Crystallization Kinetics of a Liquid-Forming 2D Coordination Polymer

We investigated a mechanism of crystal melting and crystallization behavior of a two-dimensional coordination polymer [Ag2(L1)­(CF3SO3)2] (1, L1 = 4,4′-biphenyldicarbonitrile) upon heating-cooling processes. The crystal showed melting at 282 °C, and the following gentle cooling induced the abrupt cr...

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 22; no. 23; pp. 9372 - 9379
Main Authors Das, Chinmoy, Nishiguchi, Taichi, Fan, Zeyu, Horike, Satoshi
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 14.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We investigated a mechanism of crystal melting and crystallization behavior of a two-dimensional coordination polymer [Ag2(L1)­(CF3SO3)2] (1, L1 = 4,4′-biphenyldicarbonitrile) upon heating-cooling processes. The crystal showed melting at 282 °C, and the following gentle cooling induced the abrupt crystallization at 242 °C confirmed by DSC. A temperature-dependent structural change has been discussed through calorimetric, spectroscopic, and mechanical measurements. They indicated that the coordination-bond networks are partially retained in the melt state, but the melt showed a significantly low viscosity of 9.8 × 10–2 Pa·s at T m which is six orders lower than that of ZIF-62 at T m (435 °C). Rheological studies provided an understanding of the fast relaxation dynamics for the recrystallization process, along with that the high T m provides enough thermal energy to crossover the activation energy barrier for the nucleation. The isothermal crystallization kinetics through calorimetric measurements with applying the Avrami equation identified the nature of the nuclei and its crystal growth mechanism.
AbstractList We investigated a mechanism of crystal melting and crystallization behavior of a two-dimensional coordination polymer [Ag2(L1)(CF3SO3)2] (1, L1 = 4,4'-biphenyldicarbonitrile) upon heating-cooling processes. The crystal showed melting at 282 °C, and the following gentle cooling induced the abrupt crystallization at 242 °C confirmed by DSC. A temperature-dependent structural change has been discussed through calorimetric, spectroscopic, and mechanical measurements. They indicated that the coordination-bond networks are partially retained in the melt state, but the melt showed a significantly low viscosity of 9.8 × 10-2 Pa·s at Tm which is six orders lower than that of ZIF-62 at Tm (435 °C). Rheological studies provided an understanding of the fast relaxation dynamics for the recrystallization process, along with that the high Tm provides enough thermal energy to crossover the activation energy barrier for the nucleation. The isothermal crystallization kinetics through calorimetric measurements with applying the Avrami equation identified the nature of the nuclei and its crystal growth mechanism.We investigated a mechanism of crystal melting and crystallization behavior of a two-dimensional coordination polymer [Ag2(L1)(CF3SO3)2] (1, L1 = 4,4'-biphenyldicarbonitrile) upon heating-cooling processes. The crystal showed melting at 282 °C, and the following gentle cooling induced the abrupt crystallization at 242 °C confirmed by DSC. A temperature-dependent structural change has been discussed through calorimetric, spectroscopic, and mechanical measurements. They indicated that the coordination-bond networks are partially retained in the melt state, but the melt showed a significantly low viscosity of 9.8 × 10-2 Pa·s at Tm which is six orders lower than that of ZIF-62 at Tm (435 °C). Rheological studies provided an understanding of the fast relaxation dynamics for the recrystallization process, along with that the high Tm provides enough thermal energy to crossover the activation energy barrier for the nucleation. The isothermal crystallization kinetics through calorimetric measurements with applying the Avrami equation identified the nature of the nuclei and its crystal growth mechanism.
We investigated a mechanism of crystal melting and crystallization behavior of a two-dimensional coordination polymer [Ag2(L1)­(CF3SO3)2] (1, L1 = 4,4′-biphenyldicarbonitrile) upon heating-cooling processes. The crystal showed melting at 282 °C, and the following gentle cooling induced the abrupt crystallization at 242 °C confirmed by DSC. A temperature-dependent structural change has been discussed through calorimetric, spectroscopic, and mechanical measurements. They indicated that the coordination-bond networks are partially retained in the melt state, but the melt showed a significantly low viscosity of 9.8 × 10–2 Pa·s at T m which is six orders lower than that of ZIF-62 at T m (435 °C). Rheological studies provided an understanding of the fast relaxation dynamics for the recrystallization process, along with that the high T m provides enough thermal energy to crossover the activation energy barrier for the nucleation. The isothermal crystallization kinetics through calorimetric measurements with applying the Avrami equation identified the nature of the nuclei and its crystal growth mechanism.
We investigated a mechanism of crystal melting and crystallization behavior of a two-dimensional coordination polymer [Ag (L1)(CF SO ) ] ( , L1 = 4,4'-biphenyldicarbonitrile) upon heating-cooling processes. The crystal showed melting at 282 °C, and the following gentle cooling induced the abrupt crystallization at 242 °C confirmed by DSC. A temperature-dependent structural change has been discussed through calorimetric, spectroscopic, and mechanical measurements. They indicated that the coordination-bond networks are partially retained in the melt state, but the melt showed a significantly low viscosity of 9.8 × 10 Pa·s at which is six orders lower than that of ZIF-62 at (435 °C). Rheological studies provided an understanding of the fast relaxation dynamics for the recrystallization process, along with that the high provides enough thermal energy to crossover the activation energy barrier for the nucleation. The isothermal crystallization kinetics through calorimetric measurements with applying the Avrami equation identified the nature of the nuclei and its crystal growth mechanism.
Author Das, Chinmoy
Nishiguchi, Taichi
Fan, Zeyu
Horike, Satoshi
AuthorAffiliation Kyoto University
Institute for Integrated Cell-Material Sciences, Institute for Advanced Study
Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering
Department of Materials Science and Engineering, School of Molecular Science and Engineering
Vidyasirimedhi Institute of Science and Technology
AuthorAffiliation_xml – name: Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering
– name: Institute for Integrated Cell-Material Sciences, Institute for Advanced Study
– name: Kyoto University
– name: Department of Materials Science and Engineering, School of Molecular Science and Engineering
– name: Vidyasirimedhi Institute of Science and Technology
Author_xml – sequence: 1
  givenname: Chinmoy
  orcidid: 0000-0003-3340-3626
  surname: Das
  fullname: Das, Chinmoy
  organization: Institute for Integrated Cell-Material Sciences, Institute for Advanced Study
– sequence: 2
  givenname: Taichi
  surname: Nishiguchi
  fullname: Nishiguchi, Taichi
  organization: Kyoto University
– sequence: 3
  givenname: Zeyu
  surname: Fan
  fullname: Fan, Zeyu
  organization: Kyoto University
– sequence: 4
  givenname: Satoshi
  orcidid: 0000-0001-8530-6364
  surname: Horike
  fullname: Horike, Satoshi
  email: horike@icems.kyoto-u.ac.jp
  organization: Vidyasirimedhi Institute of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36441580$$D View this record in MEDLINE/PubMed
BookMark eNqFkD1PwzAQQC1URD_gHyCUkSXl7NhJzYZaCohKMMBsOYmDXCV2aztD-fWkpGVggMkn-b2T7o3RwFijELrEMMVA8I0s_NRIY2sVwpQUkBDITtAIswTilHMy-JlndIjG3q8BgCcMztAwSSnFbAYjtJi7nQ-yrvWnDNqa6FkbFXThI1tFMlrpbavLeGldo81HRBbR3FpXatPDr7beNcqdo9NK1l5dHN4Jel_ev80f49XLw9P8bhVLimmIZ2VJiJKgcpxRVdG84ElOOeW5TBhXUMmKpRWHIs1mOGdpydI0lypRgCUDViUTdN3v3Ti7bZUPotG-UHUtjbKtFySjwDEGIB16dUDbvFGl2DjdSLcTx8s74LYHCme9d6oShQ7fVwUndS0wiH1m0WUWx8zikLmT6S_5uP8fDXpt_7u2rTNdrb-VL4U0lg8
CitedBy_id crossref_primary_10_1246_bcsj_20230152
crossref_primary_10_1021_jacs_3c01933
crossref_primary_10_1021_acs_inorgchem_4c04181
crossref_primary_10_1038_s41578_024_00759_x
crossref_primary_10_1021_acsmaterialslett_3c00598
crossref_primary_10_1021_acsmaterialslett_3c01296
crossref_primary_10_4019_bjscc_81_74
crossref_primary_10_1002_anie_202302406
crossref_primary_10_1002_ange_202302406
crossref_primary_10_1021_acs_inorgchem_5c00255
crossref_primary_10_5940_jcrsj_65_163
crossref_primary_10_1039_D4SC01793E
crossref_primary_10_1021_jacs_3c06342
crossref_primary_10_1021_jacs_4c15317
Cites_doi 10.1364/OL.44.001623
10.1039/c1ce05535f
10.1039/D0SC01737J
10.1002/pi.4980030205
10.1039/D1TA01043C
10.1039/C39950002199
10.1039/D0DT00016G
10.1007/s11746-002-0496-4
10.1021/jacs.5b13220
10.1021/cg8009496
10.1111/j.1151-2916.1999.tb01992.x
10.1038/nmat3275
10.1039/C9CC02172H
10.1021/jacs.0c03990
10.1016/j.polymertesting.2006.10.005
10.1002/jrs.1316
10.1016/0142-9612(91)90194-F
10.1107/S0365110X67003913
10.1021/jacs.0c08777
10.1002/app.50933
10.1021/acs.chemmater.0c03854
10.1021/jacs.0c11718
10.1126/science.159.3821.1311
10.1021/jacs.9b05558
10.1038/srep09069
10.1039/b902267h
10.1063/1.1750631
10.1021/ja511019u
10.1016/0032-3861(87)90382-X
10.1073/pnas.0602439103
10.1039/D0FD00003E
10.1002/chem.201900979
10.1016/j.jallcom.2005.07.062
10.1016/j.envpol.2016.10.081
10.1103/PhysRevLett.77.99
10.1002/anie.202102047
10.1126/science.1152516
10.1039/C2DT31259J
10.1039/D0QM00025F
10.1063/1.116940
10.1016/0032-3861(92)90523-Y
10.1016/j.matlet.2009.05.071
10.1295/polymj.27.361
10.1016/S0032-3861(03)00101-0
10.1016/j.jelechem.2003.12.050
10.3139/9783446412811
10.1111/ijag.12212
10.1063/1.1750380
10.1002/(SICI)1097-4628(19981219)70:12<2371::AID-APP9>3.0.CO;2-4
10.1016/S0142-9418(01)00128-3
10.5772/59767
10.1016/j.jnoncrysol.2010.12.071
10.1002/pol.1972.160100707
10.1021/ja512117e
10.1002/polb.1994.090320512
10.1039/C6RA14190K
10.1038/ncomms9079
10.1016/j.jallcom.2007.11.150
10.1021/ja210878c
10.1126/sciadv.aao6827
10.1038/s41467-018-07532-z
10.1016/S0925-8388(01)01977-6
10.1039/c2ce25875g
10.1002/anie.201810039
10.1039/D0CC03691A
10.1039/D1SC00392E
10.1021/acs.inorgchem.0c00806
10.1021/acs.nanolett.1c01594
10.1002/ppsc.201800480
10.1039/D1DT01298C
10.1021/cr1003248
10.1016/0032-3861(85)90205-8
10.1038/269481a0
10.1038/s41578-018-0054-3
10.1007/s11746-998-0102-z
10.1038/s41557-021-00681-7
ContentType Journal Article
Copyright 2022 American Chemical Society
Copyright_xml – notice: 2022 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/acs.nanolett.2c03207
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1530-6992
EndPage 9379
ExternalDocumentID 36441580
10_1021_acs_nanolett_2c03207
b329107822
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.K2
123
4.4
55A
5VS
6P2
7~N
AABXI
ABFRP
ABMVS
ABPTK
ABQRX
ABUCX
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ACBEA
CITATION
CUPRZ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-a414t-8dd22ea0eb174ef4bc93b4949ba359e0faf56f90c6781b56d566bae3e01a505f3
IEDL.DBID ACS
ISSN 1530-6984
1530-6992
IngestDate Thu Jul 10 17:55:28 EDT 2025
Thu Jan 02 22:53:11 EST 2025
Thu Apr 24 22:59:43 EDT 2025
Tue Jul 01 03:00:34 EDT 2025
Fri Dec 16 03:10:29 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords Glasses
Coordination polymers
Metal−organic frameworks
Crystal melting
Crystallization
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a414t-8dd22ea0eb174ef4bc93b4949ba359e0faf56f90c6781b56d566bae3e01a505f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3340-3626
0000-0001-8530-6364
PMID 36441580
PQID 2740911002
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2740911002
pubmed_primary_36441580
crossref_citationtrail_10_1021_acs_nanolett_2c03207
crossref_primary_10_1021_acs_nanolett_2c03207
acs_journals_10_1021_acs_nanolett_2c03207
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-14
PublicationDateYYYYMMDD 2022-12-14
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-14
  day: 14
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref77/cit77
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref74/cit74
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref75/cit75
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref72/cit72
ref76/cit76
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref73/cit73
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref3/cit3
  doi: 10.1364/OL.44.001623
– ident: ref41/cit41
  doi: 10.1039/c1ce05535f
– ident: ref62/cit62
  doi: 10.1039/D0SC01737J
– ident: ref76/cit76
  doi: 10.1002/pi.4980030205
– ident: ref6/cit6
  doi: 10.1039/D1TA01043C
– ident: ref44/cit44
  doi: 10.1039/C39950002199
– ident: ref59/cit59
  doi: 10.1039/D0DT00016G
– ident: ref21/cit21
  doi: 10.1007/s11746-002-0496-4
– ident: ref13/cit13
  doi: 10.1021/jacs.5b13220
– ident: ref65/cit65
  doi: 10.1021/cg8009496
– ident: ref19/cit19
  doi: 10.1111/j.1151-2916.1999.tb01992.x
– ident: ref27/cit27
  doi: 10.1038/nmat3275
– ident: ref36/cit36
  doi: 10.1039/C9CC02172H
– ident: ref58/cit58
  doi: 10.1021/jacs.0c03990
– ident: ref77/cit77
  doi: 10.1016/j.polymertesting.2006.10.005
– ident: ref61/cit61
  doi: 10.1002/jrs.1316
– ident: ref72/cit72
– ident: ref17/cit17
  doi: 10.1016/0142-9612(91)90194-F
– ident: ref71/cit71
  doi: 10.1107/S0365110X67003913
– ident: ref5/cit5
  doi: 10.1021/jacs.0c08777
– ident: ref31/cit31
  doi: 10.1002/app.50933
– ident: ref30/cit30
  doi: 10.1021/acs.chemmater.0c03854
– ident: ref7/cit7
  doi: 10.1021/jacs.0c11718
– ident: ref33/cit33
  doi: 10.1126/science.159.3821.1311
– ident: ref16/cit16
  doi: 10.1021/jacs.9b05558
– ident: ref34/cit34
  doi: 10.1038/srep09069
– ident: ref40/cit40
  doi: 10.1039/b902267h
– ident: ref75/cit75
  doi: 10.1063/1.1750631
– ident: ref1/cit1
  doi: 10.1021/ja511019u
– ident: ref51/cit51
  doi: 10.1016/0032-3861(87)90382-X
– ident: ref10/cit10
  doi: 10.1073/pnas.0602439103
– ident: ref38/cit38
  doi: 10.1039/D0FD00003E
– ident: ref46/cit46
  doi: 10.1002/chem.201900979
– ident: ref22/cit22
  doi: 10.1016/j.jallcom.2005.07.062
– ident: ref45/cit45
  doi: 10.1016/j.envpol.2016.10.081
– ident: ref57/cit57
  doi: 10.1103/PhysRevLett.77.99
– ident: ref9/cit9
  doi: 10.1002/anie.202102047
– ident: ref11/cit11
  doi: 10.1126/science.1152516
– ident: ref43/cit43
  doi: 10.1039/C2DT31259J
– ident: ref29/cit29
  doi: 10.1039/D0QM00025F
– ident: ref55/cit55
  doi: 10.1063/1.116940
– ident: ref49/cit49
  doi: 10.1016/0032-3861(92)90523-Y
– ident: ref56/cit56
  doi: 10.1016/j.matlet.2009.05.071
– ident: ref50/cit50
  doi: 10.1295/polymj.27.361
– ident: ref70/cit70
  doi: 10.1016/S0032-3861(03)00101-0
– ident: ref63/cit63
  doi: 10.1016/j.jelechem.2003.12.050
– ident: ref66/cit66
  doi: 10.3139/9783446412811
– ident: ref32/cit32
  doi: 10.1111/ijag.12212
– ident: ref74/cit74
  doi: 10.1063/1.1750380
– ident: ref68/cit68
  doi: 10.1002/(SICI)1097-4628(19981219)70:12<2371::AID-APP9>3.0.CO;2-4
– ident: ref69/cit69
  doi: 10.1016/S0142-9418(01)00128-3
– ident: ref25/cit25
  doi: 10.5772/59767
– ident: ref24/cit24
  doi: 10.1016/j.jnoncrysol.2010.12.071
– ident: ref47/cit47
  doi: 10.1002/pol.1972.160100707
– ident: ref26/cit26
  doi: 10.1021/ja512117e
– ident: ref48/cit48
  doi: 10.1002/polb.1994.090320512
– ident: ref28/cit28
  doi: 10.1039/C6RA14190K
– ident: ref12/cit12
  doi: 10.1038/ncomms9079
– ident: ref23/cit23
  doi: 10.1016/j.jallcom.2007.11.150
– ident: ref53/cit53
  doi: 10.1021/ja210878c
– ident: ref14/cit14
  doi: 10.1126/sciadv.aao6827
– ident: ref15/cit15
  doi: 10.1038/s41467-018-07532-z
– ident: ref20/cit20
  doi: 10.1016/S0925-8388(01)01977-6
– ident: ref42/cit42
  doi: 10.1039/c2ce25875g
– ident: ref35/cit35
  doi: 10.1002/anie.201810039
– ident: ref37/cit37
  doi: 10.1039/D0CC03691A
– ident: ref67/cit67
  doi: 10.1039/D1SC00392E
– ident: ref4/cit4
  doi: 10.1021/acs.inorgchem.0c00806
– ident: ref8/cit8
  doi: 10.1021/acs.nanolett.1c01594
– ident: ref54/cit54
  doi: 10.1002/ppsc.201800480
– ident: ref60/cit60
  doi: 10.1039/D1DT01298C
– ident: ref64/cit64
  doi: 10.1021/cr1003248
– ident: ref73/cit73
  doi: 10.1016/0032-3861(85)90205-8
– ident: ref52/cit52
  doi: 10.1038/269481a0
– ident: ref2/cit2
  doi: 10.1038/s41578-018-0054-3
– ident: ref18/cit18
  doi: 10.1007/s11746-998-0102-z
– ident: ref39/cit39
  doi: 10.1038/s41557-021-00681-7
SSID ssj0009350
Score 2.4665594
Snippet We investigated a mechanism of crystal melting and crystallization behavior of a two-dimensional coordination polymer [Ag2(L1)­(CF3SO3)2] (1, L1 =...
We investigated a mechanism of crystal melting and crystallization behavior of a two-dimensional coordination polymer [Ag (L1)(CF SO ) ] ( , L1 =...
We investigated a mechanism of crystal melting and crystallization behavior of a two-dimensional coordination polymer [Ag2(L1)(CF3SO3)2] (1, L1 =...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9372
SubjectTerms Calorimetry, Differential Scanning
Crystallization
Kinetics
Phase Transition
Polymers - chemistry
Title Crystallization Kinetics of a Liquid-Forming 2D Coordination Polymer
URI http://dx.doi.org/10.1021/acs.nanolett.2c03207
https://www.ncbi.nlm.nih.gov/pubmed/36441580
https://www.proquest.com/docview/2740911002
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgXODAvpRNRuLCISWxnaY-Vi1VxS5Bpd4i27FRRUmgTQ_l6xk3ScuiCpBySuKRvIznjcfzBqFTJqkkvmQOUZo4LDAu7INcOEIbDuhb-ULYiO7NbbXdYZddvztzFL9H8Il3LtSwEos4gW6kFaJswe9gES2Rai2wzla98TAj2aWTiqygxOAS8RorUuXmSLEGSQ2_GqQ5KHNibVpr6K7I2ckumTxXRqmsqPefFI5_7Mg6Ws2BJ65nK2UDLeh4E618oiPcQs3GYAxgsd_PczPxFXyzNM44MVjg697bqBc5rcRen3nCpIkbCbiuvew8Ed8n_fGLHmyjTuvisdF28ioLjmAeS51aFBGihQubdsC0YVJxKi1njRTU59o1wvhVw10FZs2TfjUCACiFptr1BMAnQ3dQKU5ivYew0ZpbuneLwhgFiQGgg0gSDiiKaW7K6AwGIcy1ZBhOAuDEC-3LYmTCfGTKiBbTEqqcrtxWzej_0sqZtnrN6Dp--f-kmPEQ9MoGS0Ssk9EwBG8doJQlqC2j3WwpTCVSCyL9mrv_j_4coGViMyc8eNghKqWDkT4CPJPK48ki_gBUc_Hn
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NT9swFH8q7AActvHdfRppO3BISWynqQ87oHZVoQVNGkjcgp3YqKIkrEk1df_P_pX9XXtOkxYmIbQDElJOTvzkj-fn34v9fg_gE1dMUV9xh0aaOjwwLtpBIR2pjUD0HflS2hPdk9Nm75wfX_gXNfhdxcJgIzKUlBWH-At2Ae_AliUySbE3eYNGNu93UN6l7OvpT_TUsi9HHZzWz5R2v561e06ZTMCR3OO504pjSrV00TYFXBuuIsGUpWZRkvlCu0Yav2mEG6H19pTfjBHnKKmZdj2JKMEwlLsELxD_UOvjHba_L7h9WZEIFm0HemKixasIvQdabffBKLu_Dz4AbotNrvsK_syHp7jbct2Y5KoR_fqHOfLZj99reFnCbHI4WxfrUNPJBqzdIV_chE57PEVoPBqVkaikj-8saTVJDZFkMPwxGcZON7WXha4I7ZB2is0fzv6ekm_paHqjx1tw_iTd2IblJE30LhCjtbDk9hZzcoYSA8RCsaICMSPXwtRhHwc9LG1CFhbH_dQLbWE1E2E5E3VglTaEUUnObnOEjB6p5cxr3c7ISR75fq9StBCtiD0akolOJ1lIA_TzLXsgrcPOTAPnEpmFzH7LffMf_fkIK72zk0E4ODrtv4VVamNGPHz4O1jOxxP9HpFcrj4U64jA5VMr3l-kSVXc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4BlSo49AWU7dOV2gOHLIntbNaHHtBuV8ACQmqRuAU7sasVS0I3WVXbf9S_0l_VmWyy0EoI9cChUk5OPPJjPP4m4_kM8F4aYXhopMcTyz0ZOR_toNKetk4h-k5CrSmie3Tc2TuVB2fh2RL8bHJhsBEFSiqqID6t6qvU1QwDwQ6VZzrLsUdlmyd093dUn6cc2tl39NaKj_t9nNoPnA8-fentefWFAp6WgSy9bppybrWP9imS1kmTKGGInsVoESrrO-3CjlN-ghY8MGEnRaxjtBXWDzQiBSdQ7jI8oEgh-Xm7vc_X_L6iugwW7Qd6Y6ormyy9W1pNe2FS_LkX3gJwq41u8Bh-LYaoOt9y0Z6Wpp38-Is98r8YwyfwqIbbbHe-Pp7Cks2ewdoNEsZ16PcmM4TI43GdkcqG-I7Iq1numGaHo2_TUeoNcjo09JXxPuvl2PzR_C8qO8nHs0s72YDTe-nGJqxkeWa3gDlrFZHcE_aUAiVGiIlSwxViR2mVa8E2Dnpc24YirsL-PIipsJmJuJ6JFohGI-KkJmmnu0LGd9TyFrWu5iQld3z_rlG2GK0JhYh0ZvNpEfMI_X1iEeQteD7XwoVEQdA57Pov_qE_b-HhSX8QH-4fD1_CKqfUkQAf-QpWysnUvkZAV5o31VJicH7fevcb2G5YXw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crystallization+Kinetics+of+a+Liquid-Forming+2D+Coordination+Polymer&rft.jtitle=Nano+letters&rft.au=Das%2C+Chinmoy&rft.au=Nishiguchi%2C+Taichi&rft.au=Fan%2C+Zeyu&rft.au=Horike%2C+Satoshi&rft.date=2022-12-14&rft.issn=1530-6992&rft.eissn=1530-6992&rft.volume=22&rft.issue=23&rft.spage=9372&rft_id=info:doi/10.1021%2Facs.nanolett.2c03207&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon