Fluorescent Nanodiamond: A Versatile Tool for Long-Term Cell Tracking, Super-Resolution Imaging, and Nanoscale Temperature Sensing

Fluorescent nanodiamond (FND) has recently played a central role in fueling new discoveries in interdisciplinary fields spanning biology, chemistry, physics, and materials sciences. The nanoparticle is unique in that it contains a high density ensemble of negatively charged nitrogen–vacancy (NV–) ce...

Full description

Saved in:
Bibliographic Details
Published inAccounts of chemical research Vol. 49; no. 3; pp. 400 - 407
Main Authors Hsiao, Wesley Wei-Wen, Hui, Yuen Yung, Tsai, Pei-Chang, Chang, Huan-Cheng
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 15.03.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fluorescent nanodiamond (FND) has recently played a central role in fueling new discoveries in interdisciplinary fields spanning biology, chemistry, physics, and materials sciences. The nanoparticle is unique in that it contains a high density ensemble of negatively charged nitrogen–vacancy (NV–) centers as built-in fluorophores. The center possesses a number of outstanding optical and magnetic properties. First, NV– has an absorption maximum at ∼550 nm, and when exposed to green-orange light, it emits bright fluorescence at ∼700 nm with a lifetime of longer than 10 ns. These spectroscopic properties are little affected by surface modification but are distinctly different from those of cell autofluorescence and thus enable background-free imaging of FNDs in tissue sections. Such characteristics together with its excellent biocompatibility render FND ideal for long-term cell tracking applications, particularly in stem cell research. Next, as an artificial atom in the solid state, the NV– center is perfectly photostable, without photobleaching and blinking. Therefore, the NV-containing FND is suitable as a contrast agent for super-resolution imaging by stimulated emission depletion (STED). An improvement of the spatial resolution by 20-fold is readily achievable by using a high-power STED laser to deplete the NV– fluorescence. Such improvement is crucial in revealing the detailed structures of biological complexes and assemblies, including cellular organelles and subcellular compartments. Further enhancement of the resolution for live cell imaging is possible by manipulating the charge states of the NV centers. As the “brightest” member of the nanocarbon family, FND holds great promise and potential for bioimaging with unprecedented resolution and precision. Lastly, the NV– center in diamond is an atom-like quantum system with a total electron spin of 1. The ground states of the spins show a crystal field splitting of 2.87 GHz, separating the m s = 0 and ±1 sublevels. Interestingly, the transitions between the spin sublevels can be optically detected and manipulated by microwave radiation, a technique known as optically detected magnetic resonance (ODMR). In addition, the electron spins have an exceptionally long coherence time, making FND useful for ultrasensitive detection of temperature at the nanoscale. Pump–probe-type nanothermometry with a temporal resolution of better than 10 μs has been achieved with a three-point sampling method. Gold/diamond nanohybrids have also been developed for highly localized hyperthermia applications. This Account provides a summary of the recent advances in FND-enabled technologies with a special focus on long-term cell tracking, super-resolution imaging, and nanoscale temperature sensing. These emerging and multifaceted technologies are in synchronicity with modern imaging modalities.
AbstractList Fluorescent nanodiamond (FND) has recently played a central role in fueling new discoveries in interdisciplinary fields spanning biology, chemistry, physics, and materials sciences. The nanoparticle is unique in that it contains a high density ensemble of negatively charged nitrogen-vacancy (NV(-)) centers as built-in fluorophores. The center possesses a number of outstanding optical and magnetic properties. First, NV(-) has an absorption maximum at ∼550 nm, and when exposed to green-orange light, it emits bright fluorescence at ∼700 nm with a lifetime of longer than 10 ns. These spectroscopic properties are little affected by surface modification but are distinctly different from those of cell autofluorescence and thus enable background-free imaging of FNDs in tissue sections. Such characteristics together with its excellent biocompatibility render FND ideal for long-term cell tracking applications, particularly in stem cell research. Next, as an artificial atom in the solid state, the NV(-) center is perfectly photostable, without photobleaching and blinking. Therefore, the NV-containing FND is suitable as a contrast agent for super-resolution imaging by stimulated emission depletion (STED). An improvement of the spatial resolution by 20-fold is readily achievable by using a high-power STED laser to deplete the NV(-) fluorescence. Such improvement is crucial in revealing the detailed structures of biological complexes and assemblies, including cellular organelles and subcellular compartments. Further enhancement of the resolution for live cell imaging is possible by manipulating the charge states of the NV centers. As the "brightest" member of the nanocarbon family, FND holds great promise and potential for bioimaging with unprecedented resolution and precision. Lastly, the NV(-) center in diamond is an atom-like quantum system with a total electron spin of 1. The ground states of the spins show a crystal field splitting of 2.87 GHz, separating the ms = 0 and ±1 sublevels. Interestingly, the transitions between the spin sublevels can be optically detected and manipulated by microwave radiation, a technique known as optically detected magnetic resonance (ODMR). In addition, the electron spins have an exceptionally long coherence time, making FND useful for ultrasensitive detection of temperature at the nanoscale. Pump-probe-type nanothermometry with a temporal resolution of better than 10 μs has been achieved with a three-point sampling method. Gold/diamond nanohybrids have also been developed for highly localized hyperthermia applications. This Account provides a summary of the recent advances in FND-enabled technologies with a special focus on long-term cell tracking, super-resolution imaging, and nanoscale temperature sensing. These emerging and multifaceted technologies are in synchronicity with modern imaging modalities.
Fluorescent nanodiamond (FND) has recently played a central role in fueling new discoveries in interdisciplinary fields spanning biology, chemistry, physics, and materials sciences. The nanoparticle is unique in that it contains a high density ensemble of negatively charged nitrogen–vacancy (NV–) centers as built-in fluorophores. The center possesses a number of outstanding optical and magnetic properties. First, NV– has an absorption maximum at ∼550 nm, and when exposed to green-orange light, it emits bright fluorescence at ∼700 nm with a lifetime of longer than 10 ns. These spectroscopic properties are little affected by surface modification but are distinctly different from those of cell autofluorescence and thus enable background-free imaging of FNDs in tissue sections. Such characteristics together with its excellent biocompatibility render FND ideal for long-term cell tracking applications, particularly in stem cell research. Next, as an artificial atom in the solid state, the NV– center is perfectly photostable, without photobleaching and blinking. Therefore, the NV-containing FND is suitable as a contrast agent for super-resolution imaging by stimulated emission depletion (STED). An improvement of the spatial resolution by 20-fold is readily achievable by using a high-power STED laser to deplete the NV– fluorescence. Such improvement is crucial in revealing the detailed structures of biological complexes and assemblies, including cellular organelles and subcellular compartments. Further enhancement of the resolution for live cell imaging is possible by manipulating the charge states of the NV centers. As the “brightest” member of the nanocarbon family, FND holds great promise and potential for bioimaging with unprecedented resolution and precision. Lastly, the NV– center in diamond is an atom-like quantum system with a total electron spin of 1. The ground states of the spins show a crystal field splitting of 2.87 GHz, separating the m s = 0 and ±1 sublevels. Interestingly, the transitions between the spin sublevels can be optically detected and manipulated by microwave radiation, a technique known as optically detected magnetic resonance (ODMR). In addition, the electron spins have an exceptionally long coherence time, making FND useful for ultrasensitive detection of temperature at the nanoscale. Pump–probe-type nanothermometry with a temporal resolution of better than 10 μs has been achieved with a three-point sampling method. Gold/diamond nanohybrids have also been developed for highly localized hyperthermia applications. This Account provides a summary of the recent advances in FND-enabled technologies with a special focus on long-term cell tracking, super-resolution imaging, and nanoscale temperature sensing. These emerging and multifaceted technologies are in synchronicity with modern imaging modalities.
Author Hui, Yuen Yung
Chang, Huan-Cheng
Tsai, Pei-Chang
Hsiao, Wesley Wei-Wen
AuthorAffiliation Department of Chemical Engineering
Institute of Atomic and Molecular Sciences
Academia Sinica
National Taiwan University of Science and Technology
AuthorAffiliation_xml – name: Department of Chemical Engineering
– name: Academia Sinica
– name: National Taiwan University of Science and Technology
– name: Institute of Atomic and Molecular Sciences
Author_xml – sequence: 1
  givenname: Wesley Wei-Wen
  surname: Hsiao
  fullname: Hsiao, Wesley Wei-Wen
– sequence: 2
  givenname: Yuen Yung
  surname: Hui
  fullname: Hui, Yuen Yung
– sequence: 3
  givenname: Pei-Chang
  surname: Tsai
  fullname: Tsai, Pei-Chang
– sequence: 4
  givenname: Huan-Cheng
  surname: Chang
  fullname: Chang, Huan-Cheng
  email: hchang@gate.sinica.edu.tw
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26882283$$D View this record in MEDLINE/PubMed
BookMark eNqFkL1OwzAUhS0Eoj_wBgj5AUixXbd1ulUVhUoVSLSwRjfJdZWS2JWdDKw8Oe4fAwNMvtY53xm-Djk31iAhN5z1OBP8HjLfgyyzjal9b5AyJpU8I20-ECySKlbnpM0Y4-GWokU63m_CV8jh6JK0xFApIVS_Tb5mZWMd-gxNTZ_B2LyAypp8TCf0HZ2HuiiRrqwtqbaOLqxZRyt0FZ1iWdKVg-yjMOs7umy26KJX9LZs6sIaOq9gvU_A5Pthn8FuCatQhLpxSJdofKhckQsNpcfr49slb7OH1fQpWrw8zqeTRQSSyzpSLB9pyUHnGjFnGGtMuWRimKY8FTKESo36kPN0qBUbyDhGYCPUMpZ9nmrsd8ntYXfbpBXmydYVFbjP5CQjFOShkDnrvUP9U-Es2TlPgvPk5Dw5Og_Y-BeWFTXsJNQOivI_mB3gXbqxjTNBwd_IN6zqnz8
CitedBy_id crossref_primary_10_1021_acs_accounts_2c00576
crossref_primary_10_3390_s21030977
crossref_primary_10_1002_adom_201700487
crossref_primary_10_1021_acs_chemrev_6b00653
crossref_primary_10_1039_D0NA00146E
crossref_primary_10_3390_nano11061597
crossref_primary_10_3390_nano12234196
crossref_primary_10_3390_ma10040352
crossref_primary_10_3390_md14070128
crossref_primary_10_1016_j_bpj_2019_10_033
crossref_primary_10_1021_acsnano_8b01619
crossref_primary_10_1002_jccs_201800157
crossref_primary_10_1021_acsami_2c12909
crossref_primary_10_1016_j_micromeso_2018_04_032
crossref_primary_10_1186_s12951_017_0305_2
crossref_primary_10_3390_bios13070691
crossref_primary_10_1016_j_bbagen_2019_04_019
crossref_primary_10_1002_smll_201703838
crossref_primary_10_3390_nano9060866
crossref_primary_10_1002_ejic_202200232
crossref_primary_10_1002_jbm_a_36868
crossref_primary_10_1002_qute_202200077
crossref_primary_10_1364_OPTCON_488262
crossref_primary_10_1039_D2DT00080F
crossref_primary_10_1021_acs_nanolett_9b00752
crossref_primary_10_1063_1_5117342
crossref_primary_10_1007_s10853_022_07168_x
crossref_primary_10_1016_j_cej_2024_151645
crossref_primary_10_1039_D2CC06495B
crossref_primary_10_3390_polym11091391
crossref_primary_10_1016_j_optmat_2023_113872
crossref_primary_10_1088_1361_6528_ac1fb1
crossref_primary_10_1002_adfm_201801252
crossref_primary_10_1039_C8NJ01503A
crossref_primary_10_1039_C9EN01008D
crossref_primary_10_1002_adfm_202100848
crossref_primary_10_1016_j_matlet_2018_12_122
crossref_primary_10_1002_anie_201707389
crossref_primary_10_1021_acs_nanolett_2c00040
crossref_primary_10_1021_acsmeasuresciau_2c00006
crossref_primary_10_1039_D4NR00932K
crossref_primary_10_1016_j_rio_2023_100535
crossref_primary_10_1016_j_jtice_2024_105945
crossref_primary_10_1021_acsomega_9b00274
crossref_primary_10_1002_cnma_201700257
crossref_primary_10_1002_smll_202004118
crossref_primary_10_1093_hropen_hoaf007
crossref_primary_10_1039_D0NR06765B
crossref_primary_10_1088_1361_6463_ab41e8
crossref_primary_10_1134_S0006350917050025
crossref_primary_10_1021_acs_chemmater_1c01386
crossref_primary_10_2142_biophysico_bppb_v19_0034
crossref_primary_10_1002_pssa_202200342
crossref_primary_10_2217_nnm_2020_0091
crossref_primary_10_1088_2399_1984_ad9975
crossref_primary_10_1021_acsnano_8b09383
crossref_primary_10_1002_ppsc_202000261
crossref_primary_10_1021_acsami_9b19245
crossref_primary_10_1103_PhysRevApplied_12_044039
crossref_primary_10_1039_D2TC04291F
crossref_primary_10_1016_j_xcrp_2020_100054
crossref_primary_10_1016_j_msec_2019_110297
crossref_primary_10_1016_j_cis_2019_04_006
crossref_primary_10_3762_bjnano_10_207
crossref_primary_10_1039_C9CY02217A
crossref_primary_10_1002_adom_201901433
crossref_primary_10_1002_ejic_201800793
crossref_primary_10_1016_j_microc_2024_111315
crossref_primary_10_1002_adom_201600446
crossref_primary_10_1016_j_apsusc_2018_09_175
crossref_primary_10_1016_j_talanta_2023_124892
crossref_primary_10_1515_ntrev_2021_0099
crossref_primary_10_1021_acssensors_9b01903
crossref_primary_10_1002_bit_26573
crossref_primary_10_1021_acs_jpclett_7b00794
crossref_primary_10_1038_s41598_023_32235_x
crossref_primary_10_1063_5_0146648
crossref_primary_10_1021_acs_biomac_6b00744
crossref_primary_10_1021_acs_chemrev_0c01176
crossref_primary_10_1111_jace_16797
crossref_primary_10_1039_C9TB00447E
crossref_primary_10_3390_s21051585
crossref_primary_10_1016_j_snb_2020_127864
crossref_primary_10_1364_OE_511283
crossref_primary_10_1002_wnan_1879
crossref_primary_10_1016_j_canlet_2024_216710
crossref_primary_10_1039_D4TB01825G
crossref_primary_10_1002_ange_202110830
crossref_primary_10_1039_C7CS00399D
crossref_primary_10_1103_PhysRevA_95_053417
crossref_primary_10_1021_acs_nanolett_6b02456
crossref_primary_10_1016_j_jallcom_2017_04_202
crossref_primary_10_1016_j_cclet_2022_107808
crossref_primary_10_1021_acs_analchem_9b05278
crossref_primary_10_1007_s00339_021_05229_7
crossref_primary_10_1016_j_mtadv_2022_100265
crossref_primary_10_1364_OL_447864
crossref_primary_10_1088_1361_6528_aa6ae4
crossref_primary_10_1039_D1RA03936A
crossref_primary_10_1021_acs_chemmater_9b04471
crossref_primary_10_1002_ppsc_201900009
crossref_primary_10_3390_mi11060579
crossref_primary_10_1021_acs_analchem_8b03431
crossref_primary_10_1016_j_jmrt_2021_11_037
crossref_primary_10_1021_acs_jpcc_9b00142
crossref_primary_10_1016_j_nantod_2023_102094
crossref_primary_10_1039_C6PY01188H
crossref_primary_10_2174_1573413719666221128161648
crossref_primary_10_3390_bios12030148
crossref_primary_10_1039_C8TB00508G
crossref_primary_10_1002_anie_202110830
crossref_primary_10_1039_C6CS00109B
crossref_primary_10_1557_s43579_024_00571_2
crossref_primary_10_1515_nanoph_2024_0285
crossref_primary_10_1021_acs_chemmater_3c03295
crossref_primary_10_1103_PhysRevApplied_7_014008
crossref_primary_10_1016_j_diamond_2021_108337
crossref_primary_10_3390_bios14070340
crossref_primary_10_1002_smll_201902151
crossref_primary_10_1002_qute_202300185
crossref_primary_10_1021_acs_analchem_7b04549
crossref_primary_10_1002_adma_201801362
crossref_primary_10_1021_acs_analchem_7b00627
crossref_primary_10_1002_smll_201704263
crossref_primary_10_1021_acs_chemrev_2c00050
crossref_primary_10_1016_j_biomaterials_2017_07_038
crossref_primary_10_1016_j_micron_2020_102916
crossref_primary_10_1021_acsnano_0c07555
crossref_primary_10_1088_1612_202X_aa61bd
crossref_primary_10_1021_acs_analchem_2c03521
crossref_primary_10_1038_s41467_019_13796_w
crossref_primary_10_1039_D4NR01615G
crossref_primary_10_3390_nano11010153
crossref_primary_10_1016_j_carbon_2018_11_060
crossref_primary_10_1016_j_micron_2017_07_002
crossref_primary_10_1039_C7TB02668D
crossref_primary_10_1364_BOE_524293
crossref_primary_10_1039_C6TC05208H
crossref_primary_10_1021_acs_chemrev_7b00218
crossref_primary_10_1021_acsabm_3c00076
crossref_primary_10_1007_s00424_018_2113_4
crossref_primary_10_1021_acs_chemrev_9b00518
crossref_primary_10_3390_app11094065
crossref_primary_10_1016_j_pacs_2018_10_003
crossref_primary_10_3233_JAD_221202
crossref_primary_10_1038_s41598_020_66593_7
crossref_primary_10_21468_SciPostPhysCore_6_4_065
crossref_primary_10_1016_j_diamond_2018_01_012
crossref_primary_10_1021_acs_chemmater_0c01130
crossref_primary_10_1088_1361_6528_abd2e7
crossref_primary_10_1016_j_matdes_2021_110091
crossref_primary_10_1088_1361_6528_ab283d
crossref_primary_10_1103_PhysRevB_95_235306
crossref_primary_10_1021_acscentsci_3c00747
crossref_primary_10_1002_advs_202304355
crossref_primary_10_1088_1361_6528_abb72d
crossref_primary_10_1039_C7SC05130A
crossref_primary_10_1088_1612_202X_ac26cd
crossref_primary_10_1021_acs_jpcc_1c01673
crossref_primary_10_1039_C7TB03168H
crossref_primary_10_1038_s41598_018_20528_5
crossref_primary_10_1002_advs_202103354
crossref_primary_10_1557_s43577_022_00326_1
crossref_primary_10_1039_C8CC02938E
crossref_primary_10_1021_acsnano_3c00857
crossref_primary_10_1021_acs_bioconjchem_9b00458
crossref_primary_10_1038_s41598_021_83285_y
crossref_primary_10_1098_rsos_190589
crossref_primary_10_3389_fimmu_2022_806686
crossref_primary_10_1116_1_5089898
crossref_primary_10_1039_C9NR02593F
crossref_primary_10_3390_biom13121787
crossref_primary_10_1021_acsabm_0c00939
crossref_primary_10_1080_00450618_2024_2365833
crossref_primary_10_3390_bios12121181
crossref_primary_10_1021_acsami_1c09825
crossref_primary_10_3389_fchem_2021_641330
crossref_primary_10_3390_ijms20122977
crossref_primary_10_1007_s10895_022_02898_2
crossref_primary_10_1021_acs_bioconjchem_8b00803
crossref_primary_10_1021_acs_jpcb_1c03361
crossref_primary_10_1103_PhysRevResearch_2_043415
crossref_primary_10_1051_epjconf_201921516002
crossref_primary_10_1021_acs_chemrev_9b00099
crossref_primary_10_1039_D3RA08762J
crossref_primary_10_3390_nano9111576
crossref_primary_10_1016_j_matdes_2023_112179
crossref_primary_10_3390_bios11090295
crossref_primary_10_1007_s00604_022_05545_6
crossref_primary_10_1016_j_diamond_2017_03_002
crossref_primary_10_1021_acs_chemrev_3c00186
crossref_primary_10_1002_smll_202002211
crossref_primary_10_1039_C8NR07828A
crossref_primary_10_1039_C8MH00966J
crossref_primary_10_1039_D0CS00676A
crossref_primary_10_1103_PhysRevApplied_6_064013
crossref_primary_10_3390_nano13081342
crossref_primary_10_1039_C7BM00008A
crossref_primary_10_3390_ma11081479
crossref_primary_10_1002_anie_201905997
crossref_primary_10_1063_5_0131663
crossref_primary_10_1088_2399_1984_ab5f9b
crossref_primary_10_1021_acsami_2c02851
crossref_primary_10_1016_j_talanta_2018_06_001
crossref_primary_10_1039_D4TB01743A
crossref_primary_10_1016_j_mtcomm_2023_106999
crossref_primary_10_1021_acsanm_0c00274
crossref_primary_10_1002_admi_202001911
crossref_primary_10_1002_adtp_201900067
crossref_primary_10_1038_s41586_020_2917_1
crossref_primary_10_1016_j_jallcom_2021_159973
crossref_primary_10_1016_j_physb_2022_414369
crossref_primary_10_1021_acsanm_7b00213
crossref_primary_10_1103_PhysRevApplied_22_064076
crossref_primary_10_1016_j_drudis_2018_10_012
crossref_primary_10_1080_17425247_2021_1832988
crossref_primary_10_1021_acs_jpclett_5c00355
crossref_primary_10_1364_OE_537177
crossref_primary_10_1021_jacsau_4c01134
crossref_primary_10_1016_j_microc_2024_110746
crossref_primary_10_1088_1748_605X_ad3abb
crossref_primary_10_1088_1361_6463_ac6d89
crossref_primary_10_3390_pharmaceutics15010111
crossref_primary_10_1038_s41570_018_0070_2
crossref_primary_10_1039_D2CC06816H
crossref_primary_10_1515_nanoph_2024_0589
crossref_primary_10_1021_acs_analchem_7b03157
crossref_primary_10_1016_j_carbon_2017_12_004
crossref_primary_10_1021_acs_inorgchem_1c03971
crossref_primary_10_1116_6_0000525
crossref_primary_10_1016_j_slast_2023_03_007
crossref_primary_10_1038_s41467_018_06789_8
crossref_primary_10_1038_s41467_018_08092_y
crossref_primary_10_1021_acs_jpclett_7b01215
crossref_primary_10_1039_D1BM01912K
crossref_primary_10_1186_s12951_018_0385_7
crossref_primary_10_1039_D1BM00608H
crossref_primary_10_1002_qute_202100049
crossref_primary_10_1039_D1TB00871D
crossref_primary_10_1002_bio_4364
crossref_primary_10_1021_acsami_9b03640
crossref_primary_10_1515_nanoph_2018_0025
crossref_primary_10_1002_INMD_20240078
crossref_primary_10_1039_D3NR05738K
crossref_primary_10_1007_s11783_021_1461_z
crossref_primary_10_1039_C9TC04690A
crossref_primary_10_1016_j_pmatsci_2021_100838
crossref_primary_10_1063_5_0187310
crossref_primary_10_1002_qute_202000066
crossref_primary_10_1088_1361_6528_ab5a0c
crossref_primary_10_1021_acs_chemmater_6b04894
crossref_primary_10_1016_j_diamond_2025_112035
crossref_primary_10_1002_adhm_202403875
crossref_primary_10_1002_ange_201905997
crossref_primary_10_1080_23746149_2020_1858721
crossref_primary_10_1021_acsami_1c19388
crossref_primary_10_1364_JOSAB_390157
crossref_primary_10_1002_2211_5463_13912
crossref_primary_10_1021_acs_langmuir_1c00577
crossref_primary_10_7498_aps_67_20180788
crossref_primary_10_1038_s41377_019_0151_0
crossref_primary_10_1103_PhysRevApplied_22_014035
Cites_doi 10.1016/j.diamond.2008.08.012
10.1385/1-59745-217-3:195
10.1063/1.4773364
10.1007/s11051-013-1834-8
10.1039/c2nr30764b
10.1038/nnano.2013.147
10.1021/cr900362e
10.1021/nl401791v
10.1021/nl501841d
10.1103/PhysRevB.46.13157
10.1140/epjqt/s40507-015-0031-3
10.1038/nnano.2011.209
10.1038/nature12373
10.1038/lsa.2015.3
10.1016/S0168-9002(01)01664-3
10.1016/j.biomaterials.2013.07.043
10.1002/smll.201500878
10.1146/annurev.physchem.58.032806.104546
10.1364/OL.38.001847
10.1002/anie.201501949
10.1039/c3nr03320a
10.1126/science.276.5321.2012
10.1021/ja0567081
10.1002/smll.201101193
10.1021/nn901014j
10.1016/j.biomaterials.2012.06.084
10.1088/0957-4484/20/23/235602
10.1007/978-3-662-04548-0
10.1016/S0091-679X(06)81024-1
10.1021/nl901597v
10.1103/PhysRevX.2.031001
10.1038/nnano.2008.99
10.1002/smll.200800655
10.1021/nl400346k
10.1073/pnas.1404907111
10.1038/nphoton.2009.2
10.1039/c2nr32778c
10.1021/acs.nanolett.5b00836
10.1038/nmat1390
10.1002/adfm.201301075
10.1021/nn404421b
10.1364/BOE.5.001190
10.1103/PhysRevLett.104.070801
10.1016/j.jlumin.2009.12.003
10.1016/S1748-0132(07)70086-5
10.1073/pnas.0605409104
10.1002/smll.201101233
10.1146/annurev-physchem-040513-103659
10.1002/anie.201504181
10.1021/nl304570b
10.1088/0957-4484/20/42/425103
10.1021/nl302979d
10.1016/j.diamond.2014.07.011
10.1002/anie.201007215
10.1021/nl401216y
ContentType Journal Article
Copyright Copyright © 2016 American Chemical Society
Copyright_xml – notice: Copyright © 2016 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1021/acs.accounts.5b00484
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-4898
EndPage 407
ExternalDocumentID 26882283
10_1021_acs_accounts_5b00484
a294138051
Genre Journal Article
GroupedDBID -
.K2
02
23M
53G
55A
5GY
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
RNS
ROL
TWZ
UI2
UPT
VF5
VG9
W1F
WH7
X
YZZ
---
-DZ
-~X
4.4
5ZA
6J9
6P2
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
AFXLT
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
ZCA
~02
CGR
CUY
CVF
ECM
EIF
NPM
ID FETCH-LOGICAL-a414t-80d7f41afdfeed0e9feb14026bb1b24d7f8873ad1b6f805499ea07ef49431bfe3
IEDL.DBID ACS
ISSN 0001-4842
IngestDate Thu Apr 03 07:02:24 EDT 2025
Thu Apr 24 22:50:42 EDT 2025
Tue Jul 01 03:15:57 EDT 2025
Thu Aug 27 13:43:09 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a414t-80d7f41afdfeed0e9feb14026bb1b24d7f8873ad1b6f805499ea07ef49431bfe3
PMID 26882283
PageCount 8
ParticipantIDs pubmed_primary_26882283
crossref_primary_10_1021_acs_accounts_5b00484
crossref_citationtrail_10_1021_acs_accounts_5b00484
acs_journals_10_1021_acs_accounts_5b00484
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-03-15
PublicationDateYYYYMMDD 2016-03-15
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Accounts of chemical research
PublicationTitleAlternate Acc. Chem. Res
PublicationYear 2016
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref24/cit24
ref38/cit38
Zaitsev A. M. (ref13/cit13) 2001
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref24/cit24
  doi: 10.1016/j.diamond.2008.08.012
– ident: ref55/cit55
  doi: 10.1385/1-59745-217-3:195
– ident: ref45/cit45
  doi: 10.1063/1.4773364
– ident: ref32/cit32
  doi: 10.1007/s11051-013-1834-8
– ident: ref47/cit47
  doi: 10.1039/c2nr30764b
– ident: ref34/cit34
  doi: 10.1038/nnano.2013.147
– ident: ref4/cit4
  doi: 10.1021/cr900362e
– ident: ref46/cit46
  doi: 10.1021/nl401791v
– ident: ref50/cit50
  doi: 10.1021/nl501841d
– ident: ref8/cit8
  doi: 10.1103/PhysRevB.46.13157
– ident: ref54/cit54
  doi: 10.1140/epjqt/s40507-015-0031-3
– ident: ref10/cit10
  doi: 10.1038/nnano.2011.209
– ident: ref48/cit48
  doi: 10.1038/nature12373
– ident: ref42/cit42
  doi: 10.1038/lsa.2015.3
– ident: ref9/cit9
  doi: 10.1016/S0168-9002(01)01664-3
– ident: ref19/cit19
  doi: 10.1016/j.biomaterials.2013.07.043
– ident: ref35/cit35
  doi: 10.1002/smll.201500878
– ident: ref3/cit3
  doi: 10.1146/annurev.physchem.58.032806.104546
– ident: ref22/cit22
  doi: 10.1364/OL.38.001847
– ident: ref36/cit36
  doi: 10.1002/anie.201501949
– ident: ref28/cit28
  doi: 10.1039/c3nr03320a
– ident: ref15/cit15
  doi: 10.1126/science.276.5321.2012
– ident: ref5/cit5
  doi: 10.1021/ja0567081
– ident: ref12/cit12
  doi: 10.1002/smll.201101193
– ident: ref31/cit31
  doi: 10.1021/nn901014j
– ident: ref16/cit16
  doi: 10.1016/j.biomaterials.2012.06.084
– ident: ref25/cit25
  doi: 10.1088/0957-4484/20/23/235602
– volume-title: Optical Properties of Diamond: A Data Handbook
  year: 2001
  ident: ref13/cit13
  doi: 10.1007/978-3-662-04548-0
– ident: ref17/cit17
  doi: 10.1016/S0091-679X(06)81024-1
– ident: ref39/cit39
  doi: 10.1021/nl901597v
– ident: ref53/cit53
  doi: 10.1103/PhysRevX.2.031001
– ident: ref7/cit7
  doi: 10.1038/nnano.2008.99
– ident: ref18/cit18
  doi: 10.1002/smll.200800655
– ident: ref43/cit43
  doi: 10.1021/nl400346k
– ident: ref44/cit44
  doi: 10.1073/pnas.1404907111
– ident: ref38/cit38
  doi: 10.1038/nphoton.2009.2
– ident: ref26/cit26
  doi: 10.1039/c2nr32778c
– ident: ref51/cit51
  doi: 10.1021/acs.nanolett.5b00836
– ident: ref1/cit1
  doi: 10.1038/nmat1390
– ident: ref11/cit11
  doi: 10.1002/adfm.201301075
– ident: ref41/cit41
  doi: 10.1021/nn404421b
– ident: ref23/cit23
  doi: 10.1364/BOE.5.001190
– ident: ref52/cit52
  doi: 10.1103/PhysRevLett.104.070801
– ident: ref27/cit27
  doi: 10.1016/j.jlumin.2009.12.003
– ident: ref2/cit2
  doi: 10.1016/S1748-0132(07)70086-5
– ident: ref6/cit6
  doi: 10.1073/pnas.0605409104
– ident: ref33/cit33
  doi: 10.1002/smll.201101233
– ident: ref14/cit14
  doi: 10.1146/annurev-physchem-040513-103659
– ident: ref37/cit37
  doi: 10.1002/anie.201504181
– ident: ref21/cit21
  doi: 10.1021/nl304570b
– ident: ref30/cit30
  doi: 10.1088/0957-4484/20/42/425103
– ident: ref20/cit20
  doi: 10.1021/nl302979d
– ident: ref29/cit29
  doi: 10.1016/j.diamond.2014.07.011
– ident: ref40/cit40
  doi: 10.1002/anie.201007215
– ident: ref49/cit49
  doi: 10.1021/nl401216y
SSID ssj0002467
Score 2.610759
SecondaryResourceType review_article
Snippet Fluorescent nanodiamond (FND) has recently played a central role in fueling new discoveries in interdisciplinary fields spanning biology, chemistry, physics,...
SourceID pubmed
crossref
acs
SourceType Index Database
Enrichment Source
Publisher
StartPage 400
SubjectTerms Fluorescence
Nanodiamonds
Temperature
Title Fluorescent Nanodiamond: A Versatile Tool for Long-Term Cell Tracking, Super-Resolution Imaging, and Nanoscale Temperature Sensing
URI http://dx.doi.org/10.1021/acs.accounts.5b00484
https://www.ncbi.nlm.nih.gov/pubmed/26882283
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFLagDLBwH-WSBxakpiSO46RsVURVEIKhrdQtsmOHgZBUTbIw8st5zlFUECpsUWI_WfaXd_jZ30PoCmyMKZVShicJM6inODxRblAuTO6R0HZkyfb5xIYT-jB1pl-B4vcMPrFueJiB6LJyQtZ1NMo8uo42CPNcHWz1_dFC8xLKKo5MCJGhFWmuyv0iRRukMFsySEuuZWliBjvoubmoU50see0WueiG7z95G_84-l20XXubuF_BYw-tqWQfbfpNkbcD9DGIi3ReUTph0LQpwAWAKW9xH-utNFi3WOFxmsYYvFv8mCYvxhiUOfZVHGMwdKHeau_gUTFTc0PnAiok4_u3svxRB_NEloIzAANIUuCmVzTOeKTPzicvh2gyuBv7Q6Muy2BwatEcbJp0I2rxSEZgYE3Vi0DfQxjKhLAEofARFJfNpSVY5Jk6_lTcdFVEe-CsiEjZR6iVpIk6QdhVskdDrgmHIAyUQhDQB4xDUOeA3nDMNrqGCQzq3yoLyow5sQL9spnVoJ7VNrKbdQzCmt9cl9mIV_QyFr1mFb_HivbHFUQWrQGInuYQOv3HWM_QFjheTJ9ls5xz1MrnhboA5yYXlyWiPwEkA_iL
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LjtMwFL0ahsWw4f0Ynl7AAmlSEtdJUyQWVaFqmTKbdqTZBTu-mQUhGTWtECz5F36F7-I4j6JBQiMWI7GL8rAs-9577ontc4meA2N8y8xebGXkqZg1rpT2lDa-jmXaD22t9nkUTY_V-5PwZId-dGdh0IkKLVX1Iv5vdYHglbunmwIKVS90xhardi_lIX_9AqZWvZm9xbS-kHLybjmeem0xAU-rQK0Rie0gU4HObAZY8HmYIUqBPEXGBEYqPIS79bUNTJTFvmNNrP0BZ2oIiDUZ99HuFbqK_Ec6jjcaL7YBX6qokeYEM0evZHdC7y-9djiYVudw8FxGWyPb5Ab93I5JvaHlU2-zNr302x9ykf_9oN2k621uLUaNM9yiHS5u0964K2l3h75P8k25agSsBHClhHPADe1rMRLuxyGsNGexLMtcIJcX87I49ZaALjHmPBeA9dQtLByIxeaMV55b-Wj8Vsw-18WeDoQubN1wBdNHSwxS0ohWi4U7KVCc3qXjSxmCe7RblAU_IDFgO1SpdvJKIL3WGInoF2lQ2BBRMvT36SUmLGmDSJXU-wNkkLib3Swm7SzuU78znyRt1dxdUZH8gq-87VdnjZrJBe_fbyxz-7aMQMmQkj78h74-o73p8sM8mc-ODh_RNaSckdvFF4SPaXe92vATpHVr87R2KkEfL9sgfwGx6F24
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qRYJueD_KcxawQKqDPRk7DhKLKCVqaFUhJZW6MzOe6y5w7ShOhGDJ3_ArfBVn_IhUJFSx6IKd5cdoNHPvPfd4Zs4legWM8S0ze7GVkadi1rhS2lPa-DqWaT-0tdrncXRwoj6ehqdb9LM7C4NOVGipqhfxnVcvbNYqDARv3X3dFFGoeqEzuFi1-ykP-dtXsLXq_XQfU_taysmH-fjAawsKeFoFaoVobAeZCnRmM0CDz8MMkQoEKjImMFLhIVyur21goiz2HXNi7Q84U0PArMm4j3av0XW3Uuh43mg82wR9qaJGnhPsHL2S3Sm9v_TaYWFaXcDCC1ltjW6T2_RrMy71ppYvvfXK9NLvf0hG_hcDd4dutTm2GDVOcZe2uLhHN8ddabv79GOSr8tlI2QlgC8lnATuaN-JkXA_EGGtOYt5WeYCOb04Koszbw4IE2POcwF4T90Cw56YrRe89NwKSOO_YnpeF33aE7qwdcMVXAAtMchJI14tZu7EQHH2gE6uZAge0nZRFvyYxIDtUKXaySyB_FpjJKJgpEFlQ0TL0N-lN5iwpA0mVVLvE5BB4m52s5i0s7hL_c6EkrRVdXfFRfJLvvI2Xy0aVZNL3n_UWOfmbRmBmiE1ffIPfX1JNz7tT5Kj6fHhU9pB5hm5zXxB-Iy2V8s1P0d2tzIvar8S9Pmq7fE3CEJgOw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fluorescent+Nanodiamond%3A+A+Versatile+Tool+for+Long-Term+Cell+Tracking%2C+Super-Resolution+Imaging%2C+and+Nanoscale+Temperature+Sensing&rft.jtitle=Accounts+of+chemical+research&rft.au=Hsiao%2C+Wesley+Wei-Wen&rft.au=Hui%2C+Yuen+Yung&rft.au=Tsai%2C+Pei-Chang&rft.au=Chang%2C+Huan-Cheng&rft.date=2016-03-15&rft.issn=0001-4842&rft.eissn=1520-4898&rft.volume=49&rft.issue=3&rft.spage=400&rft.epage=407&rft_id=info:doi/10.1021%2Facs.accounts.5b00484&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_accounts_5b00484
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon