Design, Synthesis, and Structure–Property Relationships of Isoindigo-Based Conjugated Polymers

Conjugated polymers have developed rapidly due to their promising applications in low-cost, lightweight, and flexible electronics. The development of the third-generation donor–acceptor (D–A) polymers greatly improved the device performance in organic solar cells (OSCs) and field-effect transistors...

Full description

Saved in:
Bibliographic Details
Published inAccounts of chemical research Vol. 47; no. 4; pp. 1117 - 1126
Main Authors Lei, Ting, Wang, Jie-Yu, Pei, Jian
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 15.04.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Conjugated polymers have developed rapidly due to their promising applications in low-cost, lightweight, and flexible electronics. The development of the third-generation donor–acceptor (D–A) polymers greatly improved the device performance in organic solar cells (OSCs) and field-effect transistors (FETs). However, for further improvement of device performance, scientists need to develop new building blocks, in particular electron-deficient aromatics, and gain an in-depth understanding of the structure–property relationships. Recently, isoindigo has been used as a new acceptor of D–A conjugated polymers. An isomer of indigo, isoindigo is a less well-known dye and can be isolated as a by-product from certain biological processes. It has two lactam rings and exhibits strong electron-withdrawing character. This electron deficiency gives isoindigo-based polymers intriguing properties, such as broad absorption and high open circuit voltage in OSCs, as well as high mobility and good ambient stability in FETs. In this Account, we review our recent progress on the design, synthesis, and structure–property relationship study of isoindigo-based polymers for FETs. Starting with some discussion on carrier transport in polymer films, we provide some basic strategies towards high-performance polymer FETs. We discuss the stability issue of devices, the impediment of the alkyl side chains, and the choice of the donor part of conjugated polymers. We demonstrate that introducing the isoindigo core effectively lowers the HOMO levels of polymers and provides FETs with long-time stability. In addition, we have found that when we use inappropriate alkyl side chains or non-centrosymmetric donors, the device performance of isoindigo polymers suffers. To further improve device performance and ambient stability, we propose several design strategies, such as using farther branched alkyl chains, modulating polymer energy levels, and extending π-conjugated backbones. We have found that using farther branched alkyl chains can effectively decrease interchain π–π stacking distance and improve carrier mobility. When we introduce electron-deficient functional groups on the isoindigo core, the LUMO levels of the polymers markedly decrease, which significantly improves the electron mobility and device stability. In addition, we present a new polymer system called BDOPV, which is based on the concept of π-extended isoindigo. By application of some strategies successfully used in isoindigo-based polymers, BDOPV-based polymers exhibit high mobility and good stability both in n-type and in ambipolar FETs. We believe that a synergy of molecular engineering strategies towards the isoindigo core, donor units, and side chains may further improve the performance and broaden the application of isoindigo-based polymers.
AbstractList Conjugated polymers have developed rapidly due to their promising applications in low-cost, lightweight, and flexible electronics. The development of the third-generation donor-acceptor (D-A) polymers greatly improved the device performance in organic solar cells (OSCs) and field-effect transistors (FETs). However, for further improvement of device performance, scientists need to develop new building blocks, in particular electron-deficient aromatics, and gain an in-depth understanding of the structure-property relationships. Recently, isoindigo has been used as a new acceptor of D-A conjugated polymers. An isomer of indigo, isoindigo is a less well-known dye and can be isolated as a by-product from certain biological processes. It has two lactam rings and exhibits strong electron-withdrawing character. This electron deficiency gives isoindigo-based polymers intriguing properties, such as broad absorption and high open circuit voltage in OSCs, as well as high mobility and good ambient stability in FETs. In this Account, we review our recent progress on the design, synthesis, and structure-property relationship study of isoindigo-based polymers for FETs. Starting with some discussion on carrier transport in polymer films, we provide some basic strategies towards high-performance polymer FETs. We discuss the stability issue of devices, the impediment of the alkyl side chains, and the choice of the donor part of conjugated polymers. We demonstrate that introducing the isoindigo core effectively lowers the HOMO levels of polymers and provides FETs with long-time stability. In addition, we have found that when we use inappropriate alkyl side chains or non-centrosymmetric donors, the device performance of isoindigo polymers suffers. To further improve device performance and ambient stability, we propose several design strategies, such as using farther branched alkyl chains, modulating polymer energy levels, and extending π-conjugated backbones. We have found that using farther branched alkyl chains can effectively decrease interchain π-π stacking distance and improve carrier mobility. When we introduce electron-deficient functional groups on the isoindigo core, the LUMO levels of the polymers markedly decrease, which significantly improves the electron mobility and device stability. In addition, we present a new polymer system called BDOPV, which is based on the concept of π-extended isoindigo. By application of some strategies successfully used in isoindigo-based polymers, BDOPV-based polymers exhibit high mobility and good stability both in n-type and in ambipolar FETs. We believe that a synergy of molecular engineering strategies towards the isoindigo core, donor units, and side chains may further improve the performance and broaden the application of isoindigo-based polymers.Conjugated polymers have developed rapidly due to their promising applications in low-cost, lightweight, and flexible electronics. The development of the third-generation donor-acceptor (D-A) polymers greatly improved the device performance in organic solar cells (OSCs) and field-effect transistors (FETs). However, for further improvement of device performance, scientists need to develop new building blocks, in particular electron-deficient aromatics, and gain an in-depth understanding of the structure-property relationships. Recently, isoindigo has been used as a new acceptor of D-A conjugated polymers. An isomer of indigo, isoindigo is a less well-known dye and can be isolated as a by-product from certain biological processes. It has two lactam rings and exhibits strong electron-withdrawing character. This electron deficiency gives isoindigo-based polymers intriguing properties, such as broad absorption and high open circuit voltage in OSCs, as well as high mobility and good ambient stability in FETs. In this Account, we review our recent progress on the design, synthesis, and structure-property relationship study of isoindigo-based polymers for FETs. Starting with some discussion on carrier transport in polymer films, we provide some basic strategies towards high-performance polymer FETs. We discuss the stability issue of devices, the impediment of the alkyl side chains, and the choice of the donor part of conjugated polymers. We demonstrate that introducing the isoindigo core effectively lowers the HOMO levels of polymers and provides FETs with long-time stability. In addition, we have found that when we use inappropriate alkyl side chains or non-centrosymmetric donors, the device performance of isoindigo polymers suffers. To further improve device performance and ambient stability, we propose several design strategies, such as using farther branched alkyl chains, modulating polymer energy levels, and extending π-conjugated backbones. We have found that using farther branched alkyl chains can effectively decrease interchain π-π stacking distance and improve carrier mobility. When we introduce electron-deficient functional groups on the isoindigo core, the LUMO levels of the polymers markedly decrease, which significantly improves the electron mobility and device stability. In addition, we present a new polymer system called BDOPV, which is based on the concept of π-extended isoindigo. By application of some strategies successfully used in isoindigo-based polymers, BDOPV-based polymers exhibit high mobility and good stability both in n-type and in ambipolar FETs. We believe that a synergy of molecular engineering strategies towards the isoindigo core, donor units, and side chains may further improve the performance and broaden the application of isoindigo-based polymers.
Conjugated polymers have developed rapidly due to their promising applications in low-cost, lightweight, and flexible electronics. The development of the third-generation donor-acceptor (D-A) polymers greatly improved the device performance in organic solar cells (OSCs) and field-effect transistors (FETs). However, for further improvement of device performance, scientists need to develop new building blocks, in particular electron-deficient aromatics, and gain an in-depth understanding of the structure-property relationships. Recently, isoindigo has been used as a new acceptor of D-A conjugated polymers. An isomer of indigo, isoindigo is a less well-known dye and can be isolated as a by-product from certain biological processes. It has two lactam rings and exhibits strong electron-withdrawing character. This electron deficiency gives isoindigo-based polymers intriguing properties, such as broad absorption and high open circuit voltage in OSCs, as well as high mobility and good ambient stability in FETs. In this Account, we review our recent progress on the design, synthesis, and structure-property relationship study of isoindigo-based polymers for FETs. Starting with some discussion on carrier transport in polymer films, we provide some basic strategies towards high-performance polymer FETs. We discuss the stability issue of devices, the impediment of the alkyl side chains, and the choice of the donor part of conjugated polymers. We demonstrate that introducing the isoindigo core effectively lowers the HOMO levels of polymers and provides FETs with long-time stability. In addition, we have found that when we use inappropriate alkyl side chains or non-centrosymmetric donors, the device performance of isoindigo polymers suffers. To further improve device performance and ambient stability, we propose several design strategies, such as using farther branched alkyl chains, modulating polymer energy levels, and extending pi -conjugated backbones. We have found that using farther branched alkyl chains can effectively decrease interchain pi - pi stacking distance and improve carrier mobility. When we introduce electron-deficient functional groups on the isoindigo core, the LUMO levels of the polymers markedly decrease, which significantly improves the electron mobility and device stability. In addition, we present a new polymer system called BDOPV, which is based on the concept of pi -extended isoindigo. By application of some strategies successfully used in isoindigo-based polymers, BDOPV-based polymers exhibit high mobility and good stability both in n-type and in ambipolar FETs. We believe that a synergy of molecular engineering strategies towards the isoindigo core, donor units, and side chains may further improve the performance and broaden the application of isoindigo-based polymers.
Conjugated polymers have developed rapidly due to their promising applications in low-cost, lightweight, and flexible electronics. The development of the third-generation donor–acceptor (D–A) polymers greatly improved the device performance in organic solar cells (OSCs) and field-effect transistors (FETs). However, for further improvement of device performance, scientists need to develop new building blocks, in particular electron-deficient aromatics, and gain an in-depth understanding of the structure–property relationships. Recently, isoindigo has been used as a new acceptor of D–A conjugated polymers. An isomer of indigo, isoindigo is a less well-known dye and can be isolated as a by-product from certain biological processes. It has two lactam rings and exhibits strong electron-withdrawing character. This electron deficiency gives isoindigo-based polymers intriguing properties, such as broad absorption and high open circuit voltage in OSCs, as well as high mobility and good ambient stability in FETs. In this Account, we review our recent progress on the design, synthesis, and structure–property relationship study of isoindigo-based polymers for FETs. Starting with some discussion on carrier transport in polymer films, we provide some basic strategies towards high-performance polymer FETs. We discuss the stability issue of devices, the impediment of the alkyl side chains, and the choice of the donor part of conjugated polymers. We demonstrate that introducing the isoindigo core effectively lowers the HOMO levels of polymers and provides FETs with long-time stability. In addition, we have found that when we use inappropriate alkyl side chains or non-centrosymmetric donors, the device performance of isoindigo polymers suffers. To further improve device performance and ambient stability, we propose several design strategies, such as using farther branched alkyl chains, modulating polymer energy levels, and extending π-conjugated backbones. We have found that using farther branched alkyl chains can effectively decrease interchain π–π stacking distance and improve carrier mobility. When we introduce electron-deficient functional groups on the isoindigo core, the LUMO levels of the polymers markedly decrease, which significantly improves the electron mobility and device stability. In addition, we present a new polymer system called BDOPV, which is based on the concept of π-extended isoindigo. By application of some strategies successfully used in isoindigo-based polymers, BDOPV-based polymers exhibit high mobility and good stability both in n-type and in ambipolar FETs. We believe that a synergy of molecular engineering strategies towards the isoindigo core, donor units, and side chains may further improve the performance and broaden the application of isoindigo-based polymers.
Author Wang, Jie-Yu
Lei, Ting
Pei, Jian
AuthorAffiliation Peking University
Beijing National Laboratory for Molecular Sciences, The Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering
AuthorAffiliation_xml – name: Beijing National Laboratory for Molecular Sciences, The Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering
– name: Peking University
Author_xml – sequence: 1
  givenname: Ting
  surname: Lei
  fullname: Lei, Ting
– sequence: 2
  givenname: Jie-Yu
  surname: Wang
  fullname: Wang, Jie-Yu
– sequence: 3
  givenname: Jian
  surname: Pei
  fullname: Pei, Jian
  email: jianpei@pku.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24502431$$D View this record in MEDLINE/PubMed
BookMark eNqFkb9OwzAYxC0EghYYeAGUBQkkArbjxMkI5V-lSlQUZuPGTnGU2sF2hm68A2_Ik2Boy4CQmL77pN_dcNcHm9poCcABgmcIYnTOLYEQp6TeAD2UYhiTvMg3QQ9CiIImeAf0navDi0lGt8EOJmmQCeqB5yvp1EyfRpOF9i9Bu9OIaxFNvO1K31n58fY-tqaV1i-iB9lwr4x2L6p1kamioTNKCzUz8SV3UkQDo-tuxn2QY9Ms5tK6PbBV8cbJ_dXdBU8314-Du3h0fzscXIxiThDxcQ7TNCNYVFwU-RSKCmHOSSpIhkSWwSlGucypIKLKy6ooZEaprKgoSF5SWBKc7ILjZW5rzWsnnWdz5UrZNFxL0zmGKIUJJZBm_6MpymgCUZEE9HCFdtO5FKy1as7tgq0LDMD5Eiitcc7KipXKf5fkLVcNQ5B9TcR-JgqOk1-Odehf7NGS5aVjtemsDhX-wX0CwR-dcg
CitedBy_id crossref_primary_10_1002_adma_202305416
crossref_primary_10_1016_j_energy_2019_04_045
crossref_primary_10_1002_elan_202300365
crossref_primary_10_1002_smll_201403761
crossref_primary_10_1039_D1PY00213A
crossref_primary_10_1021_jacs_5b11114
crossref_primary_10_1039_C5TA08898D
crossref_primary_10_1002_anie_201508482
crossref_primary_10_1007_s11426_020_9901_4
crossref_primary_10_1021_acsomega_1c03459
crossref_primary_10_1002_pol_20210503
crossref_primary_10_1038_s41467_022_29918_w
crossref_primary_10_1039_C4TA06272H
crossref_primary_10_1021_jacs_7b10332
crossref_primary_10_1002_marc_202401055
crossref_primary_10_1002_adma_201801951
crossref_primary_10_1016_j_electacta_2021_139418
crossref_primary_10_1021_acs_jpcc_6b03756
crossref_primary_10_1021_acs_macromol_9b00834
crossref_primary_10_1039_D1TA10233H
crossref_primary_10_1002_adma_201703063
crossref_primary_10_1002_marc_202200297
crossref_primary_10_1007_s11467_020_1045_6
crossref_primary_10_1021_acsami_5b07085
crossref_primary_10_1039_D2TC00732K
crossref_primary_10_1039_D3TC00883E
crossref_primary_10_1002_admt_202000384
crossref_primary_10_1039_C6TC02891H
crossref_primary_10_1039_D3NJ04728H
crossref_primary_10_1002_ange_202402375
crossref_primary_10_1039_C5PY00782H
crossref_primary_10_1063_5_0081207
crossref_primary_10_1021_acs_macromol_5b00802
crossref_primary_10_1002_adfm_202009359
crossref_primary_10_1021_acsami_1c24348
crossref_primary_10_1039_C6CC04674F
crossref_primary_10_1039_D2CC04922H
crossref_primary_10_1002_adfm_202007734
crossref_primary_10_1002_ajoc_201700161
crossref_primary_10_1039_D2CC04784E
crossref_primary_10_1002_adfm_201910235
crossref_primary_10_1016_j_polymer_2017_10_055
crossref_primary_10_1021_ja5097418
crossref_primary_10_1007_s10118_023_2952_0
crossref_primary_10_1021_acs_macromol_7b00785
crossref_primary_10_1002_cplu_201600101
crossref_primary_10_1039_C4TC02649G
crossref_primary_10_1016_j_orgel_2022_106634
crossref_primary_10_1021_acsnano_6b08184
crossref_primary_10_1039_C5PY00605H
crossref_primary_10_1016_j_colsurfa_2018_05_078
crossref_primary_10_1039_C5TC03464G
crossref_primary_10_1002_tcr_201800135
crossref_primary_10_1002_slct_202300859
crossref_primary_10_1021_acs_macromol_6b01440
crossref_primary_10_1038_s41467_022_33553_w
crossref_primary_10_1021_acs_jpcc_6b09888
crossref_primary_10_1002_aelm_201600104
crossref_primary_10_1002_ange_202202336
crossref_primary_10_1002_bip_22850
crossref_primary_10_1021_acs_langmuir_3c01209
crossref_primary_10_1002_marc_202300244
crossref_primary_10_1039_C7CC08603B
crossref_primary_10_1021_acs_chemrev_2c00905
crossref_primary_10_1002_adfm_201402307
crossref_primary_10_1021_acs_chemmater_8b02882
crossref_primary_10_1002_advs_201801497
crossref_primary_10_1002_adma_201905909
crossref_primary_10_1021_acs_macromol_1c00268
crossref_primary_10_1039_C6TC03621J
crossref_primary_10_1039_C5RA14721B
crossref_primary_10_1002_adma_202302178
crossref_primary_10_1007_s13233_022_0054_4
crossref_primary_10_1021_acs_jpclett_6b02367
crossref_primary_10_1021_acs_macromol_8b00161
crossref_primary_10_1039_D1MH00809A
crossref_primary_10_1021_acs_chemmater_5b03098
crossref_primary_10_1002_app_41587
crossref_primary_10_1007_s00706_018_2272_1
crossref_primary_10_1039_C7TC00327G
crossref_primary_10_1002_chem_201503038
crossref_primary_10_1039_D3QM00201B
crossref_primary_10_1093_nsr_nwab145
crossref_primary_10_1002_adfm_202300809
crossref_primary_10_1002_adfm_202000765
crossref_primary_10_1039_C7TA02562A
crossref_primary_10_1002_adma_202104325
crossref_primary_10_1021_acsomega_7b00587
crossref_primary_10_1039_C8QM00047F
crossref_primary_10_1039_D0TC01303J
crossref_primary_10_1002_adma_201902576
crossref_primary_10_1021_acs_joc_0c01445
crossref_primary_10_3390_electronics12153313
crossref_primary_10_1016_j_orgel_2017_06_035
crossref_primary_10_1039_D1CP03364F
crossref_primary_10_1039_C6PY01922F
crossref_primary_10_1134_S1070363217090304
crossref_primary_10_1002_adma_202110639
crossref_primary_10_1016_j_dyepig_2024_112307
crossref_primary_10_1039_D1PY01362A
crossref_primary_10_1002_ange_202301863
crossref_primary_10_1002_anie_202402375
crossref_primary_10_1021_acs_macromol_2c01029
crossref_primary_10_1021_acs_jcim_8b00738
crossref_primary_10_1021_acsapm_4c01112
crossref_primary_10_1021_acs_macromol_5b01252
crossref_primary_10_1021_acs_macromol_5b02583
crossref_primary_10_1002_adfm_201601144
crossref_primary_10_1039_C8TA01826J
crossref_primary_10_1021_jacs_7b10256
crossref_primary_10_1134_S1070428015090249
crossref_primary_10_1246_bcsj_20170298
crossref_primary_10_1021_acsami_8b03131
crossref_primary_10_1021_acsami_6b13673
crossref_primary_10_1021_acs_macromol_9b00370
crossref_primary_10_1021_acs_macromol_8b01112
crossref_primary_10_1039_C4PY00566J
crossref_primary_10_1002_adma_201503803
crossref_primary_10_1088_1361_6633_aa9e9c
crossref_primary_10_3390_ma14226880
crossref_primary_10_1002_adfm_202210846
crossref_primary_10_1021_acsami_9b17631
crossref_primary_10_1016_j_mser_2018_10_003
crossref_primary_10_1002_chem_201801432
crossref_primary_10_1002_marc_201500466
crossref_primary_10_1016_j_polymer_2019_121941
crossref_primary_10_1021_acs_macromol_6b02781
crossref_primary_10_1021_acs_jctc_3c01385
crossref_primary_10_1038_ncomms16070
crossref_primary_10_1021_acs_macromol_6b00004
crossref_primary_10_1039_C5RA23321F
crossref_primary_10_1039_C9NR05218F
crossref_primary_10_1016_j_isci_2018_03_002
crossref_primary_10_1021_acsaelm_0c00517
crossref_primary_10_1002_chem_201501161
crossref_primary_10_1007_s11426_022_1239_0
crossref_primary_10_1039_C8TC03438A
crossref_primary_10_1002_adfm_201504908
crossref_primary_10_1021_acsami_2c10133
crossref_primary_10_1246_bcsj_20200091
crossref_primary_10_1016_j_orgel_2014_09_019
crossref_primary_10_1021_acs_jpcc_5b01071
crossref_primary_10_1016_j_synthmet_2015_12_013
crossref_primary_10_1021_acs_macromol_1c02253
crossref_primary_10_1002_anie_201912202
crossref_primary_10_1021_acs_chemmater_0c03998
crossref_primary_10_1021_acsmaterialslett_2c00095
crossref_primary_10_3390_molecules200917362
crossref_primary_10_1039_C7QO00841D
crossref_primary_10_1088_1361_6633_abfaad
crossref_primary_10_1002_adfm_201707221
crossref_primary_10_1021_acsami_4c17317
crossref_primary_10_1021_acs_chemrev_7b00482
crossref_primary_10_1016_j_dyepig_2017_03_053
crossref_primary_10_1002_adma_202002823
crossref_primary_10_1021_acsami_3c03298
crossref_primary_10_1039_D2CC06626B
crossref_primary_10_1002_adfm_201804839
crossref_primary_10_1002_adfm_201804838
crossref_primary_10_1021_acs_joc_2c01647
crossref_primary_10_1016_j_dyepig_2019_01_003
crossref_primary_10_1039_C6QM00024J
crossref_primary_10_1021_acs_macromol_9b00474
crossref_primary_10_1007_s11426_015_5399_5
crossref_primary_10_1021_ja513002h
crossref_primary_10_1002_adfm_201905340
crossref_primary_10_1016_j_sna_2019_111712
crossref_primary_10_1039_C5CC02026C
crossref_primary_10_1002_ange_201912202
crossref_primary_10_1021_acs_macromol_4c00267
crossref_primary_10_1002_ajoc_201800198
crossref_primary_10_1002_ajoc_201700669
crossref_primary_10_1039_C8RA01088A
crossref_primary_10_1039_C6PY01729K
crossref_primary_10_1007_s40820_020_00474_6
crossref_primary_10_1007_s10118_015_1603_5
crossref_primary_10_1002_anie_202206311
crossref_primary_10_1016_j_sciaf_2022_e01305
crossref_primary_10_1021_acs_chemrev_6b00127
crossref_primary_10_1039_C5PY01488C
crossref_primary_10_1002_adma_201702115
crossref_primary_10_1002_asia_202200414
crossref_primary_10_1002_app_45461
crossref_primary_10_1039_C5TA00115C
crossref_primary_10_1021_acs_macromol_5b00158
crossref_primary_10_1002_ange_201508482
crossref_primary_10_1039_C6TA00032K
crossref_primary_10_1016_j_tetlet_2014_10_088
crossref_primary_10_1002_chem_202401074
crossref_primary_10_1007_s10965_021_02417_0
crossref_primary_10_1016_j_jorganchem_2023_122875
crossref_primary_10_1016_j_jechem_2020_11_019
crossref_primary_10_1039_D0TC01047B
crossref_primary_10_1002_marc_202200622
crossref_primary_10_1002_adma_201903104
crossref_primary_10_1021_acs_macromol_4c00399
crossref_primary_10_1002_adfm_201807176
crossref_primary_10_1016_j_synthmet_2018_08_004
crossref_primary_10_1177_0954008317716526
crossref_primary_10_1002_ange_202206311
crossref_primary_10_1039_C7TA00617A
crossref_primary_10_1021_acs_macromol_6b00050
crossref_primary_10_1039_C6TC05534F
crossref_primary_10_1246_cl_161068
crossref_primary_10_1016_j_synthmet_2019_03_021
crossref_primary_10_1021_acs_chemmater_6b03379
crossref_primary_10_3390_polym15163392
crossref_primary_10_1002_adfm_202010979
crossref_primary_10_1021_jacs_9b10107
crossref_primary_10_1021_acs_chemmater_6b02042
crossref_primary_10_1021_acsami_2c18049
crossref_primary_10_1002_chem_201703415
crossref_primary_10_1016_S1872_2067_17_62933_4
crossref_primary_10_1021_acsapm_8b00019
crossref_primary_10_1039_C8TA02175A
crossref_primary_10_1016_j_tetlet_2018_01_079
crossref_primary_10_1021_jacs_5b07015
crossref_primary_10_1039_C6CC09684K
crossref_primary_10_1021_acsmacrolett_5b00052
crossref_primary_10_1016_j_chempr_2021_08_015
crossref_primary_10_1039_C5CC06927K
crossref_primary_10_1021_acs_chemmater_8b03670
crossref_primary_10_1109_JEDS_2017_2665638
crossref_primary_10_1016_j_polymer_2020_123089
crossref_primary_10_1002_adfm_201401030
crossref_primary_10_1002_adfm_201704069
crossref_primary_10_1002_smtd_201800070
crossref_primary_10_1021_acs_cgd_6b01359
crossref_primary_10_1016_j_dyepig_2022_110969
crossref_primary_10_1002_adma_201403262
crossref_primary_10_1002_adfm_201803145
crossref_primary_10_1002_anie_202202336
crossref_primary_10_1016_j_ccr_2021_213891
crossref_primary_10_1016_j_dyepig_2016_07_022
crossref_primary_10_1073_pnas_1701478114
crossref_primary_10_1039_C4RA07738E
crossref_primary_10_1021_acs_macromol_6b00954
crossref_primary_10_1039_C4TC02273D
crossref_primary_10_1039_D1SC06807E
crossref_primary_10_18311_jmmf_2023_47255
crossref_primary_10_1016_j_dyepig_2019_107769
crossref_primary_10_1002_adfm_201401822
crossref_primary_10_1039_C5TC01461A
crossref_primary_10_1039_D4LF00093E
crossref_primary_10_1016_j_chempr_2018_08_005
crossref_primary_10_1080_15980316_2014_980856
crossref_primary_10_1039_C5RA11744E
crossref_primary_10_1002_anie_202301863
crossref_primary_10_1002_adfm_202405171
crossref_primary_10_1021_acs_macromol_4c00837
crossref_primary_10_1039_C4RA11824C
crossref_primary_10_1039_D2TC03956G
crossref_primary_10_1021_acsami_1c20729
crossref_primary_10_1002_anie_202423013
crossref_primary_10_1039_C5RA23693B
crossref_primary_10_1039_C5RA25884G
crossref_primary_10_1021_acs_macromol_5b00067
crossref_primary_10_1021_jacs_6b03688
crossref_primary_10_1016_j_dyepig_2023_111197
crossref_primary_10_1016_j_nanoen_2019_01_075
crossref_primary_10_1021_acsami_1c02860
crossref_primary_10_1039_C5PY00804B
crossref_primary_10_1016_j_solener_2022_05_043
crossref_primary_10_1039_D0QO01495H
crossref_primary_10_1002_adma_201502936
crossref_primary_10_1007_s11426_019_9518_7
crossref_primary_10_1002_adma_201603830
crossref_primary_10_1002_bkcs_11317
crossref_primary_10_1002_adma_201501841
crossref_primary_10_1039_C5NJ00436E
crossref_primary_10_1039_D1SE01909K
crossref_primary_10_1007_s00396_018_4419_3
crossref_primary_10_1016_j_dyepig_2022_110866
crossref_primary_10_1021_acs_jpcc_6b07857
crossref_primary_10_1016_j_jiec_2020_02_022
crossref_primary_10_1002_ejoc_201600363
crossref_primary_10_1021_accountsmr_1c00149
crossref_primary_10_1021_acs_joc_1c00110
crossref_primary_10_1039_C4RA14072A
crossref_primary_10_1021_acsami_7b15052
crossref_primary_10_1021_acs_macromol_4c00613
crossref_primary_10_1016_j_orgel_2018_07_004
crossref_primary_10_1021_acs_macromol_0c02326
crossref_primary_10_1039_D3PY01186K
crossref_primary_10_1016_j_orgel_2015_05_039
crossref_primary_10_1021_acs_macromol_8b01885
crossref_primary_10_1021_acsami_9b16012
crossref_primary_10_1039_C7SC00154A
crossref_primary_10_1002_pola_28391
crossref_primary_10_1021_acs_chemrev_6b00176
crossref_primary_10_1002_ange_202307695
crossref_primary_10_1002_ajoc_202200430
crossref_primary_10_1021_acsami_6b10433
crossref_primary_10_1021_acs_macromol_9b00521
crossref_primary_10_3390_electronics9101604
crossref_primary_10_1016_j_orgel_2019_02_012
crossref_primary_10_1021_ma502186g
crossref_primary_10_1039_C4PY01683A
crossref_primary_10_1039_C7CC01973D
crossref_primary_10_1039_C7TC02903A
crossref_primary_10_1002_adfm_201502338
crossref_primary_10_1039_C5PY01500F
crossref_primary_10_1016_j_polymer_2017_02_009
crossref_primary_10_1039_C5PY01669J
crossref_primary_10_1557_mrc_2015_44
crossref_primary_10_1016_j_tetlet_2016_11_053
crossref_primary_10_1038_ncomms14047
crossref_primary_10_1039_C8TC01711E
crossref_primary_10_1039_D2TA09389H
crossref_primary_10_1080_10601325_2019_1612251
crossref_primary_10_1002_ange_201800512
crossref_primary_10_1002_asia_201701061
crossref_primary_10_1021_acs_macromol_1c00124
crossref_primary_10_1016_j_orgel_2020_106032
crossref_primary_10_1002_ange_202423013
crossref_primary_10_1021_acs_langmuir_6b02139
crossref_primary_10_1021_jacs_8b02144
crossref_primary_10_1039_C7PY00237H
crossref_primary_10_1039_C7PY00810D
crossref_primary_10_1021_acsami_7b11863
crossref_primary_10_1021_acsami_7b16516
crossref_primary_10_1039_C7TC04390B
crossref_primary_10_1002_aelm_201700100
crossref_primary_10_1039_C9TC03525G
crossref_primary_10_1016_j_biomaterials_2020_120179
crossref_primary_10_1039_C8TC03967D
crossref_primary_10_1021_acs_accounts_8b00069
crossref_primary_10_1039_C5CC02104A
crossref_primary_10_1039_C8TC03725F
crossref_primary_10_1002_aelm_201500039
crossref_primary_10_1039_C4TC02059F
crossref_primary_10_1021_acsapm_2c01429
crossref_primary_10_1021_jasms_1c00071
crossref_primary_10_1021_acs_joc_9b03267
crossref_primary_10_1016_j_compositesb_2017_10_037
crossref_primary_10_1002_adfm_202300614
crossref_primary_10_1002_adma_201606217
crossref_primary_10_1002_adma_201602410
crossref_primary_10_1002_adfm_201902105
crossref_primary_10_1002_adma_201602893
crossref_primary_10_1021_acs_macromol_3c02626
crossref_primary_10_1021_acsomega_9b02146
crossref_primary_10_1002_chem_201804457
crossref_primary_10_1039_C6PY00143B
crossref_primary_10_1039_D0RA08591J
crossref_primary_10_1039_C5PY00161G
crossref_primary_10_1007_s10118_021_2552_9
crossref_primary_10_1021_acsami_4c08566
crossref_primary_10_1002_cjoc_202300149
crossref_primary_10_1002_ejoc_201800809
crossref_primary_10_1007_s11426_017_9060_0
crossref_primary_10_1016_j_dyepig_2015_12_015
crossref_primary_10_1002_anie_202307695
crossref_primary_10_1002_sus2_70003
crossref_primary_10_1039_D3QM00828B
crossref_primary_10_1039_C5TC00839E
crossref_primary_10_1246_cl_170307
crossref_primary_10_3390_polym11091461
crossref_primary_10_1016_j_cej_2023_143654
crossref_primary_10_1021_acsami_2c23067
crossref_primary_10_1002_app_53475
crossref_primary_10_1021_jacs_6b04445
crossref_primary_10_1002_aoc_4234
crossref_primary_10_1039_C8RA05903A
crossref_primary_10_3390_polym10030331
crossref_primary_10_1002_advs_201700048
crossref_primary_10_1021_acs_accounts_0c00480
crossref_primary_10_1021_acs_macromol_7b02393
crossref_primary_10_1039_D1OB02157E
crossref_primary_10_1016_j_cclet_2016_07_003
crossref_primary_10_1016_j_mtadv_2024_100470
crossref_primary_10_1016_j_orgel_2016_05_013
crossref_primary_10_1039_C9CC03682B
crossref_primary_10_1039_D1PY01531A
crossref_primary_10_1021_acs_chemmater_6b00850
crossref_primary_10_1039_D0TC02199G
crossref_primary_10_1039_D4PY00698D
crossref_primary_10_1002_adfm_201403428
crossref_primary_10_1016_j_cclet_2021_08_079
crossref_primary_10_1002_anie_201800512
crossref_primary_10_1002_adma_201802850
crossref_primary_10_1002_polb_24819
crossref_primary_10_1039_C6QO00845C
Cites_doi 10.1002/adma.201202689
10.1002/adma.201302278
10.1021/ja311469y
10.1021/cr050140x
10.1021/ja209328m
10.1002/adma.200702775
10.1021/ja206610u
10.1038/nmat1612
10.1021/ja406934j
10.1021/ja1085996
10.1021/ja403624a
10.1021/cm102182x
10.1021/ja308211n
10.1039/c2ee23505f
10.1021/ja201591a
10.1039/c3cc40531a
10.1021/ja310283f
10.1039/c3sc50245g
10.1038/srep00754
10.1002/adma.201201795
10.1021/nl303612z
10.1039/b914956m
10.1021/cm300117x
10.1103/PhysRevLett.96.146601
10.1021/cm100524p
10.1021/cm303572d
10.1021/ja400881n
10.1021/ja111066r
10.1021/cr100380z
10.1021/ar200208g
10.1002/adma.201102007
10.1021/jp021114v
10.1021/ja108861q
10.1021/cm4020805
10.1002/(SICI)1521-3773(19990401)38:7<988::AID-ANIE988>3.0.CO;2-0
10.1002/adma.201002117
10.1021/cm4018776
10.1002/adma.201303586
10.1021/ja2073643
10.1002/adma.201001402
10.1002/adma.201103948
10.1021/ol902512x
10.1021/ma2012706
10.1021/ja403949g
10.1039/C3CC47677D
ContentType Journal Article
Copyright Copyright © 2014 American Chemical Society
Copyright_xml – notice: Copyright © 2014 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1021/ar400254j
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList MEDLINE - Academic
Materials Research Database

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-4898
EndPage 1126
ExternalDocumentID 24502431
10_1021_ar400254j
b481687945
Genre Journal Article
GroupedDBID -
.K2
02
23M
4.4
53G
55A
5GY
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
RNS
ROL
TWZ
UI2
UPT
VF5
VG9
W1F
WH7
X
YZZ
---
-DZ
-~X
5ZA
6J9
6P2
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
AFXLT
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
ZCA
~02
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-a414t-8055642dfad98b0df12aa45d461d660b218e87d4df8cf99e677ef7d948c70c423
IEDL.DBID ACS
ISSN 0001-4842
1520-4898
IngestDate Fri Jul 11 06:20:05 EDT 2025
Fri Jul 11 08:15:43 EDT 2025
Mon Jul 21 06:03:32 EDT 2025
Thu Apr 24 23:08:11 EDT 2025
Tue Jul 01 04:04:08 EDT 2025
Thu Aug 27 13:42:17 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a414t-8055642dfad98b0df12aa45d461d660b218e87d4df8cf99e677ef7d948c70c423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24502431
PQID 1516730193
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_1770374076
proquest_miscellaneous_1516730193
pubmed_primary_24502431
crossref_citationtrail_10_1021_ar400254j
crossref_primary_10_1021_ar400254j
acs_journals_10_1021_ar400254j
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-04-15
PublicationDateYYYYMMDD 2014-04-15
PublicationDate_xml – month: 04
  year: 2014
  text: 2014-04-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Accounts of chemical research
PublicationTitleAlternate Acc. Chem. Res
PublicationYear 2014
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Mei J. (ref10/cit10) 2010; 12
Lei T. (ref15/cit15) 2012; 24
Wang C. (ref1/cit1) 2012; 112
Grozema F. C. (ref16/cit16) 2002; 106
Lei T. (ref25/cit25) 2012; 24
Zhang F. (ref43/cit43) 2013; 135
Bürgi L. (ref29/cit29) 2008; 20
Kanimozhi C. (ref5/cit5) 2012; 134
Nielsen C. B. (ref8/cit8) 2013; 25
Lei T. (ref37/cit37) 2013; 4
Mei J. (ref3/cit3) 2013; 135
Li Y. (ref28/cit28) 2011; 133
McCulloch I. (ref32/cit32) 2012; 45
Lei T. (ref11/cit11) 2011; 133
Lei T. (ref30/cit30) 2014; 26
Li J. (ref4/cit4) 2012; 2
Heeger A. J. (ref6/cit6) 2010; 39
Lei T. (ref41/cit41) 2013; 25
Mei J. (ref33/cit33) 2011; 133
Lei T. (ref36/cit36) 2012; 134
Tang M. L. (ref38/cit38) 2011; 23
Stalder R. (ref35/cit35) 2011; 44
Yuen J. D. (ref7/cit7) 2013; 6
Wang E. (ref14/cit14) 2011; 133
Coropceanu V. (ref20/cit20) 2007; 107
Meager I. (ref45/cit45) 2013; 135
Lei T. (ref40/cit40) 2013; 135
Boese R. (ref23/cit23) 1999; 38
Osaka I. (ref27/cit27) 2011; 133
He M. (ref26/cit26) 2010; 22
Mei J. (ref31/cit31) 2014; 26
Yan Z. (ref42/cit42) 2013; 49
Zhan X. (ref9/cit9) 2011; 23
Lee J. (ref44/cit44) 2013; 135
Osaka I. (ref22/cit22) 2010; 22
Beaujuge P. M. (ref2/cit2) 2011; 133
McCulloch I. (ref21/cit21) 2006; 5
Tseng H.-R. (ref18/cit18) 2012; 12
Tsao H. N. (ref19/cit19) 2011; 133
Deng Y. (ref12/cit12) 2014; 26
Prins P. (ref17/cit17) 2006; 96
Zhou N. (ref34/cit34) 2012; 24
Yang Y. (ref39/cit39) 2014; 50
Kim D. H. (ref13/cit13) 2013; 25
Takimiya K. (ref24/cit24) 2011; 23
References_xml – volume: 24
  start-page: 6457
  year: 2012
  ident: ref15/cit15
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201202689
– volume: 25
  start-page: 6589
  year: 2013
  ident: ref41/cit41
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201302278
– volume: 135
  start-page: 2338
  year: 2013
  ident: ref43/cit43
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja311469y
– volume: 107
  start-page: 926
  year: 2007
  ident: ref20/cit20
  publication-title: Chem. Rev.
  doi: 10.1021/cr050140x
– volume: 133
  start-page: 20130
  year: 2011
  ident: ref33/cit33
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja209328m
– volume: 20
  start-page: 2217
  year: 2008
  ident: ref29/cit29
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200702775
– volume: 133
  start-page: 14244
  year: 2011
  ident: ref14/cit14
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja206610u
– volume: 5
  start-page: 328
  year: 2006
  ident: ref21/cit21
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1612
– volume: 135
  start-page: 11537
  year: 2013
  ident: ref45/cit45
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja406934j
– volume: 133
  start-page: 2198
  year: 2011
  ident: ref28/cit28
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1085996
– volume: 135
  start-page: 12168
  year: 2013
  ident: ref40/cit40
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja403624a
– volume: 23
  start-page: 446
  year: 2011
  ident: ref38/cit38
  publication-title: Chem. Mater.
  doi: 10.1021/cm102182x
– volume: 134
  start-page: 16532
  year: 2012
  ident: ref5/cit5
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja308211n
– volume: 6
  start-page: 392
  year: 2013
  ident: ref7/cit7
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee23505f
– volume: 133
  start-page: 6852
  year: 2011
  ident: ref27/cit27
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja201591a
– volume: 49
  start-page: 3790
  year: 2013
  ident: ref42/cit42
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc40531a
– volume: 134
  start-page: 20025
  year: 2012
  ident: ref36/cit36
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja310283f
– volume: 4
  start-page: 2447
  year: 2013
  ident: ref37/cit37
  publication-title: Chem. Sci.
  doi: 10.1039/c3sc50245g
– volume: 2
  start-page: 754
  year: 2012
  ident: ref4/cit4
  publication-title: Sci. Rep.
  doi: 10.1038/srep00754
– volume: 25
  start-page: 1859
  year: 2013
  ident: ref8/cit8
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201201795
– volume: 12
  start-page: 6353
  year: 2012
  ident: ref18/cit18
  publication-title: Nano Lett.
  doi: 10.1021/nl303612z
– volume: 39
  start-page: 2354
  year: 2010
  ident: ref6/cit6
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b914956m
– volume: 24
  start-page: 1762
  year: 2012
  ident: ref25/cit25
  publication-title: Chem. Mater.
  doi: 10.1021/cm300117x
– volume: 96
  start-page: 146601
  year: 2006
  ident: ref17/cit17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.146601
– volume: 22
  start-page: 2770
  year: 2010
  ident: ref26/cit26
  publication-title: Chem. Mater.
  doi: 10.1021/cm100524p
– volume: 25
  start-page: 431
  year: 2013
  ident: ref13/cit13
  publication-title: Chem. Mater.
  doi: 10.1021/cm303572d
– volume: 135
  start-page: 6724
  year: 2013
  ident: ref3/cit3
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja400881n
– volume: 133
  start-page: 6099
  year: 2011
  ident: ref11/cit11
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja111066r
– volume: 112
  start-page: 2208
  year: 2012
  ident: ref1/cit1
  publication-title: Chem. Rev.
  doi: 10.1021/cr100380z
– volume: 45
  start-page: 714
  year: 2012
  ident: ref32/cit32
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar200208g
– volume: 23
  start-page: 4347
  year: 2011
  ident: ref24/cit24
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201102007
– volume: 106
  start-page: 7791
  year: 2002
  ident: ref16/cit16
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp021114v
– volume: 133
  start-page: 2605
  year: 2011
  ident: ref19/cit19
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja108861q
– volume: 26
  start-page: 604
  year: 2014
  ident: ref31/cit31
  publication-title: Chem. Mater.
  doi: 10.1021/cm4020805
– volume: 38
  start-page: 988
  year: 1999
  ident: ref23/cit23
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/(SICI)1521-3773(19990401)38:7<988::AID-ANIE988>3.0.CO;2-0
– volume: 22
  start-page: 4993
  year: 2010
  ident: ref22/cit22
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201002117
– volume: 26
  start-page: 594
  year: 2014
  ident: ref30/cit30
  publication-title: Chem. Mater.
  doi: 10.1021/cm4018776
– volume: 26
  start-page: 471
  year: 2014
  ident: ref12/cit12
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201303586
– volume: 133
  start-page: 20009
  year: 2011
  ident: ref2/cit2
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2073643
– volume: 23
  start-page: 268
  year: 2011
  ident: ref9/cit9
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201001402
– volume: 24
  start-page: 2242
  year: 2012
  ident: ref34/cit34
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201103948
– volume: 12
  start-page: 660
  year: 2010
  ident: ref10/cit10
  publication-title: Org. Lett.
  doi: 10.1021/ol902512x
– volume: 44
  start-page: 6303
  year: 2011
  ident: ref35/cit35
  publication-title: Macromolecules
  doi: 10.1021/ma2012706
– volume: 135
  start-page: 9540
  year: 2013
  ident: ref44/cit44
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja403949g
– volume: 50
  start-page: 439
  year: 2014
  ident: ref39/cit39
  publication-title: Chem. Commun.
  doi: 10.1039/C3CC47677D
SSID ssj0002467
Score 2.595935
Snippet Conjugated polymers have developed rapidly due to their promising applications in low-cost, lightweight, and flexible electronics. The development of the...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1117
SubjectTerms Chains (polymeric)
Devices
Field effect transistors
Performance enhancement
Polymers
Semiconductor devices
Stability
Strategy
Title Design, Synthesis, and Structure–Property Relationships of Isoindigo-Based Conjugated Polymers
URI http://dx.doi.org/10.1021/ar400254j
https://www.ncbi.nlm.nih.gov/pubmed/24502431
https://www.proquest.com/docview/1516730193
https://www.proquest.com/docview/1770374076
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3HTsQwEB1RDnChl6XJlAMHAkmwneQICwiQQEgLErfguFCVoM3uYTnxD_whX8I42UQg2n0SJzO2503xM8BGYs-gmQCRm4owQJGhchIjQkdopl0mw8QU7Ppn5_z4ip5es-sBWP-lgu97O6JNiyPbD4Mw7HNcvBb_NFv1dutTXhJjYlxMQ-pX9EGfH7WuR-ZfXc8veLLwK0fjcFCdzinbSR63u51kW758J2v865MnYKyPK8leOREmYUCnUzDSrK5zm4abg6JXY4u0eimCvvw-3yIiVaRVEMh22_r99e3CZubbnR6pW-Tu7p9zkhlykme2uH2bOfvo9hRpZulD12bgFLnInno2-T0DV0eHl81jp3-9giOoRzvomxjD6EMZoaIwcZXxfCEoU5R7inM3Qeevw0BRZUJpokjzINAGTUpDGbgSYdgsDKVZqueBRBLfoEVkhMFwDoMu7hoL3rgQXAqfNWAF9R_3l0ceF5Vv34trRTVgszJNLPvk5PaOjKefRNdq0eeSkeMnodXKvjHq2RZBRKqzLg7NPG53tWj3D5kgsLQ8bsAbMFdOjnoonzJL4ugt_PdLizCK4Kro8vHYEgyhNfUyAphOslJM4A8kTOrW
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LU9swENZQOKSXAn3Q8Kra6aEHDLaRZPsIBia0JJOZkJncXFkPmpSxmTg5hBP_gX_IL2ElP_oY-rivLVm71n6rXX2L0MfU3EHTASA3GUGAIkLppJqHDldUuVSEqbbs-t0e6wzJ5xEdVTQ55i4MTKKANxU2if-DXcA74FNib25PnqEVACG-seajeNDsuj5hJT8mhMckJH7NIvTzo8YDieJXD_QHWGndy9lq2afITsxWlXzfn8_SfXH7G2fj_818Db2oUCY-Ks1iHS2p7CVqxXVzt1fo64mt3NjDg0UGELAYF3uYZxIPLJ3sfKoe7u775px-OlvgpmDu2_imwLnG50VuUt1XuXMMTlDiOM8mc3MeJ3E_v16Yo_DXaHh2ehl3nKrZgsOJR2bgqSiFWERqLqMwdaX2fM4JlYR5kjE3BSigwkASqUOho0ixIFAaFExCEbgCQNkbtJzlmXqLcCTgDYpHmmsI7iAEY642UI5xzgT3aRvtwjol1c9SJDYP7ntJs1Bt9KnWUCIqqnLTMeP6KdEPjehNyc_xlND7Ws0JrLNJifBM5XMYmnrM7HHR4V9kgsCQ9LgBa6ON0kaaoXxCDaWjt_mvT3qHWp3L7kVycd77soWeA-yy9T8e3UbLoFm1A9Bmlu5am34E02XzNw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LU9swEN6BMFO4AH1BKFC1w6EHTG0jyfYxBDLQB2QmZYabkfXgOXYmTg7h1P_AP-SXsFIcT-nQx30tydqV9lvt6hPAVmbvoJkIkZtKMECRsfIyI2JPaKZ9JuPMOHb978f88JR-OWNnVaBo78LgIEpsqXRJfLuq-8pUDAPBZzGg7vb29SzM2XSdtehWu1fvvCHlE45MDJFpTMMpk9Cvn1ovJMunXugP0NK5mM4SnNSDc5UlNzujYbYj737jbfz_0S_DYoU2SWtiHi9hRuevYL49feTtNZzvuwqObdIb5wgFy6tym4hckZ6jlR0N9MPP-649rx8Mx6QunLu86pekMOSoLGzK-6Lw9tAZKtIu8uuRPZdTpFvcju2R-Bs47Rz8aB961aMLnqABHaLHYgxjEmWESuLMVyYIhaBMUR4ozv0MIYGOI0WViaVJEs2jSBtUNI1l5EsEZ2-hkRe5XgWSSGxBi8QIg0EehmLcNxbScSG4FCFrwibOVVotmjJ1-fAwSOuJasKnqZZSWVGW25czbp8T_ViL9ic8Hc8JfZiqOsV5tqkRketihF2zgNu9Ltn9i0wUWbIeP-JNWJnYSd1VSJmldgzW_vVL7-FFd7-Tfjs6_voOFhB9uTKggK1DAxWrNxDhDLNNZ9aPxNr1ug
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design%2C+Synthesis%2C+and+Structure%E2%80%93Property+Relationships+of+Isoindigo-Based+Conjugated+Polymers&rft.jtitle=Accounts+of+chemical+research&rft.au=Lei%2C+Ting&rft.au=Wang%2C+Jie-Yu&rft.au=Pei%2C+Jian&rft.date=2014-04-15&rft.issn=0001-4842&rft.eissn=1520-4898&rft.volume=47&rft.issue=4&rft.spage=1117&rft.epage=1126&rft_id=info:doi/10.1021%2Far400254j&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_ar400254j
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon