van der Waals Epitaxial Growth of Graphene on Sapphire by Chemical Vapor Deposition without a Metal Catalyst

van der Waals epitaxial growth of graphene on c-plane (0001) sapphire by CVD without a metal catalyst is presented. The effects of CH4 partial pressure, growth temperature, and H2/CH4 ratio were investigated and growth conditions optimized. The formation of monolayer graphene was shown by Raman spec...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 7; no. 1; pp. 385 - 395
Main Authors Hwang, Jeonghyun, Kim, Moonkyung, Campbell, Dorr, Alsalman, Hussain A, Kwak, Joon Young, Shivaraman, Shriram, Woll, Arthur R, Singh, Arunima K, Hennig, Richard G, Gorantla, Sandeep, Rümmeli, Mark H, Spencer, Michael G
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 22.01.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract van der Waals epitaxial growth of graphene on c-plane (0001) sapphire by CVD without a metal catalyst is presented. The effects of CH4 partial pressure, growth temperature, and H2/CH4 ratio were investigated and growth conditions optimized. The formation of monolayer graphene was shown by Raman spectroscopy, optical transmission, grazing incidence X-ray diffraction (GIXRD), and low voltage transmission electron microscopy (LVTEM). Electrical analysis revealed that a room temperature Hall mobility above 2000 cm2/V·s was achieved, and the mobility and carrier type were correlated to growth conditions. Both GIXRD and LVTEM studies confirm a dominant crystal orientation (principally graphene [10–10] || sapphire [11–20]) for about 80–90% of the material concomitant with epitaxial growth. The initial phase of the nucleation and the lateral growth from the nucleation seeds were observed using atomic force microscopy. The initial nuclei density was ∼24 μm–2, and a lateral growth rate of ∼82 nm/min was determined. Density functional theory calculations reveal that the binding between graphene and sapphire is dominated by weak dispersion interactions and indicate that the epitaxial relation as observed by GIXRD is due to preferential binding of small molecules on sapphire during early stages of graphene formation.
AbstractList van der Waals epitaxial growth of graphene on c-plane (0001) sapphire by CVD without a metal catalyst is presented. The effects of CH(4) partial pressure, growth temperature, and H(2)/CH(4) ratio were investigated and growth conditions optimized. The formation of monolayer graphene was shown by Raman spectroscopy, optical transmission, grazing incidence X-ray diffraction (GIXRD), and low voltage transmission electron microscopy (LVTEM). Electrical analysis revealed that a room temperature Hall mobility above 2000 cm(2)/V·s was achieved, and the mobility and carrier type were correlated to growth conditions. Both GIXRD and LVTEM studies confirm a dominant crystal orientation (principally graphene [10-10] || sapphire [11-20]) for about 80-90% of the material concomitant with epitaxial growth. The initial phase of the nucleation and the lateral growth from the nucleation seeds were observed using atomic force microscopy. The initial nuclei density was ~24 μm(-2), and a lateral growth rate of ~82 nm/min was determined. Density functional theory calculations reveal that the binding between graphene and sapphire is dominated by weak dispersion interactions and indicate that the epitaxial relation as observed by GIXRD is due to preferential binding of small molecules on sapphire during early stages of graphene formation.
van der Waals epitaxial growth of graphene on c-plane (0001) sapphire by CVD without a metal catalyst is presented. The effects of CH4 partial pressure, growth temperature, and H2/CH4 ratio were investigated and growth conditions optimized. The formation of monolayer graphene was shown by Raman spectroscopy, optical transmission, grazing incidence X-ray diffraction (GIXRD), and low voltage transmission electron microscopy (LVTEM). Electrical analysis revealed that a room temperature Hall mobility above 2000 cm2/V·s was achieved, and the mobility and carrier type were correlated to growth conditions. Both GIXRD and LVTEM studies confirm a dominant crystal orientation (principally graphene [10–10] || sapphire [11–20]) for about 80–90% of the material concomitant with epitaxial growth. The initial phase of the nucleation and the lateral growth from the nucleation seeds were observed using atomic force microscopy. The initial nuclei density was ∼24 μm–2, and a lateral growth rate of ∼82 nm/min was determined. Density functional theory calculations reveal that the binding between graphene and sapphire is dominated by weak dispersion interactions and indicate that the epitaxial relation as observed by GIXRD is due to preferential binding of small molecules on sapphire during early stages of graphene formation.
van der Waals epitaxial growth of graphene on c-plane (0001) sapphire by CVD without a metal catalyst is presented. The effects of CH sub(4) partial pressure, growth temperature, and H sub(2)/CH sub(4) ratio were investigated and growth conditions optimized. The formation of monolayer graphene was shown by Raman spectroscopy, optical transmission, grazing incidence X-ray diffraction (GIXRD), and low voltage transmission electron microscopy (LVTEM). Electrical analysis revealed that a room temperature Hall mobility above 2000 cm super(2)/V.s was achieved, and the mobility and carrier type were correlated to growth conditions. Both GIXRD and LVTEM studies confirm a dominant crystal orientation (principally graphene [10-10] || sapphire [11-20]) for about 80-90% of the material concomitant with epitaxial growth. The initial phase of the nucleation and the lateral growth from the nucleation seeds were observed using atomic force microscopy. The initial nuclei density was 24 mu m super(-2), and a lateral growth rate of 82 nm/min was determined. Density functional theory calculations reveal that the binding between graphene and sapphire is dominated by weak dispersion interactions and indicate that the epitaxial relation as observed by GIXRD is due to preferential binding of small molecules on sapphire during early stages of graphene formation.
Author Hennig, Richard G
Gorantla, Sandeep
Kwak, Joon Young
Singh, Arunima K
Spencer, Michael G
Kim, Moonkyung
Campbell, Dorr
Rümmeli, Mark H
Alsalman, Hussain A
Hwang, Jeonghyun
Shivaraman, Shriram
Woll, Arthur R
AuthorAffiliation School of Electrical and Computer Engineering
Cornell High Energy Synchrotron Source (CHESS)
IFW Dresden
Department of Materials Science & Engineering
Cornell University
AuthorAffiliation_xml – name: Cornell University
– name:
– name: School of Electrical and Computer Engineering
– name: IFW Dresden
– name: Cornell High Energy Synchrotron Source (CHESS)
– name: Department of Materials Science & Engineering
Author_xml – sequence: 1
  givenname: Jeonghyun
  surname: Hwang
  fullname: Hwang, Jeonghyun
  email: JH124@cornell.edu
– sequence: 2
  givenname: Moonkyung
  surname: Kim
  fullname: Kim, Moonkyung
– sequence: 3
  givenname: Dorr
  surname: Campbell
  fullname: Campbell, Dorr
– sequence: 4
  givenname: Hussain A
  surname: Alsalman
  fullname: Alsalman, Hussain A
– sequence: 5
  givenname: Joon Young
  surname: Kwak
  fullname: Kwak, Joon Young
– sequence: 6
  givenname: Shriram
  surname: Shivaraman
  fullname: Shivaraman, Shriram
– sequence: 7
  givenname: Arthur R
  surname: Woll
  fullname: Woll, Arthur R
– sequence: 8
  givenname: Arunima K
  surname: Singh
  fullname: Singh, Arunima K
– sequence: 9
  givenname: Richard G
  surname: Hennig
  fullname: Hennig, Richard G
– sequence: 10
  givenname: Sandeep
  surname: Gorantla
  fullname: Gorantla, Sandeep
– sequence: 11
  givenname: Mark H
  surname: Rümmeli
  fullname: Rümmeli, Mark H
– sequence: 12
  givenname: Michael G
  surname: Spencer
  fullname: Spencer, Michael G
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23244231$$D View this record in MEDLINE/PubMed
BookMark eNqF0U1PGzEQBmALpWpC2gN_APmCRA8pttcfmyMKNEUCcaBft5V3Pat1tLEX21vIv6-rQE5IXGbm8OgdaeYYTZx3gNAJJV8pYfTCuYIIXsrnIzSjy0IuSCn_TA6zoFN0HOOGEKFKJT-iKSsY56ygM9T_1Q4bCPi31n3E14NN-tnqHq-Df0od9m2e9NCBA-wdftDD0NkAuN7hVQdb22T6Sw8-4CsYfLTJZvVkU-fHhDW-g5TBSue6i-kT-tDmLfD5pc_Rz2_XP1bfF7f365vV5e1Cc8rTolxCa4wRShIuQVDFyppxWhumGpCNKRqhiDAgSt5STgUHxWolTdPyWiqzLObofJ87BP84QkzV1sYG-l478GOsqJKMCFos2fuUqUIpLonK9MueNsHHGKCthmC3OuwqSqr_f6gOf8j29CV2rLdgDvL18Bmc7YFuYrXxY3D5IG8E_QO5ypB8
CitedBy_id crossref_primary_10_1002_adma_201304872
crossref_primary_10_1007_s40820_017_0173_1
crossref_primary_10_1088_1361_6641_aaa3b7
crossref_primary_10_3390_nano13192720
crossref_primary_10_1002_adfm_202209880
crossref_primary_10_1002_pssr_201307074
crossref_primary_10_1002_advs_201600003
crossref_primary_10_1103_PhysRevB_89_245431
crossref_primary_10_1002_smll_202103677
crossref_primary_10_1007_s40097_021_00467_w
crossref_primary_10_1038_s41598_017_09811_z
crossref_primary_10_1016_j_carbon_2016_12_031
crossref_primary_10_1016_j_carbon_2016_10_023
crossref_primary_10_1021_acsnano_9b00976
crossref_primary_10_1002_adfm_202200428
crossref_primary_10_1088_0256_307X_31_7_078104
crossref_primary_10_3389_fnins_2020_592502
crossref_primary_10_1016_j_jcrysgro_2022_126885
crossref_primary_10_1039_D1RA01444G
crossref_primary_10_1021_acsami_8b07655
crossref_primary_10_1063_1_4892351
crossref_primary_10_1007_s12274_014_0640_7
crossref_primary_10_1002_admi_201902024
crossref_primary_10_7567_1347_4065_aaec86
crossref_primary_10_1021_acsnano_5b05556
crossref_primary_10_1039_C7RA04162D
crossref_primary_10_1021_acs_chemrev_8b00325
crossref_primary_10_1016_j_jcrysgro_2020_125969
crossref_primary_10_1021_acs_chemmater_2c00450
crossref_primary_10_1063_1_5019352
crossref_primary_10_1088_0957_4484_25_16_165702
crossref_primary_10_1103_PhysRevB_90_041403
crossref_primary_10_1039_C8NR03210F
crossref_primary_10_1088_1361_648X_aa9305
crossref_primary_10_1103_PhysRevB_97_075423
crossref_primary_10_1039_C5RA27452D
crossref_primary_10_1002_advs_201600130
crossref_primary_10_1002_adfm_201502010
crossref_primary_10_1002_smll_201402427
crossref_primary_10_1016_j_tsf_2019_06_029
crossref_primary_10_1063_1_4980088
crossref_primary_10_1002_adfm_201500981
crossref_primary_10_1002_cnma_202000045
crossref_primary_10_1021_acsnano_6b08069
crossref_primary_10_1021_ja5022602
crossref_primary_10_1002_adma_201704839
crossref_primary_10_1021_acsami_8b11579
crossref_primary_10_1021_nn505913v
crossref_primary_10_1021_acsenergylett_1c00901
crossref_primary_10_3389_fmats_2023_1345592
crossref_primary_10_1016_j_carbon_2014_12_027
crossref_primary_10_1038_s41598_022_22889_4
crossref_primary_10_1088_1402_4896_acccb4
crossref_primary_10_1364_OL_39_002707
crossref_primary_10_1038_s41467_019_13023_6
crossref_primary_10_1088_1361_6463_ac928d
crossref_primary_10_1002_smll_201401804
crossref_primary_10_1016_j_flatc_2017_07_002
crossref_primary_10_1557_jmr_2018_392
crossref_primary_10_1515_psr_2016_0107
crossref_primary_10_7567_JJAP_54_040102
crossref_primary_10_1016_j_carbon_2019_03_083
crossref_primary_10_1063_1_4983388
crossref_primary_10_1126_sciadv_abk0115
crossref_primary_10_1021_nl5036463
crossref_primary_10_1109_JSEN_2020_3029172
crossref_primary_10_1016_j_rinp_2021_104156
crossref_primary_10_1039_C5CS00542F
crossref_primary_10_1021_acsnano_5b03394
crossref_primary_10_7240_jeps_1235645
crossref_primary_10_1016_j_jallcom_2020_155870
crossref_primary_10_1016_j_nanoen_2018_12_044
crossref_primary_10_1186_1556_276X_9_367
crossref_primary_10_7567_JJAP_57_04FL03
crossref_primary_10_1002_advs_201700087
crossref_primary_10_1021_acs_jpcc_0c05257
crossref_primary_10_1016_j_ssc_2014_03_008
crossref_primary_10_1039_D1NA00545F
crossref_primary_10_1007_s12274_016_1187_6
crossref_primary_10_1073_pnas_1405613111
crossref_primary_10_1021_jz502646d
crossref_primary_10_1103_PhysRevB_94_024108
crossref_primary_10_1002_ange_201306086
crossref_primary_10_1088_1361_6633_aa9bbf
crossref_primary_10_1002_adom_201901388
crossref_primary_10_1186_s11671_019_2935_9
crossref_primary_10_1002_adma_201505123
crossref_primary_10_3390_mi13050681
crossref_primary_10_1080_10408436_2013_836075
crossref_primary_10_1063_1_4928179
crossref_primary_10_1016_j_jmst_2018_02_005
crossref_primary_10_1088_2053_1583_aac479
crossref_primary_10_1002_adma_201803469
crossref_primary_10_1002_smtd_202001213
crossref_primary_10_1002_smll_201303715
crossref_primary_10_1016_j_apsusc_2023_158716
crossref_primary_10_1016_j_jcrysgro_2020_125861
crossref_primary_10_1021_acsnano_9b03632
crossref_primary_10_1039_c3ra42171f
crossref_primary_10_1002_anie_201306086
crossref_primary_10_3390_ma12091376
crossref_primary_10_1557_opl_2015_562
crossref_primary_10_1021_cr500304f
crossref_primary_10_1039_C8TC02646G
crossref_primary_10_3390_ma13010104
crossref_primary_10_1002_smll_202311317
crossref_primary_10_1088_1612_2011_11_9_096001
crossref_primary_10_1021_nn400280c
crossref_primary_10_1063_1_5098806
crossref_primary_10_1186_s40580_023_00368_4
crossref_primary_10_1002_aelm_201700212
crossref_primary_10_1016_j_synthmet_2015_07_005
crossref_primary_10_1021_acsami_8b16957
crossref_primary_10_1021_acsanm_8b01998
crossref_primary_10_1134_S0022476620040137
crossref_primary_10_1002_adom_202101675
crossref_primary_10_1002_admt_202000744
crossref_primary_10_1021_acs_nanolett_5b01936
crossref_primary_10_7498_aps_66_216804
crossref_primary_10_1039_C8TA04618B
crossref_primary_10_1088_0034_4885_78_3_036501
crossref_primary_10_1016_j_compositesa_2018_12_015
crossref_primary_10_1016_j_commatsci_2016_05_020
crossref_primary_10_1021_acs_chemrev_0c00083
crossref_primary_10_1021_nn503985s
crossref_primary_10_1039_C4NR04153D
crossref_primary_10_1088_2053_1583_ab1e0a
crossref_primary_10_1002_smll_201700929
crossref_primary_10_1088_2053_1583_4_1_015009
crossref_primary_10_1039_C7CS00852J
crossref_primary_10_1002_smll_201603337
crossref_primary_10_1016_j_carbon_2015_12_084
crossref_primary_10_1021_acsami_1c02899
crossref_primary_10_35848_1347_4065_ac62e5
crossref_primary_10_1002_smll_201904906
crossref_primary_10_1002_smll_202008017
crossref_primary_10_1007_s11426_023_1769_y
crossref_primary_10_1007_s12274_015_0849_0
crossref_primary_10_1088_1361_6528_ab9045
crossref_primary_10_1021_acsnano_1c00776
crossref_primary_10_1063_1_5111443
crossref_primary_10_1063_1_4960293
crossref_primary_10_1002_cnma_201500160
crossref_primary_10_1021_acsami_7b00067
crossref_primary_10_1016_j_apsusc_2017_09_113
crossref_primary_10_1080_10408436_2018_1433630
crossref_primary_10_35848_1347_4065_acea0b
crossref_primary_10_1007_s12274_020_3106_0
crossref_primary_10_1002_adma_201504229
crossref_primary_10_1016_j_carbon_2020_06_038
crossref_primary_10_1002_pssr_201600122
crossref_primary_10_1007_s12274_016_1013_1
crossref_primary_10_1088_2632_959X_acbc91
crossref_primary_10_1007_s11837_014_0885_3
crossref_primary_10_1016_j_carbon_2018_07_022
crossref_primary_10_1016_j_matchemphys_2024_129318
crossref_primary_10_1039_C5SC01941A
crossref_primary_10_3390_mi9110565
crossref_primary_10_1007_s11664_016_5033_0
crossref_primary_10_1016_j_apsusc_2018_05_131
crossref_primary_10_1016_j_carbon_2021_11_019
crossref_primary_10_1007_s11426_015_0536_8
crossref_primary_10_1021_acsami_6b04526
crossref_primary_10_35848_1347_4065_ac4fec
crossref_primary_10_1002_adma_201903407
crossref_primary_10_1016_j_jcrysgro_2020_125493
crossref_primary_10_1002_adma_201302312
crossref_primary_10_1021_acsanm_0c02634
crossref_primary_10_1016_j_apsusc_2016_04_025
crossref_primary_10_7567_1347_4065_aafe70
crossref_primary_10_1038_s41467_018_07555_6
crossref_primary_10_1063_1_4995559
crossref_primary_10_1002_admt_202101623
crossref_primary_10_1088_1361_6641_aa5cfb
crossref_primary_10_1016_j_snb_2018_12_033
crossref_primary_10_1088_1361_6528_ad0e92
crossref_primary_10_1007_s10853_015_9440_z
crossref_primary_10_1186_s11671_018_2582_6
crossref_primary_10_1021_nn405685j
crossref_primary_10_1126_sciadv_1601574
crossref_primary_10_1021_acsnano_6b06066
crossref_primary_10_1039_C7CS00256D
crossref_primary_10_1007_s10854_019_01409_7
crossref_primary_10_1016_j_tca_2019_02_012
crossref_primary_10_1016_j_vacuum_2023_112106
crossref_primary_10_1039_D2CP01554D
crossref_primary_10_1039_C3NR04739C
crossref_primary_10_1038_s43586_022_00122_w
crossref_primary_10_1088_0022_3727_47_4_045305
Cites_doi 10.1002/adfm.201102423
10.1021/nl061420a
10.1021/ja2063633
10.1016/j.susc.2010.04.017
10.1038/nmat2382
10.1139/v63-095
10.1038/nature04233
10.1021/nl300397v
10.1103/PhysRevB.59.1758
10.1002/smll.200900802
10.1038/nmat2711
10.1016/j.physrep.2009.02.003
10.1016/0022-0248(91)91126-U
10.1103/PhysRevB.83.195131
10.1063/1.1674108
10.1021/nl061702a
10.1021/nn202643t
10.1016/j.carbon.2011.02.022
10.1557/JMR.1991.1131
10.1021/nl1029978
10.1103/PhysRevB.49.14251
10.1126/science.1171245
10.1103/PhysRevLett.78.1396
10.1021/nl1023707
10.1021/jp110650d
10.1038/nature07719
10.1103/PhysRevB.54.11169
10.1038/nnano.2010.279
10.1016/0040-6090(92)90872-9
10.1021/nn103493g
10.1103/PhysRevLett.77.3865
10.1039/c2nr30330b
10.1016/j.ssc.2008.02.024
10.1103/PhysRevLett.92.246401
10.1103/PhysRevB.47.558
10.1021/nn201978y
10.1103/PhysRevLett.101.156801
10.1021/nl9037714
10.1016/0022-0248(91)91127-V
10.1021/nl802156w
10.1021/nl204024k
10.1021/jp040650f
10.1063/1.2196057
10.1103/PhysRevB.50.17953
10.1021/nn100971s
10.1016/j.jcrysgro.2010.07.046
10.1039/c1nr10504c
10.1038/nnano.2008.67
10.1038/nature04235
10.1063/1.3242029
10.1016/0927-0256(96)00008-0
10.1021/nl801827v
ContentType Journal Article
Copyright Copyright © 2012 American Chemical Society
Copyright_xml – notice: Copyright © 2012 American Chemical Society
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
7QF
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1021/nn305486x
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
Aluminium Industry Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Aluminium Industry Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList MEDLINE - Academic

Materials Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 395
ExternalDocumentID 10_1021_nn305486x
23244231
a018736846
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID -
23M
4.4
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
LG6
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
5VS
6J9
AAHBH
ABJNI
ABQRX
ACBEA
ACGFO
ADHLV
AHGAQ
BAANH
CGR
CUPRZ
CUY
CVF
ECM
EIF
GGK
NPM
AAYXX
CITATION
7X8
7QF
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-a414t-89efddd576046e51728b241bd27ce6cd3c5705de584f14154e72b76dcf4b67d93
IEDL.DBID ACS
ISSN 1936-0851
IngestDate Sat Aug 17 03:32:00 EDT 2024
Fri Aug 16 22:24:36 EDT 2024
Fri Aug 23 00:24:38 EDT 2024
Sat Sep 28 07:51:37 EDT 2024
Thu Aug 27 13:45:00 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords CVD
van der Waals
Raman
graphene
epitaxy
sapphire
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a414t-89efddd576046e51728b241bd27ce6cd3c5705de584f14154e72b76dcf4b67d93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 23244231
PQID 1273774607
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_1762051392
proquest_miscellaneous_1273774607
crossref_primary_10_1021_nn305486x
pubmed_primary_23244231
acs_journals_10_1021_nn305486x
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2013-01-22
PublicationDateYYYYMMDD 2013-01-22
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-01-22
  day: 22
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2013
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Graf D. (ref35/cit35) 2007; 7
Cancado L. G. (ref22/cit22) 2006; 88
Novoselov K. S. (ref1/cit1) 2005; 438
Perdew J. P. (ref49/cit49) 1997; 78
Ferrari A. C. (ref37/cit37) 2006; 97
Klimes J. (ref51/cit51) 2011; 83
Kim K. S. (ref5/cit5) 2009; 457
Rummeli M. H. (ref11/cit11) 2010; 4
Das A. (ref42/cit42) 2008; 3
Berger C. (ref3/cit3) 2004; 108
Ismach A. (ref25/cit25) 2010; 10
Kresse G. (ref53/cit53) 1994; 49
Son M. (ref15/cit15) 2011; 3
Koma A. (ref28/cit28) 1992; 216
Koma A. (ref29/cit29) 1991; 111
Malard L. M. (ref36/cit36) 2009; 473
Medina H. (ref13/cit13) 2012; 22
Kresse G. (ref47/cit47) 1999; 59
Perdew J. P. (ref48/cit48) 1996; 77
Reina A. (ref18/cit18) 2009; 9
Emtsev K. V. (ref20/cit20) 2009; 8
Tuinstra F. (ref21/cit21) 1970; 53
Shi Y. M. (ref7/cit7) 2010; 10
Kresse G. (ref54/cit54) 1996; 6
Gupta A. (ref38/cit38) 2006; 6
Kresse G. (ref55/cit55) 1996; 54
Chen J. Y. (ref23/cit23) 2011; 133
Zhang Y. (ref2/cit2) 2005; 438
Ci L. (ref6/cit6) 2010; 9
Radisavljevic B. (ref8/cit8) 2011; 6
Lee S. (ref34/cit34) 2010; 10
Song H. J. (ref17/cit17) 2012; 4
Bolotin K. I. (ref4/cit4) 2008; 146
Teng P. Y. (ref24/cit24) 2012; 12
Cuccureddu F. (ref39/cit39) 2010; 604
Lee D. S. (ref33/cit33) 2008; 8
Kresse G. (ref52/cit52) 1993; 47
Tsoukleri G. (ref41/cit41) 2009; 5
Sun J. (ref14/cit14) 2011; 98
Maruyama B. (ref40/cit40) 1991; 6
Vlassiouk I. (ref31/cit31) 2011; 5
Sun J. (ref12/cit12) 2012; 111
Fanton M. A. (ref27/cit27) 2011; 5
Jerng S. K. (ref9/cit9) 2011; 115
Blochl P. E. (ref46/cit46) 1994; 50
Cox J. H. (ref32/cit32) 1963; 41
Li X. S. (ref19/cit19) 2009; 324
Dion M. (ref50/cit50) 2004; 92
Frank O. (ref43/cit43) 2011; 5
Ferralis N. (ref45/cit45) 2008; 101
Hwang J. (ref26/cit26) 2010; 312
Ding X. L. (ref16/cit16) 2011; 49
Hackley J. (ref10/cit10) 2009; 95
Ohuchi F. S. (ref30/cit30) 1991; 111
He R. (ref44/cit44) 2012; 12
References_xml – volume: 22
  start-page: 2123
  year: 2012
  ident: ref13/cit13
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201102423
  contributor:
    fullname: Medina H.
– volume: 6
  start-page: 2667
  year: 2006
  ident: ref38/cit38
  publication-title: Nano Lett.
  doi: 10.1021/nl061420a
  contributor:
    fullname: Gupta A.
– volume: 133
  start-page: 17548
  year: 2011
  ident: ref23/cit23
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2063633
  contributor:
    fullname: Chen J. Y.
– volume: 604
  start-page: 1294
  year: 2010
  ident: ref39/cit39
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2010.04.017
  contributor:
    fullname: Cuccureddu F.
– volume: 8
  start-page: 203
  year: 2009
  ident: ref20/cit20
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2382
  contributor:
    fullname: Emtsev K. V.
– volume: 41
  start-page: 671
  year: 1963
  ident: ref32/cit32
  publication-title: Can. J. Chem.
  doi: 10.1139/v63-095
  contributor:
    fullname: Cox J. H.
– volume: 438
  start-page: 197
  year: 2005
  ident: ref1/cit1
  publication-title: Nature
  doi: 10.1038/nature04233
  contributor:
    fullname: Novoselov K. S.
– volume: 12
  start-page: 2408
  year: 2012
  ident: ref44/cit44
  publication-title: Nano Lett.
  doi: 10.1021/nl300397v
  contributor:
    fullname: He R.
– volume: 59
  start-page: 1758
  year: 1999
  ident: ref47/cit47
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
  contributor:
    fullname: Kresse G.
– volume: 98
  start-page: 252107-1
  year: 2011
  ident: ref14/cit14
  publication-title: Appl. Phys. Lett.
  contributor:
    fullname: Sun J.
– volume: 5
  start-page: 2397
  year: 2009
  ident: ref41/cit41
  publication-title: Small
  doi: 10.1002/smll.200900802
  contributor:
    fullname: Tsoukleri G.
– volume: 9
  start-page: 430
  year: 2010
  ident: ref6/cit6
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2711
  contributor:
    fullname: Ci L.
– volume: 473
  start-page: 51
  year: 2009
  ident: ref36/cit36
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2009.02.003
  contributor:
    fullname: Malard L. M.
– volume: 111
  start-page: 1029
  year: 1991
  ident: ref29/cit29
  publication-title: J. Cryst. Growth
  doi: 10.1016/0022-0248(91)91126-U
  contributor:
    fullname: Koma A.
– volume: 83
  start-page: 195131-1
  year: 2011
  ident: ref51/cit51
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.195131
  contributor:
    fullname: Klimes J.
– volume: 53
  start-page: 1126
  year: 1970
  ident: ref21/cit21
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1674108
  contributor:
    fullname: Tuinstra F.
– volume: 7
  start-page: 238
  year: 2007
  ident: ref35/cit35
  publication-title: Nano Lett.
  doi: 10.1021/nl061702a
  contributor:
    fullname: Graf D.
– volume: 5
  start-page: 8062
  year: 2011
  ident: ref27/cit27
  publication-title: ACS Nano
  doi: 10.1021/nn202643t
  contributor:
    fullname: Fanton M. A.
– volume: 49
  start-page: 2522
  year: 2011
  ident: ref16/cit16
  publication-title: Carbon
  doi: 10.1016/j.carbon.2011.02.022
  contributor:
    fullname: Ding X. L.
– volume: 6
  start-page: 1131
  year: 1991
  ident: ref40/cit40
  publication-title: J. Mater. Res.
  doi: 10.1557/JMR.1991.1131
  contributor:
    fullname: Maruyama B.
– volume: 10
  start-page: 4702
  year: 2010
  ident: ref34/cit34
  publication-title: Nano Lett.
  doi: 10.1021/nl1029978
  contributor:
    fullname: Lee S.
– volume: 49
  start-page: 14251
  year: 1994
  ident: ref53/cit53
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.49.14251
  contributor:
    fullname: Kresse G.
– volume: 324
  start-page: 1312
  year: 2009
  ident: ref19/cit19
  publication-title: Science
  doi: 10.1126/science.1171245
  contributor:
    fullname: Li X. S.
– volume: 78
  start-page: 1396
  year: 1997
  ident: ref49/cit49
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.78.1396
  contributor:
    fullname: Perdew J. P.
– volume: 10
  start-page: 4134
  year: 2010
  ident: ref7/cit7
  publication-title: Nano Lett.
  doi: 10.1021/nl1023707
  contributor:
    fullname: Shi Y. M.
– volume: 115
  start-page: 4491
  year: 2011
  ident: ref9/cit9
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp110650d
  contributor:
    fullname: Jerng S. K.
– volume: 457
  start-page: 706
  year: 2009
  ident: ref5/cit5
  publication-title: Nature
  doi: 10.1038/nature07719
  contributor:
    fullname: Kim K. S.
– volume: 54
  start-page: 11169
  year: 1996
  ident: ref55/cit55
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
  contributor:
    fullname: Kresse G.
– volume: 6
  start-page: 147
  year: 2011
  ident: ref8/cit8
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.279
  contributor:
    fullname: Radisavljevic B.
– volume: 216
  start-page: 72
  year: 1992
  ident: ref28/cit28
  publication-title: Thin Solid Films
  doi: 10.1016/0040-6090(92)90872-9
  contributor:
    fullname: Koma A.
– volume: 5
  start-page: 2231
  year: 2011
  ident: ref43/cit43
  publication-title: ACS Nano
  doi: 10.1021/nn103493g
  contributor:
    fullname: Frank O.
– volume: 77
  start-page: 3865
  year: 1996
  ident: ref48/cit48
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
  contributor:
    fullname: Perdew J. P.
– volume: 111
  start-page: 044103-1
  year: 2012
  ident: ref12/cit12
  publication-title: J. Appl. Phys.
  contributor:
    fullname: Sun J.
– volume: 4
  start-page: 3050
  year: 2012
  ident: ref17/cit17
  publication-title: Nanoscale
  doi: 10.1039/c2nr30330b
  contributor:
    fullname: Song H. J.
– volume: 146
  start-page: 351
  year: 2008
  ident: ref4/cit4
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2008.02.024
  contributor:
    fullname: Bolotin K. I.
– volume: 92
  start-page: 246401-1
  year: 2004
  ident: ref50/cit50
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.92.246401
  contributor:
    fullname: Dion M.
– volume: 47
  start-page: 558
  year: 1993
  ident: ref52/cit52
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.47.558
  contributor:
    fullname: Kresse G.
– volume: 5
  start-page: 6069
  year: 2011
  ident: ref31/cit31
  publication-title: ACS Nano
  doi: 10.1021/nn201978y
  contributor:
    fullname: Vlassiouk I.
– volume: 101
  start-page: 156801-1
  year: 2008
  ident: ref45/cit45
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.156801
  contributor:
    fullname: Ferralis N.
– volume: 10
  start-page: 1542
  year: 2010
  ident: ref25/cit25
  publication-title: Nano Lett.
  doi: 10.1021/nl9037714
  contributor:
    fullname: Ismach A.
– volume: 111
  start-page: 1033
  year: 1991
  ident: ref30/cit30
  publication-title: J. Cryst. Growth
  doi: 10.1016/0022-0248(91)91127-V
  contributor:
    fullname: Ohuchi F. S.
– volume: 8
  start-page: 4320
  year: 2008
  ident: ref33/cit33
  publication-title: Nano Lett.
  doi: 10.1021/nl802156w
  contributor:
    fullname: Lee D. S.
– volume: 12
  start-page: 1379
  year: 2012
  ident: ref24/cit24
  publication-title: Nano Lett.
  doi: 10.1021/nl204024k
  contributor:
    fullname: Teng P. Y.
– volume: 108
  start-page: 19912
  year: 2004
  ident: ref3/cit3
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp040650f
  contributor:
    fullname: Berger C.
– volume: 88
  start-page: 163106-1
  year: 2006
  ident: ref22/cit22
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2196057
  contributor:
    fullname: Cancado L. G.
– volume: 50
  start-page: 17953
  year: 1994
  ident: ref46/cit46
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
  contributor:
    fullname: Blochl P. E.
– volume: 4
  start-page: 4206
  year: 2010
  ident: ref11/cit11
  publication-title: ACS Nano
  doi: 10.1021/nn100971s
  contributor:
    fullname: Rummeli M. H.
– volume: 312
  start-page: 3219
  year: 2010
  ident: ref26/cit26
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2010.07.046
  contributor:
    fullname: Hwang J.
– volume: 97
  start-page: 187401-1
  year: 2006
  ident: ref37/cit37
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Ferrari A. C.
– volume: 3
  start-page: 3089
  year: 2011
  ident: ref15/cit15
  publication-title: Nanoscale
  doi: 10.1039/c1nr10504c
  contributor:
    fullname: Son M.
– volume: 3
  start-page: 210
  year: 2008
  ident: ref42/cit42
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2008.67
  contributor:
    fullname: Das A.
– volume: 438
  start-page: 201
  year: 2005
  ident: ref2/cit2
  publication-title: Nature
  doi: 10.1038/nature04235
  contributor:
    fullname: Zhang Y.
– volume: 95
  start-page: 133114-1
  year: 2009
  ident: ref10/cit10
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3242029
  contributor:
    fullname: Hackley J.
– volume: 6
  start-page: 15
  year: 1996
  ident: ref54/cit54
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
  contributor:
    fullname: Kresse G.
– volume: 9
  start-page: 30
  year: 2009
  ident: ref18/cit18
  publication-title: Nano Lett.
  doi: 10.1021/nl801827v
  contributor:
    fullname: Reina A.
SSID ssj0057876
Score 2.5566812
Snippet van der Waals epitaxial growth of graphene on c-plane (0001) sapphire by CVD without a metal catalyst is presented. The effects of CH4 partial pressure, growth...
van der Waals epitaxial growth of graphene on c-plane (0001) sapphire by CVD without a metal catalyst is presented. The effects of CH(4) partial pressure,...
van der Waals epitaxial growth of graphene on c-plane (0001) sapphire by CVD without a metal catalyst is presented. The effects of CH sub(4) partial pressure,...
SourceID proquest
crossref
pubmed
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 385
SubjectTerms Aluminum Oxide - chemistry
Binding
Catalysis
Catalysts
Chemical vapor deposition
Computer Simulation
Crystallization - methods
Density
Epitaxial growth
Formations
Gases - chemistry
Graphene
Graphite - chemistry
Materials Testing
Metals - chemistry
Models, Chemical
Nanostructures - chemistry
Nanostructures - ultrastructure
Nucleation
Particle Size
Sapphire
Static Electricity
Title van der Waals Epitaxial Growth of Graphene on Sapphire by Chemical Vapor Deposition without a Metal Catalyst
URI http://dx.doi.org/10.1021/nn305486x
https://www.ncbi.nlm.nih.gov/pubmed/23244231
https://search.proquest.com/docview/1273774607
https://search.proquest.com/docview/1762051392
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhZ1LT8MwDIAjBBc48H6Ml8zj2rFkbdMd0dhASHCBwW5V0jhCArUT6yTg1-O06zQEG7ce0jSqnfhznNiMnQvLpQ0a6GmyRZ4fofRUEBqPK5QmcRnwintrd_fhTc-_7Qf9BXY2I4Iv-EWakkr6UUiguCQkTQrHP-2Harl1GheWoWNyjYkfqvRB068605MMf5qeGTxZ2JXuGruqbueUx0le66Nc15Ov38ka5w15na2OuRIuS0XYYAuYbrKVqWyDW-yNoBkMvsOzIp2DjqsX8kHqB9fkiucvkFl6Uu7MF0KWwoMaDNzONehPqNIKwJMiXocrrM56gdvHzUY5KLhD4nhou-2gz2G-zXrdzmP7xhsXW_CUz_3ci1pojTHkfpDHjIErW6XJumsjZIJhYppJIBuBQQIWy8nq-yiFlqFJrK9DaVrNHbaYZinuMZCaFo7I8ihR5H8oIiLfkBsZNVRgmxjYGjsmacTjyTKMizi44PHkt9XYaSWoeFAm3fir0UklwpimhItzqBSzEfVHSEZUGzbknDZkBGg9Ijqssd1S_pNPOcgkyuT7_43zgC2LojoG94Q4ZIv5-wiPiFFyfVzo6Dcant-G
link.rule.ids 315,783,787,2772,27088,27936,27937,57070,57120
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1NT9wwEIatCg5tD0BLW5avDqjX0HU2icMRLdBty3IBWm6RHY9VCZSsSFYCfj2vkw0FRD9uOTjOKB57nvHYM0J8Cp1ULu5zYGCLgihlFeg4sYHUrGzuM-A199bGx8noLPp2Hp_P0uT4uzAQokJPVRPE_51dQH4uCmhmlCbgxflYQVE9Bg1PulXXK17SRpDhIQMjuixCD1_1FiivHlugP2BlY14OF9s6RY1gzamSi51pbXby2yc5G_9P8iWxMKNM2mvV4o14wcVb8fpB7sFlcQmEJstX9FNDA-nAVw-5hjLSFzjm9S8qHZ60PwHGVBZ0oicTv49N5oa6JAP0Q4PeaZ-7k1_kd3XLaU2axgyqp6HfHLqp6nfi7PDgdDgKZqUXAh3JqA7SXXbWWjgj8J859kWsDGy9saHKOcntIMcYxJaBL06CASJWoVGJzV1kEmV3B-_FXFEWvCJIGSwjqZNpruGNaPBRZOFUpn0duwHHric28dey2dSpsiYqHsrs_rf1xHY3XtmkTcHxXKOtbiQzTBAf9dAFl1P0B0AD4yZ99Zc2MAlYncCKPfGhVYP7T3nkBHPK1X_J-VG8HJ2Oj7Kjr8ff18SrsKmbIYMwXBdz9dWUN0Avtdls1PYOmivn5g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1RT9RAEMc3BhOiDwqoeAo4Gl-Lt71utzySgwMV0ARR3prd7mxIMO2F9hLx0_vfXntBIupbH7bbSXd25zc7uzNCvI291F4NObKwRVGSsY6MSl0kDWtXhAx47b2145P08Cz5cK7OO0cx3IWBEDV6qtsgfpjVU-e7DAPyXVlCO5MsBTPeV1rGoVTD7vi0X3mD8qXzKDK8ZKBEn0no5qvBChX171boDrRsTczksfi0EK49WXK5PWvsdvHzVt7G_5d-RTzqaJN25-qxKu5xuSYe3shB-ER8B0qT4yv6ZqCJtB-qiPyAUtIBHPTmgiqPJxNOgjFVJZ2a6TTsZ5O9pj7ZAH01oHja4_4EGIXd3WrWkKFjBt3TOGwSXdfNU3E22f8yPoy6EgyRSWTSRNkOe-ccnBL40axCMSsLm29drAtOCzcqlB4qx8AYL8ECCevY6tQVPrGpdjujZ2KprEp-LkhbLCeZl1lh4JUYcFLi4FxmQ6P8iJUfiC38ubybQnXeRsdjmS9-20C86ccsn85Tcfyp0et-NHNMlBD9MCVXM_QHUAPrpkP9lzYwDVilwIwDsT5XhcWnAnqCPeWLf8n5Six_3pvkR-9PPr4UD-K2fIaM4nhDLDVXM94ExDR2q9XcXybr6mA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=van+der+Waals+epitaxial+growth+of+graphene+on+sapphire+by+chemical+vapor+deposition+without+a+metal+catalyst&rft.jtitle=ACS+nano&rft.au=Hwang%2C+Jeonghyun&rft.au=Kim%2C+Moonkyung&rft.au=Campbell%2C+Dorr&rft.au=Alsalman%2C+Hussain+A&rft.date=2013-01-22&rft.eissn=1936-086X&rft.volume=7&rft.issue=1&rft.spage=385&rft.epage=395&rft_id=info:doi/10.1021%2Fnn305486x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon