Ultrastable FeCo Bifunctional Electrocatalyst on Se-Doped CNTs for Liquid and Flexible All-Solid-State Rechargeable Zn–Air Batteries

The rechargeable Zn–air batteries as an environmentally friendly sustainable energy technology have been extensively studied. However, it is still a challenge to develop non-noble metal bifunctional catalysts with high oxygen reduction as well as oxygen evolution reaction (ORR and OER) activity and...

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 21; no. 5; pp. 2255 - 2264
Main Authors Zhang, Hongwei, Zhao, Meiqi, Liu, Haoran, Shi, Shuangrui, Wang, Zhenhua, Zhang, Biao, Song, Lin, Shang, Jingzhi, Yang, Yong, Ma, Chao, Zheng, Lirong, Han, Yunhu, Huang, Wei
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 10.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The rechargeable Zn–air batteries as an environmentally friendly sustainable energy technology have been extensively studied. However, it is still a challenge to develop non-noble metal bifunctional catalysts with high oxygen reduction as well as oxygen evolution reaction (ORR and OER) activity and superior durability, which limit the large-scale application of rechargeable Zn–air batteries. Herein, we synthesized an ultrastable FeCo bifunctional oxygen electrocatalyst on Se-doped CNTs (FeCo/Se-CNT) via a gravity guided chemical vapor deposition (CVD) strategy. The catalyst exhibits excellent ORR (E 1/2 = 0.9 V) and OER (overpotential at 10 mA cm–2 = 340 mV) properties simultaneously, surpassing commercial Pt/C and RuO2/C catalysts. More importantly, the catalyst shows an unordinary stability, that is, is no obvious decrease after 30K cycles accelerated durability test for ORR and OER processes. The small potential gap (0.75 V) represents superior bifunctional ORR and OER activities of the FeCo/Se-CNT catalyst. The FeCo/Se-CNT catalyst possesses outstanding electrochemical performance for the rechargeable liquid and flexible all-solid-state Zn–air batteries, for example, a high open circuit voltage (OCV) and peak power density of 1.543 and 1.405 V and 173.4 and 37.5 mW cm–2, respectively.
AbstractList The rechargeable Zn-air batteries as an environmentally friendly sustainable energy technology have been extensively studied. However, it is still a challenge to develop non-noble metal bifunctional catalysts with high oxygen reduction as well as oxygen evolution reaction (ORR and OER) activity and superior durability, which limit the large-scale application of rechargeable Zn-air batteries. Herein, we synthesized an ultrastable FeCo bifunctional oxygen electrocatalyst on Se-doped CNTs (FeCo/Se-CNT) via a gravity guided chemical vapor deposition (CVD) strategy. The catalyst exhibits excellent ORR ( = 0.9 V) and OER (overpotential at 10 mA cm = 340 mV) properties simultaneously, surpassing commercial Pt/C and RuO /C catalysts. More importantly, the catalyst shows an unordinary stability, that is, is no obvious decrease after 30K cycles accelerated durability test for ORR and OER processes. The small potential gap (0.75 V) represents superior bifunctional ORR and OER activities of the FeCo/Se-CNT catalyst. The FeCo/Se-CNT catalyst possesses outstanding electrochemical performance for the rechargeable liquid and flexible all-solid-state Zn-air batteries, for example, a high open circuit voltage (OCV) and peak power density of 1.543 and 1.405 V and 173.4 and 37.5 mW cm , respectively.
The rechargeable Zn-air batteries as an environmentally friendly sustainable energy technology have been extensively studied. However, it is still a challenge to develop non-noble metal bifunctional catalysts with high oxygen reduction as well as oxygen evolution reaction (ORR and OER) activity and superior durability, which limit the large-scale application of rechargeable Zn-air batteries. Herein, we synthesized an ultrastable FeCo bifunctional oxygen electrocatalyst on Se-doped CNTs (FeCo/Se-CNT) via a gravity guided chemical vapor deposition (CVD) strategy. The catalyst exhibits excellent ORR (E1/2 = 0.9 V) and OER (overpotential at 10 mA cm-2 = 340 mV) properties simultaneously, surpassing commercial Pt/C and RuO2/C catalysts. More importantly, the catalyst shows an unordinary stability, that is, is no obvious decrease after 30K cycles accelerated durability test for ORR and OER processes. The small potential gap (0.75 V) represents superior bifunctional ORR and OER activities of the FeCo/Se-CNT catalyst. The FeCo/Se-CNT catalyst possesses outstanding electrochemical performance for the rechargeable liquid and flexible all-solid-state Zn-air batteries, for example, a high open circuit voltage (OCV) and peak power density of 1.543 and 1.405 V and 173.4 and 37.5 mW cm-2, respectively.The rechargeable Zn-air batteries as an environmentally friendly sustainable energy technology have been extensively studied. However, it is still a challenge to develop non-noble metal bifunctional catalysts with high oxygen reduction as well as oxygen evolution reaction (ORR and OER) activity and superior durability, which limit the large-scale application of rechargeable Zn-air batteries. Herein, we synthesized an ultrastable FeCo bifunctional oxygen electrocatalyst on Se-doped CNTs (FeCo/Se-CNT) via a gravity guided chemical vapor deposition (CVD) strategy. The catalyst exhibits excellent ORR (E1/2 = 0.9 V) and OER (overpotential at 10 mA cm-2 = 340 mV) properties simultaneously, surpassing commercial Pt/C and RuO2/C catalysts. More importantly, the catalyst shows an unordinary stability, that is, is no obvious decrease after 30K cycles accelerated durability test for ORR and OER processes. The small potential gap (0.75 V) represents superior bifunctional ORR and OER activities of the FeCo/Se-CNT catalyst. The FeCo/Se-CNT catalyst possesses outstanding electrochemical performance for the rechargeable liquid and flexible all-solid-state Zn-air batteries, for example, a high open circuit voltage (OCV) and peak power density of 1.543 and 1.405 V and 173.4 and 37.5 mW cm-2, respectively.
The rechargeable Zn–air batteries as an environmentally friendly sustainable energy technology have been extensively studied. However, it is still a challenge to develop non-noble metal bifunctional catalysts with high oxygen reduction as well as oxygen evolution reaction (ORR and OER) activity and superior durability, which limit the large-scale application of rechargeable Zn–air batteries. Herein, we synthesized an ultrastable FeCo bifunctional oxygen electrocatalyst on Se-doped CNTs (FeCo/Se-CNT) via a gravity guided chemical vapor deposition (CVD) strategy. The catalyst exhibits excellent ORR (E 1/2 = 0.9 V) and OER (overpotential at 10 mA cm–2 = 340 mV) properties simultaneously, surpassing commercial Pt/C and RuO2/C catalysts. More importantly, the catalyst shows an unordinary stability, that is, is no obvious decrease after 30K cycles accelerated durability test for ORR and OER processes. The small potential gap (0.75 V) represents superior bifunctional ORR and OER activities of the FeCo/Se-CNT catalyst. The FeCo/Se-CNT catalyst possesses outstanding electrochemical performance for the rechargeable liquid and flexible all-solid-state Zn–air batteries, for example, a high open circuit voltage (OCV) and peak power density of 1.543 and 1.405 V and 173.4 and 37.5 mW cm–2, respectively.
Author Shi, Shuangrui
Zheng, Lirong
Shang, Jingzhi
Zhang, Biao
Ma, Chao
Song, Lin
Han, Yunhu
Huang, Wei
Wang, Zhenhua
Liu, Haoran
Zhang, Hongwei
Zhao, Meiqi
Yang, Yong
AuthorAffiliation State Key Laboratory of Structural Chemistry
Department of Chemistry
School of Materials Science and Engineering
Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM)
Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences
Beijing Synchrotron Radiation Facility, Institute of High Energy Physics
Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials and Engineering
Nanjing University of Posts and Telecommunications
AuthorAffiliation_xml – name: Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM)
– name: Department of Chemistry
– name: Nanjing University of Posts and Telecommunications
– name: Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences
– name: Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials and Engineering
– name: School of Materials Science and Engineering
– name: State Key Laboratory of Structural Chemistry
– name: Beijing Synchrotron Radiation Facility, Institute of High Energy Physics
Author_xml – sequence: 1
  givenname: Hongwei
  surname: Zhang
  fullname: Zhang, Hongwei
  organization: Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials and Engineering
– sequence: 2
  givenname: Meiqi
  surname: Zhao
  fullname: Zhao, Meiqi
  organization: Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials and Engineering
– sequence: 3
  givenname: Haoran
  surname: Liu
  fullname: Liu, Haoran
  organization: Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials and Engineering
– sequence: 4
  givenname: Shuangrui
  surname: Shi
  fullname: Shi, Shuangrui
  organization: Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials and Engineering
– sequence: 5
  givenname: Zhenhua
  orcidid: 0000-0002-9028-6799
  surname: Wang
  fullname: Wang, Zhenhua
  organization: Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials and Engineering
– sequence: 6
  givenname: Biao
  surname: Zhang
  fullname: Zhang, Biao
  organization: Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials and Engineering
– sequence: 7
  givenname: Lin
  orcidid: 0000-0003-4971-6301
  surname: Song
  fullname: Song, Lin
  organization: Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials and Engineering
– sequence: 8
  givenname: Jingzhi
  surname: Shang
  fullname: Shang, Jingzhi
  organization: Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials and Engineering
– sequence: 9
  givenname: Yong
  orcidid: 0000-0002-1238-2945
  surname: Yang
  fullname: Yang, Yong
  organization: School of Materials Science and Engineering
– sequence: 10
  givenname: Chao
  surname: Ma
  fullname: Ma, Chao
  organization: Department of Chemistry
– sequence: 11
  givenname: Lirong
  surname: Zheng
  fullname: Zheng, Lirong
  organization: Beijing Synchrotron Radiation Facility, Institute of High Energy Physics
– sequence: 12
  givenname: Yunhu
  orcidid: 0000-0003-0354-4479
  surname: Han
  fullname: Han, Yunhu
  email: iamyhhan@nwpu.edu.cn
  organization: Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences
– sequence: 13
  givenname: Wei
  orcidid: 0000-0001-7004-6408
  surname: Huang
  fullname: Huang, Wei
  email: iamwhuang@nwpu.edu.cn
  organization: Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials and Engineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33599511$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1uEzEURi1URH_gDRDyks0EezyTsdmloQGkCCTSbtiMbjzX4MqxU9sj0R0rXqBv2CfBIWkXLGB1Ld3zXUvfOSVHPngk5CVnE85q_gZ0mnjwwWHOE64ZY133hJzwVrBqqlR99PiWzTE5Tem6IEq07Bk5FqJVquX8hPy6cjlCyrB2SBc4D_TcmtHrbIMHRy8c6hyDhgzuNmUaPF1h9S5scaDzT5eJmhDp0t6MdqDgB7pw-MPuTs2cq1bB2aFaZchIv6D-DvEb_vnnq7__eTezkZ5DzhgtpufkqQGX8MVhnpGrxcXl_EO1_Pz-43y2rKDhTa46A2AkE1PJJXT1oFuoBRMgVac7KfWaGzWg6YSR7VrIQZRalKmnEgCVRCXOyOv93W0MNyOm3G9s0ugceAxj6utGcdYpPhUFfXVAx_UGh34b7Qbibf_QXQGaPaBjSCmieUQ463eK-qKof1DUHxSV2Nu_YtqWikrfRYR1_wuzfXi3vQ5jLJLSvyO_AY8Srkk
CitedBy_id crossref_primary_10_1039_D1TA10274E
crossref_primary_10_1039_D2DT04000J
crossref_primary_10_1021_acsami_2c23232
crossref_primary_10_1016_j_ijhydene_2023_09_294
crossref_primary_10_1002_smsc_202100044
crossref_primary_10_1002_smll_202409325
crossref_primary_10_1002_smll_202402761
crossref_primary_10_1016_j_cej_2025_160938
crossref_primary_10_1002_smm2_1076
crossref_primary_10_1016_j_jpowsour_2024_235229
crossref_primary_10_1002_ange_202107996
crossref_primary_10_1016_j_jcis_2022_05_167
crossref_primary_10_1016_j_nanoen_2022_108039
crossref_primary_10_3390_coatings14121569
crossref_primary_10_1021_acssuschemeng_3c00912
crossref_primary_10_1021_acsanm_4c05974
crossref_primary_10_1016_j_surfin_2024_105310
crossref_primary_10_1002_chem_202303173
crossref_primary_10_1016_j_apcatb_2021_120924
crossref_primary_10_2139_ssrn_4156524
crossref_primary_10_1002_cssc_202202192
crossref_primary_10_1007_s40820_024_01463_9
crossref_primary_10_1016_j_ensm_2022_11_001
crossref_primary_10_1039_D1CC04443E
crossref_primary_10_1016_j_jallcom_2023_168756
crossref_primary_10_1016_j_jcis_2023_01_039
crossref_primary_10_1021_acsami_2c21616
crossref_primary_10_1016_j_jcis_2024_09_213
crossref_primary_10_1021_acs_jpclett_4c03361
crossref_primary_10_1002_adfm_202302444
crossref_primary_10_1021_acs_jpcc_4c00093
crossref_primary_10_1016_j_apsusc_2024_161089
crossref_primary_10_1021_acs_iecr_3c04471
crossref_primary_10_1021_acsnano_2c06700
crossref_primary_10_1038_s41427_022_00446_9
crossref_primary_10_1016_j_mtcomm_2024_108860
crossref_primary_10_1016_j_jelechem_2023_117203
crossref_primary_10_1016_j_apcatb_2024_125007
crossref_primary_10_1002_adfm_202404787
crossref_primary_10_1002_smtd_202400565
crossref_primary_10_1021_acsami_1c11730
crossref_primary_10_1021_acsaem_4c02432
crossref_primary_10_1016_j_jallcom_2022_168107
crossref_primary_10_1016_j_jece_2022_108052
crossref_primary_10_1016_j_cclet_2023_109277
crossref_primary_10_1039_D2TA00949H
crossref_primary_10_1016_j_cej_2022_137540
crossref_primary_10_1016_j_jpowsour_2022_232381
crossref_primary_10_1002_adsu_202100343
crossref_primary_10_1007_s40843_022_2272_2
crossref_primary_10_1016_j_apsusc_2021_151830
crossref_primary_10_1016_j_jallcom_2024_177308
crossref_primary_10_1039_D3NJ05928F
crossref_primary_10_1007_s40820_022_00927_0
crossref_primary_10_1039_D1TA10559K
crossref_primary_10_1002_smll_202309932
crossref_primary_10_1149_1945_7111_acb402
crossref_primary_10_1002_adfm_202209499
crossref_primary_10_1016_j_fuel_2025_134521
crossref_primary_10_1016_j_ijhydene_2022_05_025
crossref_primary_10_1016_j_apsusc_2022_153891
crossref_primary_10_1016_j_ijhydene_2024_02_274
crossref_primary_10_1016_j_jece_2023_111076
crossref_primary_10_1002_smll_202500109
crossref_primary_10_1002_adfm_202406717
crossref_primary_10_1016_j_apcatb_2023_123346
crossref_primary_10_1039_D2QI00010E
crossref_primary_10_1016_j_jechem_2022_05_024
crossref_primary_10_1002_adfm_202303235
crossref_primary_10_1002_anie_202107996
crossref_primary_10_1016_j_jcis_2025_02_123
crossref_primary_10_1016_j_desal_2025_118700
crossref_primary_10_1016_j_mtener_2022_101138
crossref_primary_10_1016_j_cjche_2022_02_017
crossref_primary_10_1360_SSPMA_2023_0061
crossref_primary_10_1002_sstr_202400181
crossref_primary_10_1016_j_jcis_2022_12_156
crossref_primary_10_1016_j_ceramint_2022_10_206
crossref_primary_10_1016_j_jcis_2024_12_036
crossref_primary_10_1016_j_jcis_2023_10_026
crossref_primary_10_1007_s42864_022_00149_2
crossref_primary_10_1016_j_jechem_2024_05_013
crossref_primary_10_1002_cey2_276
crossref_primary_10_1016_j_jcis_2022_12_152
crossref_primary_10_1016_j_jechem_2024_02_044
crossref_primary_10_20517_cs_2023_28
crossref_primary_10_1016_j_cej_2025_161677
crossref_primary_10_1002_eem2_12499
crossref_primary_10_1002_cjoc_202300484
crossref_primary_10_1016_j_nanoen_2022_107941
crossref_primary_10_1039_D4EY00037D
crossref_primary_10_1016_j_jechem_2024_01_072
crossref_primary_10_1016_j_jpcs_2024_112516
crossref_primary_10_1002_smll_202304863
crossref_primary_10_1007_s41918_024_00219_8
crossref_primary_10_1016_j_cej_2023_146154
crossref_primary_10_1002_asia_202100702
crossref_primary_10_1016_j_nxener_2023_100025
crossref_primary_10_1002_smll_202103747
crossref_primary_10_1016_j_ensm_2024_103520
crossref_primary_10_1002_smll_202304294
crossref_primary_10_1039_D3NR02706F
crossref_primary_10_1016_j_ijhydene_2023_05_189
crossref_primary_10_1016_j_jcis_2021_12_164
crossref_primary_10_1016_j_jcis_2022_06_035
crossref_primary_10_1002_aenm_202202984
crossref_primary_10_1002_smll_202406776
crossref_primary_10_1016_j_jechem_2021_08_054
crossref_primary_10_1021_acs_energyfuels_4c00776
crossref_primary_10_1002_ange_202316314
crossref_primary_10_1016_j_jallcom_2023_168792
crossref_primary_10_1002_cey2_682
crossref_primary_10_1016_j_jcis_2022_09_014
crossref_primary_10_1016_j_cartre_2024_100350
crossref_primary_10_1002_adfm_202410552
crossref_primary_10_1016_j_cej_2022_136128
crossref_primary_10_1016_j_jcis_2023_01_077
crossref_primary_10_1016_j_cej_2021_133238
crossref_primary_10_1016_j_jcis_2024_05_191
crossref_primary_10_1016_j_jcis_2021_07_082
crossref_primary_10_1016_j_matchar_2023_113407
crossref_primary_10_1002_advs_202103954
crossref_primary_10_1002_smll_202301465
crossref_primary_10_1016_j_jcis_2022_03_083
crossref_primary_10_1039_D3CC06143D
crossref_primary_10_1021_acs_energyfuels_4c00988
crossref_primary_10_1016_j_jpowsour_2021_230918
crossref_primary_10_1002_sus2_201
crossref_primary_10_1016_j_cclet_2023_108142
crossref_primary_10_1016_j_cej_2023_144515
crossref_primary_10_1002_smtd_202101116
crossref_primary_10_1002_smtd_202401338
crossref_primary_10_1002_adfm_202211102
crossref_primary_10_1002_anie_202316314
crossref_primary_10_1002_adfm_202200763
crossref_primary_10_1016_j_memsci_2023_122395
crossref_primary_10_1016_j_apcatb_2022_122163
crossref_primary_10_1016_j_jcat_2024_115532
crossref_primary_10_1039_D3SE01067H
crossref_primary_10_1021_acsanm_4c02428
crossref_primary_10_1002_cey2_457
crossref_primary_10_1021_acsaem_2c02168
crossref_primary_10_1016_j_cej_2022_136815
crossref_primary_10_1016_j_jechem_2025_02_029
crossref_primary_10_2139_ssrn_4201275
crossref_primary_10_1016_j_apcatb_2021_121034
crossref_primary_10_1039_D3NR01272G
crossref_primary_10_1007_s40820_024_01366_9
crossref_primary_10_1016_j_electacta_2023_142665
crossref_primary_10_1016_j_ensm_2025_104052
crossref_primary_10_1016_j_ccr_2022_214984
crossref_primary_10_1016_j_ensm_2022_03_045
crossref_primary_10_1016_j_cej_2022_139253
crossref_primary_10_1007_s12274_023_5409_4
crossref_primary_10_3390_inorganics11070300
crossref_primary_10_1016_j_est_2024_114168
crossref_primary_10_1039_D4EY00014E
crossref_primary_10_1002_aenm_202303352
crossref_primary_10_1039_D4EE03005B
crossref_primary_10_1007_s40820_022_00994_3
crossref_primary_10_1016_S1872_5805_22_60623_1
crossref_primary_10_1016_j_nanoen_2023_109236
crossref_primary_10_1016_j_cej_2023_141591
crossref_primary_10_1039_D3EE03059H
crossref_primary_10_1039_D3NH00108C
crossref_primary_10_1039_D3NR03421F
Cites_doi 10.1039/C6EE03446B
10.1021/acs.nanolett.7b04502
10.1021/acs.nanolett.0c02677
10.1002/adma.201700874
10.1007/s12274-017-1428-3
10.1021/acs.nanolett.9b03168
10.1038/s41467-020-16848-8
10.1126/sciadv.1501122
10.1021/acscatal.7b02739
10.1039/C4CS00470A
10.1016/j.carbon.2018.06.023
10.1002/smll.201801226
10.1016/j.jpowsour.2017.04.091
10.1002/adma.202002292
10.1002/adma.201800005
10.1002/aenm.201702598
10.1002/anie.201503612
10.1002/aenm.202002896
10.1002/adfm.201808872
10.1002/anie.202009700
10.1002/aenm.201602420
10.1021/jacs.9b09352
10.1002/adma.201808173
10.1021/ja502532y
10.1007/s12274-017-1765-2
10.1002/aenm.201703623
10.1002/adma.202003134
10.1002/adma.201808043
10.1002/aenm.201802263
10.1021/acsami.9b12204
10.1016/j.nanoen.2016.12.008
10.1016/j.ensm.2019.12.011
10.1021/acsnano.0c08652
10.1021/acsnano.6b05914
10.1038/nenergy.2015.6
10.1002/adfm.201904481
10.1038/ncomms8992
10.1002/adma.201703657
10.1002/advs.201700691
10.1002/aenm.201602217
10.1002/adma.201808281
10.1016/j.nanoen.2018.12.017
10.1002/adfm.201706928
10.1039/C8EE02679C
10.1038/s41586-019-1603-7
10.1002/adma.201900843
10.1002/adma.201704117
10.1039/C8EE00977E
10.1002/adma.201900592
10.1002/smll.201700518
10.1038/nnano.2015.48
10.1016/j.nanoen.2020.104597
10.1021/acs.nanolett.6b03133
10.1016/j.nanoen.2014.11.063
10.1021/acs.nanolett.0c01925
10.1038/s41560-018-0308-8
10.1016/j.nanoen.2015.11.027
10.1002/aenm.201601172
10.1002/anie.201710852
10.1002/aenm.201902115
10.1002/adfm.201701833
10.1021/nn504637y
10.1002/anie.201705778
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright_xml – notice: 2021 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acs.nanolett.1c00077
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1530-6992
EndPage 2264
ExternalDocumentID 33599511
10_1021_acs_nanolett_1c00077
a494270843
Genre Journal Article
GroupedDBID -
.K2
123
4.4
55A
5VS
7~N
AABXI
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
F5P
GNL
IH9
IHE
JG
JG~
K2
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
X
---
-~X
6P2
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
NPM
7X8
ID FETCH-LOGICAL-a414t-7faaf8036818a72dc5a2303a897c788cb1f9def73f85b38d3c009f268aae98e93
IEDL.DBID ACS
ISSN 1530-6984
1530-6992
IngestDate Fri Jul 11 12:29:47 EDT 2025
Thu Jan 02 22:56:50 EST 2025
Tue Jul 01 04:09:50 EDT 2025
Thu Apr 24 22:59:59 EDT 2025
Fri Mar 12 03:12:11 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Se-doped CNTs
liquid and flexible solid rechargeable Zn−air batteries
bifunctional oxygen electrocatalyst
outstanding durability
gravity guided CVD strategy
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a414t-7faaf8036818a72dc5a2303a897c788cb1f9def73f85b38d3c009f268aae98e93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4971-6301
0000-0001-7004-6408
0000-0002-1238-2945
0000-0002-9028-6799
0000-0003-0354-4479
PMID 33599511
PQID 2491079163
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2491079163
pubmed_primary_33599511
crossref_primary_10_1021_acs_nanolett_1c00077
crossref_citationtrail_10_1021_acs_nanolett_1c00077
acs_journals_10_1021_acs_nanolett_1c00077
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-10
PublicationDateYYYYMMDD 2021-03-10
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-10
  day: 10
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref33/cit33
  doi: 10.1039/C6EE03446B
– ident: ref36/cit36
  doi: 10.1021/acs.nanolett.7b04502
– ident: ref7/cit7
  doi: 10.1021/acs.nanolett.0c02677
– ident: ref24/cit24
  doi: 10.1002/adma.201700874
– ident: ref31/cit31
  doi: 10.1007/s12274-017-1428-3
– ident: ref14/cit14
  doi: 10.1021/acs.nanolett.9b03168
– ident: ref12/cit12
  doi: 10.1038/s41467-020-16848-8
– ident: ref48/cit48
  doi: 10.1126/sciadv.1501122
– ident: ref62/cit62
  doi: 10.1021/acscatal.7b02739
– ident: ref1/cit1
  doi: 10.1039/C4CS00470A
– ident: ref63/cit63
  doi: 10.1016/j.carbon.2018.06.023
– ident: ref56/cit56
  doi: 10.1002/smll.201801226
– ident: ref55/cit55
  doi: 10.1016/j.jpowsour.2017.04.091
– ident: ref58/cit58
  doi: 10.1002/adma.202002292
– ident: ref34/cit34
  doi: 10.1002/adma.201800005
– ident: ref57/cit57
  doi: 10.1002/aenm.201702598
– ident: ref16/cit16
  doi: 10.1002/anie.201503612
– ident: ref49/cit49
  doi: 10.1002/aenm.202002896
– ident: ref61/cit61
  doi: 10.1002/adfm.201808872
– ident: ref10/cit10
  doi: 10.1002/anie.202009700
– ident: ref37/cit37
  doi: 10.1002/aenm.201602420
– ident: ref52/cit52
  doi: 10.1021/jacs.9b09352
– ident: ref26/cit26
  doi: 10.1002/adma.201808173
– ident: ref40/cit40
  doi: 10.1021/ja502532y
– ident: ref25/cit25
  doi: 10.1007/s12274-017-1765-2
– ident: ref28/cit28
  doi: 10.1002/aenm.201703623
– ident: ref32/cit32
  doi: 10.1002/adma.202003134
– ident: ref41/cit41
  doi: 10.1002/adma.201808043
– ident: ref51/cit51
  doi: 10.1002/aenm.201802263
– ident: ref50/cit50
  doi: 10.1021/acsami.9b12204
– ident: ref45/cit45
  doi: 10.1016/j.nanoen.2016.12.008
– ident: ref9/cit9
  doi: 10.1016/j.ensm.2019.12.011
– ident: ref18/cit18
  doi: 10.1021/acsnano.0c08652
– ident: ref43/cit43
  doi: 10.1021/acsnano.6b05914
– ident: ref23/cit23
  doi: 10.1038/nenergy.2015.6
– ident: ref19/cit19
  doi: 10.1002/adfm.201904481
– ident: ref53/cit53
  doi: 10.1038/ncomms8992
– ident: ref59/cit59
  doi: 10.1002/aenm.201602420
– ident: ref60/cit60
  doi: 10.1002/adma.201703657
– ident: ref4/cit4
  doi: 10.1002/advs.201700691
– ident: ref2/cit2
  doi: 10.1002/aenm.201602217
– ident: ref38/cit38
  doi: 10.1002/adma.201808281
– ident: ref11/cit11
  doi: 10.1016/j.nanoen.2018.12.017
– ident: ref35/cit35
  doi: 10.1002/adfm.201706928
– ident: ref22/cit22
  doi: 10.1039/C8EE02679C
– ident: ref8/cit8
  doi: 10.1038/s41586-019-1603-7
– ident: ref30/cit30
  doi: 10.1002/adma.201900843
– ident: ref42/cit42
  doi: 10.1002/adma.201704117
– ident: ref44/cit44
  doi: 10.1039/C8EE00977E
– ident: ref27/cit27
  doi: 10.1002/adma.201900592
– ident: ref39/cit39
  doi: 10.1002/smll.201700518
– ident: ref3/cit3
  doi: 10.1038/nnano.2015.48
– ident: ref5/cit5
  doi: 10.1016/j.nanoen.2020.104597
– ident: ref13/cit13
  doi: 10.1021/acs.nanolett.6b03133
– ident: ref54/cit54
  doi: 10.1016/j.nanoen.2014.11.063
– ident: ref17/cit17
  doi: 10.1021/acs.nanolett.0c01925
– ident: ref21/cit21
  doi: 10.1038/s41560-018-0308-8
– ident: ref47/cit47
  doi: 10.1016/j.nanoen.2015.11.027
– ident: ref29/cit29
  doi: 10.1002/aenm.201601172
– ident: ref64/cit64
  doi: 10.1002/anie.201710852
– ident: ref6/cit6
  doi: 10.1002/aenm.201902115
– ident: ref20/cit20
  doi: 10.1002/adfm.201701833
– ident: ref46/cit46
  doi: 10.1021/nn504637y
– ident: ref15/cit15
  doi: 10.1002/anie.201705778
SSID ssj0009350
Score 2.665173
Snippet The rechargeable Zn–air batteries as an environmentally friendly sustainable energy technology have been extensively studied. However, it is still a challenge...
The rechargeable Zn-air batteries as an environmentally friendly sustainable energy technology have been extensively studied. However, it is still a challenge...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2255
Title Ultrastable FeCo Bifunctional Electrocatalyst on Se-Doped CNTs for Liquid and Flexible All-Solid-State Rechargeable Zn–Air Batteries
URI http://dx.doi.org/10.1021/acs.nanolett.1c00077
https://www.ncbi.nlm.nih.gov/pubmed/33599511
https://www.proquest.com/docview/2491079163
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYoXNpDeZSW5SUjcekhWzlONvFxWVghROlhWQlxiWxnLEWNHNhkD-2pJ_4A_5BfwjgPHkWI9hrFtsb26PvGY39DyL4MNNNcMi8ULs2oJPqcr12UwpFfBwYR3b1G_n42OJ4GJxfhxWOg-HcG32ffpC77VtoCzaj6TDtQi96RJX8QRy7YGo4mjyK7vK7Iik6Mg4k46J7KvdKLAyRdPgekV1hmjTbjZfKje7PTXDL52Z9Xqq9_v5Rw_EdDVsjHlnjSYbNTVskC2DXy4Ykc4SdyM82rmUS6qHKgYxgV9CBzuNccF9KjpmJOfeDzq6xoYekEvMPiClI6OjsvKfJfeppdz7OUSpvSsdPadF0N89ybFHmWejW1pUhVnT4T1ONc2rs_t8NsRhulTwzc18l0fHQ-OvbaOg2eDFhQeZGR0sQIhQj-MvJTHUoMbLiMRaQxwtaKGZGCibiJQ8XjlKPtwuACSgkiBsE_k0VbWNggFIQAYFqpgCO1iSBOB77QkTKGDRQEYY98xWlMWj8rkzqF7rPEfezmNmnntkd4t7CJbgXPXd2N_I1W3kOrq0bw443_97o9k6BnunSLtFDMywQDW4ytkX7zHvnSbKaHHjl3Qm-Mbf6HPVvkve8u1NSXCbfJYjWbww4yokrt1m5wD1-zCl4
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NjtMwELZWywE48P9Tfo0EBw7p4jhpkgOH0t2qy3Z7aSutuATbmUgRkbPUqdBy4sQL8Ay8Cg_CkzB2ki4grVYcVuJqJf6b8cw39vgzIc9FoJjignlhYo8ZpcA15ysbpXDE10GOHt3eRj6cDSbL4O1ReLRFvnd3YbATBmsy7hD_lF2A7dgyLXSFo6n7TFnfFrW5lAdw8gkjNfN6fxfF-sL3x3uL0cRrHxPwRMCC2otyIfIY7TV6KBH5mQoFom8u4iRSGAYqyfIkgzzieRxKHmccm0hyfxALAUkMlnMJLf0lxD--jfGGo_kpty93D8Gi7cAxJnHQ3dA7o9fWDyrzpx88A9w6Jze-Tn5spsfltnzor2vZV5__Yo787-fvBrnWwmw6bNbFTbIF-ha5-hv54m3ydVnWK4HgWJZAxzCq6JvCevlmc5TuNe8Due2tE1PTStM5eLvVMWR0NFsYimifTouP6yKjQmd0bJlFbVXDsvTmVVlkngPyFIG5ZaMC1847_fPLt2Gxog2vaQHmDlleyETcJdu60nCfUEgSAKakDDgCuQjibOAnKpJ5zgYSgrBHXqLY0taqmNQlDPgstYWdLNNWlj3CO31KVUvvbl8ZKc_5y9v8ddzQm5zz_bNOVVO0Q_ZwSWio1ibFMJ69ijDY4D1yr9HhTY2cW1o7xh78w3ieksuTxeE0ne7PDh6SK75NJXJplI_Idr1aw2PEgrV84lYiJe8vWnV_Adf2bYQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LjtMwFLVGg4RgwftRnkaCBYsUHCdNvGBR2olmmKFC6lQasQm2Y0sRUVKaVGhYseIH-Ap-hc_gS7jXScpDGo1YzIKtlfh5H-fa18eEPJaBZppL5oUCjxmVBJ3zNUYpHPB1YMGj423k17PR7iJ4dRQebZFv_V0Y6EQNNdXuEB-1epnZjmGAPcPyUpYVjKgZMo3-LeryKffN8UeI1uoXe1NY2ie-n-wcTna97kEBTwYsaLzISmljsNngpWTkZzqUgMC5jEWkIRTUilmRGRtxG4eKxxmHJoT1R7GURsQGeZfA2p_Dk0KM88aT-S9-X-4egwX7AeMUcdDf0juh1-gLdf2nLzwB4DpHl1wm3zdT5PJb3g_XjRrqT3-xR_4Xc3iFXOrgNh23-nGVbJnyGrn4GwnjdfJlUTQrCSBZFYYmZlLRlzl6-3aTlO607wS5ba7juqFVSefGm1ZLk9HJ7LCmgPrpQf5hnWdUlhlNkGEUqxoXhTevijzzHKCnANCRlcq4dt6WPz5_Hecr2vKb5qa-QRZnMhE3yXZZleY2oUYIY5hWKuAA6CITZyNf6EhZy0bKBOGAPIVlSzvrUqcuccBnKRb2a5l2azkgvJepVHc07_jaSHHKX97mr2VLc3LK9496cU3BHuEhkyxNta5TCOfZ8wiCDj4gt1o53tTIOdLbMXbnH8bzkJx_M03Sg73Z_l1ywceMIpdNeY9sN6u1uQ-QsFEPnDJS8u6sJfcnqsNwBw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrastable+FeCo+Bifunctional+Electrocatalyst+on+Se-Doped+CNTs+for+Liquid+and+Flexible+All-Solid-State+Rechargeable+Zn-Air+Batteries&rft.jtitle=Nano+letters&rft.au=Zhang%2C+Hongwei&rft.au=Zhao%2C+Meiqi&rft.au=Liu%2C+Haoran&rft.au=Shi%2C+Shuangrui&rft.date=2021-03-10&rft.eissn=1530-6992&rft.volume=21&rft.issue=5&rft.spage=2255&rft_id=info:doi/10.1021%2Facs.nanolett.1c00077&rft_id=info%3Apmid%2F33599511&rft.externalDocID=33599511
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon