Fluorescent Nanodiamond: A Versatile Tool for Long-Term Cell Tracking, Super-Resolution Imaging, and Nanoscale Temperature Sensing
Fluorescent nanodiamond (FND) has recently played a central role in fueling new discoveries in interdisciplinary fields spanning biology, chemistry, physics, and materials sciences. The nanoparticle is unique in that it contains a high density ensemble of negatively charged nitrogen–vacancy (NV–) ce...
Saved in:
Published in | Accounts of chemical research Vol. 49; no. 3; pp. 400 - 407 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
15.03.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fluorescent nanodiamond (FND) has recently played a central role in fueling new discoveries in interdisciplinary fields spanning biology, chemistry, physics, and materials sciences. The nanoparticle is unique in that it contains a high density ensemble of negatively charged nitrogen–vacancy (NV–) centers as built-in fluorophores. The center possesses a number of outstanding optical and magnetic properties. First, NV– has an absorption maximum at ∼550 nm, and when exposed to green-orange light, it emits bright fluorescence at ∼700 nm with a lifetime of longer than 10 ns. These spectroscopic properties are little affected by surface modification but are distinctly different from those of cell autofluorescence and thus enable background-free imaging of FNDs in tissue sections. Such characteristics together with its excellent biocompatibility render FND ideal for long-term cell tracking applications, particularly in stem cell research. Next, as an artificial atom in the solid state, the NV– center is perfectly photostable, without photobleaching and blinking. Therefore, the NV-containing FND is suitable as a contrast agent for super-resolution imaging by stimulated emission depletion (STED). An improvement of the spatial resolution by 20-fold is readily achievable by using a high-power STED laser to deplete the NV– fluorescence. Such improvement is crucial in revealing the detailed structures of biological complexes and assemblies, including cellular organelles and subcellular compartments. Further enhancement of the resolution for live cell imaging is possible by manipulating the charge states of the NV centers. As the “brightest” member of the nanocarbon family, FND holds great promise and potential for bioimaging with unprecedented resolution and precision. Lastly, the NV– center in diamond is an atom-like quantum system with a total electron spin of 1. The ground states of the spins show a crystal field splitting of 2.87 GHz, separating the m s = 0 and ±1 sublevels. Interestingly, the transitions between the spin sublevels can be optically detected and manipulated by microwave radiation, a technique known as optically detected magnetic resonance (ODMR). In addition, the electron spins have an exceptionally long coherence time, making FND useful for ultrasensitive detection of temperature at the nanoscale. Pump–probe-type nanothermometry with a temporal resolution of better than 10 μs has been achieved with a three-point sampling method. Gold/diamond nanohybrids have also been developed for highly localized hyperthermia applications. This Account provides a summary of the recent advances in FND-enabled technologies with a special focus on long-term cell tracking, super-resolution imaging, and nanoscale temperature sensing. These emerging and multifaceted technologies are in synchronicity with modern imaging modalities. |
---|---|
AbstractList | Fluorescent nanodiamond (FND) has recently played a central role in fueling new discoveries in interdisciplinary fields spanning biology, chemistry, physics, and materials sciences. The nanoparticle is unique in that it contains a high density ensemble of negatively charged nitrogen-vacancy (NV(-)) centers as built-in fluorophores. The center possesses a number of outstanding optical and magnetic properties. First, NV(-) has an absorption maximum at ∼550 nm, and when exposed to green-orange light, it emits bright fluorescence at ∼700 nm with a lifetime of longer than 10 ns. These spectroscopic properties are little affected by surface modification but are distinctly different from those of cell autofluorescence and thus enable background-free imaging of FNDs in tissue sections. Such characteristics together with its excellent biocompatibility render FND ideal for long-term cell tracking applications, particularly in stem cell research. Next, as an artificial atom in the solid state, the NV(-) center is perfectly photostable, without photobleaching and blinking. Therefore, the NV-containing FND is suitable as a contrast agent for super-resolution imaging by stimulated emission depletion (STED). An improvement of the spatial resolution by 20-fold is readily achievable by using a high-power STED laser to deplete the NV(-) fluorescence. Such improvement is crucial in revealing the detailed structures of biological complexes and assemblies, including cellular organelles and subcellular compartments. Further enhancement of the resolution for live cell imaging is possible by manipulating the charge states of the NV centers. As the "brightest" member of the nanocarbon family, FND holds great promise and potential for bioimaging with unprecedented resolution and precision. Lastly, the NV(-) center in diamond is an atom-like quantum system with a total electron spin of 1. The ground states of the spins show a crystal field splitting of 2.87 GHz, separating the ms = 0 and ±1 sublevels. Interestingly, the transitions between the spin sublevels can be optically detected and manipulated by microwave radiation, a technique known as optically detected magnetic resonance (ODMR). In addition, the electron spins have an exceptionally long coherence time, making FND useful for ultrasensitive detection of temperature at the nanoscale. Pump-probe-type nanothermometry with a temporal resolution of better than 10 μs has been achieved with a three-point sampling method. Gold/diamond nanohybrids have also been developed for highly localized hyperthermia applications. This Account provides a summary of the recent advances in FND-enabled technologies with a special focus on long-term cell tracking, super-resolution imaging, and nanoscale temperature sensing. These emerging and multifaceted technologies are in synchronicity with modern imaging modalities. Fluorescent nanodiamond (FND) has recently played a central role in fueling new discoveries in interdisciplinary fields spanning biology, chemistry, physics, and materials sciences. The nanoparticle is unique in that it contains a high density ensemble of negatively charged nitrogen–vacancy (NV–) centers as built-in fluorophores. The center possesses a number of outstanding optical and magnetic properties. First, NV– has an absorption maximum at ∼550 nm, and when exposed to green-orange light, it emits bright fluorescence at ∼700 nm with a lifetime of longer than 10 ns. These spectroscopic properties are little affected by surface modification but are distinctly different from those of cell autofluorescence and thus enable background-free imaging of FNDs in tissue sections. Such characteristics together with its excellent biocompatibility render FND ideal for long-term cell tracking applications, particularly in stem cell research. Next, as an artificial atom in the solid state, the NV– center is perfectly photostable, without photobleaching and blinking. Therefore, the NV-containing FND is suitable as a contrast agent for super-resolution imaging by stimulated emission depletion (STED). An improvement of the spatial resolution by 20-fold is readily achievable by using a high-power STED laser to deplete the NV– fluorescence. Such improvement is crucial in revealing the detailed structures of biological complexes and assemblies, including cellular organelles and subcellular compartments. Further enhancement of the resolution for live cell imaging is possible by manipulating the charge states of the NV centers. As the “brightest” member of the nanocarbon family, FND holds great promise and potential for bioimaging with unprecedented resolution and precision. Lastly, the NV– center in diamond is an atom-like quantum system with a total electron spin of 1. The ground states of the spins show a crystal field splitting of 2.87 GHz, separating the m s = 0 and ±1 sublevels. Interestingly, the transitions between the spin sublevels can be optically detected and manipulated by microwave radiation, a technique known as optically detected magnetic resonance (ODMR). In addition, the electron spins have an exceptionally long coherence time, making FND useful for ultrasensitive detection of temperature at the nanoscale. Pump–probe-type nanothermometry with a temporal resolution of better than 10 μs has been achieved with a three-point sampling method. Gold/diamond nanohybrids have also been developed for highly localized hyperthermia applications. This Account provides a summary of the recent advances in FND-enabled technologies with a special focus on long-term cell tracking, super-resolution imaging, and nanoscale temperature sensing. These emerging and multifaceted technologies are in synchronicity with modern imaging modalities. |
Author | Hui, Yuen Yung Chang, Huan-Cheng Tsai, Pei-Chang Hsiao, Wesley Wei-Wen |
AuthorAffiliation | Department of Chemical Engineering Institute of Atomic and Molecular Sciences Academia Sinica National Taiwan University of Science and Technology |
AuthorAffiliation_xml | – name: Department of Chemical Engineering – name: Academia Sinica – name: National Taiwan University of Science and Technology – name: Institute of Atomic and Molecular Sciences |
Author_xml | – sequence: 1 givenname: Wesley Wei-Wen surname: Hsiao fullname: Hsiao, Wesley Wei-Wen – sequence: 2 givenname: Yuen Yung surname: Hui fullname: Hui, Yuen Yung – sequence: 3 givenname: Pei-Chang surname: Tsai fullname: Tsai, Pei-Chang – sequence: 4 givenname: Huan-Cheng surname: Chang fullname: Chang, Huan-Cheng email: hchang@gate.sinica.edu.tw |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26882283$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkL1OwzAUhS0Eoj_wBgj5AUixXbd1ulUVhUoVSLSwRjfJdZWS2JWdDKw8Oe4fAwNMvtY53xm-Djk31iAhN5z1OBP8HjLfgyyzjal9b5AyJpU8I20-ECySKlbnpM0Y4-GWokU63m_CV8jh6JK0xFApIVS_Tb5mZWMd-gxNTZ_B2LyAypp8TCf0HZ2HuiiRrqwtqbaOLqxZRyt0FZ1iWdKVg-yjMOs7umy26KJX9LZs6sIaOq9gvU_A5Pthn8FuCatQhLpxSJdofKhckQsNpcfr49slb7OH1fQpWrw8zqeTRQSSyzpSLB9pyUHnGjFnGGtMuWRimKY8FTKESo36kPN0qBUbyDhGYCPUMpZ9nmrsd8ntYXfbpBXmydYVFbjP5CQjFOShkDnrvUP9U-Es2TlPgvPk5Dw5Og_Y-BeWFTXsJNQOivI_mB3gXbqxjTNBwd_IN6zqnz8 |
CitedBy_id | crossref_primary_10_1021_acs_accounts_2c00576 crossref_primary_10_3390_s21030977 crossref_primary_10_1002_adom_201700487 crossref_primary_10_1021_acs_chemrev_6b00653 crossref_primary_10_1039_D0NA00146E crossref_primary_10_3390_nano11061597 crossref_primary_10_3390_nano12234196 crossref_primary_10_3390_ma10040352 crossref_primary_10_3390_md14070128 crossref_primary_10_1016_j_bpj_2019_10_033 crossref_primary_10_1021_acsnano_8b01619 crossref_primary_10_1002_jccs_201800157 crossref_primary_10_1021_acsami_2c12909 crossref_primary_10_1016_j_micromeso_2018_04_032 crossref_primary_10_1186_s12951_017_0305_2 crossref_primary_10_3390_bios13070691 crossref_primary_10_1016_j_bbagen_2019_04_019 crossref_primary_10_1002_smll_201703838 crossref_primary_10_3390_nano9060866 crossref_primary_10_1002_ejic_202200232 crossref_primary_10_1002_jbm_a_36868 crossref_primary_10_1002_qute_202200077 crossref_primary_10_1364_OPTCON_488262 crossref_primary_10_1039_D2DT00080F crossref_primary_10_1021_acs_nanolett_9b00752 crossref_primary_10_1063_1_5117342 crossref_primary_10_1007_s10853_022_07168_x crossref_primary_10_1016_j_cej_2024_151645 crossref_primary_10_1039_D2CC06495B crossref_primary_10_3390_polym11091391 crossref_primary_10_1016_j_optmat_2023_113872 crossref_primary_10_1088_1361_6528_ac1fb1 crossref_primary_10_1002_adfm_201801252 crossref_primary_10_1039_C8NJ01503A crossref_primary_10_1039_C9EN01008D crossref_primary_10_1002_adfm_202100848 crossref_primary_10_1016_j_matlet_2018_12_122 crossref_primary_10_1002_anie_201707389 crossref_primary_10_1021_acs_nanolett_2c00040 crossref_primary_10_1021_acsmeasuresciau_2c00006 crossref_primary_10_1039_D4NR00932K crossref_primary_10_1016_j_rio_2023_100535 crossref_primary_10_1016_j_jtice_2024_105945 crossref_primary_10_1021_acsomega_9b00274 crossref_primary_10_1002_cnma_201700257 crossref_primary_10_1002_smll_202004118 crossref_primary_10_1093_hropen_hoaf007 crossref_primary_10_1039_D0NR06765B crossref_primary_10_1088_1361_6463_ab41e8 crossref_primary_10_1134_S0006350917050025 crossref_primary_10_1021_acs_chemmater_1c01386 crossref_primary_10_2142_biophysico_bppb_v19_0034 crossref_primary_10_1002_pssa_202200342 crossref_primary_10_2217_nnm_2020_0091 crossref_primary_10_1088_2399_1984_ad9975 crossref_primary_10_1021_acsnano_8b09383 crossref_primary_10_1002_ppsc_202000261 crossref_primary_10_1021_acsami_9b19245 crossref_primary_10_1103_PhysRevApplied_12_044039 crossref_primary_10_1039_D2TC04291F crossref_primary_10_1016_j_xcrp_2020_100054 crossref_primary_10_1016_j_msec_2019_110297 crossref_primary_10_1016_j_cis_2019_04_006 crossref_primary_10_3762_bjnano_10_207 crossref_primary_10_1039_C9CY02217A crossref_primary_10_1002_adom_201901433 crossref_primary_10_1002_ejic_201800793 crossref_primary_10_1016_j_microc_2024_111315 crossref_primary_10_1002_adom_201600446 crossref_primary_10_1016_j_apsusc_2018_09_175 crossref_primary_10_1016_j_talanta_2023_124892 crossref_primary_10_1515_ntrev_2021_0099 crossref_primary_10_1021_acssensors_9b01903 crossref_primary_10_1002_bit_26573 crossref_primary_10_1021_acs_jpclett_7b00794 crossref_primary_10_1038_s41598_023_32235_x crossref_primary_10_1063_5_0146648 crossref_primary_10_1021_acs_biomac_6b00744 crossref_primary_10_1021_acs_chemrev_0c01176 crossref_primary_10_1111_jace_16797 crossref_primary_10_1039_C9TB00447E crossref_primary_10_3390_s21051585 crossref_primary_10_1016_j_snb_2020_127864 crossref_primary_10_1364_OE_511283 crossref_primary_10_1002_wnan_1879 crossref_primary_10_1016_j_canlet_2024_216710 crossref_primary_10_1039_D4TB01825G crossref_primary_10_1002_ange_202110830 crossref_primary_10_1039_C7CS00399D crossref_primary_10_1103_PhysRevA_95_053417 crossref_primary_10_1021_acs_nanolett_6b02456 crossref_primary_10_1016_j_jallcom_2017_04_202 crossref_primary_10_1016_j_cclet_2022_107808 crossref_primary_10_1021_acs_analchem_9b05278 crossref_primary_10_1007_s00339_021_05229_7 crossref_primary_10_1016_j_mtadv_2022_100265 crossref_primary_10_1364_OL_447864 crossref_primary_10_1088_1361_6528_aa6ae4 crossref_primary_10_1039_D1RA03936A crossref_primary_10_1021_acs_chemmater_9b04471 crossref_primary_10_1002_ppsc_201900009 crossref_primary_10_3390_mi11060579 crossref_primary_10_1021_acs_analchem_8b03431 crossref_primary_10_1016_j_jmrt_2021_11_037 crossref_primary_10_1021_acs_jpcc_9b00142 crossref_primary_10_1016_j_nantod_2023_102094 crossref_primary_10_1039_C6PY01188H crossref_primary_10_2174_1573413719666221128161648 crossref_primary_10_3390_bios12030148 crossref_primary_10_1039_C8TB00508G crossref_primary_10_1002_anie_202110830 crossref_primary_10_1039_C6CS00109B crossref_primary_10_1557_s43579_024_00571_2 crossref_primary_10_1515_nanoph_2024_0285 crossref_primary_10_1021_acs_chemmater_3c03295 crossref_primary_10_1103_PhysRevApplied_7_014008 crossref_primary_10_1016_j_diamond_2021_108337 crossref_primary_10_3390_bios14070340 crossref_primary_10_1002_smll_201902151 crossref_primary_10_1002_qute_202300185 crossref_primary_10_1021_acs_analchem_7b04549 crossref_primary_10_1002_adma_201801362 crossref_primary_10_1021_acs_analchem_7b00627 crossref_primary_10_1002_smll_201704263 crossref_primary_10_1021_acs_chemrev_2c00050 crossref_primary_10_1016_j_biomaterials_2017_07_038 crossref_primary_10_1016_j_micron_2020_102916 crossref_primary_10_1021_acsnano_0c07555 crossref_primary_10_1088_1612_202X_aa61bd crossref_primary_10_1021_acs_analchem_2c03521 crossref_primary_10_1038_s41467_019_13796_w crossref_primary_10_1039_D4NR01615G crossref_primary_10_3390_nano11010153 crossref_primary_10_1016_j_carbon_2018_11_060 crossref_primary_10_1016_j_micron_2017_07_002 crossref_primary_10_1039_C7TB02668D crossref_primary_10_1364_BOE_524293 crossref_primary_10_1039_C6TC05208H crossref_primary_10_1021_acs_chemrev_7b00218 crossref_primary_10_1021_acsabm_3c00076 crossref_primary_10_1007_s00424_018_2113_4 crossref_primary_10_1021_acs_chemrev_9b00518 crossref_primary_10_3390_app11094065 crossref_primary_10_1016_j_pacs_2018_10_003 crossref_primary_10_3233_JAD_221202 crossref_primary_10_1038_s41598_020_66593_7 crossref_primary_10_21468_SciPostPhysCore_6_4_065 crossref_primary_10_1016_j_diamond_2018_01_012 crossref_primary_10_1021_acs_chemmater_0c01130 crossref_primary_10_1088_1361_6528_abd2e7 crossref_primary_10_1016_j_matdes_2021_110091 crossref_primary_10_1088_1361_6528_ab283d crossref_primary_10_1103_PhysRevB_95_235306 crossref_primary_10_1021_acscentsci_3c00747 crossref_primary_10_1002_advs_202304355 crossref_primary_10_1088_1361_6528_abb72d crossref_primary_10_1039_C7SC05130A crossref_primary_10_1088_1612_202X_ac26cd crossref_primary_10_1021_acs_jpcc_1c01673 crossref_primary_10_1039_C7TB03168H crossref_primary_10_1038_s41598_018_20528_5 crossref_primary_10_1002_advs_202103354 crossref_primary_10_1557_s43577_022_00326_1 crossref_primary_10_1039_C8CC02938E crossref_primary_10_1021_acsnano_3c00857 crossref_primary_10_1021_acs_bioconjchem_9b00458 crossref_primary_10_1038_s41598_021_83285_y crossref_primary_10_1098_rsos_190589 crossref_primary_10_3389_fimmu_2022_806686 crossref_primary_10_1116_1_5089898 crossref_primary_10_1039_C9NR02593F crossref_primary_10_3390_biom13121787 crossref_primary_10_1021_acsabm_0c00939 crossref_primary_10_1080_00450618_2024_2365833 crossref_primary_10_3390_bios12121181 crossref_primary_10_1021_acsami_1c09825 crossref_primary_10_3389_fchem_2021_641330 crossref_primary_10_3390_ijms20122977 crossref_primary_10_1007_s10895_022_02898_2 crossref_primary_10_1021_acs_bioconjchem_8b00803 crossref_primary_10_1021_acs_jpcb_1c03361 crossref_primary_10_1103_PhysRevResearch_2_043415 crossref_primary_10_1051_epjconf_201921516002 crossref_primary_10_1021_acs_chemrev_9b00099 crossref_primary_10_1039_D3RA08762J crossref_primary_10_3390_nano9111576 crossref_primary_10_1016_j_matdes_2023_112179 crossref_primary_10_3390_bios11090295 crossref_primary_10_1007_s00604_022_05545_6 crossref_primary_10_1016_j_diamond_2017_03_002 crossref_primary_10_1021_acs_chemrev_3c00186 crossref_primary_10_1002_smll_202002211 crossref_primary_10_1039_C8NR07828A crossref_primary_10_1039_C8MH00966J crossref_primary_10_1039_D0CS00676A crossref_primary_10_1103_PhysRevApplied_6_064013 crossref_primary_10_3390_nano13081342 crossref_primary_10_1039_C7BM00008A crossref_primary_10_3390_ma11081479 crossref_primary_10_1002_anie_201905997 crossref_primary_10_1063_5_0131663 crossref_primary_10_1088_2399_1984_ab5f9b crossref_primary_10_1021_acsami_2c02851 crossref_primary_10_1016_j_talanta_2018_06_001 crossref_primary_10_1039_D4TB01743A crossref_primary_10_1016_j_mtcomm_2023_106999 crossref_primary_10_1021_acsanm_0c00274 crossref_primary_10_1002_admi_202001911 crossref_primary_10_1002_adtp_201900067 crossref_primary_10_1038_s41586_020_2917_1 crossref_primary_10_1016_j_jallcom_2021_159973 crossref_primary_10_1016_j_physb_2022_414369 crossref_primary_10_1021_acsanm_7b00213 crossref_primary_10_1103_PhysRevApplied_22_064076 crossref_primary_10_1016_j_drudis_2018_10_012 crossref_primary_10_1080_17425247_2021_1832988 crossref_primary_10_1021_acs_jpclett_5c00355 crossref_primary_10_1364_OE_537177 crossref_primary_10_1021_jacsau_4c01134 crossref_primary_10_1016_j_microc_2024_110746 crossref_primary_10_1088_1748_605X_ad3abb crossref_primary_10_1088_1361_6463_ac6d89 crossref_primary_10_3390_pharmaceutics15010111 crossref_primary_10_1038_s41570_018_0070_2 crossref_primary_10_1039_D2CC06816H crossref_primary_10_1515_nanoph_2024_0589 crossref_primary_10_1021_acs_analchem_7b03157 crossref_primary_10_1016_j_carbon_2017_12_004 crossref_primary_10_1021_acs_inorgchem_1c03971 crossref_primary_10_1116_6_0000525 crossref_primary_10_1016_j_slast_2023_03_007 crossref_primary_10_1038_s41467_018_06789_8 crossref_primary_10_1038_s41467_018_08092_y crossref_primary_10_1021_acs_jpclett_7b01215 crossref_primary_10_1039_D1BM01912K crossref_primary_10_1186_s12951_018_0385_7 crossref_primary_10_1039_D1BM00608H crossref_primary_10_1002_qute_202100049 crossref_primary_10_1039_D1TB00871D crossref_primary_10_1002_bio_4364 crossref_primary_10_1021_acsami_9b03640 crossref_primary_10_1515_nanoph_2018_0025 crossref_primary_10_1002_INMD_20240078 crossref_primary_10_1039_D3NR05738K crossref_primary_10_1007_s11783_021_1461_z crossref_primary_10_1039_C9TC04690A crossref_primary_10_1016_j_pmatsci_2021_100838 crossref_primary_10_1063_5_0187310 crossref_primary_10_1002_qute_202000066 crossref_primary_10_1088_1361_6528_ab5a0c crossref_primary_10_1021_acs_chemmater_6b04894 crossref_primary_10_1016_j_diamond_2025_112035 crossref_primary_10_1002_adhm_202403875 crossref_primary_10_1002_ange_201905997 crossref_primary_10_1080_23746149_2020_1858721 crossref_primary_10_1021_acsami_1c19388 crossref_primary_10_1364_JOSAB_390157 crossref_primary_10_1002_2211_5463_13912 crossref_primary_10_1021_acs_langmuir_1c00577 crossref_primary_10_7498_aps_67_20180788 crossref_primary_10_1038_s41377_019_0151_0 crossref_primary_10_1103_PhysRevApplied_22_014035 |
Cites_doi | 10.1016/j.diamond.2008.08.012 10.1385/1-59745-217-3:195 10.1063/1.4773364 10.1007/s11051-013-1834-8 10.1039/c2nr30764b 10.1038/nnano.2013.147 10.1021/cr900362e 10.1021/nl401791v 10.1021/nl501841d 10.1103/PhysRevB.46.13157 10.1140/epjqt/s40507-015-0031-3 10.1038/nnano.2011.209 10.1038/nature12373 10.1038/lsa.2015.3 10.1016/S0168-9002(01)01664-3 10.1016/j.biomaterials.2013.07.043 10.1002/smll.201500878 10.1146/annurev.physchem.58.032806.104546 10.1364/OL.38.001847 10.1002/anie.201501949 10.1039/c3nr03320a 10.1126/science.276.5321.2012 10.1021/ja0567081 10.1002/smll.201101193 10.1021/nn901014j 10.1016/j.biomaterials.2012.06.084 10.1088/0957-4484/20/23/235602 10.1007/978-3-662-04548-0 10.1016/S0091-679X(06)81024-1 10.1021/nl901597v 10.1103/PhysRevX.2.031001 10.1038/nnano.2008.99 10.1002/smll.200800655 10.1021/nl400346k 10.1073/pnas.1404907111 10.1038/nphoton.2009.2 10.1039/c2nr32778c 10.1021/acs.nanolett.5b00836 10.1038/nmat1390 10.1002/adfm.201301075 10.1021/nn404421b 10.1364/BOE.5.001190 10.1103/PhysRevLett.104.070801 10.1016/j.jlumin.2009.12.003 10.1016/S1748-0132(07)70086-5 10.1073/pnas.0605409104 10.1002/smll.201101233 10.1146/annurev-physchem-040513-103659 10.1002/anie.201504181 10.1021/nl304570b 10.1088/0957-4484/20/42/425103 10.1021/nl302979d 10.1016/j.diamond.2014.07.011 10.1002/anie.201007215 10.1021/nl401216y |
ContentType | Journal Article |
Copyright | Copyright © 2016 American Chemical Society |
Copyright_xml | – notice: Copyright © 2016 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM |
DOI | 10.1021/acs.accounts.5b00484 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-4898 |
EndPage | 407 |
ExternalDocumentID | 26882283 10_1021_acs_accounts_5b00484 a294138051 |
Genre | Journal Article |
GroupedDBID | - .K2 02 23M 53G 55A 5GY 5VS 7~N 85S AABXI ABFLS ABMVS ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 P2P RNS ROL TWZ UI2 UPT VF5 VG9 W1F WH7 X YZZ --- -DZ -~X 4.4 5ZA 6J9 6P2 AAYXX ABBLG ABJNI ABLBI ABQRX ACGFO ADHLV AFXLT AGXLV AHGAQ CITATION CUPRZ GGK IH2 XSW ZCA ~02 CGR CUY CVF ECM EIF NPM |
ID | FETCH-LOGICAL-a414t-80d7f41afdfeed0e9feb14026bb1b24d7f8873ad1b6f805499ea07ef49431bfe3 |
IEDL.DBID | ACS |
ISSN | 0001-4842 |
IngestDate | Thu Apr 03 07:02:24 EDT 2025 Thu Apr 24 22:50:42 EDT 2025 Tue Jul 01 03:15:57 EDT 2025 Thu Aug 27 13:43:09 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a414t-80d7f41afdfeed0e9feb14026bb1b24d7f8873ad1b6f805499ea07ef49431bfe3 |
PMID | 26882283 |
PageCount | 8 |
ParticipantIDs | pubmed_primary_26882283 crossref_primary_10_1021_acs_accounts_5b00484 crossref_citationtrail_10_1021_acs_accounts_5b00484 acs_journals_10_1021_acs_accounts_5b00484 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-03-15 |
PublicationDateYYYYMMDD | 2016-03-15 |
PublicationDate_xml | – month: 03 year: 2016 text: 2016-03-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Accounts of chemical research |
PublicationTitleAlternate | Acc. Chem. Res |
PublicationYear | 2016 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref24/cit24 ref38/cit38 Zaitsev A. M. (ref13/cit13) 2001 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref24/cit24 doi: 10.1016/j.diamond.2008.08.012 – ident: ref55/cit55 doi: 10.1385/1-59745-217-3:195 – ident: ref45/cit45 doi: 10.1063/1.4773364 – ident: ref32/cit32 doi: 10.1007/s11051-013-1834-8 – ident: ref47/cit47 doi: 10.1039/c2nr30764b – ident: ref34/cit34 doi: 10.1038/nnano.2013.147 – ident: ref4/cit4 doi: 10.1021/cr900362e – ident: ref46/cit46 doi: 10.1021/nl401791v – ident: ref50/cit50 doi: 10.1021/nl501841d – ident: ref8/cit8 doi: 10.1103/PhysRevB.46.13157 – ident: ref54/cit54 doi: 10.1140/epjqt/s40507-015-0031-3 – ident: ref10/cit10 doi: 10.1038/nnano.2011.209 – ident: ref48/cit48 doi: 10.1038/nature12373 – ident: ref42/cit42 doi: 10.1038/lsa.2015.3 – ident: ref9/cit9 doi: 10.1016/S0168-9002(01)01664-3 – ident: ref19/cit19 doi: 10.1016/j.biomaterials.2013.07.043 – ident: ref35/cit35 doi: 10.1002/smll.201500878 – ident: ref3/cit3 doi: 10.1146/annurev.physchem.58.032806.104546 – ident: ref22/cit22 doi: 10.1364/OL.38.001847 – ident: ref36/cit36 doi: 10.1002/anie.201501949 – ident: ref28/cit28 doi: 10.1039/c3nr03320a – ident: ref15/cit15 doi: 10.1126/science.276.5321.2012 – ident: ref5/cit5 doi: 10.1021/ja0567081 – ident: ref12/cit12 doi: 10.1002/smll.201101193 – ident: ref31/cit31 doi: 10.1021/nn901014j – ident: ref16/cit16 doi: 10.1016/j.biomaterials.2012.06.084 – ident: ref25/cit25 doi: 10.1088/0957-4484/20/23/235602 – volume-title: Optical Properties of Diamond: A Data Handbook year: 2001 ident: ref13/cit13 doi: 10.1007/978-3-662-04548-0 – ident: ref17/cit17 doi: 10.1016/S0091-679X(06)81024-1 – ident: ref39/cit39 doi: 10.1021/nl901597v – ident: ref53/cit53 doi: 10.1103/PhysRevX.2.031001 – ident: ref7/cit7 doi: 10.1038/nnano.2008.99 – ident: ref18/cit18 doi: 10.1002/smll.200800655 – ident: ref43/cit43 doi: 10.1021/nl400346k – ident: ref44/cit44 doi: 10.1073/pnas.1404907111 – ident: ref38/cit38 doi: 10.1038/nphoton.2009.2 – ident: ref26/cit26 doi: 10.1039/c2nr32778c – ident: ref51/cit51 doi: 10.1021/acs.nanolett.5b00836 – ident: ref1/cit1 doi: 10.1038/nmat1390 – ident: ref11/cit11 doi: 10.1002/adfm.201301075 – ident: ref41/cit41 doi: 10.1021/nn404421b – ident: ref23/cit23 doi: 10.1364/BOE.5.001190 – ident: ref52/cit52 doi: 10.1103/PhysRevLett.104.070801 – ident: ref27/cit27 doi: 10.1016/j.jlumin.2009.12.003 – ident: ref2/cit2 doi: 10.1016/S1748-0132(07)70086-5 – ident: ref6/cit6 doi: 10.1073/pnas.0605409104 – ident: ref33/cit33 doi: 10.1002/smll.201101233 – ident: ref14/cit14 doi: 10.1146/annurev-physchem-040513-103659 – ident: ref37/cit37 doi: 10.1002/anie.201504181 – ident: ref21/cit21 doi: 10.1021/nl304570b – ident: ref30/cit30 doi: 10.1088/0957-4484/20/42/425103 – ident: ref20/cit20 doi: 10.1021/nl302979d – ident: ref29/cit29 doi: 10.1016/j.diamond.2014.07.011 – ident: ref40/cit40 doi: 10.1002/anie.201007215 – ident: ref49/cit49 doi: 10.1021/nl401216y |
SSID | ssj0002467 |
Score | 2.610759 |
SecondaryResourceType | review_article |
Snippet | Fluorescent nanodiamond (FND) has recently played a central role in fueling new discoveries in interdisciplinary fields spanning biology, chemistry, physics,... |
SourceID | pubmed crossref acs |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 400 |
SubjectTerms | Fluorescence Nanodiamonds Temperature |
Title | Fluorescent Nanodiamond: A Versatile Tool for Long-Term Cell Tracking, Super-Resolution Imaging, and Nanoscale Temperature Sensing |
URI | http://dx.doi.org/10.1021/acs.accounts.5b00484 https://www.ncbi.nlm.nih.gov/pubmed/26882283 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFLagDLBwH-WSBxakpiSO46RsVURVEIKhrdQtsmOHgZBUTbIw8st5zlFUECpsUWI_WfaXd_jZ30PoCmyMKZVShicJM6inODxRblAuTO6R0HZkyfb5xIYT-jB1pl-B4vcMPrFueJiB6LJyQtZ1NMo8uo42CPNcHWz1_dFC8xLKKo5MCJGhFWmuyv0iRRukMFsySEuuZWliBjvoubmoU50see0WueiG7z95G_84-l20XXubuF_BYw-tqWQfbfpNkbcD9DGIi3ReUTph0LQpwAWAKW9xH-utNFi3WOFxmsYYvFv8mCYvxhiUOfZVHGMwdKHeau_gUTFTc0PnAiok4_u3svxRB_NEloIzAANIUuCmVzTOeKTPzicvh2gyuBv7Q6Muy2BwatEcbJp0I2rxSEZgYE3Vi0DfQxjKhLAEofARFJfNpSVY5Jk6_lTcdFVEe-CsiEjZR6iVpIk6QdhVskdDrgmHIAyUQhDQB4xDUOeA3nDMNrqGCQzq3yoLyow5sQL9spnVoJ7VNrKbdQzCmt9cl9mIV_QyFr1mFb_HivbHFUQWrQGInuYQOv3HWM_QFjheTJ9ls5xz1MrnhboA5yYXlyWiPwEkA_iL |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LjtMwFL0ahsWw4f0Ynl7AAmlSEtdJUyQWVaFqmTKbdqTZBTu-mQUhGTWtECz5F36F7-I4j6JBQiMWI7GL8rAs-9577ontc4meA2N8y8xebGXkqZg1rpT2lDa-jmXaD22t9nkUTY_V-5PwZId-dGdh0IkKLVX1Iv5vdYHglbunmwIKVS90xhardi_lIX_9AqZWvZm9xbS-kHLybjmeem0xAU-rQK0Rie0gU4HObAZY8HmYIUqBPEXGBEYqPIS79bUNTJTFvmNNrP0BZ2oIiDUZ99HuFbqK_Ec6jjcaL7YBX6qokeYEM0evZHdC7y-9djiYVudw8FxGWyPb5Ab93I5JvaHlU2-zNr302x9ykf_9oN2k621uLUaNM9yiHS5u0964K2l3h75P8k25agSsBHClhHPADe1rMRLuxyGsNGexLMtcIJcX87I49ZaALjHmPBeA9dQtLByIxeaMV55b-Wj8Vsw-18WeDoQubN1wBdNHSwxS0ohWi4U7KVCc3qXjSxmCe7RblAU_IDFgO1SpdvJKIL3WGInoF2lQ2BBRMvT36SUmLGmDSJXU-wNkkLib3Swm7SzuU78znyRt1dxdUZH8gq-87VdnjZrJBe_fbyxz-7aMQMmQkj78h74-o73p8sM8mc-ODh_RNaSckdvFF4SPaXe92vATpHVr87R2KkEfL9sgfwGx6F24 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qRYJueD_KcxawQKqDPRk7DhKLKCVqaFUhJZW6MzOe6y5w7ShOhGDJ3_ArfBVn_IhUJFSx6IKd5cdoNHPvPfd4Zs4legWM8S0ze7GVkadi1rhS2lPa-DqWaT-0tdrncXRwoj6ehqdb9LM7C4NOVGipqhfxnVcvbNYqDARv3X3dFFGoeqEzuFi1-ykP-dtXsLXq_XQfU_taysmH-fjAawsKeFoFaoVobAeZCnRmM0CDz8MMkQoEKjImMFLhIVyur21goiz2HXNi7Q84U0PArMm4j3av0XW3Uuh43mg82wR9qaJGnhPsHL2S3Sm9v_TaYWFaXcDCC1ltjW6T2_RrMy71ppYvvfXK9NLvf0hG_hcDd4dutTm2GDVOcZe2uLhHN8ddabv79GOSr8tlI2QlgC8lnATuaN-JkXA_EGGtOYt5WeYCOb04Koszbw4IE2POcwF4T90Cw56YrRe89NwKSOO_YnpeF33aE7qwdcMVXAAtMchJI14tZu7EQHH2gE6uZAge0nZRFvyYxIDtUKXaySyB_FpjJKJgpEFlQ0TL0N-lN5iwpA0mVVLvE5BB4m52s5i0s7hL_c6EkrRVdXfFRfJLvvI2Xy0aVZNL3n_UWOfmbRmBmiE1ffIPfX1JNz7tT5Kj6fHhU9pB5hm5zXxB-Iy2V8s1P0d2tzIvar8S9Pmq7fE3CEJgOw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fluorescent+Nanodiamond%3A+A+Versatile+Tool+for+Long-Term+Cell+Tracking%2C+Super-Resolution+Imaging%2C+and+Nanoscale+Temperature+Sensing&rft.jtitle=Accounts+of+chemical+research&rft.au=Hsiao%2C+Wesley+Wei-Wen&rft.au=Hui%2C+Yuen+Yung&rft.au=Tsai%2C+Pei-Chang&rft.au=Chang%2C+Huan-Cheng&rft.date=2016-03-15&rft.issn=0001-4842&rft.eissn=1520-4898&rft.volume=49&rft.issue=3&rft.spage=400&rft.epage=407&rft_id=info:doi/10.1021%2Facs.accounts.5b00484&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_accounts_5b00484 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon |