van der Waals Epitaxial Growth of Graphene on Sapphire by Chemical Vapor Deposition without a Metal Catalyst
van der Waals epitaxial growth of graphene on c-plane (0001) sapphire by CVD without a metal catalyst is presented. The effects of CH4 partial pressure, growth temperature, and H2/CH4 ratio were investigated and growth conditions optimized. The formation of monolayer graphene was shown by Raman spec...
Saved in:
Published in | ACS nano Vol. 7; no. 1; pp. 385 - 395 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
22.01.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | van der Waals epitaxial growth of graphene on c-plane (0001) sapphire by CVD without a metal catalyst is presented. The effects of CH4 partial pressure, growth temperature, and H2/CH4 ratio were investigated and growth conditions optimized. The formation of monolayer graphene was shown by Raman spectroscopy, optical transmission, grazing incidence X-ray diffraction (GIXRD), and low voltage transmission electron microscopy (LVTEM). Electrical analysis revealed that a room temperature Hall mobility above 2000 cm2/V·s was achieved, and the mobility and carrier type were correlated to growth conditions. Both GIXRD and LVTEM studies confirm a dominant crystal orientation (principally graphene [10–10] || sapphire [11–20]) for about 80–90% of the material concomitant with epitaxial growth. The initial phase of the nucleation and the lateral growth from the nucleation seeds were observed using atomic force microscopy. The initial nuclei density was ∼24 μm–2, and a lateral growth rate of ∼82 nm/min was determined. Density functional theory calculations reveal that the binding between graphene and sapphire is dominated by weak dispersion interactions and indicate that the epitaxial relation as observed by GIXRD is due to preferential binding of small molecules on sapphire during early stages of graphene formation. |
---|---|
AbstractList | van der Waals epitaxial growth of graphene on c-plane (0001) sapphire by CVD without a metal catalyst is presented. The effects of CH(4) partial pressure, growth temperature, and H(2)/CH(4) ratio were investigated and growth conditions optimized. The formation of monolayer graphene was shown by Raman spectroscopy, optical transmission, grazing incidence X-ray diffraction (GIXRD), and low voltage transmission electron microscopy (LVTEM). Electrical analysis revealed that a room temperature Hall mobility above 2000 cm(2)/V·s was achieved, and the mobility and carrier type were correlated to growth conditions. Both GIXRD and LVTEM studies confirm a dominant crystal orientation (principally graphene [10-10] || sapphire [11-20]) for about 80-90% of the material concomitant with epitaxial growth. The initial phase of the nucleation and the lateral growth from the nucleation seeds were observed using atomic force microscopy. The initial nuclei density was ~24 μm(-2), and a lateral growth rate of ~82 nm/min was determined. Density functional theory calculations reveal that the binding between graphene and sapphire is dominated by weak dispersion interactions and indicate that the epitaxial relation as observed by GIXRD is due to preferential binding of small molecules on sapphire during early stages of graphene formation. van der Waals epitaxial growth of graphene on c-plane (0001) sapphire by CVD without a metal catalyst is presented. The effects of CH4 partial pressure, growth temperature, and H2/CH4 ratio were investigated and growth conditions optimized. The formation of monolayer graphene was shown by Raman spectroscopy, optical transmission, grazing incidence X-ray diffraction (GIXRD), and low voltage transmission electron microscopy (LVTEM). Electrical analysis revealed that a room temperature Hall mobility above 2000 cm2/V·s was achieved, and the mobility and carrier type were correlated to growth conditions. Both GIXRD and LVTEM studies confirm a dominant crystal orientation (principally graphene [10–10] || sapphire [11–20]) for about 80–90% of the material concomitant with epitaxial growth. The initial phase of the nucleation and the lateral growth from the nucleation seeds were observed using atomic force microscopy. The initial nuclei density was ∼24 μm–2, and a lateral growth rate of ∼82 nm/min was determined. Density functional theory calculations reveal that the binding between graphene and sapphire is dominated by weak dispersion interactions and indicate that the epitaxial relation as observed by GIXRD is due to preferential binding of small molecules on sapphire during early stages of graphene formation. van der Waals epitaxial growth of graphene on c-plane (0001) sapphire by CVD without a metal catalyst is presented. The effects of CH sub(4) partial pressure, growth temperature, and H sub(2)/CH sub(4) ratio were investigated and growth conditions optimized. The formation of monolayer graphene was shown by Raman spectroscopy, optical transmission, grazing incidence X-ray diffraction (GIXRD), and low voltage transmission electron microscopy (LVTEM). Electrical analysis revealed that a room temperature Hall mobility above 2000 cm super(2)/V.s was achieved, and the mobility and carrier type were correlated to growth conditions. Both GIXRD and LVTEM studies confirm a dominant crystal orientation (principally graphene [10-10] || sapphire [11-20]) for about 80-90% of the material concomitant with epitaxial growth. The initial phase of the nucleation and the lateral growth from the nucleation seeds were observed using atomic force microscopy. The initial nuclei density was 24 mu m super(-2), and a lateral growth rate of 82 nm/min was determined. Density functional theory calculations reveal that the binding between graphene and sapphire is dominated by weak dispersion interactions and indicate that the epitaxial relation as observed by GIXRD is due to preferential binding of small molecules on sapphire during early stages of graphene formation. |
Author | Hennig, Richard G Gorantla, Sandeep Kwak, Joon Young Singh, Arunima K Spencer, Michael G Kim, Moonkyung Campbell, Dorr Rümmeli, Mark H Alsalman, Hussain A Hwang, Jeonghyun Shivaraman, Shriram Woll, Arthur R |
AuthorAffiliation | School of Electrical and Computer Engineering Cornell High Energy Synchrotron Source (CHESS) IFW Dresden Department of Materials Science & Engineering Cornell University |
AuthorAffiliation_xml | – name: Cornell University – name: – name: School of Electrical and Computer Engineering – name: IFW Dresden – name: Cornell High Energy Synchrotron Source (CHESS) – name: Department of Materials Science & Engineering |
Author_xml | – sequence: 1 givenname: Jeonghyun surname: Hwang fullname: Hwang, Jeonghyun email: JH124@cornell.edu – sequence: 2 givenname: Moonkyung surname: Kim fullname: Kim, Moonkyung – sequence: 3 givenname: Dorr surname: Campbell fullname: Campbell, Dorr – sequence: 4 givenname: Hussain A surname: Alsalman fullname: Alsalman, Hussain A – sequence: 5 givenname: Joon Young surname: Kwak fullname: Kwak, Joon Young – sequence: 6 givenname: Shriram surname: Shivaraman fullname: Shivaraman, Shriram – sequence: 7 givenname: Arthur R surname: Woll fullname: Woll, Arthur R – sequence: 8 givenname: Arunima K surname: Singh fullname: Singh, Arunima K – sequence: 9 givenname: Richard G surname: Hennig fullname: Hennig, Richard G – sequence: 10 givenname: Sandeep surname: Gorantla fullname: Gorantla, Sandeep – sequence: 11 givenname: Mark H surname: Rümmeli fullname: Rümmeli, Mark H – sequence: 12 givenname: Michael G surname: Spencer fullname: Spencer, Michael G |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23244231$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0U1PGzEQBmALpWpC2gN_APmCRA8pttcfmyMKNEUCcaBft5V3Pat1tLEX21vIv6-rQE5IXGbm8OgdaeYYTZx3gNAJJV8pYfTCuYIIXsrnIzSjy0IuSCn_TA6zoFN0HOOGEKFKJT-iKSsY56ygM9T_1Q4bCPi31n3E14NN-tnqHq-Df0od9m2e9NCBA-wdftDD0NkAuN7hVQdb22T6Sw8-4CsYfLTJZvVkU-fHhDW-g5TBSue6i-kT-tDmLfD5pc_Rz2_XP1bfF7f365vV5e1Cc8rTolxCa4wRShIuQVDFyppxWhumGpCNKRqhiDAgSt5STgUHxWolTdPyWiqzLObofJ87BP84QkzV1sYG-l478GOsqJKMCFos2fuUqUIpLonK9MueNsHHGKCthmC3OuwqSqr_f6gOf8j29CV2rLdgDvL18Bmc7YFuYrXxY3D5IG8E_QO5ypB8 |
CitedBy_id | crossref_primary_10_1002_adma_201304872 crossref_primary_10_1007_s40820_017_0173_1 crossref_primary_10_1088_1361_6641_aaa3b7 crossref_primary_10_3390_nano13192720 crossref_primary_10_1002_adfm_202209880 crossref_primary_10_1002_pssr_201307074 crossref_primary_10_1002_advs_201600003 crossref_primary_10_1103_PhysRevB_89_245431 crossref_primary_10_1002_smll_202103677 crossref_primary_10_1007_s40097_021_00467_w crossref_primary_10_1038_s41598_017_09811_z crossref_primary_10_1016_j_carbon_2016_12_031 crossref_primary_10_1016_j_carbon_2016_10_023 crossref_primary_10_1021_acsnano_9b00976 crossref_primary_10_1002_adfm_202200428 crossref_primary_10_1088_0256_307X_31_7_078104 crossref_primary_10_3389_fnins_2020_592502 crossref_primary_10_1016_j_jcrysgro_2022_126885 crossref_primary_10_1039_D1RA01444G crossref_primary_10_1021_acsami_8b07655 crossref_primary_10_1063_1_4892351 crossref_primary_10_1007_s12274_014_0640_7 crossref_primary_10_1002_admi_201902024 crossref_primary_10_7567_1347_4065_aaec86 crossref_primary_10_1021_acsnano_5b05556 crossref_primary_10_1039_C7RA04162D crossref_primary_10_1021_acs_chemrev_8b00325 crossref_primary_10_1016_j_jcrysgro_2020_125969 crossref_primary_10_1021_acs_chemmater_2c00450 crossref_primary_10_1063_1_5019352 crossref_primary_10_1088_0957_4484_25_16_165702 crossref_primary_10_1103_PhysRevB_90_041403 crossref_primary_10_1039_C8NR03210F crossref_primary_10_1088_1361_648X_aa9305 crossref_primary_10_1103_PhysRevB_97_075423 crossref_primary_10_1039_C5RA27452D crossref_primary_10_1002_advs_201600130 crossref_primary_10_1002_adfm_201502010 crossref_primary_10_1002_smll_201402427 crossref_primary_10_1016_j_tsf_2019_06_029 crossref_primary_10_1063_1_4980088 crossref_primary_10_1002_adfm_201500981 crossref_primary_10_1002_cnma_202000045 crossref_primary_10_1021_acsnano_6b08069 crossref_primary_10_1021_ja5022602 crossref_primary_10_1002_adma_201704839 crossref_primary_10_1021_acsami_8b11579 crossref_primary_10_1021_nn505913v crossref_primary_10_1021_acsenergylett_1c00901 crossref_primary_10_3389_fmats_2023_1345592 crossref_primary_10_1016_j_carbon_2014_12_027 crossref_primary_10_1038_s41598_022_22889_4 crossref_primary_10_1088_1402_4896_acccb4 crossref_primary_10_1364_OL_39_002707 crossref_primary_10_1038_s41467_019_13023_6 crossref_primary_10_1088_1361_6463_ac928d crossref_primary_10_1002_smll_201401804 crossref_primary_10_1016_j_flatc_2017_07_002 crossref_primary_10_1557_jmr_2018_392 crossref_primary_10_1515_psr_2016_0107 crossref_primary_10_7567_JJAP_54_040102 crossref_primary_10_1016_j_carbon_2019_03_083 crossref_primary_10_1063_1_4983388 crossref_primary_10_1126_sciadv_abk0115 crossref_primary_10_1021_nl5036463 crossref_primary_10_1109_JSEN_2020_3029172 crossref_primary_10_1016_j_rinp_2021_104156 crossref_primary_10_1039_C5CS00542F crossref_primary_10_1021_acsnano_5b03394 crossref_primary_10_7240_jeps_1235645 crossref_primary_10_1016_j_jallcom_2020_155870 crossref_primary_10_1016_j_nanoen_2018_12_044 crossref_primary_10_1186_1556_276X_9_367 crossref_primary_10_7567_JJAP_57_04FL03 crossref_primary_10_1002_advs_201700087 crossref_primary_10_1021_acs_jpcc_0c05257 crossref_primary_10_1016_j_ssc_2014_03_008 crossref_primary_10_1039_D1NA00545F crossref_primary_10_1007_s12274_016_1187_6 crossref_primary_10_1073_pnas_1405613111 crossref_primary_10_1021_jz502646d crossref_primary_10_1103_PhysRevB_94_024108 crossref_primary_10_1002_ange_201306086 crossref_primary_10_1088_1361_6633_aa9bbf crossref_primary_10_1002_adom_201901388 crossref_primary_10_1186_s11671_019_2935_9 crossref_primary_10_1002_adma_201505123 crossref_primary_10_3390_mi13050681 crossref_primary_10_1080_10408436_2013_836075 crossref_primary_10_1063_1_4928179 crossref_primary_10_1016_j_jmst_2018_02_005 crossref_primary_10_1088_2053_1583_aac479 crossref_primary_10_1002_adma_201803469 crossref_primary_10_1002_smtd_202001213 crossref_primary_10_1002_smll_201303715 crossref_primary_10_1016_j_apsusc_2023_158716 crossref_primary_10_1016_j_jcrysgro_2020_125861 crossref_primary_10_1021_acsnano_9b03632 crossref_primary_10_1039_c3ra42171f crossref_primary_10_1002_anie_201306086 crossref_primary_10_3390_ma12091376 crossref_primary_10_1557_opl_2015_562 crossref_primary_10_1021_cr500304f crossref_primary_10_1039_C8TC02646G crossref_primary_10_3390_ma13010104 crossref_primary_10_1002_smll_202311317 crossref_primary_10_1088_1612_2011_11_9_096001 crossref_primary_10_1021_nn400280c crossref_primary_10_1063_1_5098806 crossref_primary_10_1186_s40580_023_00368_4 crossref_primary_10_1002_aelm_201700212 crossref_primary_10_1016_j_synthmet_2015_07_005 crossref_primary_10_1021_acsami_8b16957 crossref_primary_10_1021_acsanm_8b01998 crossref_primary_10_1134_S0022476620040137 crossref_primary_10_1002_adom_202101675 crossref_primary_10_1002_admt_202000744 crossref_primary_10_1021_acs_nanolett_5b01936 crossref_primary_10_7498_aps_66_216804 crossref_primary_10_1039_C8TA04618B crossref_primary_10_1088_0034_4885_78_3_036501 crossref_primary_10_1016_j_compositesa_2018_12_015 crossref_primary_10_1016_j_commatsci_2016_05_020 crossref_primary_10_1021_acs_chemrev_0c00083 crossref_primary_10_1021_nn503985s crossref_primary_10_1039_C4NR04153D crossref_primary_10_1088_2053_1583_ab1e0a crossref_primary_10_1002_smll_201700929 crossref_primary_10_1088_2053_1583_4_1_015009 crossref_primary_10_1039_C7CS00852J crossref_primary_10_1002_smll_201603337 crossref_primary_10_1016_j_carbon_2015_12_084 crossref_primary_10_1021_acsami_1c02899 crossref_primary_10_35848_1347_4065_ac62e5 crossref_primary_10_1002_smll_201904906 crossref_primary_10_1002_smll_202008017 crossref_primary_10_1007_s11426_023_1769_y crossref_primary_10_1007_s12274_015_0849_0 crossref_primary_10_1088_1361_6528_ab9045 crossref_primary_10_1021_acsnano_1c00776 crossref_primary_10_1063_1_5111443 crossref_primary_10_1063_1_4960293 crossref_primary_10_1002_cnma_201500160 crossref_primary_10_1021_acsami_7b00067 crossref_primary_10_1016_j_apsusc_2017_09_113 crossref_primary_10_1080_10408436_2018_1433630 crossref_primary_10_35848_1347_4065_acea0b crossref_primary_10_1007_s12274_020_3106_0 crossref_primary_10_1002_adma_201504229 crossref_primary_10_1016_j_carbon_2020_06_038 crossref_primary_10_1002_pssr_201600122 crossref_primary_10_1007_s12274_016_1013_1 crossref_primary_10_1088_2632_959X_acbc91 crossref_primary_10_1007_s11837_014_0885_3 crossref_primary_10_1016_j_carbon_2018_07_022 crossref_primary_10_1016_j_matchemphys_2024_129318 crossref_primary_10_1039_C5SC01941A crossref_primary_10_3390_mi9110565 crossref_primary_10_1007_s11664_016_5033_0 crossref_primary_10_1016_j_apsusc_2018_05_131 crossref_primary_10_1016_j_carbon_2021_11_019 crossref_primary_10_1007_s11426_015_0536_8 crossref_primary_10_1021_acsami_6b04526 crossref_primary_10_35848_1347_4065_ac4fec crossref_primary_10_1002_adma_201903407 crossref_primary_10_1016_j_jcrysgro_2020_125493 crossref_primary_10_1002_adma_201302312 crossref_primary_10_1021_acsanm_0c02634 crossref_primary_10_1016_j_apsusc_2016_04_025 crossref_primary_10_7567_1347_4065_aafe70 crossref_primary_10_1038_s41467_018_07555_6 crossref_primary_10_1063_1_4995559 crossref_primary_10_1002_admt_202101623 crossref_primary_10_1088_1361_6641_aa5cfb crossref_primary_10_1016_j_snb_2018_12_033 crossref_primary_10_1088_1361_6528_ad0e92 crossref_primary_10_1007_s10853_015_9440_z crossref_primary_10_1186_s11671_018_2582_6 crossref_primary_10_1021_nn405685j crossref_primary_10_1126_sciadv_1601574 crossref_primary_10_1021_acsnano_6b06066 crossref_primary_10_1039_C7CS00256D crossref_primary_10_1007_s10854_019_01409_7 crossref_primary_10_1016_j_tca_2019_02_012 crossref_primary_10_1016_j_vacuum_2023_112106 crossref_primary_10_1039_D2CP01554D crossref_primary_10_1039_C3NR04739C crossref_primary_10_1038_s43586_022_00122_w crossref_primary_10_1088_0022_3727_47_4_045305 |
Cites_doi | 10.1002/adfm.201102423 10.1021/nl061420a 10.1021/ja2063633 10.1016/j.susc.2010.04.017 10.1038/nmat2382 10.1139/v63-095 10.1038/nature04233 10.1021/nl300397v 10.1103/PhysRevB.59.1758 10.1002/smll.200900802 10.1038/nmat2711 10.1016/j.physrep.2009.02.003 10.1016/0022-0248(91)91126-U 10.1103/PhysRevB.83.195131 10.1063/1.1674108 10.1021/nl061702a 10.1021/nn202643t 10.1016/j.carbon.2011.02.022 10.1557/JMR.1991.1131 10.1021/nl1029978 10.1103/PhysRevB.49.14251 10.1126/science.1171245 10.1103/PhysRevLett.78.1396 10.1021/nl1023707 10.1021/jp110650d 10.1038/nature07719 10.1103/PhysRevB.54.11169 10.1038/nnano.2010.279 10.1016/0040-6090(92)90872-9 10.1021/nn103493g 10.1103/PhysRevLett.77.3865 10.1039/c2nr30330b 10.1016/j.ssc.2008.02.024 10.1103/PhysRevLett.92.246401 10.1103/PhysRevB.47.558 10.1021/nn201978y 10.1103/PhysRevLett.101.156801 10.1021/nl9037714 10.1016/0022-0248(91)91127-V 10.1021/nl802156w 10.1021/nl204024k 10.1021/jp040650f 10.1063/1.2196057 10.1103/PhysRevB.50.17953 10.1021/nn100971s 10.1016/j.jcrysgro.2010.07.046 10.1039/c1nr10504c 10.1038/nnano.2008.67 10.1038/nature04235 10.1063/1.3242029 10.1016/0927-0256(96)00008-0 10.1021/nl801827v |
ContentType | Journal Article |
Copyright | Copyright © 2012 American Chemical Society |
Copyright_xml | – notice: Copyright © 2012 American Chemical Society |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 7QF 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1021/nn305486x |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic Aluminium Industry Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Aluminium Industry Abstracts Technology Research Database Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | MEDLINE - Academic Materials Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 395 |
ExternalDocumentID | 10_1021_nn305486x 23244231 a018736846 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GroupedDBID | - 23M 4.4 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ LG6 P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 5VS 6J9 AAHBH ABJNI ABQRX ACBEA ACGFO ADHLV AHGAQ BAANH CGR CUPRZ CUY CVF ECM EIF GGK NPM AAYXX CITATION 7X8 7QF 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-a414t-89efddd576046e51728b241bd27ce6cd3c5705de584f14154e72b76dcf4b67d93 |
IEDL.DBID | ACS |
ISSN | 1936-0851 |
IngestDate | Sat Aug 17 03:32:00 EDT 2024 Fri Aug 16 22:24:36 EDT 2024 Fri Aug 23 00:24:38 EDT 2024 Sat Sep 28 07:51:37 EDT 2024 Thu Aug 27 13:45:00 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | CVD van der Waals Raman graphene epitaxy sapphire |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a414t-89efddd576046e51728b241bd27ce6cd3c5705de584f14154e72b76dcf4b67d93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 23244231 |
PQID | 1273774607 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1762051392 proquest_miscellaneous_1273774607 crossref_primary_10_1021_nn305486x pubmed_primary_23244231 acs_journals_10_1021_nn305486x |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2013-01-22 |
PublicationDateYYYYMMDD | 2013-01-22 |
PublicationDate_xml | – month: 01 year: 2013 text: 2013-01-22 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2013 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Graf D. (ref35/cit35) 2007; 7 Cancado L. G. (ref22/cit22) 2006; 88 Novoselov K. S. (ref1/cit1) 2005; 438 Perdew J. P. (ref49/cit49) 1997; 78 Ferrari A. C. (ref37/cit37) 2006; 97 Klimes J. (ref51/cit51) 2011; 83 Kim K. S. (ref5/cit5) 2009; 457 Rummeli M. H. (ref11/cit11) 2010; 4 Das A. (ref42/cit42) 2008; 3 Berger C. (ref3/cit3) 2004; 108 Ismach A. (ref25/cit25) 2010; 10 Kresse G. (ref53/cit53) 1994; 49 Son M. (ref15/cit15) 2011; 3 Koma A. (ref28/cit28) 1992; 216 Koma A. (ref29/cit29) 1991; 111 Malard L. M. (ref36/cit36) 2009; 473 Medina H. (ref13/cit13) 2012; 22 Kresse G. (ref47/cit47) 1999; 59 Perdew J. P. (ref48/cit48) 1996; 77 Reina A. (ref18/cit18) 2009; 9 Emtsev K. V. (ref20/cit20) 2009; 8 Tuinstra F. (ref21/cit21) 1970; 53 Shi Y. M. (ref7/cit7) 2010; 10 Kresse G. (ref54/cit54) 1996; 6 Gupta A. (ref38/cit38) 2006; 6 Kresse G. (ref55/cit55) 1996; 54 Chen J. Y. (ref23/cit23) 2011; 133 Zhang Y. (ref2/cit2) 2005; 438 Ci L. (ref6/cit6) 2010; 9 Radisavljevic B. (ref8/cit8) 2011; 6 Lee S. (ref34/cit34) 2010; 10 Song H. J. (ref17/cit17) 2012; 4 Bolotin K. I. (ref4/cit4) 2008; 146 Teng P. Y. (ref24/cit24) 2012; 12 Cuccureddu F. (ref39/cit39) 2010; 604 Lee D. S. (ref33/cit33) 2008; 8 Kresse G. (ref52/cit52) 1993; 47 Tsoukleri G. (ref41/cit41) 2009; 5 Sun J. (ref14/cit14) 2011; 98 Maruyama B. (ref40/cit40) 1991; 6 Vlassiouk I. (ref31/cit31) 2011; 5 Sun J. (ref12/cit12) 2012; 111 Fanton M. A. (ref27/cit27) 2011; 5 Jerng S. K. (ref9/cit9) 2011; 115 Blochl P. E. (ref46/cit46) 1994; 50 Cox J. H. (ref32/cit32) 1963; 41 Li X. S. (ref19/cit19) 2009; 324 Dion M. (ref50/cit50) 2004; 92 Frank O. (ref43/cit43) 2011; 5 Ferralis N. (ref45/cit45) 2008; 101 Hwang J. (ref26/cit26) 2010; 312 Ding X. L. (ref16/cit16) 2011; 49 Hackley J. (ref10/cit10) 2009; 95 Ohuchi F. S. (ref30/cit30) 1991; 111 He R. (ref44/cit44) 2012; 12 |
References_xml | – volume: 22 start-page: 2123 year: 2012 ident: ref13/cit13 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201102423 contributor: fullname: Medina H. – volume: 6 start-page: 2667 year: 2006 ident: ref38/cit38 publication-title: Nano Lett. doi: 10.1021/nl061420a contributor: fullname: Gupta A. – volume: 133 start-page: 17548 year: 2011 ident: ref23/cit23 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2063633 contributor: fullname: Chen J. Y. – volume: 604 start-page: 1294 year: 2010 ident: ref39/cit39 publication-title: Surf. Sci. doi: 10.1016/j.susc.2010.04.017 contributor: fullname: Cuccureddu F. – volume: 8 start-page: 203 year: 2009 ident: ref20/cit20 publication-title: Nat. Mater. doi: 10.1038/nmat2382 contributor: fullname: Emtsev K. V. – volume: 41 start-page: 671 year: 1963 ident: ref32/cit32 publication-title: Can. J. Chem. doi: 10.1139/v63-095 contributor: fullname: Cox J. H. – volume: 438 start-page: 197 year: 2005 ident: ref1/cit1 publication-title: Nature doi: 10.1038/nature04233 contributor: fullname: Novoselov K. S. – volume: 12 start-page: 2408 year: 2012 ident: ref44/cit44 publication-title: Nano Lett. doi: 10.1021/nl300397v contributor: fullname: He R. – volume: 59 start-page: 1758 year: 1999 ident: ref47/cit47 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 contributor: fullname: Kresse G. – volume: 98 start-page: 252107-1 year: 2011 ident: ref14/cit14 publication-title: Appl. Phys. Lett. contributor: fullname: Sun J. – volume: 5 start-page: 2397 year: 2009 ident: ref41/cit41 publication-title: Small doi: 10.1002/smll.200900802 contributor: fullname: Tsoukleri G. – volume: 9 start-page: 430 year: 2010 ident: ref6/cit6 publication-title: Nat. Mater. doi: 10.1038/nmat2711 contributor: fullname: Ci L. – volume: 473 start-page: 51 year: 2009 ident: ref36/cit36 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2009.02.003 contributor: fullname: Malard L. M. – volume: 111 start-page: 1029 year: 1991 ident: ref29/cit29 publication-title: J. Cryst. Growth doi: 10.1016/0022-0248(91)91126-U contributor: fullname: Koma A. – volume: 83 start-page: 195131-1 year: 2011 ident: ref51/cit51 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.195131 contributor: fullname: Klimes J. – volume: 53 start-page: 1126 year: 1970 ident: ref21/cit21 publication-title: J. Chem. Phys. doi: 10.1063/1.1674108 contributor: fullname: Tuinstra F. – volume: 7 start-page: 238 year: 2007 ident: ref35/cit35 publication-title: Nano Lett. doi: 10.1021/nl061702a contributor: fullname: Graf D. – volume: 5 start-page: 8062 year: 2011 ident: ref27/cit27 publication-title: ACS Nano doi: 10.1021/nn202643t contributor: fullname: Fanton M. A. – volume: 49 start-page: 2522 year: 2011 ident: ref16/cit16 publication-title: Carbon doi: 10.1016/j.carbon.2011.02.022 contributor: fullname: Ding X. L. – volume: 6 start-page: 1131 year: 1991 ident: ref40/cit40 publication-title: J. Mater. Res. doi: 10.1557/JMR.1991.1131 contributor: fullname: Maruyama B. – volume: 10 start-page: 4702 year: 2010 ident: ref34/cit34 publication-title: Nano Lett. doi: 10.1021/nl1029978 contributor: fullname: Lee S. – volume: 49 start-page: 14251 year: 1994 ident: ref53/cit53 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.49.14251 contributor: fullname: Kresse G. – volume: 324 start-page: 1312 year: 2009 ident: ref19/cit19 publication-title: Science doi: 10.1126/science.1171245 contributor: fullname: Li X. S. – volume: 78 start-page: 1396 year: 1997 ident: ref49/cit49 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.78.1396 contributor: fullname: Perdew J. P. – volume: 10 start-page: 4134 year: 2010 ident: ref7/cit7 publication-title: Nano Lett. doi: 10.1021/nl1023707 contributor: fullname: Shi Y. M. – volume: 115 start-page: 4491 year: 2011 ident: ref9/cit9 publication-title: J. Phys. Chem. C doi: 10.1021/jp110650d contributor: fullname: Jerng S. K. – volume: 457 start-page: 706 year: 2009 ident: ref5/cit5 publication-title: Nature doi: 10.1038/nature07719 contributor: fullname: Kim K. S. – volume: 54 start-page: 11169 year: 1996 ident: ref55/cit55 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 contributor: fullname: Kresse G. – volume: 6 start-page: 147 year: 2011 ident: ref8/cit8 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.279 contributor: fullname: Radisavljevic B. – volume: 216 start-page: 72 year: 1992 ident: ref28/cit28 publication-title: Thin Solid Films doi: 10.1016/0040-6090(92)90872-9 contributor: fullname: Koma A. – volume: 5 start-page: 2231 year: 2011 ident: ref43/cit43 publication-title: ACS Nano doi: 10.1021/nn103493g contributor: fullname: Frank O. – volume: 77 start-page: 3865 year: 1996 ident: ref48/cit48 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 contributor: fullname: Perdew J. P. – volume: 111 start-page: 044103-1 year: 2012 ident: ref12/cit12 publication-title: J. Appl. Phys. contributor: fullname: Sun J. – volume: 4 start-page: 3050 year: 2012 ident: ref17/cit17 publication-title: Nanoscale doi: 10.1039/c2nr30330b contributor: fullname: Song H. J. – volume: 146 start-page: 351 year: 2008 ident: ref4/cit4 publication-title: Solid State Commun. doi: 10.1016/j.ssc.2008.02.024 contributor: fullname: Bolotin K. I. – volume: 92 start-page: 246401-1 year: 2004 ident: ref50/cit50 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.92.246401 contributor: fullname: Dion M. – volume: 47 start-page: 558 year: 1993 ident: ref52/cit52 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.47.558 contributor: fullname: Kresse G. – volume: 5 start-page: 6069 year: 2011 ident: ref31/cit31 publication-title: ACS Nano doi: 10.1021/nn201978y contributor: fullname: Vlassiouk I. – volume: 101 start-page: 156801-1 year: 2008 ident: ref45/cit45 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.156801 contributor: fullname: Ferralis N. – volume: 10 start-page: 1542 year: 2010 ident: ref25/cit25 publication-title: Nano Lett. doi: 10.1021/nl9037714 contributor: fullname: Ismach A. – volume: 111 start-page: 1033 year: 1991 ident: ref30/cit30 publication-title: J. Cryst. Growth doi: 10.1016/0022-0248(91)91127-V contributor: fullname: Ohuchi F. S. – volume: 8 start-page: 4320 year: 2008 ident: ref33/cit33 publication-title: Nano Lett. doi: 10.1021/nl802156w contributor: fullname: Lee D. S. – volume: 12 start-page: 1379 year: 2012 ident: ref24/cit24 publication-title: Nano Lett. doi: 10.1021/nl204024k contributor: fullname: Teng P. Y. – volume: 108 start-page: 19912 year: 2004 ident: ref3/cit3 publication-title: J. Phys. Chem. B doi: 10.1021/jp040650f contributor: fullname: Berger C. – volume: 88 start-page: 163106-1 year: 2006 ident: ref22/cit22 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2196057 contributor: fullname: Cancado L. G. – volume: 50 start-page: 17953 year: 1994 ident: ref46/cit46 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 contributor: fullname: Blochl P. E. – volume: 4 start-page: 4206 year: 2010 ident: ref11/cit11 publication-title: ACS Nano doi: 10.1021/nn100971s contributor: fullname: Rummeli M. H. – volume: 312 start-page: 3219 year: 2010 ident: ref26/cit26 publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2010.07.046 contributor: fullname: Hwang J. – volume: 97 start-page: 187401-1 year: 2006 ident: ref37/cit37 publication-title: Phys. Rev. Lett. contributor: fullname: Ferrari A. C. – volume: 3 start-page: 3089 year: 2011 ident: ref15/cit15 publication-title: Nanoscale doi: 10.1039/c1nr10504c contributor: fullname: Son M. – volume: 3 start-page: 210 year: 2008 ident: ref42/cit42 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2008.67 contributor: fullname: Das A. – volume: 438 start-page: 201 year: 2005 ident: ref2/cit2 publication-title: Nature doi: 10.1038/nature04235 contributor: fullname: Zhang Y. – volume: 95 start-page: 133114-1 year: 2009 ident: ref10/cit10 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3242029 contributor: fullname: Hackley J. – volume: 6 start-page: 15 year: 1996 ident: ref54/cit54 publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 contributor: fullname: Kresse G. – volume: 9 start-page: 30 year: 2009 ident: ref18/cit18 publication-title: Nano Lett. doi: 10.1021/nl801827v contributor: fullname: Reina A. |
SSID | ssj0057876 |
Score | 2.5566812 |
Snippet | van der Waals epitaxial growth of graphene on c-plane (0001) sapphire by CVD without a metal catalyst is presented. The effects of CH4 partial pressure, growth... van der Waals epitaxial growth of graphene on c-plane (0001) sapphire by CVD without a metal catalyst is presented. The effects of CH(4) partial pressure,... van der Waals epitaxial growth of graphene on c-plane (0001) sapphire by CVD without a metal catalyst is presented. The effects of CH sub(4) partial pressure,... |
SourceID | proquest crossref pubmed acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 385 |
SubjectTerms | Aluminum Oxide - chemistry Binding Catalysis Catalysts Chemical vapor deposition Computer Simulation Crystallization - methods Density Epitaxial growth Formations Gases - chemistry Graphene Graphite - chemistry Materials Testing Metals - chemistry Models, Chemical Nanostructures - chemistry Nanostructures - ultrastructure Nucleation Particle Size Sapphire Static Electricity |
Title | van der Waals Epitaxial Growth of Graphene on Sapphire by Chemical Vapor Deposition without a Metal Catalyst |
URI | http://dx.doi.org/10.1021/nn305486x https://www.ncbi.nlm.nih.gov/pubmed/23244231 https://search.proquest.com/docview/1273774607 https://search.proquest.com/docview/1762051392 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhZ1LT8MwDIAjBBc48H6Ml8zj2rFkbdMd0dhASHCBwW5V0jhCArUT6yTg1-O06zQEG7ce0jSqnfhznNiMnQvLpQ0a6GmyRZ4fofRUEBqPK5QmcRnwintrd_fhTc-_7Qf9BXY2I4Iv-EWakkr6UUiguCQkTQrHP-2Harl1GheWoWNyjYkfqvRB068605MMf5qeGTxZ2JXuGruqbueUx0le66Nc15Ov38ka5w15na2OuRIuS0XYYAuYbrKVqWyDW-yNoBkMvsOzIp2DjqsX8kHqB9fkiucvkFl6Uu7MF0KWwoMaDNzONehPqNIKwJMiXocrrM56gdvHzUY5KLhD4nhou-2gz2G-zXrdzmP7xhsXW_CUz_3ci1pojTHkfpDHjIErW6XJumsjZIJhYppJIBuBQQIWy8nq-yiFlqFJrK9DaVrNHbaYZinuMZCaFo7I8ihR5H8oIiLfkBsZNVRgmxjYGjsmacTjyTKMizi44PHkt9XYaSWoeFAm3fir0UklwpimhItzqBSzEfVHSEZUGzbknDZkBGg9Ijqssd1S_pNPOcgkyuT7_43zgC2LojoG94Q4ZIv5-wiPiFFyfVzo6Dcant-G |
link.rule.ids | 315,783,787,2772,27088,27936,27937,57070,57120 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1NT9wwEIatCg5tD0BLW5avDqjX0HU2icMRLdBty3IBWm6RHY9VCZSsSFYCfj2vkw0FRD9uOTjOKB57nvHYM0J8Cp1ULu5zYGCLgihlFeg4sYHUrGzuM-A199bGx8noLPp2Hp_P0uT4uzAQokJPVRPE_51dQH4uCmhmlCbgxflYQVE9Bg1PulXXK17SRpDhIQMjuixCD1_1FiivHlugP2BlY14OF9s6RY1gzamSi51pbXby2yc5G_9P8iWxMKNM2mvV4o14wcVb8fpB7sFlcQmEJstX9FNDA-nAVw-5hjLSFzjm9S8qHZ60PwHGVBZ0oicTv49N5oa6JAP0Q4PeaZ-7k1_kd3XLaU2axgyqp6HfHLqp6nfi7PDgdDgKZqUXAh3JqA7SXXbWWjgj8J859kWsDGy9saHKOcntIMcYxJaBL06CASJWoVGJzV1kEmV3B-_FXFEWvCJIGSwjqZNpruGNaPBRZOFUpn0duwHHric28dey2dSpsiYqHsrs_rf1xHY3XtmkTcHxXKOtbiQzTBAf9dAFl1P0B0AD4yZ99Zc2MAlYncCKPfGhVYP7T3nkBHPK1X_J-VG8HJ2Oj7Kjr8ff18SrsKmbIYMwXBdz9dWUN0Avtdls1PYOmivn5g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1RT9RAEMc3BhOiDwqoeAo4Gl-Lt71utzySgwMV0ARR3prd7mxIMO2F9hLx0_vfXntBIupbH7bbSXd25zc7uzNCvI291F4NObKwRVGSsY6MSl0kDWtXhAx47b2145P08Cz5cK7OO0cx3IWBEDV6qtsgfpjVU-e7DAPyXVlCO5MsBTPeV1rGoVTD7vi0X3mD8qXzKDK8ZKBEn0no5qvBChX171boDrRsTczksfi0EK49WXK5PWvsdvHzVt7G_5d-RTzqaJN25-qxKu5xuSYe3shB-ER8B0qT4yv6ZqCJtB-qiPyAUtIBHPTmgiqPJxNOgjFVJZ2a6TTsZ5O9pj7ZAH01oHja4_4EGIXd3WrWkKFjBt3TOGwSXdfNU3E22f8yPoy6EgyRSWTSRNkOe-ccnBL40axCMSsLm29drAtOCzcqlB4qx8AYL8ECCevY6tQVPrGpdjujZ2KprEp-LkhbLCeZl1lh4JUYcFLi4FxmQ6P8iJUfiC38ubybQnXeRsdjmS9-20C86ccsn85Tcfyp0et-NHNMlBD9MCVXM_QHUAPrpkP9lzYwDVilwIwDsT5XhcWnAnqCPeWLf8n5Six_3pvkR-9PPr4UD-K2fIaM4nhDLDVXM94ExDR2q9XcXybr6mA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=van+der+Waals+epitaxial+growth+of+graphene+on+sapphire+by+chemical+vapor+deposition+without+a+metal+catalyst&rft.jtitle=ACS+nano&rft.au=Hwang%2C+Jeonghyun&rft.au=Kim%2C+Moonkyung&rft.au=Campbell%2C+Dorr&rft.au=Alsalman%2C+Hussain+A&rft.date=2013-01-22&rft.eissn=1936-086X&rft.volume=7&rft.issue=1&rft.spage=385&rft.epage=395&rft_id=info:doi/10.1021%2Fnn305486x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |