Design, Synthesis, and Structure–Property Relationships of Isoindigo-Based Conjugated Polymers
Conjugated polymers have developed rapidly due to their promising applications in low-cost, lightweight, and flexible electronics. The development of the third-generation donor–acceptor (D–A) polymers greatly improved the device performance in organic solar cells (OSCs) and field-effect transistors...
Saved in:
Published in | Accounts of chemical research Vol. 47; no. 4; pp. 1117 - 1126 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
15.04.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Conjugated polymers have developed rapidly due to their promising applications in low-cost, lightweight, and flexible electronics. The development of the third-generation donor–acceptor (D–A) polymers greatly improved the device performance in organic solar cells (OSCs) and field-effect transistors (FETs). However, for further improvement of device performance, scientists need to develop new building blocks, in particular electron-deficient aromatics, and gain an in-depth understanding of the structure–property relationships. Recently, isoindigo has been used as a new acceptor of D–A conjugated polymers. An isomer of indigo, isoindigo is a less well-known dye and can be isolated as a by-product from certain biological processes. It has two lactam rings and exhibits strong electron-withdrawing character. This electron deficiency gives isoindigo-based polymers intriguing properties, such as broad absorption and high open circuit voltage in OSCs, as well as high mobility and good ambient stability in FETs. In this Account, we review our recent progress on the design, synthesis, and structure–property relationship study of isoindigo-based polymers for FETs. Starting with some discussion on carrier transport in polymer films, we provide some basic strategies towards high-performance polymer FETs. We discuss the stability issue of devices, the impediment of the alkyl side chains, and the choice of the donor part of conjugated polymers. We demonstrate that introducing the isoindigo core effectively lowers the HOMO levels of polymers and provides FETs with long-time stability. In addition, we have found that when we use inappropriate alkyl side chains or non-centrosymmetric donors, the device performance of isoindigo polymers suffers. To further improve device performance and ambient stability, we propose several design strategies, such as using farther branched alkyl chains, modulating polymer energy levels, and extending π-conjugated backbones. We have found that using farther branched alkyl chains can effectively decrease interchain π–π stacking distance and improve carrier mobility. When we introduce electron-deficient functional groups on the isoindigo core, the LUMO levels of the polymers markedly decrease, which significantly improves the electron mobility and device stability. In addition, we present a new polymer system called BDOPV, which is based on the concept of π-extended isoindigo. By application of some strategies successfully used in isoindigo-based polymers, BDOPV-based polymers exhibit high mobility and good stability both in n-type and in ambipolar FETs. We believe that a synergy of molecular engineering strategies towards the isoindigo core, donor units, and side chains may further improve the performance and broaden the application of isoindigo-based polymers. |
---|---|
AbstractList | Conjugated polymers have developed rapidly due to their promising applications in low-cost, lightweight, and flexible electronics. The development of the third-generation donor-acceptor (D-A) polymers greatly improved the device performance in organic solar cells (OSCs) and field-effect transistors (FETs). However, for further improvement of device performance, scientists need to develop new building blocks, in particular electron-deficient aromatics, and gain an in-depth understanding of the structure-property relationships. Recently, isoindigo has been used as a new acceptor of D-A conjugated polymers. An isomer of indigo, isoindigo is a less well-known dye and can be isolated as a by-product from certain biological processes. It has two lactam rings and exhibits strong electron-withdrawing character. This electron deficiency gives isoindigo-based polymers intriguing properties, such as broad absorption and high open circuit voltage in OSCs, as well as high mobility and good ambient stability in FETs. In this Account, we review our recent progress on the design, synthesis, and structure-property relationship study of isoindigo-based polymers for FETs. Starting with some discussion on carrier transport in polymer films, we provide some basic strategies towards high-performance polymer FETs. We discuss the stability issue of devices, the impediment of the alkyl side chains, and the choice of the donor part of conjugated polymers. We demonstrate that introducing the isoindigo core effectively lowers the HOMO levels of polymers and provides FETs with long-time stability. In addition, we have found that when we use inappropriate alkyl side chains or non-centrosymmetric donors, the device performance of isoindigo polymers suffers. To further improve device performance and ambient stability, we propose several design strategies, such as using farther branched alkyl chains, modulating polymer energy levels, and extending π-conjugated backbones. We have found that using farther branched alkyl chains can effectively decrease interchain π-π stacking distance and improve carrier mobility. When we introduce electron-deficient functional groups on the isoindigo core, the LUMO levels of the polymers markedly decrease, which significantly improves the electron mobility and device stability. In addition, we present a new polymer system called BDOPV, which is based on the concept of π-extended isoindigo. By application of some strategies successfully used in isoindigo-based polymers, BDOPV-based polymers exhibit high mobility and good stability both in n-type and in ambipolar FETs. We believe that a synergy of molecular engineering strategies towards the isoindigo core, donor units, and side chains may further improve the performance and broaden the application of isoindigo-based polymers.Conjugated polymers have developed rapidly due to their promising applications in low-cost, lightweight, and flexible electronics. The development of the third-generation donor-acceptor (D-A) polymers greatly improved the device performance in organic solar cells (OSCs) and field-effect transistors (FETs). However, for further improvement of device performance, scientists need to develop new building blocks, in particular electron-deficient aromatics, and gain an in-depth understanding of the structure-property relationships. Recently, isoindigo has been used as a new acceptor of D-A conjugated polymers. An isomer of indigo, isoindigo is a less well-known dye and can be isolated as a by-product from certain biological processes. It has two lactam rings and exhibits strong electron-withdrawing character. This electron deficiency gives isoindigo-based polymers intriguing properties, such as broad absorption and high open circuit voltage in OSCs, as well as high mobility and good ambient stability in FETs. In this Account, we review our recent progress on the design, synthesis, and structure-property relationship study of isoindigo-based polymers for FETs. Starting with some discussion on carrier transport in polymer films, we provide some basic strategies towards high-performance polymer FETs. We discuss the stability issue of devices, the impediment of the alkyl side chains, and the choice of the donor part of conjugated polymers. We demonstrate that introducing the isoindigo core effectively lowers the HOMO levels of polymers and provides FETs with long-time stability. In addition, we have found that when we use inappropriate alkyl side chains or non-centrosymmetric donors, the device performance of isoindigo polymers suffers. To further improve device performance and ambient stability, we propose several design strategies, such as using farther branched alkyl chains, modulating polymer energy levels, and extending π-conjugated backbones. We have found that using farther branched alkyl chains can effectively decrease interchain π-π stacking distance and improve carrier mobility. When we introduce electron-deficient functional groups on the isoindigo core, the LUMO levels of the polymers markedly decrease, which significantly improves the electron mobility and device stability. In addition, we present a new polymer system called BDOPV, which is based on the concept of π-extended isoindigo. By application of some strategies successfully used in isoindigo-based polymers, BDOPV-based polymers exhibit high mobility and good stability both in n-type and in ambipolar FETs. We believe that a synergy of molecular engineering strategies towards the isoindigo core, donor units, and side chains may further improve the performance and broaden the application of isoindigo-based polymers. Conjugated polymers have developed rapidly due to their promising applications in low-cost, lightweight, and flexible electronics. The development of the third-generation donor-acceptor (D-A) polymers greatly improved the device performance in organic solar cells (OSCs) and field-effect transistors (FETs). However, for further improvement of device performance, scientists need to develop new building blocks, in particular electron-deficient aromatics, and gain an in-depth understanding of the structure-property relationships. Recently, isoindigo has been used as a new acceptor of D-A conjugated polymers. An isomer of indigo, isoindigo is a less well-known dye and can be isolated as a by-product from certain biological processes. It has two lactam rings and exhibits strong electron-withdrawing character. This electron deficiency gives isoindigo-based polymers intriguing properties, such as broad absorption and high open circuit voltage in OSCs, as well as high mobility and good ambient stability in FETs. In this Account, we review our recent progress on the design, synthesis, and structure-property relationship study of isoindigo-based polymers for FETs. Starting with some discussion on carrier transport in polymer films, we provide some basic strategies towards high-performance polymer FETs. We discuss the stability issue of devices, the impediment of the alkyl side chains, and the choice of the donor part of conjugated polymers. We demonstrate that introducing the isoindigo core effectively lowers the HOMO levels of polymers and provides FETs with long-time stability. In addition, we have found that when we use inappropriate alkyl side chains or non-centrosymmetric donors, the device performance of isoindigo polymers suffers. To further improve device performance and ambient stability, we propose several design strategies, such as using farther branched alkyl chains, modulating polymer energy levels, and extending pi -conjugated backbones. We have found that using farther branched alkyl chains can effectively decrease interchain pi - pi stacking distance and improve carrier mobility. When we introduce electron-deficient functional groups on the isoindigo core, the LUMO levels of the polymers markedly decrease, which significantly improves the electron mobility and device stability. In addition, we present a new polymer system called BDOPV, which is based on the concept of pi -extended isoindigo. By application of some strategies successfully used in isoindigo-based polymers, BDOPV-based polymers exhibit high mobility and good stability both in n-type and in ambipolar FETs. We believe that a synergy of molecular engineering strategies towards the isoindigo core, donor units, and side chains may further improve the performance and broaden the application of isoindigo-based polymers. Conjugated polymers have developed rapidly due to their promising applications in low-cost, lightweight, and flexible electronics. The development of the third-generation donor–acceptor (D–A) polymers greatly improved the device performance in organic solar cells (OSCs) and field-effect transistors (FETs). However, for further improvement of device performance, scientists need to develop new building blocks, in particular electron-deficient aromatics, and gain an in-depth understanding of the structure–property relationships. Recently, isoindigo has been used as a new acceptor of D–A conjugated polymers. An isomer of indigo, isoindigo is a less well-known dye and can be isolated as a by-product from certain biological processes. It has two lactam rings and exhibits strong electron-withdrawing character. This electron deficiency gives isoindigo-based polymers intriguing properties, such as broad absorption and high open circuit voltage in OSCs, as well as high mobility and good ambient stability in FETs. In this Account, we review our recent progress on the design, synthesis, and structure–property relationship study of isoindigo-based polymers for FETs. Starting with some discussion on carrier transport in polymer films, we provide some basic strategies towards high-performance polymer FETs. We discuss the stability issue of devices, the impediment of the alkyl side chains, and the choice of the donor part of conjugated polymers. We demonstrate that introducing the isoindigo core effectively lowers the HOMO levels of polymers and provides FETs with long-time stability. In addition, we have found that when we use inappropriate alkyl side chains or non-centrosymmetric donors, the device performance of isoindigo polymers suffers. To further improve device performance and ambient stability, we propose several design strategies, such as using farther branched alkyl chains, modulating polymer energy levels, and extending π-conjugated backbones. We have found that using farther branched alkyl chains can effectively decrease interchain π–π stacking distance and improve carrier mobility. When we introduce electron-deficient functional groups on the isoindigo core, the LUMO levels of the polymers markedly decrease, which significantly improves the electron mobility and device stability. In addition, we present a new polymer system called BDOPV, which is based on the concept of π-extended isoindigo. By application of some strategies successfully used in isoindigo-based polymers, BDOPV-based polymers exhibit high mobility and good stability both in n-type and in ambipolar FETs. We believe that a synergy of molecular engineering strategies towards the isoindigo core, donor units, and side chains may further improve the performance and broaden the application of isoindigo-based polymers. |
Author | Wang, Jie-Yu Lei, Ting Pei, Jian |
AuthorAffiliation | Peking University Beijing National Laboratory for Molecular Sciences, The Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering |
AuthorAffiliation_xml | – name: Beijing National Laboratory for Molecular Sciences, The Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering – name: Peking University |
Author_xml | – sequence: 1 givenname: Ting surname: Lei fullname: Lei, Ting – sequence: 2 givenname: Jie-Yu surname: Wang fullname: Wang, Jie-Yu – sequence: 3 givenname: Jian surname: Pei fullname: Pei, Jian email: jianpei@pku.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24502431$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkb9OwzAYxC0EghYYeAGUBQkkArbjxMkI5V-lSlQUZuPGTnGU2sF2hm68A2_Ik2Boy4CQmL77pN_dcNcHm9poCcABgmcIYnTOLYEQp6TeAD2UYhiTvMg3QQ9CiIImeAf0navDi0lGt8EOJmmQCeqB5yvp1EyfRpOF9i9Bu9OIaxFNvO1K31n58fY-tqaV1i-iB9lwr4x2L6p1kamioTNKCzUz8SV3UkQDo-tuxn2QY9Ms5tK6PbBV8cbJ_dXdBU8314-Du3h0fzscXIxiThDxcQ7TNCNYVFwU-RSKCmHOSSpIhkSWwSlGucypIKLKy6ooZEaprKgoSF5SWBKc7ILjZW5rzWsnnWdz5UrZNFxL0zmGKIUJJZBm_6MpymgCUZEE9HCFdtO5FKy1as7tgq0LDMD5Eiitcc7KipXKf5fkLVcNQ5B9TcR-JgqOk1-Odehf7NGS5aVjtemsDhX-wX0CwR-dcg |
CitedBy_id | crossref_primary_10_1002_adma_202305416 crossref_primary_10_1016_j_energy_2019_04_045 crossref_primary_10_1002_elan_202300365 crossref_primary_10_1002_smll_201403761 crossref_primary_10_1039_D1PY00213A crossref_primary_10_1021_jacs_5b11114 crossref_primary_10_1039_C5TA08898D crossref_primary_10_1002_anie_201508482 crossref_primary_10_1007_s11426_020_9901_4 crossref_primary_10_1021_acsomega_1c03459 crossref_primary_10_1002_pol_20210503 crossref_primary_10_1038_s41467_022_29918_w crossref_primary_10_1039_C4TA06272H crossref_primary_10_1021_jacs_7b10332 crossref_primary_10_1002_marc_202401055 crossref_primary_10_1002_adma_201801951 crossref_primary_10_1016_j_electacta_2021_139418 crossref_primary_10_1021_acs_jpcc_6b03756 crossref_primary_10_1021_acs_macromol_9b00834 crossref_primary_10_1039_D1TA10233H crossref_primary_10_1002_adma_201703063 crossref_primary_10_1002_marc_202200297 crossref_primary_10_1007_s11467_020_1045_6 crossref_primary_10_1021_acsami_5b07085 crossref_primary_10_1039_D2TC00732K crossref_primary_10_1039_D3TC00883E crossref_primary_10_1002_admt_202000384 crossref_primary_10_1039_C6TC02891H crossref_primary_10_1039_D3NJ04728H crossref_primary_10_1002_ange_202402375 crossref_primary_10_1039_C5PY00782H crossref_primary_10_1063_5_0081207 crossref_primary_10_1021_acs_macromol_5b00802 crossref_primary_10_1002_adfm_202009359 crossref_primary_10_1021_acsami_1c24348 crossref_primary_10_1039_C6CC04674F crossref_primary_10_1039_D2CC04922H crossref_primary_10_1002_adfm_202007734 crossref_primary_10_1002_ajoc_201700161 crossref_primary_10_1039_D2CC04784E crossref_primary_10_1002_adfm_201910235 crossref_primary_10_1016_j_polymer_2017_10_055 crossref_primary_10_1021_ja5097418 crossref_primary_10_1007_s10118_023_2952_0 crossref_primary_10_1021_acs_macromol_7b00785 crossref_primary_10_1002_cplu_201600101 crossref_primary_10_1039_C4TC02649G crossref_primary_10_1016_j_orgel_2022_106634 crossref_primary_10_1021_acsnano_6b08184 crossref_primary_10_1039_C5PY00605H crossref_primary_10_1016_j_colsurfa_2018_05_078 crossref_primary_10_1039_C5TC03464G crossref_primary_10_1002_tcr_201800135 crossref_primary_10_1002_slct_202300859 crossref_primary_10_1021_acs_macromol_6b01440 crossref_primary_10_1038_s41467_022_33553_w crossref_primary_10_1021_acs_jpcc_6b09888 crossref_primary_10_1002_aelm_201600104 crossref_primary_10_1002_ange_202202336 crossref_primary_10_1002_bip_22850 crossref_primary_10_1021_acs_langmuir_3c01209 crossref_primary_10_1002_marc_202300244 crossref_primary_10_1039_C7CC08603B crossref_primary_10_1021_acs_chemrev_2c00905 crossref_primary_10_1002_adfm_201402307 crossref_primary_10_1021_acs_chemmater_8b02882 crossref_primary_10_1002_advs_201801497 crossref_primary_10_1002_adma_201905909 crossref_primary_10_1021_acs_macromol_1c00268 crossref_primary_10_1039_C6TC03621J crossref_primary_10_1039_C5RA14721B crossref_primary_10_1002_adma_202302178 crossref_primary_10_1007_s13233_022_0054_4 crossref_primary_10_1021_acs_jpclett_6b02367 crossref_primary_10_1021_acs_macromol_8b00161 crossref_primary_10_1039_D1MH00809A crossref_primary_10_1021_acs_chemmater_5b03098 crossref_primary_10_1002_app_41587 crossref_primary_10_1007_s00706_018_2272_1 crossref_primary_10_1039_C7TC00327G crossref_primary_10_1002_chem_201503038 crossref_primary_10_1039_D3QM00201B crossref_primary_10_1093_nsr_nwab145 crossref_primary_10_1002_adfm_202300809 crossref_primary_10_1002_adfm_202000765 crossref_primary_10_1039_C7TA02562A crossref_primary_10_1002_adma_202104325 crossref_primary_10_1021_acsomega_7b00587 crossref_primary_10_1039_C8QM00047F crossref_primary_10_1039_D0TC01303J crossref_primary_10_1002_adma_201902576 crossref_primary_10_1021_acs_joc_0c01445 crossref_primary_10_3390_electronics12153313 crossref_primary_10_1016_j_orgel_2017_06_035 crossref_primary_10_1039_D1CP03364F crossref_primary_10_1039_C6PY01922F crossref_primary_10_1134_S1070363217090304 crossref_primary_10_1002_adma_202110639 crossref_primary_10_1016_j_dyepig_2024_112307 crossref_primary_10_1039_D1PY01362A crossref_primary_10_1002_ange_202301863 crossref_primary_10_1002_anie_202402375 crossref_primary_10_1021_acs_macromol_2c01029 crossref_primary_10_1021_acs_jcim_8b00738 crossref_primary_10_1021_acsapm_4c01112 crossref_primary_10_1021_acs_macromol_5b01252 crossref_primary_10_1021_acs_macromol_5b02583 crossref_primary_10_1002_adfm_201601144 crossref_primary_10_1039_C8TA01826J crossref_primary_10_1021_jacs_7b10256 crossref_primary_10_1134_S1070428015090249 crossref_primary_10_1246_bcsj_20170298 crossref_primary_10_1021_acsami_8b03131 crossref_primary_10_1021_acsami_6b13673 crossref_primary_10_1021_acs_macromol_9b00370 crossref_primary_10_1021_acs_macromol_8b01112 crossref_primary_10_1039_C4PY00566J crossref_primary_10_1002_adma_201503803 crossref_primary_10_1088_1361_6633_aa9e9c crossref_primary_10_3390_ma14226880 crossref_primary_10_1002_adfm_202210846 crossref_primary_10_1021_acsami_9b17631 crossref_primary_10_1016_j_mser_2018_10_003 crossref_primary_10_1002_chem_201801432 crossref_primary_10_1002_marc_201500466 crossref_primary_10_1016_j_polymer_2019_121941 crossref_primary_10_1021_acs_macromol_6b02781 crossref_primary_10_1021_acs_jctc_3c01385 crossref_primary_10_1038_ncomms16070 crossref_primary_10_1021_acs_macromol_6b00004 crossref_primary_10_1039_C5RA23321F crossref_primary_10_1039_C9NR05218F crossref_primary_10_1016_j_isci_2018_03_002 crossref_primary_10_1021_acsaelm_0c00517 crossref_primary_10_1002_chem_201501161 crossref_primary_10_1007_s11426_022_1239_0 crossref_primary_10_1039_C8TC03438A crossref_primary_10_1002_adfm_201504908 crossref_primary_10_1021_acsami_2c10133 crossref_primary_10_1246_bcsj_20200091 crossref_primary_10_1016_j_orgel_2014_09_019 crossref_primary_10_1021_acs_jpcc_5b01071 crossref_primary_10_1016_j_synthmet_2015_12_013 crossref_primary_10_1021_acs_macromol_1c02253 crossref_primary_10_1002_anie_201912202 crossref_primary_10_1021_acs_chemmater_0c03998 crossref_primary_10_1021_acsmaterialslett_2c00095 crossref_primary_10_3390_molecules200917362 crossref_primary_10_1039_C7QO00841D crossref_primary_10_1088_1361_6633_abfaad crossref_primary_10_1002_adfm_201707221 crossref_primary_10_1021_acsami_4c17317 crossref_primary_10_1021_acs_chemrev_7b00482 crossref_primary_10_1016_j_dyepig_2017_03_053 crossref_primary_10_1002_adma_202002823 crossref_primary_10_1021_acsami_3c03298 crossref_primary_10_1039_D2CC06626B crossref_primary_10_1002_adfm_201804839 crossref_primary_10_1002_adfm_201804838 crossref_primary_10_1021_acs_joc_2c01647 crossref_primary_10_1016_j_dyepig_2019_01_003 crossref_primary_10_1039_C6QM00024J crossref_primary_10_1021_acs_macromol_9b00474 crossref_primary_10_1007_s11426_015_5399_5 crossref_primary_10_1021_ja513002h crossref_primary_10_1002_adfm_201905340 crossref_primary_10_1016_j_sna_2019_111712 crossref_primary_10_1039_C5CC02026C crossref_primary_10_1002_ange_201912202 crossref_primary_10_1021_acs_macromol_4c00267 crossref_primary_10_1002_ajoc_201800198 crossref_primary_10_1002_ajoc_201700669 crossref_primary_10_1039_C8RA01088A crossref_primary_10_1039_C6PY01729K crossref_primary_10_1007_s40820_020_00474_6 crossref_primary_10_1007_s10118_015_1603_5 crossref_primary_10_1002_anie_202206311 crossref_primary_10_1016_j_sciaf_2022_e01305 crossref_primary_10_1021_acs_chemrev_6b00127 crossref_primary_10_1039_C5PY01488C crossref_primary_10_1002_adma_201702115 crossref_primary_10_1002_asia_202200414 crossref_primary_10_1002_app_45461 crossref_primary_10_1039_C5TA00115C crossref_primary_10_1021_acs_macromol_5b00158 crossref_primary_10_1002_ange_201508482 crossref_primary_10_1039_C6TA00032K crossref_primary_10_1016_j_tetlet_2014_10_088 crossref_primary_10_1002_chem_202401074 crossref_primary_10_1007_s10965_021_02417_0 crossref_primary_10_1016_j_jorganchem_2023_122875 crossref_primary_10_1016_j_jechem_2020_11_019 crossref_primary_10_1039_D0TC01047B crossref_primary_10_1002_marc_202200622 crossref_primary_10_1002_adma_201903104 crossref_primary_10_1021_acs_macromol_4c00399 crossref_primary_10_1002_adfm_201807176 crossref_primary_10_1016_j_synthmet_2018_08_004 crossref_primary_10_1177_0954008317716526 crossref_primary_10_1002_ange_202206311 crossref_primary_10_1039_C7TA00617A crossref_primary_10_1021_acs_macromol_6b00050 crossref_primary_10_1039_C6TC05534F crossref_primary_10_1246_cl_161068 crossref_primary_10_1016_j_synthmet_2019_03_021 crossref_primary_10_1021_acs_chemmater_6b03379 crossref_primary_10_3390_polym15163392 crossref_primary_10_1002_adfm_202010979 crossref_primary_10_1021_jacs_9b10107 crossref_primary_10_1021_acs_chemmater_6b02042 crossref_primary_10_1021_acsami_2c18049 crossref_primary_10_1002_chem_201703415 crossref_primary_10_1016_S1872_2067_17_62933_4 crossref_primary_10_1021_acsapm_8b00019 crossref_primary_10_1039_C8TA02175A crossref_primary_10_1016_j_tetlet_2018_01_079 crossref_primary_10_1021_jacs_5b07015 crossref_primary_10_1039_C6CC09684K crossref_primary_10_1021_acsmacrolett_5b00052 crossref_primary_10_1016_j_chempr_2021_08_015 crossref_primary_10_1039_C5CC06927K crossref_primary_10_1021_acs_chemmater_8b03670 crossref_primary_10_1109_JEDS_2017_2665638 crossref_primary_10_1016_j_polymer_2020_123089 crossref_primary_10_1002_adfm_201401030 crossref_primary_10_1002_adfm_201704069 crossref_primary_10_1002_smtd_201800070 crossref_primary_10_1021_acs_cgd_6b01359 crossref_primary_10_1016_j_dyepig_2022_110969 crossref_primary_10_1002_adma_201403262 crossref_primary_10_1002_adfm_201803145 crossref_primary_10_1002_anie_202202336 crossref_primary_10_1016_j_ccr_2021_213891 crossref_primary_10_1016_j_dyepig_2016_07_022 crossref_primary_10_1073_pnas_1701478114 crossref_primary_10_1039_C4RA07738E crossref_primary_10_1021_acs_macromol_6b00954 crossref_primary_10_1039_C4TC02273D crossref_primary_10_1039_D1SC06807E crossref_primary_10_18311_jmmf_2023_47255 crossref_primary_10_1016_j_dyepig_2019_107769 crossref_primary_10_1002_adfm_201401822 crossref_primary_10_1039_C5TC01461A crossref_primary_10_1039_D4LF00093E crossref_primary_10_1016_j_chempr_2018_08_005 crossref_primary_10_1080_15980316_2014_980856 crossref_primary_10_1039_C5RA11744E crossref_primary_10_1002_anie_202301863 crossref_primary_10_1002_adfm_202405171 crossref_primary_10_1021_acs_macromol_4c00837 crossref_primary_10_1039_C4RA11824C crossref_primary_10_1039_D2TC03956G crossref_primary_10_1021_acsami_1c20729 crossref_primary_10_1002_anie_202423013 crossref_primary_10_1039_C5RA23693B crossref_primary_10_1039_C5RA25884G crossref_primary_10_1021_acs_macromol_5b00067 crossref_primary_10_1021_jacs_6b03688 crossref_primary_10_1016_j_dyepig_2023_111197 crossref_primary_10_1016_j_nanoen_2019_01_075 crossref_primary_10_1021_acsami_1c02860 crossref_primary_10_1039_C5PY00804B crossref_primary_10_1016_j_solener_2022_05_043 crossref_primary_10_1039_D0QO01495H crossref_primary_10_1002_adma_201502936 crossref_primary_10_1007_s11426_019_9518_7 crossref_primary_10_1002_adma_201603830 crossref_primary_10_1002_bkcs_11317 crossref_primary_10_1002_adma_201501841 crossref_primary_10_1039_C5NJ00436E crossref_primary_10_1039_D1SE01909K crossref_primary_10_1007_s00396_018_4419_3 crossref_primary_10_1016_j_dyepig_2022_110866 crossref_primary_10_1021_acs_jpcc_6b07857 crossref_primary_10_1016_j_jiec_2020_02_022 crossref_primary_10_1002_ejoc_201600363 crossref_primary_10_1021_accountsmr_1c00149 crossref_primary_10_1021_acs_joc_1c00110 crossref_primary_10_1039_C4RA14072A crossref_primary_10_1021_acsami_7b15052 crossref_primary_10_1021_acs_macromol_4c00613 crossref_primary_10_1016_j_orgel_2018_07_004 crossref_primary_10_1021_acs_macromol_0c02326 crossref_primary_10_1039_D3PY01186K crossref_primary_10_1016_j_orgel_2015_05_039 crossref_primary_10_1021_acs_macromol_8b01885 crossref_primary_10_1021_acsami_9b16012 crossref_primary_10_1039_C7SC00154A crossref_primary_10_1002_pola_28391 crossref_primary_10_1021_acs_chemrev_6b00176 crossref_primary_10_1002_ange_202307695 crossref_primary_10_1002_ajoc_202200430 crossref_primary_10_1021_acsami_6b10433 crossref_primary_10_1021_acs_macromol_9b00521 crossref_primary_10_3390_electronics9101604 crossref_primary_10_1016_j_orgel_2019_02_012 crossref_primary_10_1021_ma502186g crossref_primary_10_1039_C4PY01683A crossref_primary_10_1039_C7CC01973D crossref_primary_10_1039_C7TC02903A crossref_primary_10_1002_adfm_201502338 crossref_primary_10_1039_C5PY01500F crossref_primary_10_1016_j_polymer_2017_02_009 crossref_primary_10_1039_C5PY01669J crossref_primary_10_1557_mrc_2015_44 crossref_primary_10_1016_j_tetlet_2016_11_053 crossref_primary_10_1038_ncomms14047 crossref_primary_10_1039_C8TC01711E crossref_primary_10_1039_D2TA09389H crossref_primary_10_1080_10601325_2019_1612251 crossref_primary_10_1002_ange_201800512 crossref_primary_10_1002_asia_201701061 crossref_primary_10_1021_acs_macromol_1c00124 crossref_primary_10_1016_j_orgel_2020_106032 crossref_primary_10_1002_ange_202423013 crossref_primary_10_1021_acs_langmuir_6b02139 crossref_primary_10_1021_jacs_8b02144 crossref_primary_10_1039_C7PY00237H crossref_primary_10_1039_C7PY00810D crossref_primary_10_1021_acsami_7b11863 crossref_primary_10_1021_acsami_7b16516 crossref_primary_10_1039_C7TC04390B crossref_primary_10_1002_aelm_201700100 crossref_primary_10_1039_C9TC03525G crossref_primary_10_1016_j_biomaterials_2020_120179 crossref_primary_10_1039_C8TC03967D crossref_primary_10_1021_acs_accounts_8b00069 crossref_primary_10_1039_C5CC02104A crossref_primary_10_1039_C8TC03725F crossref_primary_10_1002_aelm_201500039 crossref_primary_10_1039_C4TC02059F crossref_primary_10_1021_acsapm_2c01429 crossref_primary_10_1021_jasms_1c00071 crossref_primary_10_1021_acs_joc_9b03267 crossref_primary_10_1016_j_compositesb_2017_10_037 crossref_primary_10_1002_adfm_202300614 crossref_primary_10_1002_adma_201606217 crossref_primary_10_1002_adma_201602410 crossref_primary_10_1002_adfm_201902105 crossref_primary_10_1002_adma_201602893 crossref_primary_10_1021_acs_macromol_3c02626 crossref_primary_10_1021_acsomega_9b02146 crossref_primary_10_1002_chem_201804457 crossref_primary_10_1039_C6PY00143B crossref_primary_10_1039_D0RA08591J crossref_primary_10_1039_C5PY00161G crossref_primary_10_1007_s10118_021_2552_9 crossref_primary_10_1021_acsami_4c08566 crossref_primary_10_1002_cjoc_202300149 crossref_primary_10_1002_ejoc_201800809 crossref_primary_10_1007_s11426_017_9060_0 crossref_primary_10_1016_j_dyepig_2015_12_015 crossref_primary_10_1002_anie_202307695 crossref_primary_10_1002_sus2_70003 crossref_primary_10_1039_D3QM00828B crossref_primary_10_1039_C5TC00839E crossref_primary_10_1246_cl_170307 crossref_primary_10_3390_polym11091461 crossref_primary_10_1016_j_cej_2023_143654 crossref_primary_10_1021_acsami_2c23067 crossref_primary_10_1002_app_53475 crossref_primary_10_1021_jacs_6b04445 crossref_primary_10_1002_aoc_4234 crossref_primary_10_1039_C8RA05903A crossref_primary_10_3390_polym10030331 crossref_primary_10_1002_advs_201700048 crossref_primary_10_1021_acs_accounts_0c00480 crossref_primary_10_1021_acs_macromol_7b02393 crossref_primary_10_1039_D1OB02157E crossref_primary_10_1016_j_cclet_2016_07_003 crossref_primary_10_1016_j_mtadv_2024_100470 crossref_primary_10_1016_j_orgel_2016_05_013 crossref_primary_10_1039_C9CC03682B crossref_primary_10_1039_D1PY01531A crossref_primary_10_1021_acs_chemmater_6b00850 crossref_primary_10_1039_D0TC02199G crossref_primary_10_1039_D4PY00698D crossref_primary_10_1002_adfm_201403428 crossref_primary_10_1016_j_cclet_2021_08_079 crossref_primary_10_1002_anie_201800512 crossref_primary_10_1002_adma_201802850 crossref_primary_10_1002_polb_24819 crossref_primary_10_1039_C6QO00845C |
Cites_doi | 10.1002/adma.201202689 10.1002/adma.201302278 10.1021/ja311469y 10.1021/cr050140x 10.1021/ja209328m 10.1002/adma.200702775 10.1021/ja206610u 10.1038/nmat1612 10.1021/ja406934j 10.1021/ja1085996 10.1021/ja403624a 10.1021/cm102182x 10.1021/ja308211n 10.1039/c2ee23505f 10.1021/ja201591a 10.1039/c3cc40531a 10.1021/ja310283f 10.1039/c3sc50245g 10.1038/srep00754 10.1002/adma.201201795 10.1021/nl303612z 10.1039/b914956m 10.1021/cm300117x 10.1103/PhysRevLett.96.146601 10.1021/cm100524p 10.1021/cm303572d 10.1021/ja400881n 10.1021/ja111066r 10.1021/cr100380z 10.1021/ar200208g 10.1002/adma.201102007 10.1021/jp021114v 10.1021/ja108861q 10.1021/cm4020805 10.1002/(SICI)1521-3773(19990401)38:7<988::AID-ANIE988>3.0.CO;2-0 10.1002/adma.201002117 10.1021/cm4018776 10.1002/adma.201303586 10.1021/ja2073643 10.1002/adma.201001402 10.1002/adma.201103948 10.1021/ol902512x 10.1021/ma2012706 10.1021/ja403949g 10.1039/C3CC47677D |
ContentType | Journal Article |
Copyright | Copyright © 2014 American Chemical
Society |
Copyright_xml | – notice: Copyright © 2014 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1021/ar400254j |
DatabaseName | CrossRef PubMed MEDLINE - Academic Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | MEDLINE - Academic Materials Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-4898 |
EndPage | 1126 |
ExternalDocumentID | 24502431 10_1021_ar400254j b481687945 |
Genre | Journal Article |
GroupedDBID | - .K2 02 23M 4.4 53G 55A 5GY 5VS 7~N 85S AABXI ABFLS ABMVS ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 P2P RNS ROL TWZ UI2 UPT VF5 VG9 W1F WH7 X YZZ --- -DZ -~X 5ZA 6J9 6P2 AAYXX ABBLG ABJNI ABLBI ABQRX ACGFO ADHLV AFXLT AGXLV AHGAQ CITATION CUPRZ GGK IH2 XSW ZCA ~02 NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-a414t-8055642dfad98b0df12aa45d461d660b218e87d4df8cf99e677ef7d948c70c423 |
IEDL.DBID | ACS |
ISSN | 0001-4842 1520-4898 |
IngestDate | Fri Jul 11 06:20:05 EDT 2025 Fri Jul 11 08:15:43 EDT 2025 Mon Jul 21 06:03:32 EDT 2025 Thu Apr 24 23:08:11 EDT 2025 Tue Jul 01 04:04:08 EDT 2025 Thu Aug 27 13:42:17 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a414t-8055642dfad98b0df12aa45d461d660b218e87d4df8cf99e677ef7d948c70c423 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 24502431 |
PQID | 1516730193 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1770374076 proquest_miscellaneous_1516730193 pubmed_primary_24502431 crossref_citationtrail_10_1021_ar400254j crossref_primary_10_1021_ar400254j acs_journals_10_1021_ar400254j |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-04-15 |
PublicationDateYYYYMMDD | 2014-04-15 |
PublicationDate_xml | – month: 04 year: 2014 text: 2014-04-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Accounts of chemical research |
PublicationTitleAlternate | Acc. Chem. Res |
PublicationYear | 2014 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Mei J. (ref10/cit10) 2010; 12 Lei T. (ref15/cit15) 2012; 24 Wang C. (ref1/cit1) 2012; 112 Grozema F. C. (ref16/cit16) 2002; 106 Lei T. (ref25/cit25) 2012; 24 Zhang F. (ref43/cit43) 2013; 135 Bürgi L. (ref29/cit29) 2008; 20 Kanimozhi C. (ref5/cit5) 2012; 134 Nielsen C. B. (ref8/cit8) 2013; 25 Lei T. (ref37/cit37) 2013; 4 Mei J. (ref3/cit3) 2013; 135 Li Y. (ref28/cit28) 2011; 133 McCulloch I. (ref32/cit32) 2012; 45 Lei T. (ref11/cit11) 2011; 133 Lei T. (ref30/cit30) 2014; 26 Li J. (ref4/cit4) 2012; 2 Heeger A. J. (ref6/cit6) 2010; 39 Lei T. (ref41/cit41) 2013; 25 Mei J. (ref33/cit33) 2011; 133 Lei T. (ref36/cit36) 2012; 134 Tang M. L. (ref38/cit38) 2011; 23 Stalder R. (ref35/cit35) 2011; 44 Yuen J. D. (ref7/cit7) 2013; 6 Wang E. (ref14/cit14) 2011; 133 Coropceanu V. (ref20/cit20) 2007; 107 Meager I. (ref45/cit45) 2013; 135 Lei T. (ref40/cit40) 2013; 135 Boese R. (ref23/cit23) 1999; 38 Osaka I. (ref27/cit27) 2011; 133 He M. (ref26/cit26) 2010; 22 Mei J. (ref31/cit31) 2014; 26 Yan Z. (ref42/cit42) 2013; 49 Zhan X. (ref9/cit9) 2011; 23 Lee J. (ref44/cit44) 2013; 135 Osaka I. (ref22/cit22) 2010; 22 Beaujuge P. M. (ref2/cit2) 2011; 133 McCulloch I. (ref21/cit21) 2006; 5 Tseng H.-R. (ref18/cit18) 2012; 12 Tsao H. N. (ref19/cit19) 2011; 133 Deng Y. (ref12/cit12) 2014; 26 Prins P. (ref17/cit17) 2006; 96 Zhou N. (ref34/cit34) 2012; 24 Yang Y. (ref39/cit39) 2014; 50 Kim D. H. (ref13/cit13) 2013; 25 Takimiya K. (ref24/cit24) 2011; 23 |
References_xml | – volume: 24 start-page: 6457 year: 2012 ident: ref15/cit15 publication-title: Adv. Mater. doi: 10.1002/adma.201202689 – volume: 25 start-page: 6589 year: 2013 ident: ref41/cit41 publication-title: Adv. Mater. doi: 10.1002/adma.201302278 – volume: 135 start-page: 2338 year: 2013 ident: ref43/cit43 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja311469y – volume: 107 start-page: 926 year: 2007 ident: ref20/cit20 publication-title: Chem. Rev. doi: 10.1021/cr050140x – volume: 133 start-page: 20130 year: 2011 ident: ref33/cit33 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja209328m – volume: 20 start-page: 2217 year: 2008 ident: ref29/cit29 publication-title: Adv. Mater. doi: 10.1002/adma.200702775 – volume: 133 start-page: 14244 year: 2011 ident: ref14/cit14 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja206610u – volume: 5 start-page: 328 year: 2006 ident: ref21/cit21 publication-title: Nat. Mater. doi: 10.1038/nmat1612 – volume: 135 start-page: 11537 year: 2013 ident: ref45/cit45 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja406934j – volume: 133 start-page: 2198 year: 2011 ident: ref28/cit28 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1085996 – volume: 135 start-page: 12168 year: 2013 ident: ref40/cit40 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja403624a – volume: 23 start-page: 446 year: 2011 ident: ref38/cit38 publication-title: Chem. Mater. doi: 10.1021/cm102182x – volume: 134 start-page: 16532 year: 2012 ident: ref5/cit5 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja308211n – volume: 6 start-page: 392 year: 2013 ident: ref7/cit7 publication-title: Energy Environ. Sci. doi: 10.1039/c2ee23505f – volume: 133 start-page: 6852 year: 2011 ident: ref27/cit27 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja201591a – volume: 49 start-page: 3790 year: 2013 ident: ref42/cit42 publication-title: Chem. Commun. doi: 10.1039/c3cc40531a – volume: 134 start-page: 20025 year: 2012 ident: ref36/cit36 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja310283f – volume: 4 start-page: 2447 year: 2013 ident: ref37/cit37 publication-title: Chem. Sci. doi: 10.1039/c3sc50245g – volume: 2 start-page: 754 year: 2012 ident: ref4/cit4 publication-title: Sci. Rep. doi: 10.1038/srep00754 – volume: 25 start-page: 1859 year: 2013 ident: ref8/cit8 publication-title: Adv. Mater. doi: 10.1002/adma.201201795 – volume: 12 start-page: 6353 year: 2012 ident: ref18/cit18 publication-title: Nano Lett. doi: 10.1021/nl303612z – volume: 39 start-page: 2354 year: 2010 ident: ref6/cit6 publication-title: Chem. Soc. Rev. doi: 10.1039/b914956m – volume: 24 start-page: 1762 year: 2012 ident: ref25/cit25 publication-title: Chem. Mater. doi: 10.1021/cm300117x – volume: 96 start-page: 146601 year: 2006 ident: ref17/cit17 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.146601 – volume: 22 start-page: 2770 year: 2010 ident: ref26/cit26 publication-title: Chem. Mater. doi: 10.1021/cm100524p – volume: 25 start-page: 431 year: 2013 ident: ref13/cit13 publication-title: Chem. Mater. doi: 10.1021/cm303572d – volume: 135 start-page: 6724 year: 2013 ident: ref3/cit3 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja400881n – volume: 133 start-page: 6099 year: 2011 ident: ref11/cit11 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja111066r – volume: 112 start-page: 2208 year: 2012 ident: ref1/cit1 publication-title: Chem. Rev. doi: 10.1021/cr100380z – volume: 45 start-page: 714 year: 2012 ident: ref32/cit32 publication-title: Acc. Chem. Res. doi: 10.1021/ar200208g – volume: 23 start-page: 4347 year: 2011 ident: ref24/cit24 publication-title: Adv. Mater. doi: 10.1002/adma.201102007 – volume: 106 start-page: 7791 year: 2002 ident: ref16/cit16 publication-title: J. Phys. Chem. B doi: 10.1021/jp021114v – volume: 133 start-page: 2605 year: 2011 ident: ref19/cit19 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja108861q – volume: 26 start-page: 604 year: 2014 ident: ref31/cit31 publication-title: Chem. Mater. doi: 10.1021/cm4020805 – volume: 38 start-page: 988 year: 1999 ident: ref23/cit23 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/(SICI)1521-3773(19990401)38:7<988::AID-ANIE988>3.0.CO;2-0 – volume: 22 start-page: 4993 year: 2010 ident: ref22/cit22 publication-title: Adv. Mater. doi: 10.1002/adma.201002117 – volume: 26 start-page: 594 year: 2014 ident: ref30/cit30 publication-title: Chem. Mater. doi: 10.1021/cm4018776 – volume: 26 start-page: 471 year: 2014 ident: ref12/cit12 publication-title: Adv. Mater. doi: 10.1002/adma.201303586 – volume: 133 start-page: 20009 year: 2011 ident: ref2/cit2 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2073643 – volume: 23 start-page: 268 year: 2011 ident: ref9/cit9 publication-title: Adv. Mater. doi: 10.1002/adma.201001402 – volume: 24 start-page: 2242 year: 2012 ident: ref34/cit34 publication-title: Adv. Mater. doi: 10.1002/adma.201103948 – volume: 12 start-page: 660 year: 2010 ident: ref10/cit10 publication-title: Org. Lett. doi: 10.1021/ol902512x – volume: 44 start-page: 6303 year: 2011 ident: ref35/cit35 publication-title: Macromolecules doi: 10.1021/ma2012706 – volume: 135 start-page: 9540 year: 2013 ident: ref44/cit44 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja403949g – volume: 50 start-page: 439 year: 2014 ident: ref39/cit39 publication-title: Chem. Commun. doi: 10.1039/C3CC47677D |
SSID | ssj0002467 |
Score | 2.595935 |
Snippet | Conjugated polymers have developed rapidly due to their promising applications in low-cost, lightweight, and flexible electronics. The development of the... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1117 |
SubjectTerms | Chains (polymeric) Devices Field effect transistors Performance enhancement Polymers Semiconductor devices Stability Strategy |
Title | Design, Synthesis, and Structure–Property Relationships of Isoindigo-Based Conjugated Polymers |
URI | http://dx.doi.org/10.1021/ar400254j https://www.ncbi.nlm.nih.gov/pubmed/24502431 https://www.proquest.com/docview/1516730193 https://www.proquest.com/docview/1770374076 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3HTsQwEB1RDnChl6XJlAMHAkmwneQICwiQQEgLErfguFCVoM3uYTnxD_whX8I42UQg2n0SJzO2503xM8BGYs-gmQCRm4owQJGhchIjQkdopl0mw8QU7Ppn5_z4ip5es-sBWP-lgu97O6JNiyPbD4Mw7HNcvBb_NFv1dutTXhJjYlxMQ-pX9EGfH7WuR-ZfXc8veLLwK0fjcFCdzinbSR63u51kW758J2v865MnYKyPK8leOREmYUCnUzDSrK5zm4abg6JXY4u0eimCvvw-3yIiVaRVEMh22_r99e3CZubbnR6pW-Tu7p9zkhlykme2uH2bOfvo9hRpZulD12bgFLnInno2-T0DV0eHl81jp3-9giOoRzvomxjD6EMZoaIwcZXxfCEoU5R7inM3Qeevw0BRZUJpokjzINAGTUpDGbgSYdgsDKVZqueBRBLfoEVkhMFwDoMu7hoL3rgQXAqfNWAF9R_3l0ceF5Vv34trRTVgszJNLPvk5PaOjKefRNdq0eeSkeMnodXKvjHq2RZBRKqzLg7NPG53tWj3D5kgsLQ8bsAbMFdOjnoonzJL4ugt_PdLizCK4Kro8vHYEgyhNfUyAphOslJM4A8kTOrW |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LU9swENZQOKSXAn3Q8Kra6aEHDLaRZPsIBia0JJOZkJncXFkPmpSxmTg5hBP_gX_IL2ElP_oY-rivLVm71n6rXX2L0MfU3EHTASA3GUGAIkLppJqHDldUuVSEqbbs-t0e6wzJ5xEdVTQ55i4MTKKANxU2if-DXcA74FNib25PnqEVACG-seajeNDsuj5hJT8mhMckJH7NIvTzo8YDieJXD_QHWGndy9lq2afITsxWlXzfn8_SfXH7G2fj_818Db2oUCY-Ks1iHS2p7CVqxXVzt1fo64mt3NjDg0UGELAYF3uYZxIPLJ3sfKoe7u775px-OlvgpmDu2_imwLnG50VuUt1XuXMMTlDiOM8mc3MeJ3E_v16Yo_DXaHh2ehl3nKrZgsOJR2bgqSiFWERqLqMwdaX2fM4JlYR5kjE3BSigwkASqUOho0ixIFAaFExCEbgCQNkbtJzlmXqLcCTgDYpHmmsI7iAEY642UI5xzgT3aRvtwjol1c9SJDYP7ntJs1Bt9KnWUCIqqnLTMeP6KdEPjehNyc_xlND7Ws0JrLNJifBM5XMYmnrM7HHR4V9kgsCQ9LgBa6ON0kaaoXxCDaWjt_mvT3qHWp3L7kVycd77soWeA-yy9T8e3UbLoFm1A9Bmlu5am34E02XzNw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LU9swEN6BMFO4AH1BKFC1w6EHTG0jyfYxBDLQB2QmZYabkfXgOXYmTg7h1P_AP-SXsFIcT-nQx30tydqV9lvt6hPAVmbvoJkIkZtKMECRsfIyI2JPaKZ9JuPMOHb978f88JR-OWNnVaBo78LgIEpsqXRJfLuq-8pUDAPBZzGg7vb29SzM2XSdtehWu1fvvCHlE45MDJFpTMMpk9Cvn1ovJMunXugP0NK5mM4SnNSDc5UlNzujYbYj737jbfz_0S_DYoU2SWtiHi9hRuevYL49feTtNZzvuwqObdIb5wgFy6tym4hckZ6jlR0N9MPP-649rx8Mx6QunLu86pekMOSoLGzK-6Lw9tAZKtIu8uuRPZdTpFvcju2R-Bs47Rz8aB961aMLnqABHaLHYgxjEmWESuLMVyYIhaBMUR4ozv0MIYGOI0WViaVJEs2jSBtUNI1l5EsEZ2-hkRe5XgWSSGxBi8QIg0EehmLcNxbScSG4FCFrwibOVVotmjJ1-fAwSOuJasKnqZZSWVGW25czbp8T_ViL9ic8Hc8JfZiqOsV5tqkRketihF2zgNu9Ltn9i0wUWbIeP-JNWJnYSd1VSJmldgzW_vVL7-FFd7-Tfjs6_voOFhB9uTKggK1DAxWrNxDhDLNNZ9aPxNr1ug |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design%2C+Synthesis%2C+and+Structure%E2%80%93Property+Relationships+of+Isoindigo-Based+Conjugated+Polymers&rft.jtitle=Accounts+of+chemical+research&rft.au=Lei%2C+Ting&rft.au=Wang%2C+Jie-Yu&rft.au=Pei%2C+Jian&rft.date=2014-04-15&rft.issn=0001-4842&rft.eissn=1520-4898&rft.volume=47&rft.issue=4&rft.spage=1117&rft.epage=1126&rft_id=info:doi/10.1021%2Far400254j&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_ar400254j |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon |