Ultrastable FeCo Bifunctional Electrocatalyst on Se-Doped CNTs for Liquid and Flexible All-Solid-State Rechargeable Zn–Air Batteries
The rechargeable Zn–air batteries as an environmentally friendly sustainable energy technology have been extensively studied. However, it is still a challenge to develop non-noble metal bifunctional catalysts with high oxygen reduction as well as oxygen evolution reaction (ORR and OER) activity and...
Saved in:
Published in | Nano letters Vol. 21; no. 5; pp. 2255 - 2264 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
10.03.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The rechargeable Zn–air batteries as an environmentally friendly sustainable energy technology have been extensively studied. However, it is still a challenge to develop non-noble metal bifunctional catalysts with high oxygen reduction as well as oxygen evolution reaction (ORR and OER) activity and superior durability, which limit the large-scale application of rechargeable Zn–air batteries. Herein, we synthesized an ultrastable FeCo bifunctional oxygen electrocatalyst on Se-doped CNTs (FeCo/Se-CNT) via a gravity guided chemical vapor deposition (CVD) strategy. The catalyst exhibits excellent ORR (E 1/2 = 0.9 V) and OER (overpotential at 10 mA cm–2 = 340 mV) properties simultaneously, surpassing commercial Pt/C and RuO2/C catalysts. More importantly, the catalyst shows an unordinary stability, that is, is no obvious decrease after 30K cycles accelerated durability test for ORR and OER processes. The small potential gap (0.75 V) represents superior bifunctional ORR and OER activities of the FeCo/Se-CNT catalyst. The FeCo/Se-CNT catalyst possesses outstanding electrochemical performance for the rechargeable liquid and flexible all-solid-state Zn–air batteries, for example, a high open circuit voltage (OCV) and peak power density of 1.543 and 1.405 V and 173.4 and 37.5 mW cm–2, respectively. |
---|---|
AbstractList | The rechargeable Zn-air batteries as an environmentally friendly sustainable energy technology have been extensively studied. However, it is still a challenge to develop non-noble metal bifunctional catalysts with high oxygen reduction as well as oxygen evolution reaction (ORR and OER) activity and superior durability, which limit the large-scale application of rechargeable Zn-air batteries. Herein, we synthesized an ultrastable FeCo bifunctional oxygen electrocatalyst on Se-doped CNTs (FeCo/Se-CNT) via a gravity guided chemical vapor deposition (CVD) strategy. The catalyst exhibits excellent ORR (
= 0.9 V) and OER (overpotential at 10 mA cm
= 340 mV) properties simultaneously, surpassing commercial Pt/C and RuO
/C catalysts. More importantly, the catalyst shows an unordinary stability, that is, is no obvious decrease after 30K cycles accelerated durability test for ORR and OER processes. The small potential gap (0.75 V) represents superior bifunctional ORR and OER activities of the FeCo/Se-CNT catalyst. The FeCo/Se-CNT catalyst possesses outstanding electrochemical performance for the rechargeable liquid and flexible all-solid-state Zn-air batteries, for example, a high open circuit voltage (OCV) and peak power density of 1.543 and 1.405 V and 173.4 and 37.5 mW cm
, respectively. The rechargeable Zn-air batteries as an environmentally friendly sustainable energy technology have been extensively studied. However, it is still a challenge to develop non-noble metal bifunctional catalysts with high oxygen reduction as well as oxygen evolution reaction (ORR and OER) activity and superior durability, which limit the large-scale application of rechargeable Zn-air batteries. Herein, we synthesized an ultrastable FeCo bifunctional oxygen electrocatalyst on Se-doped CNTs (FeCo/Se-CNT) via a gravity guided chemical vapor deposition (CVD) strategy. The catalyst exhibits excellent ORR (E1/2 = 0.9 V) and OER (overpotential at 10 mA cm-2 = 340 mV) properties simultaneously, surpassing commercial Pt/C and RuO2/C catalysts. More importantly, the catalyst shows an unordinary stability, that is, is no obvious decrease after 30K cycles accelerated durability test for ORR and OER processes. The small potential gap (0.75 V) represents superior bifunctional ORR and OER activities of the FeCo/Se-CNT catalyst. The FeCo/Se-CNT catalyst possesses outstanding electrochemical performance for the rechargeable liquid and flexible all-solid-state Zn-air batteries, for example, a high open circuit voltage (OCV) and peak power density of 1.543 and 1.405 V and 173.4 and 37.5 mW cm-2, respectively.The rechargeable Zn-air batteries as an environmentally friendly sustainable energy technology have been extensively studied. However, it is still a challenge to develop non-noble metal bifunctional catalysts with high oxygen reduction as well as oxygen evolution reaction (ORR and OER) activity and superior durability, which limit the large-scale application of rechargeable Zn-air batteries. Herein, we synthesized an ultrastable FeCo bifunctional oxygen electrocatalyst on Se-doped CNTs (FeCo/Se-CNT) via a gravity guided chemical vapor deposition (CVD) strategy. The catalyst exhibits excellent ORR (E1/2 = 0.9 V) and OER (overpotential at 10 mA cm-2 = 340 mV) properties simultaneously, surpassing commercial Pt/C and RuO2/C catalysts. More importantly, the catalyst shows an unordinary stability, that is, is no obvious decrease after 30K cycles accelerated durability test for ORR and OER processes. The small potential gap (0.75 V) represents superior bifunctional ORR and OER activities of the FeCo/Se-CNT catalyst. The FeCo/Se-CNT catalyst possesses outstanding electrochemical performance for the rechargeable liquid and flexible all-solid-state Zn-air batteries, for example, a high open circuit voltage (OCV) and peak power density of 1.543 and 1.405 V and 173.4 and 37.5 mW cm-2, respectively. The rechargeable Zn–air batteries as an environmentally friendly sustainable energy technology have been extensively studied. However, it is still a challenge to develop non-noble metal bifunctional catalysts with high oxygen reduction as well as oxygen evolution reaction (ORR and OER) activity and superior durability, which limit the large-scale application of rechargeable Zn–air batteries. Herein, we synthesized an ultrastable FeCo bifunctional oxygen electrocatalyst on Se-doped CNTs (FeCo/Se-CNT) via a gravity guided chemical vapor deposition (CVD) strategy. The catalyst exhibits excellent ORR (E 1/2 = 0.9 V) and OER (overpotential at 10 mA cm–2 = 340 mV) properties simultaneously, surpassing commercial Pt/C and RuO2/C catalysts. More importantly, the catalyst shows an unordinary stability, that is, is no obvious decrease after 30K cycles accelerated durability test for ORR and OER processes. The small potential gap (0.75 V) represents superior bifunctional ORR and OER activities of the FeCo/Se-CNT catalyst. The FeCo/Se-CNT catalyst possesses outstanding electrochemical performance for the rechargeable liquid and flexible all-solid-state Zn–air batteries, for example, a high open circuit voltage (OCV) and peak power density of 1.543 and 1.405 V and 173.4 and 37.5 mW cm–2, respectively. |
Author | Shi, Shuangrui Zheng, Lirong Shang, Jingzhi Zhang, Biao Ma, Chao Song, Lin Han, Yunhu Huang, Wei Wang, Zhenhua Liu, Haoran Zhang, Hongwei Zhao, Meiqi Yang, Yong |
AuthorAffiliation | State Key Laboratory of Structural Chemistry Department of Chemistry School of Materials Science and Engineering Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM) Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Beijing Synchrotron Radiation Facility, Institute of High Energy Physics Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials and Engineering Nanjing University of Posts and Telecommunications |
AuthorAffiliation_xml | – name: Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM) – name: Department of Chemistry – name: Nanjing University of Posts and Telecommunications – name: Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences – name: Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials and Engineering – name: School of Materials Science and Engineering – name: State Key Laboratory of Structural Chemistry – name: Beijing Synchrotron Radiation Facility, Institute of High Energy Physics |
Author_xml | – sequence: 1 givenname: Hongwei surname: Zhang fullname: Zhang, Hongwei organization: Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials and Engineering – sequence: 2 givenname: Meiqi surname: Zhao fullname: Zhao, Meiqi organization: Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials and Engineering – sequence: 3 givenname: Haoran surname: Liu fullname: Liu, Haoran organization: Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials and Engineering – sequence: 4 givenname: Shuangrui surname: Shi fullname: Shi, Shuangrui organization: Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials and Engineering – sequence: 5 givenname: Zhenhua orcidid: 0000-0002-9028-6799 surname: Wang fullname: Wang, Zhenhua organization: Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials and Engineering – sequence: 6 givenname: Biao surname: Zhang fullname: Zhang, Biao organization: Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials and Engineering – sequence: 7 givenname: Lin orcidid: 0000-0003-4971-6301 surname: Song fullname: Song, Lin organization: Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials and Engineering – sequence: 8 givenname: Jingzhi surname: Shang fullname: Shang, Jingzhi organization: Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials and Engineering – sequence: 9 givenname: Yong orcidid: 0000-0002-1238-2945 surname: Yang fullname: Yang, Yong organization: School of Materials Science and Engineering – sequence: 10 givenname: Chao surname: Ma fullname: Ma, Chao organization: Department of Chemistry – sequence: 11 givenname: Lirong surname: Zheng fullname: Zheng, Lirong organization: Beijing Synchrotron Radiation Facility, Institute of High Energy Physics – sequence: 12 givenname: Yunhu orcidid: 0000-0003-0354-4479 surname: Han fullname: Han, Yunhu email: iamyhhan@nwpu.edu.cn organization: Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences – sequence: 13 givenname: Wei orcidid: 0000-0001-7004-6408 surname: Huang fullname: Huang, Wei email: iamwhuang@nwpu.edu.cn organization: Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials and Engineering |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33599511$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1uEzEURi1URH_gDRDyks0EezyTsdmloQGkCCTSbtiMbjzX4MqxU9sj0R0rXqBv2CfBIWkXLGB1Ld3zXUvfOSVHPngk5CVnE85q_gZ0mnjwwWHOE64ZY133hJzwVrBqqlR99PiWzTE5Tem6IEq07Bk5FqJVquX8hPy6cjlCyrB2SBc4D_TcmtHrbIMHRy8c6hyDhgzuNmUaPF1h9S5scaDzT5eJmhDp0t6MdqDgB7pw-MPuTs2cq1bB2aFaZchIv6D-DvEb_vnnq7__eTezkZ5DzhgtpufkqQGX8MVhnpGrxcXl_EO1_Pz-43y2rKDhTa46A2AkE1PJJXT1oFuoBRMgVac7KfWaGzWg6YSR7VrIQZRalKmnEgCVRCXOyOv93W0MNyOm3G9s0ugceAxj6utGcdYpPhUFfXVAx_UGh34b7Qbibf_QXQGaPaBjSCmieUQ463eK-qKof1DUHxSV2Nu_YtqWikrfRYR1_wuzfXi3vQ5jLJLSvyO_AY8Srkk |
CitedBy_id | crossref_primary_10_1039_D1TA10274E crossref_primary_10_1039_D2DT04000J crossref_primary_10_1021_acsami_2c23232 crossref_primary_10_1016_j_ijhydene_2023_09_294 crossref_primary_10_1002_smsc_202100044 crossref_primary_10_1002_smll_202409325 crossref_primary_10_1002_smll_202402761 crossref_primary_10_1016_j_cej_2025_160938 crossref_primary_10_1002_smm2_1076 crossref_primary_10_1016_j_jpowsour_2024_235229 crossref_primary_10_1002_ange_202107996 crossref_primary_10_1016_j_jcis_2022_05_167 crossref_primary_10_1016_j_nanoen_2022_108039 crossref_primary_10_3390_coatings14121569 crossref_primary_10_1021_acssuschemeng_3c00912 crossref_primary_10_1021_acsanm_4c05974 crossref_primary_10_1016_j_surfin_2024_105310 crossref_primary_10_1002_chem_202303173 crossref_primary_10_1016_j_apcatb_2021_120924 crossref_primary_10_2139_ssrn_4156524 crossref_primary_10_1002_cssc_202202192 crossref_primary_10_1007_s40820_024_01463_9 crossref_primary_10_1016_j_ensm_2022_11_001 crossref_primary_10_1039_D1CC04443E crossref_primary_10_1016_j_jallcom_2023_168756 crossref_primary_10_1016_j_jcis_2023_01_039 crossref_primary_10_1021_acsami_2c21616 crossref_primary_10_1016_j_jcis_2024_09_213 crossref_primary_10_1021_acs_jpclett_4c03361 crossref_primary_10_1002_adfm_202302444 crossref_primary_10_1021_acs_jpcc_4c00093 crossref_primary_10_1016_j_apsusc_2024_161089 crossref_primary_10_1021_acs_iecr_3c04471 crossref_primary_10_1021_acsnano_2c06700 crossref_primary_10_1038_s41427_022_00446_9 crossref_primary_10_1016_j_mtcomm_2024_108860 crossref_primary_10_1016_j_jelechem_2023_117203 crossref_primary_10_1016_j_apcatb_2024_125007 crossref_primary_10_1002_adfm_202404787 crossref_primary_10_1002_smtd_202400565 crossref_primary_10_1021_acsami_1c11730 crossref_primary_10_1021_acsaem_4c02432 crossref_primary_10_1016_j_jallcom_2022_168107 crossref_primary_10_1016_j_jece_2022_108052 crossref_primary_10_1016_j_cclet_2023_109277 crossref_primary_10_1039_D2TA00949H crossref_primary_10_1016_j_cej_2022_137540 crossref_primary_10_1016_j_jpowsour_2022_232381 crossref_primary_10_1002_adsu_202100343 crossref_primary_10_1007_s40843_022_2272_2 crossref_primary_10_1016_j_apsusc_2021_151830 crossref_primary_10_1016_j_jallcom_2024_177308 crossref_primary_10_1039_D3NJ05928F crossref_primary_10_1007_s40820_022_00927_0 crossref_primary_10_1039_D1TA10559K crossref_primary_10_1002_smll_202309932 crossref_primary_10_1149_1945_7111_acb402 crossref_primary_10_1002_adfm_202209499 crossref_primary_10_1016_j_fuel_2025_134521 crossref_primary_10_1016_j_ijhydene_2022_05_025 crossref_primary_10_1016_j_apsusc_2022_153891 crossref_primary_10_1016_j_ijhydene_2024_02_274 crossref_primary_10_1016_j_jece_2023_111076 crossref_primary_10_1002_smll_202500109 crossref_primary_10_1002_adfm_202406717 crossref_primary_10_1016_j_apcatb_2023_123346 crossref_primary_10_1039_D2QI00010E crossref_primary_10_1016_j_jechem_2022_05_024 crossref_primary_10_1002_adfm_202303235 crossref_primary_10_1002_anie_202107996 crossref_primary_10_1016_j_jcis_2025_02_123 crossref_primary_10_1016_j_desal_2025_118700 crossref_primary_10_1016_j_mtener_2022_101138 crossref_primary_10_1016_j_cjche_2022_02_017 crossref_primary_10_1360_SSPMA_2023_0061 crossref_primary_10_1002_sstr_202400181 crossref_primary_10_1016_j_jcis_2022_12_156 crossref_primary_10_1016_j_ceramint_2022_10_206 crossref_primary_10_1016_j_jcis_2024_12_036 crossref_primary_10_1016_j_jcis_2023_10_026 crossref_primary_10_1007_s42864_022_00149_2 crossref_primary_10_1016_j_jechem_2024_05_013 crossref_primary_10_1002_cey2_276 crossref_primary_10_1016_j_jcis_2022_12_152 crossref_primary_10_1016_j_jechem_2024_02_044 crossref_primary_10_20517_cs_2023_28 crossref_primary_10_1016_j_cej_2025_161677 crossref_primary_10_1002_eem2_12499 crossref_primary_10_1002_cjoc_202300484 crossref_primary_10_1016_j_nanoen_2022_107941 crossref_primary_10_1039_D4EY00037D crossref_primary_10_1016_j_jechem_2024_01_072 crossref_primary_10_1016_j_jpcs_2024_112516 crossref_primary_10_1002_smll_202304863 crossref_primary_10_1007_s41918_024_00219_8 crossref_primary_10_1016_j_cej_2023_146154 crossref_primary_10_1002_asia_202100702 crossref_primary_10_1016_j_nxener_2023_100025 crossref_primary_10_1002_smll_202103747 crossref_primary_10_1016_j_ensm_2024_103520 crossref_primary_10_1002_smll_202304294 crossref_primary_10_1039_D3NR02706F crossref_primary_10_1016_j_ijhydene_2023_05_189 crossref_primary_10_1016_j_jcis_2021_12_164 crossref_primary_10_1016_j_jcis_2022_06_035 crossref_primary_10_1002_aenm_202202984 crossref_primary_10_1002_smll_202406776 crossref_primary_10_1016_j_jechem_2021_08_054 crossref_primary_10_1021_acs_energyfuels_4c00776 crossref_primary_10_1002_ange_202316314 crossref_primary_10_1016_j_jallcom_2023_168792 crossref_primary_10_1002_cey2_682 crossref_primary_10_1016_j_jcis_2022_09_014 crossref_primary_10_1016_j_cartre_2024_100350 crossref_primary_10_1002_adfm_202410552 crossref_primary_10_1016_j_cej_2022_136128 crossref_primary_10_1016_j_jcis_2023_01_077 crossref_primary_10_1016_j_cej_2021_133238 crossref_primary_10_1016_j_jcis_2024_05_191 crossref_primary_10_1016_j_jcis_2021_07_082 crossref_primary_10_1016_j_matchar_2023_113407 crossref_primary_10_1002_advs_202103954 crossref_primary_10_1002_smll_202301465 crossref_primary_10_1016_j_jcis_2022_03_083 crossref_primary_10_1039_D3CC06143D crossref_primary_10_1021_acs_energyfuels_4c00988 crossref_primary_10_1016_j_jpowsour_2021_230918 crossref_primary_10_1002_sus2_201 crossref_primary_10_1016_j_cclet_2023_108142 crossref_primary_10_1016_j_cej_2023_144515 crossref_primary_10_1002_smtd_202101116 crossref_primary_10_1002_smtd_202401338 crossref_primary_10_1002_adfm_202211102 crossref_primary_10_1002_anie_202316314 crossref_primary_10_1002_adfm_202200763 crossref_primary_10_1016_j_memsci_2023_122395 crossref_primary_10_1016_j_apcatb_2022_122163 crossref_primary_10_1016_j_jcat_2024_115532 crossref_primary_10_1039_D3SE01067H crossref_primary_10_1021_acsanm_4c02428 crossref_primary_10_1002_cey2_457 crossref_primary_10_1021_acsaem_2c02168 crossref_primary_10_1016_j_cej_2022_136815 crossref_primary_10_1016_j_jechem_2025_02_029 crossref_primary_10_2139_ssrn_4201275 crossref_primary_10_1016_j_apcatb_2021_121034 crossref_primary_10_1039_D3NR01272G crossref_primary_10_1007_s40820_024_01366_9 crossref_primary_10_1016_j_electacta_2023_142665 crossref_primary_10_1016_j_ensm_2025_104052 crossref_primary_10_1016_j_ccr_2022_214984 crossref_primary_10_1016_j_ensm_2022_03_045 crossref_primary_10_1016_j_cej_2022_139253 crossref_primary_10_1007_s12274_023_5409_4 crossref_primary_10_3390_inorganics11070300 crossref_primary_10_1016_j_est_2024_114168 crossref_primary_10_1039_D4EY00014E crossref_primary_10_1002_aenm_202303352 crossref_primary_10_1039_D4EE03005B crossref_primary_10_1007_s40820_022_00994_3 crossref_primary_10_1016_S1872_5805_22_60623_1 crossref_primary_10_1016_j_nanoen_2023_109236 crossref_primary_10_1016_j_cej_2023_141591 crossref_primary_10_1039_D3EE03059H crossref_primary_10_1039_D3NH00108C crossref_primary_10_1039_D3NR03421F |
Cites_doi | 10.1039/C6EE03446B 10.1021/acs.nanolett.7b04502 10.1021/acs.nanolett.0c02677 10.1002/adma.201700874 10.1007/s12274-017-1428-3 10.1021/acs.nanolett.9b03168 10.1038/s41467-020-16848-8 10.1126/sciadv.1501122 10.1021/acscatal.7b02739 10.1039/C4CS00470A 10.1016/j.carbon.2018.06.023 10.1002/smll.201801226 10.1016/j.jpowsour.2017.04.091 10.1002/adma.202002292 10.1002/adma.201800005 10.1002/aenm.201702598 10.1002/anie.201503612 10.1002/aenm.202002896 10.1002/adfm.201808872 10.1002/anie.202009700 10.1002/aenm.201602420 10.1021/jacs.9b09352 10.1002/adma.201808173 10.1021/ja502532y 10.1007/s12274-017-1765-2 10.1002/aenm.201703623 10.1002/adma.202003134 10.1002/adma.201808043 10.1002/aenm.201802263 10.1021/acsami.9b12204 10.1016/j.nanoen.2016.12.008 10.1016/j.ensm.2019.12.011 10.1021/acsnano.0c08652 10.1021/acsnano.6b05914 10.1038/nenergy.2015.6 10.1002/adfm.201904481 10.1038/ncomms8992 10.1002/adma.201703657 10.1002/advs.201700691 10.1002/aenm.201602217 10.1002/adma.201808281 10.1016/j.nanoen.2018.12.017 10.1002/adfm.201706928 10.1039/C8EE02679C 10.1038/s41586-019-1603-7 10.1002/adma.201900843 10.1002/adma.201704117 10.1039/C8EE00977E 10.1002/adma.201900592 10.1002/smll.201700518 10.1038/nnano.2015.48 10.1016/j.nanoen.2020.104597 10.1021/acs.nanolett.6b03133 10.1016/j.nanoen.2014.11.063 10.1021/acs.nanolett.0c01925 10.1038/s41560-018-0308-8 10.1016/j.nanoen.2015.11.027 10.1002/aenm.201601172 10.1002/anie.201710852 10.1002/aenm.201902115 10.1002/adfm.201701833 10.1021/nn504637y 10.1002/anie.201705778 |
ContentType | Journal Article |
Copyright | 2021 American
Chemical Society |
Copyright_xml | – notice: 2021 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acs.nanolett.1c00077 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1530-6992 |
EndPage | 2264 |
ExternalDocumentID | 33599511 10_1021_acs_nanolett_1c00077 a494270843 |
Genre | Journal Article |
GroupedDBID | - .K2 123 4.4 55A 5VS 7~N AABXI ABMVS ABPTK ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ F5P GNL IH9 IHE JG JG~ K2 PK8 RNS ROL TN5 UI2 VF5 VG9 W1F X --- -~X 6P2 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ GGK NPM 7X8 |
ID | FETCH-LOGICAL-a414t-7faaf8036818a72dc5a2303a897c788cb1f9def73f85b38d3c009f268aae98e93 |
IEDL.DBID | ACS |
ISSN | 1530-6984 1530-6992 |
IngestDate | Fri Jul 11 12:29:47 EDT 2025 Thu Jan 02 22:56:50 EST 2025 Tue Jul 01 04:09:50 EDT 2025 Thu Apr 24 22:59:59 EDT 2025 Fri Mar 12 03:12:11 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Se-doped CNTs liquid and flexible solid rechargeable Zn−air batteries bifunctional oxygen electrocatalyst outstanding durability gravity guided CVD strategy |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a414t-7faaf8036818a72dc5a2303a897c788cb1f9def73f85b38d3c009f268aae98e93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-4971-6301 0000-0001-7004-6408 0000-0002-1238-2945 0000-0002-9028-6799 0000-0003-0354-4479 |
PMID | 33599511 |
PQID | 2491079163 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2491079163 pubmed_primary_33599511 crossref_primary_10_1021_acs_nanolett_1c00077 crossref_citationtrail_10_1021_acs_nanolett_1c00077 acs_journals_10_1021_acs_nanolett_1c00077 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-10 |
PublicationDateYYYYMMDD | 2021-03-10 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Nano letters |
PublicationTitleAlternate | Nano Lett |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref33/cit33 doi: 10.1039/C6EE03446B – ident: ref36/cit36 doi: 10.1021/acs.nanolett.7b04502 – ident: ref7/cit7 doi: 10.1021/acs.nanolett.0c02677 – ident: ref24/cit24 doi: 10.1002/adma.201700874 – ident: ref31/cit31 doi: 10.1007/s12274-017-1428-3 – ident: ref14/cit14 doi: 10.1021/acs.nanolett.9b03168 – ident: ref12/cit12 doi: 10.1038/s41467-020-16848-8 – ident: ref48/cit48 doi: 10.1126/sciadv.1501122 – ident: ref62/cit62 doi: 10.1021/acscatal.7b02739 – ident: ref1/cit1 doi: 10.1039/C4CS00470A – ident: ref63/cit63 doi: 10.1016/j.carbon.2018.06.023 – ident: ref56/cit56 doi: 10.1002/smll.201801226 – ident: ref55/cit55 doi: 10.1016/j.jpowsour.2017.04.091 – ident: ref58/cit58 doi: 10.1002/adma.202002292 – ident: ref34/cit34 doi: 10.1002/adma.201800005 – ident: ref57/cit57 doi: 10.1002/aenm.201702598 – ident: ref16/cit16 doi: 10.1002/anie.201503612 – ident: ref49/cit49 doi: 10.1002/aenm.202002896 – ident: ref61/cit61 doi: 10.1002/adfm.201808872 – ident: ref10/cit10 doi: 10.1002/anie.202009700 – ident: ref37/cit37 doi: 10.1002/aenm.201602420 – ident: ref52/cit52 doi: 10.1021/jacs.9b09352 – ident: ref26/cit26 doi: 10.1002/adma.201808173 – ident: ref40/cit40 doi: 10.1021/ja502532y – ident: ref25/cit25 doi: 10.1007/s12274-017-1765-2 – ident: ref28/cit28 doi: 10.1002/aenm.201703623 – ident: ref32/cit32 doi: 10.1002/adma.202003134 – ident: ref41/cit41 doi: 10.1002/adma.201808043 – ident: ref51/cit51 doi: 10.1002/aenm.201802263 – ident: ref50/cit50 doi: 10.1021/acsami.9b12204 – ident: ref45/cit45 doi: 10.1016/j.nanoen.2016.12.008 – ident: ref9/cit9 doi: 10.1016/j.ensm.2019.12.011 – ident: ref18/cit18 doi: 10.1021/acsnano.0c08652 – ident: ref43/cit43 doi: 10.1021/acsnano.6b05914 – ident: ref23/cit23 doi: 10.1038/nenergy.2015.6 – ident: ref19/cit19 doi: 10.1002/adfm.201904481 – ident: ref53/cit53 doi: 10.1038/ncomms8992 – ident: ref59/cit59 doi: 10.1002/aenm.201602420 – ident: ref60/cit60 doi: 10.1002/adma.201703657 – ident: ref4/cit4 doi: 10.1002/advs.201700691 – ident: ref2/cit2 doi: 10.1002/aenm.201602217 – ident: ref38/cit38 doi: 10.1002/adma.201808281 – ident: ref11/cit11 doi: 10.1016/j.nanoen.2018.12.017 – ident: ref35/cit35 doi: 10.1002/adfm.201706928 – ident: ref22/cit22 doi: 10.1039/C8EE02679C – ident: ref8/cit8 doi: 10.1038/s41586-019-1603-7 – ident: ref30/cit30 doi: 10.1002/adma.201900843 – ident: ref42/cit42 doi: 10.1002/adma.201704117 – ident: ref44/cit44 doi: 10.1039/C8EE00977E – ident: ref27/cit27 doi: 10.1002/adma.201900592 – ident: ref39/cit39 doi: 10.1002/smll.201700518 – ident: ref3/cit3 doi: 10.1038/nnano.2015.48 – ident: ref5/cit5 doi: 10.1016/j.nanoen.2020.104597 – ident: ref13/cit13 doi: 10.1021/acs.nanolett.6b03133 – ident: ref54/cit54 doi: 10.1016/j.nanoen.2014.11.063 – ident: ref17/cit17 doi: 10.1021/acs.nanolett.0c01925 – ident: ref21/cit21 doi: 10.1038/s41560-018-0308-8 – ident: ref47/cit47 doi: 10.1016/j.nanoen.2015.11.027 – ident: ref29/cit29 doi: 10.1002/aenm.201601172 – ident: ref64/cit64 doi: 10.1002/anie.201710852 – ident: ref6/cit6 doi: 10.1002/aenm.201902115 – ident: ref20/cit20 doi: 10.1002/adfm.201701833 – ident: ref46/cit46 doi: 10.1021/nn504637y – ident: ref15/cit15 doi: 10.1002/anie.201705778 |
SSID | ssj0009350 |
Score | 2.665173 |
Snippet | The rechargeable Zn–air batteries as an environmentally friendly sustainable energy technology have been extensively studied. However, it is still a challenge... The rechargeable Zn-air batteries as an environmentally friendly sustainable energy technology have been extensively studied. However, it is still a challenge... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2255 |
Title | Ultrastable FeCo Bifunctional Electrocatalyst on Se-Doped CNTs for Liquid and Flexible All-Solid-State Rechargeable Zn–Air Batteries |
URI | http://dx.doi.org/10.1021/acs.nanolett.1c00077 https://www.ncbi.nlm.nih.gov/pubmed/33599511 https://www.proquest.com/docview/2491079163 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYoXNpDeZSW5SUjcekhWzlONvFxWVghROlhWQlxiWxnLEWNHNhkD-2pJ_4A_5BfwjgPHkWI9hrFtsb26PvGY39DyL4MNNNcMi8ULs2oJPqcr12UwpFfBwYR3b1G_n42OJ4GJxfhxWOg-HcG32ffpC77VtoCzaj6TDtQi96RJX8QRy7YGo4mjyK7vK7Iik6Mg4k46J7KvdKLAyRdPgekV1hmjTbjZfKje7PTXDL52Z9Xqq9_v5Rw_EdDVsjHlnjSYbNTVskC2DXy4Ykc4SdyM82rmUS6qHKgYxgV9CBzuNccF9KjpmJOfeDzq6xoYekEvMPiClI6OjsvKfJfeppdz7OUSpvSsdPadF0N89ybFHmWejW1pUhVnT4T1ONc2rs_t8NsRhulTwzc18l0fHQ-OvbaOg2eDFhQeZGR0sQIhQj-MvJTHUoMbLiMRaQxwtaKGZGCibiJQ8XjlKPtwuACSgkiBsE_k0VbWNggFIQAYFqpgCO1iSBOB77QkTKGDRQEYY98xWlMWj8rkzqF7rPEfezmNmnntkd4t7CJbgXPXd2N_I1W3kOrq0bw443_97o9k6BnunSLtFDMywQDW4ytkX7zHvnSbKaHHjl3Qm-Mbf6HPVvkve8u1NSXCbfJYjWbww4yokrt1m5wD1-zCl4 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NjtMwELZWywE48P9Tfo0EBw7p4jhpkgOH0t2qy3Z7aSutuATbmUgRkbPUqdBy4sQL8Ay8Cg_CkzB2ki4grVYcVuJqJf6b8cw39vgzIc9FoJjignlhYo8ZpcA15ysbpXDE10GOHt3eRj6cDSbL4O1ReLRFvnd3YbATBmsy7hD_lF2A7dgyLXSFo6n7TFnfFrW5lAdw8gkjNfN6fxfF-sL3x3uL0cRrHxPwRMCC2otyIfIY7TV6KBH5mQoFom8u4iRSGAYqyfIkgzzieRxKHmccm0hyfxALAUkMlnMJLf0lxD--jfGGo_kpty93D8Gi7cAxJnHQ3dA7o9fWDyrzpx88A9w6Jze-Tn5spsfltnzor2vZV5__Yo787-fvBrnWwmw6bNbFTbIF-ha5-hv54m3ydVnWK4HgWJZAxzCq6JvCevlmc5TuNe8Due2tE1PTStM5eLvVMWR0NFsYimifTouP6yKjQmd0bJlFbVXDsvTmVVlkngPyFIG5ZaMC1847_fPLt2Gxog2vaQHmDlleyETcJdu60nCfUEgSAKakDDgCuQjibOAnKpJ5zgYSgrBHXqLY0taqmNQlDPgstYWdLNNWlj3CO31KVUvvbl8ZKc_5y9v8ddzQm5zz_bNOVVO0Q_ZwSWio1ibFMJ69ijDY4D1yr9HhTY2cW1o7xh78w3ieksuTxeE0ne7PDh6SK75NJXJplI_Idr1aw2PEgrV84lYiJe8vWnV_Adf2bYQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LjtMwFLVGg4RgwftRnkaCBYsUHCdNvGBR2olmmKFC6lQasQm2Y0sRUVKaVGhYseIH-Ap-hc_gS7jXScpDGo1YzIKtlfh5H-fa18eEPJaBZppL5oUCjxmVBJ3zNUYpHPB1YMGj423k17PR7iJ4dRQebZFv_V0Y6EQNNdXuEB-1epnZjmGAPcPyUpYVjKgZMo3-LeryKffN8UeI1uoXe1NY2ie-n-wcTna97kEBTwYsaLzISmljsNngpWTkZzqUgMC5jEWkIRTUilmRGRtxG4eKxxmHJoT1R7GURsQGeZfA2p_Dk0KM88aT-S9-X-4egwX7AeMUcdDf0juh1-gLdf2nLzwB4DpHl1wm3zdT5PJb3g_XjRrqT3-xR_4Xc3iFXOrgNh23-nGVbJnyGrn4GwnjdfJlUTQrCSBZFYYmZlLRlzl6-3aTlO607wS5ba7juqFVSefGm1ZLk9HJ7LCmgPrpQf5hnWdUlhlNkGEUqxoXhTevijzzHKCnANCRlcq4dt6WPz5_Hecr2vKb5qa-QRZnMhE3yXZZleY2oUYIY5hWKuAA6CITZyNf6EhZy0bKBOGAPIVlSzvrUqcuccBnKRb2a5l2azkgvJepVHc07_jaSHHKX97mr2VLc3LK9496cU3BHuEhkyxNta5TCOfZ8wiCDj4gt1o53tTIOdLbMXbnH8bzkJx_M03Sg73Z_l1ywceMIpdNeY9sN6u1uQ-QsFEPnDJS8u6sJfcnqsNwBw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrastable+FeCo+Bifunctional+Electrocatalyst+on+Se-Doped+CNTs+for+Liquid+and+Flexible+All-Solid-State+Rechargeable+Zn-Air+Batteries&rft.jtitle=Nano+letters&rft.au=Zhang%2C+Hongwei&rft.au=Zhao%2C+Meiqi&rft.au=Liu%2C+Haoran&rft.au=Shi%2C+Shuangrui&rft.date=2021-03-10&rft.eissn=1530-6992&rft.volume=21&rft.issue=5&rft.spage=2255&rft_id=info:doi/10.1021%2Facs.nanolett.1c00077&rft_id=info%3Apmid%2F33599511&rft.externalDocID=33599511 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon |