structural motifs observed in natural products and biologically active compounds. Various strategies for the synthesis of these building blocks based on transition metal catalysis, organocatalysis, and noncatalytic conditions have been developed. Although electrosynthesis has also been utilized for the functionalization of aliphatic heterocycles, stereoselective transformations under electrochemical conditions are still a challenging field in electroorganic chemistry. This Account consists of four main topics related to our recent efforts on the diastereo- and/or enantioselective synthesis of aliphatic heterocycles, especially N-heterocycles, using anodic oxidations as key steps. The first topic is the development of stereoselective synthetic methods for multisubstituted piperidines and pyrrolidines from anodically prepared α-methoxy cyclic amines. Our strategies were based primarily on N-acyliminium ion chemistry, and the key electrochemical transformations were diastereoselective anodic methoxylation, diastereoselective arylation, and anodic deallylative methoxylation. Furthermore, we found a unique property of the N-cyano protecting group that enabled the electrochemical α-methoxylation of α-substituted cyclic amines. The second topic of investigation is memory of chirality in electrochemical decarboxylative methoxylation. We observed that the electrochemical decarboxylative methoxylation of oxazolidine and thiazolidine derivatives with the appropriate N-protecting group occurred in a stereospecific manner even though the reaction proceeded through an sp2 planar carbon center. Our findings demonstrated the first example of memory of chirality in N-acyliminium ion chemistry. The third topic is the synthesis of chiral azabicyclo-N-oxyls and their application to chiral organocatalysis in the electrochemical oxidative kinetic resolution of secondary alcohols. The final topic is stereoselective transformations utilizing anodically generated halogen cations. We investigated the oxidative kinetic resolution of amino alcohol derivatives using anodically generated bromo cations. We also developed an intramolecular C–C bond formation of keto amides, a diastereoselective bromoiminolactonization of α-allyl malonamides, and an oxidative ring expansion reaction of allyl alcohols. It is noteworthy that most of the electrochemical reactions were performed in undivided cells under constant-current conditions, which avoided a complicated reaction setup and was beneficial for a large-scale reaction. In addition, we developed some enantioselective electrochemical transformations that are still challenges in electroorganic chemistry. We hope that our research will contribute to the further development of diastereo- and/or enantioselective transformations and the construction of valuable heterocyclic compounds using an electrochemical approach.
AbstractList Stereodefined aliphatic heterocycles are one of the fundamental structural motifs observed in natural products and biologically active compounds. Various strategies for the synthesis of these building blocks based on transition metal catalysis, organocatalysis, and noncatalytic conditions have been developed. Although electrosynthesis has also been utilized for the functionalization of aliphatic heterocycles, stereoselective transformations under electrochemical conditions are still a challenging field in electroorganic chemistry. This Account consists of four main topics related to our recent efforts on the diastereo- and/or enantioselective synthesis of aliphatic heterocycles, especially N-heterocycles, using anodic oxidations as key steps. The first topic is the development of stereoselective synthetic methods for multisubstituted piperidines and pyrrolidines from anodically prepared α-methoxy cyclic amines. Our strategies were based primarily on N-acyliminium ion chemistry, and the key electrochemical transformations were diastereoselective anodic methoxylation, diastereoselective arylation, and anodic deallylative methoxylation. Furthermore, we found a unique property of the N-cyano protecting group that enabled the electrochemical α-methoxylation of α-substituted cyclic amines. The second topic of investigation is memory of chirality in electrochemical decarboxylative methoxylation. We observed that the electrochemical decarboxylative methoxylation of oxazolidine and thiazolidine derivatives with the appropriate N-protecting group occurred in a stereospecific manner even though the reaction proceeded through an sp2 planar carbon center. Our findings demonstrated the first example of memory of chirality in N-acyliminium ion chemistry. The third topic is the synthesis of chiral azabicyclo-N-oxyls and their application to chiral organocatalysis in the electrochemical oxidative kinetic resolution of secondary alcohols. The final topic is stereoselective transformations utilizing anodically generated halogen cations. We investigated the oxidative kinetic resolution of amino alcohol derivatives using anodically generated bromo cations. We also developed an intramolecular C-C bond formation of keto amides, a diastereoselective bromoiminolactonization of α-allyl malonamides, and an oxidative ring expansion reaction of allyl alcohols. It is noteworthy that most of the electrochemical reactions were performed in undivided cells under constant-current conditions, which avoided a complicated reaction setup and was beneficial for a large-scale reaction. In addition, we developed some enantioselective electrochemical transformations that are still challenges in electroorganic chemistry. We hope that our research will contribute to the further development of diastereo- and/or enantioselective transformations and the construction of valuable heterocyclic compounds using an electrochemical approach.Stereodefined aliphatic heterocycles are one of the fundamental structural motifs observed in natural products and biologically active compounds. Various strategies for the synthesis of these building blocks based on transition metal catalysis, organocatalysis, and noncatalytic conditions have been developed. Although electrosynthesis has also been utilized for the functionalization of aliphatic heterocycles, stereoselective transformations under electrochemical conditions are still a challenging field in electroorganic chemistry. This Account consists of four main topics related to our recent efforts on the diastereo- and/or enantioselective synthesis of aliphatic heterocycles, especially N-heterocycles, using anodic oxidations as key steps. The first topic is the development of stereoselective synthetic methods for multisubstituted piperidines and pyrrolidines from anodically prepared α-methoxy cyclic amines. Our strategies were based primarily on N-acyliminium ion chemistry, and the key electrochemical transformations were diastereoselective anodic methoxylation, diastereoselective arylation, and anodic deallylative methoxylation. Furthermore, we found a unique property of the N-cyano protecting group that enabled the electrochemical α-methoxylation of α-substituted cyclic amines. The second topic of investigation is memory of chirality in electrochemical decarboxylative methoxylation. We observed that the electrochemical decarboxylative methoxylation of oxazolidine and thiazolidine derivatives with the appropriate N-protecting group occurred in a stereospecific manner even though the reaction proceeded through an sp2 planar carbon center. Our findings demonstrated the first example of memory of chirality in N-acyliminium ion chemistry. The third topic is the synthesis of chiral azabicyclo-N-oxyls and their application to chiral organocatalysis in the electrochemical oxidative kinetic resolution of secondary alcohols. The final topic is stereoselective transformations utilizing anodically generated halogen cations. We investigated the oxidative kinetic resolution of amino alcohol derivatives using anodically generated bromo cations. We also developed an intramolecular C-C bond formation of keto amides, a diastereoselective bromoiminolactonization of α-allyl malonamides, and an oxidative ring expansion reaction of allyl alcohols. It is noteworthy that most of the electrochemical reactions were performed in undivided cells under constant-current conditions, which avoided a complicated reaction setup and was beneficial for a large-scale reaction. In addition, we developed some enantioselective electrochemical transformations that are still challenges in electroorganic chemistry. We hope that our research will contribute to the further development of diastereo- and/or enantioselective transformations and the construction of valuable heterocyclic compounds using an electrochemical approach.
Conspectus Stereodefined aliphatic heterocycles are one of the fundamental structural motifs observed in natural products and biologically active compounds. Various strategies for the synthesis of these building blocks based on transition metal catalysis, organocatalysis, and noncatalytic conditions have been developed. Although electrosynthesis has also been utilized for the functionalization of aliphatic heterocycles, stereoselective transformations under electrochemical conditions are still a challenging field in electroorganic chemistry. This Account consists of four main topics related to our recent efforts on the diastereo- and/or enantioselective synthesis of aliphatic heterocycles, especially N-heterocycles, using anodic oxidations as key steps. The first topic is the development of stereoselective synthetic methods for multisubstituted piperidines and pyrrolidines from anodically prepared α-methoxy cyclic amines. Our strategies were based primarily on N-acyliminium ion chemistry, and the key electrochemical transformations were diastereoselective anodic methoxylation, diastereoselective arylation, and anodic deallylative methoxylation. Furthermore, we found a unique property of the N-cyano protecting group that enabled the electrochemical α-methoxylation of α-substituted cyclic amines. The second topic of investigation is memory of chirality in electrochemical decarboxylative methoxylation. We observed that the electrochemical decarboxylative methoxylation of oxazolidine and thiazolidine derivatives with the appropriate N-protecting group occurred in a stereospecific manner even though the reaction proceeded through an sp2 planar carbon center. Our findings demonstrated the first example of memory of chirality in N-acyliminium ion chemistry. The third topic is the synthesis of chiral azabicyclo-N-oxyls and their application to chiral organocatalysis in the electrochemical oxidative kinetic resolution of secondary alcohols. The final topic is stereoselective transformations utilizing anodically generated halogen cations. We investigated the oxidative kinetic resolution of amino alcohol derivatives using anodically generated bromo cations. We also developed an intramolecular C–C bond formation of keto amides, a diastereoselective bromoiminolactonization of α-allyl malonamides, and an oxidative ring expansion reaction of allyl alcohols. It is noteworthy that most of the electrochemical reactions were performed in undivided cells under constant-current conditions, which avoided a complicated reaction setup and was beneficial for a large-scale reaction. In addition, we developed some enantioselective electrochemical transformations that are still challenges in electroorganic chemistry. We hope that our research will contribute to the further development of diastereo- and/or enantioselective transformations and the construction of valuable heterocyclic compounds using an electrochemical approach.
Stereodefined aliphatic heterocycles are one of the fundamental structural motifs observed in natural products and biologically active compounds. Various strategies for the synthesis of these building blocks based on transition metal catalysis, organocatalysis, and noncatalytic conditions have been developed. Although electrosynthesis has also been utilized for the functionalization of aliphatic heterocycles, stereoselective transformations under electrochemical conditions are still a challenging field in electroorganic chemistry. This Account consists of four main topics related to our recent efforts on the diastereo- and/or enantioselective synthesis of aliphatic heterocycles, especially N-heterocycles, using anodic oxidations as key steps. The first topic is the development of stereoselective synthetic methods for multisubstituted piperidines and pyrrolidines from anodically prepared α-methoxy cyclic amines. Our strategies were based primarily on -acyliminium ion chemistry, and the key electrochemical transformations were diastereoselective anodic methoxylation, diastereoselective arylation, and anodic deallylative methoxylation. Furthermore, we found a unique property of the -cyano protecting group that enabled the electrochemical α-methoxylation of α-substituted cyclic amines. The second topic of investigation is memory of chirality in electrochemical decarboxylative methoxylation. We observed that the electrochemical decarboxylative methoxylation of oxazolidine and thiazolidine derivatives with the appropriate N-protecting group occurred in a stereospecific manner even though the reaction proceeded through an sp planar carbon center. Our findings demonstrated the first example of memory of chirality in -acyliminium ion chemistry. The third topic is the synthesis of chiral azabicyclo- -oxyls and their application to chiral organocatalysis in the electrochemical oxidative kinetic resolution of secondary alcohols. The final topic is stereoselective transformations utilizing anodically generated halogen cations. We investigated the oxidative kinetic resolution of amino alcohol derivatives using anodically generated bromo cations. We also developed an intramolecular C-C bond formation of keto amides, a diastereoselective bromoiminolactonization of α-allyl malonamides, and an oxidative ring expansion reaction of allyl alcohols. It is noteworthy that most of the electrochemical reactions were performed in undivided cells under constant-current conditions, which avoided a complicated reaction setup and was beneficial for a large-scale reaction. In addition, we developed some enantioselective electrochemical transformations that are still challenges in electroorganic chemistry. We hope that our research will contribute to the further development of diastereo- and/or enantioselective transformations and the construction of valuable heterocyclic compounds using an electrochemical approach.
Author Onomura, Osamu
Yamamoto, Kosuke
Kuriyama, Masami
AuthorAffiliation Graduate School of Biomedical Sciences
AuthorAffiliation_xml – name: Graduate School of Biomedical Sciences
Author_xml – sequence: 1
  givenname: Kosuke
  orcidid: 0000-0002-8189-7141
  surname: Yamamoto
  fullname: Yamamoto, Kosuke
– sequence: 2
  givenname: Masami
  orcidid: 0000-0002-4871-6273
  surname: Kuriyama
  fullname: Kuriyama, Masami
– sequence: 3
  givenname: Osamu
  orcidid: 0000-0003-3703-1401
  surname: Onomura
  fullname: Onomura, Osamu
  email: onomura@nagasaki-u.ac.jp
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31872753$$D View this record in MEDLINE/PubMed
BookMark eNqFkLFOwzAQhi1UBG3hDRDKyJJi-5wmZisIKFKlDsAcOc5FGKVxsR1E3x5DWwYGmOy7-37L943IoLMdEnLG6IRRzi6V9hOlte274CeyojRjcECGLOM0FYUsBmRIKWXxLvgxGXn_GksupvkROQZW5DzPYEiuZ52tjU6WH6ZWwdguaaxLwgsmjwEdWo8t6mDeY73pYtsbn9gmmWOcWr3RLfoTctio1uPp7hyT57vbp5t5uljeP9zMFqkSTIRUioYWmBdaqzr-AxgImWkQFVScC4VSS1EU9RS0hDqiOscmr4RsoMgpNBLG5GL77trZtx59KFfGa2xb1aHtfckBKEAGnEb0fIf21Qrrcu3MSrlNud87AmILaGe9d9j8IIyWX3rLqLfc6y13emPs6ldMm_CtLThl2v_CdBv-mr7a3nXR1t-RT9eQlQg
CitedBy_id crossref_primary_10_1039_D2QO01664H
crossref_primary_10_1002_ejoc_202100988
crossref_primary_10_1039_D2QO01498J
crossref_primary_10_1039_D2CS00013J
crossref_primary_10_1186_s13065_024_01245_9
crossref_primary_10_1002_anie_202417439
crossref_primary_10_1002_bkcs_12218
crossref_primary_10_1055_a_2050_9368
crossref_primary_10_1021_acs_joc_0c03026
crossref_primary_10_1002_ange_202014289
crossref_primary_10_1002_adsc_202100366
crossref_primary_10_1002_anie_202016310
crossref_primary_10_1002_tcr_202100036
crossref_primary_10_1002_celc_202200954
crossref_primary_10_1002_chem_202401303
crossref_primary_10_1039_D3GC02283H
crossref_primary_10_3390_molecules28073059
crossref_primary_10_1021_acs_joc_2c00856
crossref_primary_10_1002_ange_202416126
crossref_primary_10_1039_D3GC02831C
crossref_primary_10_1021_acs_joc_1c02947
crossref_primary_10_1016_j_nanoen_2024_109884
crossref_primary_10_1039_D2GC03829C
crossref_primary_10_1002_ange_202413030
crossref_primary_10_1002_anie_202005099
crossref_primary_10_1055_a_1828_1217
crossref_primary_10_1002_cssc_202201662
crossref_primary_10_1021_acs_chemrev_1c00471
crossref_primary_10_1039_D2OB01501C
crossref_primary_10_1002_ajoc_202200486
crossref_primary_10_1002_anie_202422876
crossref_primary_10_1002_anie_202017359
crossref_primary_10_1002_anie_202006903
crossref_primary_10_1021_acs_joc_2c01816
crossref_primary_10_1039_D1QO00912E
crossref_primary_10_1039_D2SC03288K
crossref_primary_10_1039_D4QO01899K
crossref_primary_10_1002_tcr_202100025
crossref_primary_10_1039_D2QO01394K
crossref_primary_10_1002_anie_202203666
crossref_primary_10_1002_ange_202001510
crossref_primary_10_1002_anie_202110616
crossref_primary_10_1021_acs_joc_1c02275
crossref_primary_10_1002_adsc_202000996
crossref_primary_10_1038_s41467_022_35073_z
crossref_primary_10_1002_adsc_202101062
crossref_primary_10_1016_j_cclet_2023_108902
crossref_primary_10_1002_anie_202212131
crossref_primary_10_1016_j_cclet_2022_108097
crossref_primary_10_1039_D0QO01068E
crossref_primary_10_1039_D1OB01208H
crossref_primary_10_1002_chem_202101132
crossref_primary_10_1021_acs_joc_3c00790
crossref_primary_10_1002_anie_202003364
crossref_primary_10_1016_j_chempr_2020_08_025
crossref_primary_10_1021_acs_orglett_0c04296
crossref_primary_10_1055_a_2089_0485
crossref_primary_10_1021_acs_orglett_3c02997
crossref_primary_10_1002_ange_202422876
crossref_primary_10_1021_acs_orglett_1c02128
crossref_primary_10_1002_adsc_202300281
crossref_primary_10_1002_ajoc_202100607
crossref_primary_10_1021_jacs_1c09214
crossref_primary_10_1016_j_tetlet_2023_154410
crossref_primary_10_1021_acs_chemrev_2c00591
crossref_primary_10_1021_acs_orglett_0c03205
crossref_primary_10_1038_s41467_023_36704_9
crossref_primary_10_1002_ajoc_202200531
crossref_primary_10_1021_acs_joc_4c02567
crossref_primary_10_1016_j_scp_2023_101207
crossref_primary_10_1002_ange_202203666
crossref_primary_10_1002_adsc_202000228
crossref_primary_10_1002_ange_202212131
crossref_primary_10_1039_D1SC07124F
crossref_primary_10_1002_adsc_202100022
crossref_primary_10_1039_D0QO00901F
crossref_primary_10_1002_ange_202417439
crossref_primary_10_1002_ange_202003364
crossref_primary_10_1039_D4CC02033B
crossref_primary_10_1002_adsc_202200470
crossref_primary_10_1039_D2QO00996J
crossref_primary_10_1002_ajoc_202200009
crossref_primary_10_1039_D2QO00091A
crossref_primary_10_1039_D3GC04723G
crossref_primary_10_1002_cssc_202400028
crossref_primary_10_1002_ange_202304434
crossref_primary_10_1021_acs_orglett_3c02744
crossref_primary_10_1039_D5QO00289C
crossref_primary_10_1021_acs_joc_0c02429
crossref_primary_10_1038_s41467_021_25005_8
crossref_primary_10_1002_ajoc_202200547
crossref_primary_10_1002_adsc_202201338
crossref_primary_10_1002_adsc_202101249
crossref_primary_10_1039_D3QO00290J
crossref_primary_10_1039_D3GC01601C
crossref_primary_10_1021_acs_orglett_2c02101
crossref_primary_10_1039_D1SC02636D
crossref_primary_10_1039_D0GC00321B
crossref_primary_10_1002_tcr_202100047
crossref_primary_10_1039_D1NJ04819H
crossref_primary_10_1039_D4OB01081G
crossref_primary_10_1002_ange_202006903
crossref_primary_10_1039_D3GC03389A
crossref_primary_10_1002_cctc_202100304
crossref_primary_10_1039_D0GC01025A
crossref_primary_10_1002_celc_202300493
crossref_primary_10_6023_cjoc202107042
crossref_primary_10_1002_anie_202304434
crossref_primary_10_1002_adsc_202201332
crossref_primary_10_1002_ange_202005099
crossref_primary_10_1007_s11426_022_1360_3
crossref_primary_10_1016_j_mcat_2023_113663
crossref_primary_10_6023_cjoc202310024
crossref_primary_10_1038_s41467_023_43698_x
crossref_primary_10_1039_D4OB01673D
crossref_primary_10_1002_ange_202017359
crossref_primary_10_1039_D0OB02459G
crossref_primary_10_1007_s11426_020_9938_9
crossref_primary_10_1039_D3QO01690K
crossref_primary_10_1002_adsc_202301395
crossref_primary_10_1002_adsc_202401276
crossref_primary_10_1021_acs_orglett_4c03348
crossref_primary_10_1039_D2GC01129H
crossref_primary_10_1246_bcsj_20200362
crossref_primary_10_1039_D2CC02641D
crossref_primary_10_6023_A22060260
crossref_primary_10_1021_acs_joc_3c00223
crossref_primary_10_1039_D1QO00168J
crossref_primary_10_1002_anie_202207660
crossref_primary_10_2174_1385272826666220516113152
crossref_primary_10_1016_j_tet_2023_133383
crossref_primary_10_1002_tcr_202000116
crossref_primary_10_1039_D3OB00744H
crossref_primary_10_1039_D3QO00370A
crossref_primary_10_1002_cjoc_202200245
crossref_primary_10_1021_acscatal_1c06012
crossref_primary_10_1021_jacs_3c08479
crossref_primary_10_6023_cjoc202309022
crossref_primary_10_1002_ajoc_202200685
crossref_primary_10_1002_ange_202016310
crossref_primary_10_1038_s41467_023_36000_6
crossref_primary_10_1002_anie_202014289
crossref_primary_10_1038_s42004_023_00910_9
crossref_primary_10_1039_D0GC00375A
crossref_primary_10_1039_D4CC06472K
crossref_primary_10_1134_S1070428024130025
crossref_primary_10_1039_D2SC03951F
crossref_primary_10_1039_D3SC05229J
crossref_primary_10_1021_acs_joc_3c02931
crossref_primary_10_1039_D3OB00313B
crossref_primary_10_1039_D4GC01595A
crossref_primary_10_1002_adfm_202315675
crossref_primary_10_1002_anie_202115178
crossref_primary_10_1002_anie_202416126
crossref_primary_10_1021_acs_orglett_3c02309
crossref_primary_10_1039_D4GC04495A
crossref_primary_10_1002_ejoc_202100368
crossref_primary_10_1021_acsomega_3c09790
crossref_primary_10_1039_D4CC00919C
crossref_primary_10_1002_ejoc_202000688
crossref_primary_10_1039_D0OB01425G
crossref_primary_10_1002_advs_202411964
crossref_primary_10_1016_j_tetlet_2021_153567
crossref_primary_10_1002_adsc_202400761
crossref_primary_10_1002_anie_202001510
crossref_primary_10_1002_asia_202300122
crossref_primary_10_1039_D2OB01849G
crossref_primary_10_1002_cssc_202100682
crossref_primary_10_1021_acs_chemrev_1c00614
crossref_primary_10_1055_a_2004_6485
crossref_primary_10_1016_j_jelechem_2022_116629
crossref_primary_10_1002_ange_202115178
crossref_primary_10_1016_j_scib_2021_07_011
crossref_primary_10_1016_j_matt_2023_12_014
crossref_primary_10_1055_a_2039_1728
crossref_primary_10_1002_ejoc_202101189
crossref_primary_10_1002_adsc_202301343
crossref_primary_10_1002_adma_202304716
crossref_primary_10_1002_ange_202110616
crossref_primary_10_1002_slct_202004340
crossref_primary_10_1021_jacs_9b13117
crossref_primary_10_1021_jacs_1c08671
crossref_primary_10_1039_D0GC04362A
crossref_primary_10_1039_D3QO00662J
crossref_primary_10_5796_electrochemistry_20_00088
crossref_primary_10_1002_ange_202207660
crossref_primary_10_1016_j_tet_2025_134467
crossref_primary_10_1039_D4QO00846D
crossref_primary_10_1080_00397911_2022_2028843
crossref_primary_10_1002_anie_202413030
crossref_primary_10_1038_s41467_023_37965_0
crossref_primary_10_1039_D0GC01247E
Cites_doi 10.1016/j.tet.2008.02.060
10.1016/S0040-4039(01)83864-8
10.1021/acs.accounts.6b00163
10.1055/s-0037-1611791
10.3987/REV-12-744
10.1002/(SICI)1521-3765(19980310)4:3<373::AID-CHEM373>3.0.CO;2-O
10.1021/acs.chemrev.7b00353
10.1016/j.tet.2008.06.004
10.1021/acs.orglett.8b03081
10.1021/ja983801z
10.1002/ejoc.200700054
10.1021/acs.chemrev.7b00397
10.1002/chem.200900159
10.1021/ja00398a058
10.1016/S0013-4686(03)00361-X
10.1016/S0008-6215(00)00018-5
10.1246/cl.1988.1065
10.1016/S0040-4020(00)00159-9
10.1016/j.tetlet.2004.05.140
10.1248/cpb.55.349
10.3987/COM-13-S(S)27
10.1021/jo100714y
10.1039/C6GC00666C
10.1002/(SICI)1099-0690(199809)1998:9<1955::AID-EJOC1955>3.0.CO;2-U
10.1016/j.tet.2010.07.009
10.1002/(SICI)1099-0690(199910)1999:10<2645::AID-EJOC2645>3.0.CO;2-4
10.1039/C5NP00096C
10.1021/acscatal.8b01682
10.1021/jm4017625
10.1021/cr000433k
10.1039/C6SC02117D
10.1021/acscatal.6b01725
10.1021/jacs.8b00391
10.1039/C7CS00619E
10.1021/acs.chemrev.7b00532
10.3987/COM-08-S(D)10
10.1021/acs.orglett.8b04090
10.1021/acscatal.8b01697
10.1002/adsc.201600644
10.1039/C7CS00449D
10.1021/ol9905046
10.1055/s-0037-1610682
10.1016/j.tetlet.2006.05.158
10.1016/0040-4020(95)00842-X
10.1039/C4CC05906A
10.1021/acs.chemrev.7b00656
10.5796/electrochemistry.81.374
10.1039/c3cs60464k
10.1016/j.tetlet.2007.04.010
10.1055/s-0037-1611942
10.1016/S0022-0728(01)00389-8
10.1039/C5OB01336D
10.1021/acs.chemrev.7b00271
10.1021/ol025865r
10.1055/s-2006-944214
10.1002/adsc.201300961
10.1002/ejoc.201700948
10.1002/cctc.201402366
10.1038/s41929-018-0083-8
10.1021/acscatal.9b02230
10.5796/electrochemistry.74.645
10.1016/S0022-0728(01)00404-1
10.1002/9783527664412
10.1002/anie.199312441
10.1021/ja0289402
10.1021/cr068072h
10.1016/j.drudis.2010.08.017
10.1002/ejoc.200500076
10.1016/S0960-894X(01)80280-8
10.1055/s-0035-1562441
10.3987/COM-09-S(S)101
10.1021/ja00415a034
10.1002/chem.201804157
10.1016/S0040-4039(00)01342-3
10.1016/j.tetlet.2008.06.028
10.1021/ja804048a
10.1002/chem.201804708
10.3987/COM-05-S(T)34
10.1002/anie.201505748
10.1016/S0040-4039(02)00449-5
10.1021/cr300389u
10.3987/COM-18-S(F)68
10.1002/9780470517437
10.1021/cr020095i
10.1002/prac.18470410118
10.1021/ja0172215
10.1021/ja016885b
10.1149/1.2426086
10.1021/jm501100b
10.1016/S0040-4020(00)00653-0
10.1016/j.jfluchem.2019.01.007
10.1039/c0gc00382d
10.1016/j.tet.2015.04.020
10.1016/j.tet.2006.01.071
10.1021/jo026421b
10.1021/ja9032296
10.1039/C5GC02626A
10.1021/acs.chemrev.7b00475
10.1039/c3cs35525j
10.1055/s-2002-32967
10.1002/jlac.18480640346
10.1002/anie.200503656
10.1002/chem.201901284
10.1002/chir.10151
10.1016/j.trechm.2019.01.011
10.1002/ejoc.201801305
10.1021/jacs.6b08667
10.1016/S0040-4020(02)00122-9
10.1016/j.tetlet.2004.09.036
10.1016/j.jfluchem.2015.04.011
10.3987/COM-18-S(T)43
10.1021/acs.joc.5b01909
10.1016/j.tetasy.2009.11.028
10.1016/S0040-4039(00)01749-4
10.1016/S0040-4020(97)01018-1
10.1016/j.tet.2011.09.080
10.1002/anie.200350892
10.1002/anie.199416991
10.1021/cr040679f
10.1002/chem.200903512
10.1016/j.tet.2008.05.015
10.1016/S0040-4020(01)87042-3
10.1021/ol802984n
10.3987/COM-08-S(N)26
10.1002/1521-3765(20020617)8:12<2650::AID-CHEM2650>3.0.CO;2-S
10.1002/chem.200902634
10.1021/acscatal.9b01785
10.1016/j.jelechem.2015.02.001
10.1016/j.tet.2009.09.087
10.1002/0471224499.ch3
10.3762/bjoc.10.323
10.1002/celc.201900172
10.1021/acs.chemrev.7b00763
10.1021/acs.jmedchem.8b00876
10.1055/s-0037-1611568
10.1039/c2ra01254e
10.1021/jacs.8b08592
10.1002/anie.201803887
10.1016/j.tetasy.2008.12.011
10.1021/ol0066274
10.1016/S0040-4039(97)10709-2
10.1002/anie.201900956
10.1039/C5OB02560E
10.1039/C39830001169
10.1021/acs.accounts.7b00406
10.1016/S0040-4039(00)01790-1
10.1016/j.jorganchem.2006.04.039
10.1021/ar010075n
10.1021/ja00454a050
10.1055/s-2004-834931
10.1016/S0040-4020(01)91472-3
10.1016/0040-4039(94)88092-1
10.1016/j.tetlet.2008.06.112
10.1039/C5OB00520E
10.1039/B816598J
10.1002/celc.201900682
10.1016/S0040-4039(97)00099-3
10.1021/cr100287w
10.1002/ejoc.201501203
10.1149/1.2401038
10.1248/cpb.c13-00456
10.1016/j.tet.2015.01.029
10.1039/c1cc00049g
10.1021/ol005795t
10.1021/acscatal.8b01069
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/acs.accounts.9b00513
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-4898
EndPage 120
ExternalDocumentID 31872753
10_1021_acs_accounts_9b00513
a697124595
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID -
.K2
02
23M
53G
55A
5GY
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DZ
EBS
ED
ED~
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
RNS
ROL
TWZ
UI2
UPT
VF5
VG9
W1F
WH7
X
YZZ
---
-DZ
-~X
4.4
5ZA
6J9
6P2
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
AFXLT
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
ZCA
~02
CGR
CUY
CVF
ECM
EIF
NPM
YIN
7X8
ID FETCH-LOGICAL-a414t-94f08e78ccad024313495c34b3b224ae9c9488d63c93df08c7ef7b49f38703f93
IEDL.DBID ACS
ISSN 0001-4842
1520-4898
IngestDate Thu Jul 10 22:59:13 EDT 2025
Wed Feb 19 02:30:15 EST 2025
Tue Jul 01 03:16:04 EDT 2025
Thu Apr 24 22:52:48 EDT 2025
Thu Aug 27 22:10:49 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a414t-94f08e78ccad024313495c34b3b224ae9c9488d63c93df08c7ef7b49f38703f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-4871-6273
0000-0002-8189-7141
0000-0003-3703-1401
PMID 31872753
PQID 2330335320
PQPubID 23479
PageCount 16
ParticipantIDs proquest_miscellaneous_2330335320
pubmed_primary_31872753
crossref_primary_10_1021_acs_accounts_9b00513
crossref_citationtrail_10_1021_acs_accounts_9b00513
acs_journals_10_1021_acs_accounts_9b00513
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-21
PublicationDateYYYYMMDD 2020-01-21
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-21
  day: 21
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Accounts of chemical research
PublicationTitleAlternate Acc. Chem. Res
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref17/cit17b
ref63/cit63b
ref45/cit45
ref1/cit1e
ref1/cit1d
ref37/cit37b
ref17/cit17a
ref37/cit37a
ref52/cit52
ref23/cit23
Evans D. A. (ref20/cit20b) 2007
ref1/cit1c
ref57/cit57b
ref57/cit57c
ref48/cit48
ref57/cit57a
ref5/cit5b
ref5/cit5a
ref16/cit16c
ref16/cit16b
ref36/cit36a
ref16/cit16a
ref36/cit36b
ref36/cit36c
ref19/cit19
ref3/cit3b
ref22/cit22a
ref3/cit3a
ref22/cit22d
ref22/cit22c
ref13/cit13
ref22/cit22b
ref61/cit61
ref42/cit42b
ref42/cit42a
ref6/cit6
ref10/cit10h
ref65/cit65
ref10/cit10d
ref29/cit29c
ref10/cit10e
ref29/cit29b
ref10/cit10f
ref29/cit29a
ref10/cit10g
ref8/cit8a
ref10/cit10a
ref8/cit8c
ref10/cit10b
ref29/cit29e
Lamberth C. (ref1/cit1b) 2012
ref8/cit8b
ref10/cit10c
ref29/cit29d
ref21/cit21b
ref41/cit41f
ref49/cit49a
ref41/cit41e
ref49/cit49b
ref21/cit21a
ref39/cit39a
ref41/cit41d
ref49/cit49c
ref39/cit39b
ref39/cit39c
ref43/cit43
ref28/cit28
ref41/cit41c
ref41/cit41b
ref41/cit41a
ref18/cit18b
ref18/cit18a
ref38/cit38b
ref38/cit38a
ref66/cit66
ref30/cit30a
ref20/cit20a
ref40/cit40b
ref30/cit30b
ref40/cit40c
ref33/cit33
ref58/cit58d
ref58/cit58c
ref40/cit40a
ref58/cit58b
ref58/cit58a
ref53/cit53a
ref27/cit27
ref53/cit53c
ref53/cit53b
ref63/cit63
ref56/cit56
ref12/cit12g
ref12/cit12f
ref12/cit12e
ref12/cit12d
ref12/cit12c
ref12/cit12b
ref12/cit12a
ref2/cit2b
ref31/cit31
ref59/cit59
ref2/cit2a
Lamberth C. (ref1/cit1a) 2012
ref34/cit34
ref60/cit60
ref52/cit52b
ref52/cit52c
ref11/cit11g
ref11/cit11f
ref11/cit11h
ref11/cit11c
ref11/cit11b
ref11/cit11e
ref11/cit11d
ref11/cit11a
ref32/cit32b
ref32/cit32a
ref46/cit46a
ref46/cit46b
ref50/cit50
ref35/cit35a
ref35/cit35e
ref55/cit55b
ref35/cit35d
ref55/cit55c
Compain P. (ref35/cit35c) 2007
ref35/cit35b
ref9/cit9c
ref9/cit9b
ref9/cit9a
ref25/cit25
ref9/cit9g
ref9/cit9f
ref9/cit9e
ref9/cit9d
ref51/cit51
ref55/cit55a
ref54/cit54c
ref64/cit64e
ref44/cit44a
ref54/cit54b
ref64/cit64d
ref54/cit54a
ref64/cit64c
ref26/cit26
ref64/cit64b
ref64/cit64a
ref54/cit54f
ref54/cit54e
ref54/cit54d
ref14/cit14a
ref24/cit24c
ref24/cit24b
ref14/cit14c
ref14/cit14b
ref15/cit15
ref14/cit14e
ref14/cit14d
ref14/cit14g
ref24/cit24a
ref62/cit62
ref14/cit14f
ref4/cit4
ref47/cit47
ref44/cit44b
ref7/cit7
ref44/cit44c
References_xml – ident: ref47/cit47
  doi: 10.1016/j.tet.2008.02.060
– ident: ref23/cit23
  doi: 10.1016/S0040-4039(01)83864-8
– ident: ref39/cit39c
  doi: 10.1021/acs.accounts.6b00163
– ident: ref65/cit65
  doi: 10.1055/s-0037-1611791
– ident: ref16/cit16b
  doi: 10.3987/REV-12-744
– ident: ref52/cit52
  doi: 10.1002/(SICI)1521-3765(19980310)4:3<373::AID-CHEM373>3.0.CO;2-O
– ident: ref18/cit18b
  doi: 10.1021/acs.chemrev.7b00353
– ident: ref27/cit27
  doi: 10.1016/j.tet.2008.06.004
– ident: ref9/cit9b
  doi: 10.1021/acs.orglett.8b03081
– ident: ref30/cit30a
  doi: 10.1021/ja983801z
– ident: ref49/cit49b
  doi: 10.1002/ejoc.200700054
– ident: ref14/cit14c
  doi: 10.1021/acs.chemrev.7b00397
– ident: ref58/cit58b
  doi: 10.1002/chem.200900159
– ident: ref20/cit20a
  doi: 10.1021/ja00398a058
– ident: ref54/cit54d
  doi: 10.1016/S0013-4686(03)00361-X
– ident: ref35/cit35a
  doi: 10.1016/S0008-6215(00)00018-5
– ident: ref61/cit61
  doi: 10.1246/cl.1988.1065
– ident: ref15/cit15
  doi: 10.1016/S0040-4020(00)00159-9
– ident: ref36/cit36b
  doi: 10.1016/j.tetlet.2004.05.140
– ident: ref39/cit39b
  doi: 10.1248/cpb.55.349
– ident: ref33/cit33
  doi: 10.3987/COM-13-S(S)27
– ident: ref41/cit41f
  doi: 10.1021/jo100714y
– ident: ref11/cit11f
  doi: 10.1039/C6GC00666C
– ident: ref46/cit46b
  doi: 10.1002/(SICI)1099-0690(199809)1998:9<1955::AID-EJOC1955>3.0.CO;2-U
– ident: ref22/cit22d
  doi: 10.1016/j.tet.2010.07.009
– ident: ref41/cit41a
  doi: 10.1002/(SICI)1099-0690(199910)1999:10<2645::AID-EJOC2645>3.0.CO;2-4
– ident: ref44/cit44c
  doi: 10.1039/C5NP00096C
– ident: ref8/cit8a
  doi: 10.1021/acscatal.8b01682
– ident: ref1/cit1c
  doi: 10.1021/jm4017625
– ident: ref35/cit35b
  doi: 10.1021/cr000433k
– ident: ref12/cit12g
  doi: 10.1039/C6SC02117D
– ident: ref19/cit19
  doi: 10.1021/acscatal.6b01725
– ident: ref9/cit9c
  doi: 10.1021/jacs.8b00391
– ident: ref14/cit14f
  doi: 10.1039/C7CS00619E
– ident: ref18/cit18a
  doi: 10.1021/acs.chemrev.7b00532
– ident: ref54/cit54e
  doi: 10.3987/COM-08-S(D)10
– ident: ref10/cit10h
  doi: 10.1021/acs.orglett.8b04090
– ident: ref8/cit8b
  doi: 10.1021/acscatal.8b01697
– ident: ref3/cit3a
  doi: 10.1002/adsc.201600644
– ident: ref49/cit49c
  doi: 10.1039/C7CS00449D
– ident: ref21/cit21a
  doi: 10.1021/ol9905046
– ident: ref51/cit51
  doi: 10.1055/s-0037-1610682
– ident: ref25/cit25
  doi: 10.1016/j.tetlet.2006.05.158
– ident: ref63/cit63b
  doi: 10.1016/0040-4020(95)00842-X
– ident: ref12/cit12e
  doi: 10.1039/C4CC05906A
– ident: ref14/cit14e
  doi: 10.1021/acs.chemrev.7b00656
– ident: ref58/cit58c
  doi: 10.5796/electrochemistry.81.374
– ident: ref14/cit14b
  doi: 10.1039/c3cs60464k
– ident: ref41/cit41c
  doi: 10.1016/j.tetlet.2007.04.010
– ident: ref10/cit10g
  doi: 10.1055/s-0037-1611942
– ident: ref11/cit11a
  doi: 10.1016/S0022-0728(01)00389-8
– ident: ref40/cit40c
  doi: 10.1039/C5OB01336D
– ident: ref14/cit14d
  doi: 10.1021/acs.chemrev.7b00271
– ident: ref54/cit54c
  doi: 10.1021/ol025865r
– ident: ref41/cit41b
  doi: 10.1055/s-2006-944214
– ident: ref58/cit58d
  doi: 10.1002/adsc.201300961
– ident: ref29/cit29d
  doi: 10.1002/ejoc.201700948
– ident: ref10/cit10b
  doi: 10.1002/cctc.201402366
– ident: ref11/cit11g
  doi: 10.1038/s41929-018-0083-8
– ident: ref10/cit10f
  doi: 10.1021/acscatal.9b02230
– ident: ref45/cit45
  doi: 10.5796/electrochemistry.74.645
– ident: ref54/cit54b
  doi: 10.1016/S0022-0728(01)00404-1
– volume-title: Bioactive Heterocyclic Compound Classes: Agrochemicals
  year: 2012
  ident: ref1/cit1b
  doi: 10.1002/9783527664412
– ident: ref40/cit40a
  doi: 10.1002/anie.199312441
– ident: ref59/cit59
  doi: 10.1021/ja0289402
– ident: ref14/cit14a
  doi: 10.1021/cr068072h
– ident: ref35/cit35d
  doi: 10.1016/j.drudis.2010.08.017
– ident: ref49/cit49a
  doi: 10.1002/ejoc.200500076
– ident: ref32/cit32b
  doi: 10.1016/S0960-894X(01)80280-8
– ident: ref32/cit32a
– ident: ref53/cit53b
  doi: 10.1055/s-0035-1562441
– ident: ref54/cit54f
  doi: 10.3987/COM-09-S(S)101
– ident: ref42/cit42b
  doi: 10.1021/ja00415a034
– ident: ref9/cit9e
  doi: 10.1002/chem.201804157
– ident: ref38/cit38b
  doi: 10.1016/S0040-4039(00)01342-3
– ident: ref41/cit41d
  doi: 10.1016/j.tetlet.2008.06.028
– ident: ref41/cit41e
  doi: 10.1021/ja804048a
– ident: ref11/cit11h
  doi: 10.1002/chem.201804708
– ident: ref26/cit26
  doi: 10.3987/COM-05-S(T)34
– ident: ref64/cit64c
  doi: 10.1002/anie.201505748
– ident: ref24/cit24a
  doi: 10.1016/S0040-4039(02)00449-5
– ident: ref2/cit2b
  doi: 10.1021/cr300389u
– ident: ref57/cit57c
  doi: 10.3987/COM-18-S(F)68
– volume-title: Iminosugars: From Synthesis to Therapeutics Applications
  year: 2007
  ident: ref35/cit35c
  doi: 10.1002/9780470517437
– ident: ref2/cit2a
  doi: 10.1021/cr020095i
– ident: ref5/cit5a
  doi: 10.1002/prac.18470410118
– ident: ref9/cit9a
  doi: 10.1021/ja0172215
– ident: ref12/cit12a
  doi: 10.1021/ja016885b
– ident: ref6/cit6
  doi: 10.1149/1.2426086
– ident: ref1/cit1d
  doi: 10.1021/jm501100b
– volume-title: Bioactive Heterocyclic Compound Classes: Pharmaceuticals
  year: 2012
  ident: ref1/cit1a
  doi: 10.1002/9783527664412
– ident: ref21/cit21b
  doi: 10.1016/S0040-4020(00)00653-0
– ident: ref29/cit29e
  doi: 10.1016/j.jfluchem.2019.01.007
– ident: ref7/cit7
  doi: 10.1039/c0gc00382d
– ident: ref11/cit11c
  doi: 10.1016/j.tet.2015.04.020
– ident: ref44/cit44a
  doi: 10.1016/j.tet.2006.01.071
– ident: ref10/cit10a
  doi: 10.1021/jo026421b
– ident: ref12/cit12c
  doi: 10.1021/ja9032296
– start-page: 1
  volume-title: Encyclopedia of Reagents for Organic Synthesis
  year: 2007
  ident: ref20/cit20b
– ident: ref11/cit11e
  doi: 10.1039/C5GC02626A
– ident: ref17/cit17b
  doi: 10.1021/acs.chemrev.7b00475
– ident: ref35/cit35e
  doi: 10.1039/c3cs35525j
– ident: ref36/cit36a
  doi: 10.1055/s-2002-32967
– ident: ref5/cit5b
  doi: 10.1002/jlac.18480640346
– ident: ref12/cit12b
  doi: 10.1002/anie.200503656
– ident: ref13/cit13
  doi: 10.1002/chem.201901284
– ident: ref24/cit24b
  doi: 10.1002/chir.10151
– ident: ref14/cit14g
  doi: 10.1016/j.trechm.2019.01.011
– ident: ref53/cit53c
  doi: 10.1002/ejoc.201801305
– ident: ref11/cit11d
  doi: 10.1021/jacs.6b08667
– ident: ref39/cit39a
  doi: 10.1016/S0040-4020(02)00122-9
– ident: ref37/cit37a
  doi: 10.1016/j.tetlet.2004.09.036
– ident: ref64/cit64a
  doi: 10.1016/j.jfluchem.2015.04.011
– ident: ref64/cit64e
  doi: 10.3987/COM-18-S(T)43
– ident: ref64/cit64b
  doi: 10.1021/acs.joc.5b01909
– ident: ref37/cit37b
  doi: 10.1016/j.tetasy.2009.11.028
– ident: ref22/cit22c
  doi: 10.1016/S0040-4039(00)01749-4
– ident: ref22/cit22b
  doi: 10.1016/S0040-4020(97)01018-1
– ident: ref28/cit28
  doi: 10.1016/j.tet.2011.09.080
– ident: ref11/cit11b
  doi: 10.1002/anie.200350892
– ident: ref40/cit40b
  doi: 10.1002/anie.199416991
– ident: ref55/cit55b
  doi: 10.1021/cr040679f
– ident: ref48/cit48
  doi: 10.1002/chem.200903512
– ident: ref60/cit60
  doi: 10.1016/j.tet.2008.05.015
– ident: ref63/cit63
  doi: 10.1016/S0040-4020(01)87042-3
– ident: ref12/cit12d
  doi: 10.1021/ol802984n
– ident: ref50/cit50
  doi: 10.3987/COM-08-S(N)26
– ident: ref17/cit17a
  doi: 10.1002/1521-3765(20020617)8:12<2650::AID-CHEM2650>3.0.CO;2-S
– ident: ref29/cit29a
  doi: 10.1002/chem.200902634
– ident: ref10/cit10e
  doi: 10.1021/acscatal.9b01785
– ident: ref12/cit12f
  doi: 10.1016/j.jelechem.2015.02.001
– ident: ref62/cit62
  doi: 10.1016/j.tet.2009.09.087
– ident: ref52/cit52b
  doi: 10.1002/0471224499.ch3
– ident: ref16/cit16c
  doi: 10.3762/bjoc.10.323
– ident: ref66/cit66
  doi: 10.1002/celc.201900172
– ident: ref56/cit56
  doi: 10.1021/acs.chemrev.7b00763
– ident: ref1/cit1e
  doi: 10.1021/acs.jmedchem.8b00876
– ident: ref8/cit8c
  doi: 10.1055/s-0037-1611568
– ident: ref31/cit31
  doi: 10.1039/c2ra01254e
– ident: ref9/cit9d
  doi: 10.1021/jacs.8b08592
– ident: ref10/cit10c
  doi: 10.1002/anie.201803887
– ident: ref57/cit57b
  doi: 10.1016/j.tetasy.2008.12.011
– ident: ref53/cit53a
  doi: 10.1021/ol0066274
– ident: ref58/cit58a
  doi: 10.1016/S0040-4039(97)10709-2
– ident: ref10/cit10d
  doi: 10.1002/anie.201900956
– ident: ref36/cit36c
  doi: 10.1039/C5OB02560E
– ident: ref38/cit38a
  doi: 10.1039/C39830001169
– ident: ref3/cit3b
  doi: 10.1021/acs.accounts.7b00406
– ident: ref30/cit30b
  doi: 10.1016/S0040-4039(00)01790-1
– ident: ref24/cit24c
  doi: 10.1016/j.jorganchem.2006.04.039
– ident: ref55/cit55a
  doi: 10.1021/ar010075n
– ident: ref42/cit42a
  doi: 10.1021/ja00454a050
– ident: ref52/cit52c
  doi: 10.1055/s-2004-834931
– ident: ref16/cit16a
  doi: 10.1016/S0040-4020(01)91472-3
– ident: ref22/cit22a
  doi: 10.1016/0040-4039(94)88092-1
– ident: ref57/cit57a
  doi: 10.1016/j.tetlet.2008.06.112
– ident: ref64/cit64d
  doi: 10.1039/C5OB00520E
– ident: ref43/cit43
  doi: 10.1039/B816598J
– ident: ref9/cit9g
  doi: 10.1002/celc.201900682
– ident: ref46/cit46a
  doi: 10.1016/S0040-4039(97)00099-3
– ident: ref4/cit4
  doi: 10.1021/cr100287w
– ident: ref29/cit29c
  doi: 10.1002/ejoc.201501203
– ident: ref34/cit34
  doi: 10.1149/1.2401038
– ident: ref55/cit55c
  doi: 10.1248/cpb.c13-00456
– ident: ref29/cit29b
  doi: 10.1016/j.tet.2015.01.029
– ident: ref44/cit44b
  doi: 10.1039/c1cc00049g
– ident: ref54/cit54a
  doi: 10.1021/ol005795t
– ident: ref9/cit9f
  doi: 10.1021/acscatal.8b01069
SSID ssj0002467
Score 2.6501725
SecondaryResourceType review_article
Snippet Conspectus Stereodefined aliphatic heterocycles are one of the fundamental structural motifs observed in natural products and biologically active compounds....
Stereodefined aliphatic heterocycles are one of the fundamental structural motifs observed in natural products and biologically active compounds. Various...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 105
SubjectTerms Electrodes
Heterocyclic Compounds - chemical synthesis
Heterocyclic Compounds - chemistry
Molecular Structure
Oxidation-Reduction
Stereoisomerism
Title Anodic Oxidation for the Stereoselective Synthesis of Heterocycles
URI http://dx.doi.org/10.1021/acs.accounts.9b00513
https://www.ncbi.nlm.nih.gov/pubmed/31872753
https://www.proquest.com/docview/2330335320
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5SD3rx_agvInjxsLWbZF_HWixF0B5qobclTyjKrpgWrL_eyT4qKqV6DclAJjOZGZL5PoSuoNpSgQZHYpQKjwXKeIng2jNSBEEswjjirt_54THsj9j9OBh_FYo_X_CJf8OlBdEFc4JtFQh-jqR2nYAYV2x1usPFzUtYWGJkQonMYkbqVrklUlxAkvZ7QFqSZRbRpreNBnXPTvnJ5Lk1m4qW_PgN4fjHjeygrSrxxJ3SUnbRms720Ea35nvbR7edLFcTiQfvk5JnCUM-iyE_xEPQvc5twZgDlyMezjMYthOLc4P77j9NLufud90BGvXunrp9r2JY8Djz2dRLmGnHOorhGJWDJnRYhYGkTFABoZ3rRCbg4CqkMqEKpspIm0iwxFBwc2oSeogaWZ7pY4TbgdERMS7-KUjRDPcFAdGUST9URvMmugYFpJWH2LR4_CZ-6gZrraSVVpqI1keSygqq3DFmvKxY5S1WvZZQHSvmX9annYKq3UMJz3Q-symhENipo8xooqPSDBYS4Q6ElC-gJ__YzynaJK5MB7Mk_hlqTN9m-hxymam4KAz4EyfT8Pg
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5ED_Xi-1GfEbx42OrmsY9jLUp9H6ribdlkEyjKrpgW1F_vZB8VBZFeQzIkk5nMNyT5BuAQs61MaHQkzpj0uMiMF8tUe0ZJISIZRGHq_jvf3Ab9B375JJ5mQDR_YXASFiXZ8hL_m13AP3ZtaVVAwXZKIj9Xq3YO8Qh1OVe3N5gcwJQHFVUmZso84rT5MfeHFBeXlP0Zl_4Am2XQOV-Ex8l0y7cmz53xSHbU5y8mx6nXswQLNQwl3cpulmFG5yvQ6jXV31bhtJsX2VCRu_dhVXWJILoliBbJAHdCF7asn4NHJRl85Nhsh5YUhvTd65pCfbi3dmvwcH523-t7db0FL-U-H3kxNyeRDiPc1MwRFTrmQqEYl0xioE91rGJ09yxgKmYZdlWhNqHksWHo9MzEbB1m8yLXm0BOhNEhNS4aZgjYTOpLiqIZV36QGZ224QgVkNT-YpPyKpz6iWtstJLUWmkDa3YmUTVxuauf8fLPKG8y6rUi7vin_0Gz6Qmq2l2bpLkuxjahDMM8cwU02rBRWcNEIp6ICAAF25piPfvQ6t_fXCfXF7dX2zBPXQKPlkr9HZgdvY31LqKckdwrbfoLW2D5WQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZSwMxEA6ioL54H_WM4IsPW7ub7PVYq6XeQhXEl2VzQVF2xbSg_npn9igqiOhrSIZkjswMk8xHyD5kW8rXYEicMeFwXxknFql2jBS-H4kgClP873x5FfTu-Nm9f_8J6gs2YYGSLYr4aNXPylQdBtxDHE9LEAXbLJr5IV7tFFbuMO9qd_rjS9jjQdkuE7JlHnGv_jX3AxX0TdJ-9U0_BJyF4-nOk4fxlov3Jo_N0VA05fu3bo7_OtMCmavCUdou9WeRTOhsicx0ahS4ZXLUznI1kPT6dVCiL1GIcilEjbQPEtG5LXB04Mqk_bcMhu3A0tzQHr6yyeUbvrlbIXfdk9tOz6lwF5yUu3zoxNy0Ih1GIFyFDQuxg6EvGRdMgMNPdSxjMHsVMBkzBVNlqE0oeGwYGD8zMVslk1me6XVCW77RoWfQKyoI3EzqCg9IMy7dQBmdNsgBMCCp7MYmRUnccxMcrLmSVFxpEFZLJ5FVA3PE0Xj6ZZUzXvVcNvD4Zf5eLfgEWI3lkzTT-cgmHgN3zxBIo0HWSo0YU4SbEQJBn2384Ty7ZPrmuJtcnF6db5JZD_N4UFbP3SKTw5eR3oZgZyh2CrX-AGgG-9w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anodic+Oxidation+for+the+Stereoselective+Synthesis+of+Heterocycles&rft.jtitle=Accounts+of+chemical+research&rft.au=Yamamoto%2C+Kosuke&rft.au=Kuriyama%2C+Masami&rft.au=Onomura%2C+Osamu&rft.date=2020-01-21&rft.eissn=1520-4898&rft.volume=53&rft.issue=1&rft.spage=105&rft_id=info:doi/10.1021%2Facs.accounts.9b00513&rft_id=info%3Apmid%2F31872753&rft.externalDocID=31872753
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon