Exploring the Chemistry of Spiroindolenines by Mechanistically-Driven Reaction Development: Asymmetric Pictet–Spengler-type Reactions and Beyond

Conspectus The Pictet–Spengler reaction is a fundamental named reaction in organic chemistry, and it is the most straightforward method for the synthesis of tetrahydro-β-carbolines, a core structure embedded in numerous alkaloids. Spiroindolenines are often proposed as possible intermediates in Pict...

Full description

Saved in:
Bibliographic Details
Published inAccounts of chemical research Vol. 53; no. 4; pp. 974 - 987
Main Authors Zheng, Chao, You, Shu-Li
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 21.04.2020
Online AccessGet full text

Cover

Loading…
Abstract Conspectus The Pictet–Spengler reaction is a fundamental named reaction in organic chemistry, and it is the most straightforward method for the synthesis of tetrahydro-β-carbolines, a core structure embedded in numerous alkaloids. Spiroindolenines are often proposed as possible intermediates in Pictet–Spengler reactions. However, whether the spiroindolenine species is an intermediate in the mechanism of the asymmetric Pictet–Spengler reaction remains unclear. Questions about the role of the spiroindolenine species regarding the mechanism include the following: Can the spiroindolenine species be formed effectively under Pictet–Spengler conditions? If so, what is its fate? Is the delivery of the enantioenriched tetrahydro-β-carboline product related to the spiroindolenine intermediate? Previous studies regarding these questions have not reached a consensus. Therefore, elucidating these questions will advance the field of synthetic organic chemistry. The first highly enantioselective synthesis of spiroindolenines that have the same molecular scaffold as the proposed key intermediate of the Pictet–Spengler reaction was accomplished by an Ir-catalyzed intramolecular asymmetric allylic substitution reaction of an indol-3-yl allylic carbonate. In this reaction, a piperidine, pyrrolidine, or cyclopentane ring can be introduced in conjunction with the indolenine structure. Spiroindolenines were found to undergo ring-expansive migration reactions when treated with a catalytic amount of an acid, leading to tetrahydro-β-carbolines or related tetrahydrocarbazoles. Comprehensive DFT calculations and Born–Oppenheimer molecular dynamics simulations have provided insight into the mechanism of the migration process. It has been found that the stereochemistry is strongly correlated with the electronic properties of the migratory group along with the acidity of the catalyst. Close interactions between the positively charged migratory group and the electron-rich indole ring favor the stereospecificity of the migration. Furthermore, a continuous mechanistic spectrum of the Pictet–Spengler reactions can be obtained on the basis of two readily accessible energetic parameters that are derived from computed energies for competing transition states relative to a key intermediate species. This theoretical model provides a unified mechanistic understanding of the asymmetric Pictet–Spengler reaction, which has been further supported by rationally designed prototype reactions. Chemically and stereochemically controllable migration can be achieved when multiple potential migratory groups are available. The reactivity of spiroindolenines has also been explored beyond Pictet–Spengler reactions. A one-pot Ir-catalyzed asymmetric allylic dearomatization/stereoconvergent migration allows the facile synthesis of enantioenriched tetrahydro-β-carbolines from racemic starting materials. An unprecedented six- to seven-membered ring-expansive migration can be achieved when a vinyliminium moiety is involved as a highly reactive migratory group. This reaction facilitates the stereoselective synthesis of thermodynamically challenging indole-annulated seven-membered rings. It has also been found that the migration process can be interrupted. The electrophilic migratory group released from the retro-Mannich reaction of a spiroindolenine can be captured by an inter- or intramolecular nucleophile, thus providing new entries into structurally diverse polycyclic indole derivatives. Therefore, the mechanism of the Pictet–Spengler reaction can be probed by manipulating the reactivity of the spiroindolenine species. In turn, the mechanistic insights gained herein will aid in chemical transformations toward various target molecules. This study serves as a vivid example of the positive interplay between experimental and theoretical investigations in synthetic organic chemistry.
AbstractList Conspectus The Pictet–Spengler reaction is a fundamental named reaction in organic chemistry, and it is the most straightforward method for the synthesis of tetrahydro-β-carbolines, a core structure embedded in numerous alkaloids. Spiroindolenines are often proposed as possible intermediates in Pictet–Spengler reactions. However, whether the spiroindolenine species is an intermediate in the mechanism of the asymmetric Pictet–Spengler reaction remains unclear. Questions about the role of the spiroindolenine species regarding the mechanism include the following: Can the spiroindolenine species be formed effectively under Pictet–Spengler conditions? If so, what is its fate? Is the delivery of the enantioenriched tetrahydro-β-carboline product related to the spiroindolenine intermediate? Previous studies regarding these questions have not reached a consensus. Therefore, elucidating these questions will advance the field of synthetic organic chemistry. The first highly enantioselective synthesis of spiroindolenines that have the same molecular scaffold as the proposed key intermediate of the Pictet–Spengler reaction was accomplished by an Ir-catalyzed intramolecular asymmetric allylic substitution reaction of an indol-3-yl allylic carbonate. In this reaction, a piperidine, pyrrolidine, or cyclopentane ring can be introduced in conjunction with the indolenine structure. Spiroindolenines were found to undergo ring-expansive migration reactions when treated with a catalytic amount of an acid, leading to tetrahydro-β-carbolines or related tetrahydrocarbazoles. Comprehensive DFT calculations and Born–Oppenheimer molecular dynamics simulations have provided insight into the mechanism of the migration process. It has been found that the stereochemistry is strongly correlated with the electronic properties of the migratory group along with the acidity of the catalyst. Close interactions between the positively charged migratory group and the electron-rich indole ring favor the stereospecificity of the migration. Furthermore, a continuous mechanistic spectrum of the Pictet–Spengler reactions can be obtained on the basis of two readily accessible energetic parameters that are derived from computed energies for competing transition states relative to a key intermediate species. This theoretical model provides a unified mechanistic understanding of the asymmetric Pictet–Spengler reaction, which has been further supported by rationally designed prototype reactions. Chemically and stereochemically controllable migration can be achieved when multiple potential migratory groups are available. The reactivity of spiroindolenines has also been explored beyond Pictet–Spengler reactions. A one-pot Ir-catalyzed asymmetric allylic dearomatization/stereoconvergent migration allows the facile synthesis of enantioenriched tetrahydro-β-carbolines from racemic starting materials. An unprecedented six- to seven-membered ring-expansive migration can be achieved when a vinyliminium moiety is involved as a highly reactive migratory group. This reaction facilitates the stereoselective synthesis of thermodynamically challenging indole-annulated seven-membered rings. It has also been found that the migration process can be interrupted. The electrophilic migratory group released from the retro-Mannich reaction of a spiroindolenine can be captured by an inter- or intramolecular nucleophile, thus providing new entries into structurally diverse polycyclic indole derivatives. Therefore, the mechanism of the Pictet–Spengler reaction can be probed by manipulating the reactivity of the spiroindolenine species. In turn, the mechanistic insights gained herein will aid in chemical transformations toward various target molecules. This study serves as a vivid example of the positive interplay between experimental and theoretical investigations in synthetic organic chemistry.
ConspectusThe Pictet-Spengler reaction is a fundamental named reaction in organic chemistry, and it is the most straightforward method for the synthesis of tetrahydro-β-carbolines, a core structure embedded in numerous alkaloids. Spiroindolenines are often proposed as possible intermediates in Pictet-Spengler reactions. However, whether the spiroindolenine species is an intermediate in the mechanism of the asymmetric Pictet-Spengler reaction remains unclear. Questions about the role of the spiroindolenine species regarding the mechanism include the following: Can the spiroindolenine species be formed effectively under Pictet-Spengler conditions? If so, what is its fate? Is the delivery of the enantioenriched tetrahydro-β-carboline product related to the spiroindolenine intermediate? Previous studies regarding these questions have not reached a consensus. Therefore, elucidating these questions will advance the field of synthetic organic chemistry.The first highly enantioselective synthesis of spiroindolenines that have the same molecular scaffold as the proposed key intermediate of the Pictet-Spengler reaction was accomplished by an Ir-catalyzed intramolecular asymmetric allylic substitution reaction of an indol-3-yl allylic carbonate. In this reaction, a piperidine, pyrrolidine, or cyclopentane ring can be introduced in conjunction with the indolenine structure.Spiroindolenines were found to undergo ring-expansive migration reactions when treated with a catalytic amount of an acid, leading to tetrahydro-β-carbolines or related tetrahydrocarbazoles. Comprehensive DFT calculations and Born-Oppenheimer molecular dynamics simulations have provided insight into the mechanism of the migration process. It has been found that the stereochemistry is strongly correlated with the electronic properties of the migratory group along with the acidity of the catalyst. Close interactions between the positively charged migratory group and the electron-rich indole ring favor the stereospecificity of the migration. Furthermore, a continuous mechanistic spectrum of the Pictet-Spengler reactions can be obtained on the basis of two readily accessible energetic parameters that are derived from computed energies for competing transition states relative to a key intermediate species. This theoretical model provides a unified mechanistic understanding of the asymmetric Pictet-Spengler reaction, which has been further supported by rationally designed prototype reactions. Chemically and stereochemically controllable migration can be achieved when multiple potential migratory groups are available.The reactivity of spiroindolenines has also been explored beyond Pictet-Spengler reactions. A one-pot Ir-catalyzed asymmetric allylic dearomatization/stereoconvergent migration allows the facile synthesis of enantioenriched tetrahydro-β-carbolines from racemic starting materials. An unprecedented six- to seven-membered ring-expansive migration can be achieved when a vinyliminium moiety is involved as a highly reactive migratory group. This reaction facilitates the stereoselective synthesis of thermodynamically challenging indole-annulated seven-membered rings. It has also been found that the migration process can be interrupted. The electrophilic migratory group released from the retro-Mannich reaction of a spiroindolenine can be captured by an inter- or intramolecular nucleophile, thus providing new entries into structurally diverse polycyclic indole derivatives.Therefore, the mechanism of the Pictet-Spengler reaction can be probed by manipulating the reactivity of the spiroindolenine species. In turn, the mechanistic insights gained herein will aid in chemical transformations toward various target molecules. This study serves as a vivid example of the positive interplay between experimental and theoretical investigations in synthetic organic chemistry.
The Pictet-Spengler reaction is a fundamental named reaction in organic chemistry, and it is the most straightforward method for the synthesis of tetrahydro-β-carbolines, a core structure embedded in numerous alkaloids. Spiroindolenines are often proposed as possible intermediates in Pictet-Spengler reactions. However, whether the spiroindolenine species is an intermediate in the mechanism of the asymmetric Pictet-Spengler reaction remains unclear. Questions about the role of the spiroindolenine species regarding the mechanism include the following: Can the spiroindolenine species be formed effectively under Pictet-Spengler conditions? If so, what is its fate? Is the delivery of the enantioenriched tetrahydro-β-carboline product related to the spiroindolenine intermediate? Previous studies regarding these questions have not reached a consensus. Therefore, elucidating these questions will advance the field of synthetic organic chemistry.The first highly enantioselective synthesis of spiroindolenines that have the same molecular scaffold as the proposed key intermediate of the Pictet-Spengler reaction was accomplished by an Ir-catalyzed intramolecular asymmetric allylic substitution reaction of an indol-3-yl allylic carbonate. In this reaction, a piperidine, pyrrolidine, or cyclopentane ring can be introduced in conjunction with the indolenine structure.Spiroindolenines were found to undergo ring-expansive migration reactions when treated with a catalytic amount of an acid, leading to tetrahydro-β-carbolines or related tetrahydrocarbazoles. Comprehensive DFT calculations and Born-Oppenheimer molecular dynamics simulations have provided insight into the mechanism of the migration process. It has been found that the stereochemistry is strongly correlated with the electronic properties of the migratory group along with the acidity of the catalyst. Close interactions between the positively charged migratory group and the electron-rich indole ring favor the stereospecificity of the migration. Furthermore, a continuous mechanistic spectrum of the Pictet-Spengler reactions can be obtained on the basis of two readily accessible energetic parameters that are derived from computed energies for competing transition states relative to a key intermediate species. This theoretical model provides a unified mechanistic understanding of the asymmetric Pictet-Spengler reaction, which has been further supported by rationally designed prototype reactions. Chemically and stereochemically controllable migration can be achieved when multiple potential migratory groups are available.The reactivity of spiroindolenines has also been explored beyond Pictet-Spengler reactions. A one-pot Ir-catalyzed asymmetric allylic dearomatization/stereoconvergent migration allows the facile synthesis of enantioenriched tetrahydro-β-carbolines from racemic starting materials. An unprecedented six- to seven-membered ring-expansive migration can be achieved when a vinyliminium moiety is involved as a highly reactive migratory group. This reaction facilitates the stereoselective synthesis of thermodynamically challenging indole-annulated seven-membered rings. It has also been found that the migration process can be interrupted. The electrophilic migratory group released from the retro-Mannich reaction of a spiroindolenine can be captured by an inter- or intramolecular nucleophile, thus providing new entries into structurally diverse polycyclic indole derivatives.Therefore, the mechanism of the Pictet-Spengler reaction can be probed by manipulating the reactivity of the spiroindolenine species. In turn, the mechanistic insights gained herein will aid in chemical transformations toward various target molecules. This study serves as a vivid example of the positive interplay between experimental and theoretical investigations in synthetic organic chemistry.The Pictet-Spengler reaction is a fundamental named reaction in organic chemistry, and it is the most straightforward method for the synthesis of tetrahydro-β-carbolines, a core structure embedded in numerous alkaloids. Spiroindolenines are often proposed as possible intermediates in Pictet-Spengler reactions. However, whether the spiroindolenine species is an intermediate in the mechanism of the asymmetric Pictet-Spengler reaction remains unclear. Questions about the role of the spiroindolenine species regarding the mechanism include the following: Can the spiroindolenine species be formed effectively under Pictet-Spengler conditions? If so, what is its fate? Is the delivery of the enantioenriched tetrahydro-β-carboline product related to the spiroindolenine intermediate? Previous studies regarding these questions have not reached a consensus. Therefore, elucidating these questions will advance the field of synthetic organic chemistry.The first highly enantioselective synthesis of spiroindolenines that have the same molecular scaffold as the proposed key intermediate of the Pictet-Spengler reaction was accomplished by an Ir-catalyzed intramolecular asymmetric allylic substitution reaction of an indol-3-yl allylic carbonate. In this reaction, a piperidine, pyrrolidine, or cyclopentane ring can be introduced in conjunction with the indolenine structure.Spiroindolenines were found to undergo ring-expansive migration reactions when treated with a catalytic amount of an acid, leading to tetrahydro-β-carbolines or related tetrahydrocarbazoles. Comprehensive DFT calculations and Born-Oppenheimer molecular dynamics simulations have provided insight into the mechanism of the migration process. It has been found that the stereochemistry is strongly correlated with the electronic properties of the migratory group along with the acidity of the catalyst. Close interactions between the positively charged migratory group and the electron-rich indole ring favor the stereospecificity of the migration. Furthermore, a continuous mechanistic spectrum of the Pictet-Spengler reactions can be obtained on the basis of two readily accessible energetic parameters that are derived from computed energies for competing transition states relative to a key intermediate species. This theoretical model provides a unified mechanistic understanding of the asymmetric Pictet-Spengler reaction, which has been further supported by rationally designed prototype reactions. Chemically and stereochemically controllable migration can be achieved when multiple potential migratory groups are available.The reactivity of spiroindolenines has also been explored beyond Pictet-Spengler reactions. A one-pot Ir-catalyzed asymmetric allylic dearomatization/stereoconvergent migration allows the facile synthesis of enantioenriched tetrahydro-β-carbolines from racemic starting materials. An unprecedented six- to seven-membered ring-expansive migration can be achieved when a vinyliminium moiety is involved as a highly reactive migratory group. This reaction facilitates the stereoselective synthesis of thermodynamically challenging indole-annulated seven-membered rings. It has also been found that the migration process can be interrupted. The electrophilic migratory group released from the retro-Mannich reaction of a spiroindolenine can be captured by an inter- or intramolecular nucleophile, thus providing new entries into structurally diverse polycyclic indole derivatives.Therefore, the mechanism of the Pictet-Spengler reaction can be probed by manipulating the reactivity of the spiroindolenine species. In turn, the mechanistic insights gained herein will aid in chemical transformations toward various target molecules. This study serves as a vivid example of the positive interplay between experimental and theoretical investigations in synthetic organic chemistry.
Author Zheng, Chao
You, Shu-Li
AuthorAffiliation State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis
AuthorAffiliation_xml – name: State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis
Author_xml – sequence: 1
  givenname: Chao
  orcidid: 0000-0002-7349-262X
  surname: Zheng
  fullname: Zheng, Chao
  email: zhengchao@sioc.ac.cn
– sequence: 2
  givenname: Shu-Li
  orcidid: 0000-0003-4586-8359
  surname: You
  fullname: You, Shu-Li
  email: slyou@sioc.ac.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32275392$$D View this record in MEDLINE/PubMed
BookMark eNqFkctu1DAUhi1URKeFN0DISzYZfJvG6a5My0UqAlFYW45z0nHl2MF2qmbHM8Ab8iR4NDMsWMDK9vH3Hemc_wQd-eABoeeULClh9JU2aamNCZPPaUkMIaQWj9CCrhiphGzkEVqUGi13wY7RSUp35cnEWf0EHXPG6hVv2AL9uHoYXYjW3-K8AbzewGBTjjMOPb4ZbQzWd8GBtx4Sbmf8AcxG-4JYo52bq8to78Hjz6BNtsHjS7gHF8YBfD7HF2keBsjRGvzJmgz51_efNyP4WwexyvMIf7yEte_wa5iD756ix712CZ7tz1P09c3Vl_W76vrj2_fri-tKCypyVXdApeC074nWZ0T3stFNW3MhtK4pA97VQGhDJF-1XWNk2_aka2swK8NFB5qfope7vmMM3yZIWZXRDTinPYQpKcallEw2ghb0xR6d2gE6NUY76Dirwx4LcL4DTAwpReiVsVlvJ8tRW6coUdvQVAlNHUJT-9CKLP6SD_3_o5Gdtv29C1P0ZVv_Vn4DW6W1iA
CitedBy_id crossref_primary_10_1039_D2QO01054B
crossref_primary_10_1002_cjoc_202200039
crossref_primary_10_1055_s_0043_1777345
crossref_primary_10_1039_D2NJ00517D
crossref_primary_10_1002_chem_202301141
crossref_primary_10_1039_D1QO00408E
crossref_primary_10_1002_adsc_202001210
crossref_primary_10_1002_anie_202205159
crossref_primary_10_1021_acscatal_2c00397
crossref_primary_10_1021_acs_orglett_1c00205
crossref_primary_10_1021_acs_orglett_4c00719
crossref_primary_10_1039_D1GC02713A
crossref_primary_10_1002_ange_202404388
crossref_primary_10_1021_acs_orglett_3c01156
crossref_primary_10_1039_D2QO00275B
crossref_primary_10_1002_cmdc_202200104
crossref_primary_10_1016_j_foodchem_2021_129067
crossref_primary_10_1002_ange_202112383
crossref_primary_10_1039_D1CC03568A
crossref_primary_10_1002_adsc_202401072
crossref_primary_10_1021_jacs_0c12042
crossref_primary_10_1038_s41570_021_00304_2
crossref_primary_10_1039_D0QO00772B
crossref_primary_10_1002_adsc_202400411
crossref_primary_10_1039_D3SC06208B
crossref_primary_10_1002_adsc_202401189
crossref_primary_10_6023_cjoc202400038
crossref_primary_10_1002_ejoc_202300253
crossref_primary_10_1021_acs_orglett_3c00575
crossref_primary_10_1039_D3QO00620D
crossref_primary_10_1021_jacs_2c01852
crossref_primary_10_1002_anie_202112383
crossref_primary_10_1021_acsomega_2c05022
crossref_primary_10_1039_D3OB01451G
crossref_primary_10_1016_j_tet_2022_132839
crossref_primary_10_1002_slct_202100722
crossref_primary_10_1038_s41467_020_19110_3
crossref_primary_10_1039_D1CC01929E
crossref_primary_10_1002_anie_202215616
crossref_primary_10_1039_D1QO00893E
crossref_primary_10_1021_acs_orglett_2c02060
crossref_primary_10_1002_anie_202407127
crossref_primary_10_1002_cjoc_202000521
crossref_primary_10_1039_D1CY01453F
crossref_primary_10_1002_adsc_202400046
crossref_primary_10_1021_acs_orglett_3c03716
crossref_primary_10_1021_acs_orglett_3c00207
crossref_primary_10_1016_S1875_5364_21_60059_6
crossref_primary_10_1021_acscatal_4c05576
crossref_primary_10_1039_D0CC05672C
crossref_primary_10_6023_A23100472
crossref_primary_10_1039_D1OB02492B
crossref_primary_10_1002_ange_202205159
crossref_primary_10_1021_acs_orglett_2c03679
crossref_primary_10_1021_jacs_1c10279
crossref_primary_10_1021_acscatal_1c05546
crossref_primary_10_1016_S1875_5364_22_60155_9
crossref_primary_10_1021_jacs_4c09814
crossref_primary_10_1039_D0QO00722F
crossref_primary_10_1002_ange_202407127
crossref_primary_10_3389_fchem_2023_1229669
crossref_primary_10_1016_j_jorganchem_2023_122953
crossref_primary_10_1021_acs_orglett_3c03149
crossref_primary_10_1021_acs_accounts_2c00412
crossref_primary_10_1055_a_1771_0641
crossref_primary_10_1021_acs_joc_2c03094
crossref_primary_10_1039_D0QO01422B
crossref_primary_10_1007_s11164_024_05235_3
crossref_primary_10_1021_acs_joc_4c02349
crossref_primary_10_1039_D1CS00451D
crossref_primary_10_1021_acscatal_2c05484
crossref_primary_10_1002_adsc_202001139
crossref_primary_10_1021_acs_orglett_3c04345
crossref_primary_10_1039_D4OB00112E
crossref_primary_10_1016_j_tet_2020_131765
crossref_primary_10_1039_D4CC06635A
crossref_primary_10_1002_chem_202203758
crossref_primary_10_1016_j_mcat_2022_112287
crossref_primary_10_1055_a_1970_4290
crossref_primary_10_1039_D2QO01972H
crossref_primary_10_1002_cjoc_202200402
crossref_primary_10_1016_j_gresc_2023_09_002
crossref_primary_10_1002_anie_202202814
crossref_primary_10_1021_acscatal_4c04504
crossref_primary_10_1002_anie_202206058
crossref_primary_10_1016_j_isci_2022_105669
crossref_primary_10_1039_D4CC01963F
crossref_primary_10_1002_adsc_202001129
crossref_primary_10_1002_anie_202404388
crossref_primary_10_1039_D2OB00387B
crossref_primary_10_1039_D3QO02033A
crossref_primary_10_1002_anie_202416042
crossref_primary_10_1002_ange_202215616
crossref_primary_10_1055_a_1970_4452
crossref_primary_10_1021_acscatal_3c01417
crossref_primary_10_1039_D4SC02802C
crossref_primary_10_1002_adsc_202200399
crossref_primary_10_1021_acs_orglett_1c01234
crossref_primary_10_1002_ange_202206058
crossref_primary_10_1002_ange_202202814
crossref_primary_10_1021_acs_orglett_2c03100
crossref_primary_10_1021_jacs_1c04648
crossref_primary_10_1016_j_bmc_2021_116270
crossref_primary_10_1039_D2OB00396A
crossref_primary_10_6023_A23040164
crossref_primary_10_1021_acsomega_4c02848
crossref_primary_10_1021_acs_inorgchem_4c03304
crossref_primary_10_1021_jacs_2c06518
crossref_primary_10_1039_D4CS00137K
crossref_primary_10_1002_adsc_202400084
crossref_primary_10_1016_j_ejmech_2021_114057
crossref_primary_10_1039_D1RA09036D
crossref_primary_10_1002_ange_202416042
crossref_primary_10_1021_acs_orglett_0c02720
crossref_primary_10_1021_acs_orglett_0c03897
crossref_primary_10_1021_acs_joc_0c01494
crossref_primary_10_1039_D3NJ00013C
crossref_primary_10_1021_acs_orglett_1c04332
crossref_primary_10_1002_ejoc_202100251
crossref_primary_10_2139_ssrn_4187257
crossref_primary_10_1021_acs_joc_1c00270
crossref_primary_10_1021_acscentsci_0c01651
Cites_doi 10.1016/S0040-4020(01)96344-6
10.1002/anie.201501812
10.1021/acs.orglett.6b03610
10.1021/acs.chemrev.8b00506
10.1002/anie.201708419
10.1002/chem.201503835
10.1016/j.chempr.2016.11.005
10.1002/chem.201202240
10.1021/cr00038a004
10.1021/jacs.6b02678
10.1002/anie.201008071
10.1021/jacs.6b12017
10.1016/0040-4020(65)80038-2
10.1016/0040-4020(68)88125-6
10.1021/ja077190z
10.1021/acs.orglett.9b01721
10.1021/ja054109o
10.1002/anie.201507193
10.1021/jo400365e
10.1038/162155a0
10.1016/0040-4020(95)00022-Z
10.1002/anie.201812344
10.1002/chem.201600823
10.1021/ja0206083
10.3987/R-1978-08-1089
10.1002/anie.201107677
10.1002/adsc.201700932
10.1021/jm960054c
10.1021/acs.joc.5b00277
10.1016/0040-4020(68)89038-6
10.1021/jacs.7b06811
10.1021/ol503383x
10.1002/anie.201410814
10.1021/ja105111n
10.1002/anie.201712435
10.1039/C29700001605
10.1002/anie.201701485
10.1021/ar990084k
10.1002/anie.201204822
10.1002/chem.201706032
10.1002/anie.201703178
10.1021/ja01647a088
10.1021/ar500167f
10.1039/C6SC00176A
10.3109/14756366.2015.1118685
10.1016/j.cplett.2017.03.011
10.31635/ccschem.019.20180006
10.1016/j.chempr.2018.06.006
10.1016/j.tet.2013.09.042
10.1021/ja403535a
10.1039/C7CS00508C
10.2174/157017910791163011
10.1021/ja5112749
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acs.accounts.0c00074
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-4898
EndPage 987
ExternalDocumentID 32275392
10_1021_acs_accounts_0c00074
e28683102
Genre Journal Article
GroupedDBID -
.K2
02
23M
53G
55A
5GY
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DZ
EBS
ED
ED~
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
RNS
ROL
TWZ
UI2
UPT
VF5
VG9
W1F
WH7
X
YZZ
---
-DZ
-~X
4.4
5ZA
6J9
6P2
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
AFXLT
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
ZCA
~02
NPM
YIN
7X8
ID FETCH-LOGICAL-a414t-7de18431ff0aa60af89a9b7344aa712e3d7e0190835bd9c8bbf0db7ec5c34dea3
IEDL.DBID ACS
ISSN 0001-4842
1520-4898
IngestDate Fri Jul 11 06:36:23 EDT 2025
Wed Feb 19 02:30:11 EST 2025
Tue Jul 01 03:16:05 EDT 2025
Thu Apr 24 22:55:02 EDT 2025
Thu Aug 27 22:10:50 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a414t-7de18431ff0aa60af89a9b7344aa712e3d7e0190835bd9c8bbf0db7ec5c34dea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4586-8359
0000-0002-7349-262X
PMID 32275392
PQID 2388828941
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_2388828941
pubmed_primary_32275392
crossref_citationtrail_10_1021_acs_accounts_0c00074
crossref_primary_10_1021_acs_accounts_0c00074
acs_journals_10_1021_acs_accounts_0c00074
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-21
PublicationDateYYYYMMDD 2020-04-21
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-21
  day: 21
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Accounts of chemical research
PublicationTitleAlternate Acc. Chem. Res
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
Kowalski P. (ref16/cit16) 1997; 106
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
Zhang X. (ref28/cit28) 2020; 53
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref14/cit14
  doi: 10.1016/S0040-4020(01)96344-6
– ident: ref36/cit36
  doi: 10.1002/anie.201501812
– ident: ref51/cit51
  doi: 10.1021/acs.orglett.6b03610
– ident: ref30/cit30
  doi: 10.1021/acs.chemrev.8b00506
– ident: ref27/cit27
  doi: 10.1002/anie.201708419
– ident: ref3/cit3
  doi: 10.1002/chem.201503835
– ident: ref20/cit20
  doi: 10.1016/j.chempr.2016.11.005
– ident: ref32/cit32
  doi: 10.1002/chem.201202240
– ident: ref6/cit6
  doi: 10.1021/cr00038a004
– ident: ref52/cit52
  doi: 10.1021/jacs.6b02678
– ident: ref8/cit8
  doi: 10.1002/anie.201008071
– ident: ref22/cit22
  doi: 10.1021/jacs.6b12017
– ident: ref11/cit11
  doi: 10.1016/0040-4020(65)80038-2
– ident: ref13/cit13
  doi: 10.1016/0040-4020(68)88125-6
– ident: ref17/cit17
  doi: 10.1021/ja077190z
– ident: ref40/cit40
  doi: 10.1021/acs.orglett.9b01721
– ident: ref46/cit46
  doi: 10.1021/ja054109o
– ident: ref49/cit49
  doi: 10.1002/anie.201507193
– ident: ref42/cit42
  doi: 10.1021/jo400365e
– ident: ref1/cit1
  doi: 10.1038/162155a0
– ident: ref15/cit15
  doi: 10.1016/0040-4020(95)00022-Z
– ident: ref53/cit53
  doi: 10.1002/anie.201812344
– volume: 106
  start-page: 147
  year: 1997
  ident: ref16/cit16
  publication-title: Bull. Soc. Chim. Belg.
– ident: ref10/cit10
  doi: 10.1002/chem.201600823
– ident: ref43/cit43
  doi: 10.1021/ja0206083
– ident: ref5/cit5
  doi: 10.3987/R-1978-08-1089
– ident: ref25/cit25
  doi: 10.1002/anie.201107677
– ident: ref37/cit37
  doi: 10.1002/adsc.201700932
– ident: ref31/cit31
  doi: 10.1021/jm960054c
– ident: ref34/cit34
  doi: 10.1021/acs.joc.5b00277
– ident: ref12/cit12
  doi: 10.1016/0040-4020(68)89038-6
– ident: ref47/cit47
  doi: 10.1021/jacs.7b06811
– ident: ref33/cit33
  doi: 10.1021/ol503383x
– ident: ref35/cit35
  doi: 10.1002/anie.201410814
– ident: ref24/cit24
  doi: 10.1021/ja105111n
– ident: ref55/cit55
  doi: 10.1002/anie.201712435
– ident: ref9/cit9
  doi: 10.1039/C29700001605
– ident: ref38/cit38
  doi: 10.1002/anie.201701485
– ident: ref29/cit29
  doi: 10.1021/ar990084k
– ident: ref18/cit18
  doi: 10.1002/anie.201204822
– volume: 53
  start-page: 11
  year: 2020
  ident: ref28/cit28
  publication-title: Aldrichimica Acta
– ident: ref23/cit23
  doi: 10.1002/chem.201706032
– ident: ref54/cit54
  doi: 10.1002/anie.201703178
– ident: ref2/cit2
  doi: 10.1021/ja01647a088
– ident: ref19/cit19
  doi: 10.1021/ar500167f
– ident: ref26/cit26
  doi: 10.1039/C6SC00176A
– ident: ref48/cit48
  doi: 10.3109/14756366.2015.1118685
– ident: ref44/cit44
  doi: 10.1016/j.cplett.2017.03.011
– ident: ref50/cit50
  doi: 10.31635/ccschem.019.20180006
– ident: ref39/cit39
  doi: 10.1016/j.chempr.2018.06.006
– ident: ref41/cit41
  doi: 10.1016/j.tet.2013.09.042
– ident: ref45/cit45
  doi: 10.1021/ja403535a
– ident: ref4/cit4
  doi: 10.1039/C7CS00508C
– ident: ref7/cit7
  doi: 10.2174/157017910791163011
– ident: ref21/cit21
  doi: 10.1021/ja5112749
SSID ssj0002467
Score 2.614532
Snippet Conspectus The Pictet–Spengler reaction is a fundamental named reaction in organic chemistry, and it is the most straightforward method for the synthesis of...
ConspectusThe Pictet-Spengler reaction is a fundamental named reaction in organic chemistry, and it is the most straightforward method for the synthesis of...
The Pictet-Spengler reaction is a fundamental named reaction in organic chemistry, and it is the most straightforward method for the synthesis of...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 974
Title Exploring the Chemistry of Spiroindolenines by Mechanistically-Driven Reaction Development: Asymmetric Pictet–Spengler-type Reactions and Beyond
URI http://dx.doi.org/10.1021/acs.accounts.0c00074
https://www.ncbi.nlm.nih.gov/pubmed/32275392
https://www.proquest.com/docview/2388828941
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYoHNoL0BdsgcqVeunB29hxXr2tFhBCoq26ReIWjR27WjWbXW2yh-XU30D_YX9JPXn1JQS9JhlLtseemcx83xDyOpQZsmAJpsFKJrmnmHJmiIENVOAkeKQR73zxPjy7lOdXwdWvQPHvDL7gb0GXbui6c0I59HRt9B6QLRHGEQZbo_Gkv3mFDBuOTBciy1iKDip3yyhokHT5p0G6xcusrc3pDvnQYXaaIpOvw1Wlhvr6XwrHe05kl2y3jicdNZrymGyY4gl5OO76vT0lN305HnVOIe3f0Lmlk8V0OXfROybxsU6eqjW9MAgarnmeIc_X7HiJFyf9ZBqoBP2tHOkdHZXr2Qybd2n6caorU_349n2yMMWX3CwZ_gbu5UoKRUYbYM0zcnl68nl8xtqODQwklxWLMoP9Y7i1HkDogY0TSFTkSwkQcWH8LDIIXndun8oSHStlPeR31oH2ZWbAf042i3lh9gmVwkilDcTgnEpILARC2ziME20wN-gPyBu3oGl74sq0TqYLnuLDbpXTdpUHxO-2ONUt9Tl24MjvkGK91KKh_rjj-1ed9qRugzDxAoWZr8rUuUUxRraSD8heo1b9iO5CdRFjIl78x3wOyCOBYb8nmeCHZLNarsyR840q9bI-ED8BrHkReQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB6VcigXKO_wNBIXDg67Xu-rtyilCtBUiLSot9XYa6OKdBNlN4dw4jfAP-wvwbMvHlJV9erdsfyebzyebwBeRzInFizBNVrJpe8prpwa4mhDFToJP9YU7zw9iiYn8sNpeLoFYRcL4xpRuprK2on_h13Af0tl2CRQKIeernXfDbjp8Iggm2s0nvUHsJBRQ5XpLGWZSNFFzF1SC-klXf6rly4Bm7XSObgDX_rm1m9Nvg3XlRrq7_8xOV67P7twu4WhbNSsm7uwZYp7sDPusr_dh5_94zzmICLrv7CFZbPl2WrhbHly6dOreaY2bGoohLhmfcb5fMP3V3SMss-mCZxgfz1O2mOjcnN-Tqm8NPt0pitTXfz4NVua4uvcrDhdCvdyJcMiZ02YzQM4OXh3PJ7wNn8DR-nLise5oWwyvrUeYuShTVJMVRxIiRj7wgR5bCiU3YFAlac6Ucp6xPasQx3I3GDwELaLRWEeA5PCSKUNJuggJqYWQ6FtEiWpNuQpDAbwxg1o1u6_Mqtd68LPqLAb5awd5QEE3UxnuiVCp3wc8yukeC-1bIhArvj_VbeIMjdB5IbBwizWZeZAUkJ2rvQH8KhZXX2N7nh19mMqnlyjPy9hZ3I8PcwO3x99fAq3BF0IeJIL_xlsV6u1ee5QU6Ve1HvkNxj0Gdo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZKkYALpUBpaEuNxIWD07XX--IWpY3Ko1VFqFRxWY29dlU13UTZzSGc-A3wD_kl9exLLVJVwdW7Y9njx8x4Zr4h5F0oM0TBEkyDlUxyTzHlxBADG6jAUfBIY77z0XF4eCo_nQVnN0p9uUEUrqeicuLjqZ5ltkEY4HvYDnURhaLv6Ur-PSAP0XOHdtdgOO4uYSHDGi7TWcsylqLNmrujF5RNurgtm-5QOCvBM1oj37shV_Eml_1Fqfr6x19ojv81p2fkaaOO0kG9f9bJismfk8fDtgrcC_KrC9KjTlWk3Rc6tXQ8u5hPnU2Prn2MnqdqSY8MphJX6M8wmSzZ_hyvU_rV1AkU9EaQ0gc6KJZXV1jSS9OTC12a8s_P3-OZyc8nZs7wcbijKyjkGa3TbV6S09HBt-Eha-o4MJBclizKDFaV4dZ6AKEHNk4gUZEvJUDEhfGzyGBKu1MGVZboWCnrIeqzDrQvMwP-BlnNp7nZJFQKI5U2EINTNSGxEAht4zBOtEGPod8j7x1D0-YcFmnlYhc8xcaWy2nD5R7x29VOdQOIjnU5JvdQsY5qVgOC3PP_23YjpW6B0B0DuZkuitQpSzHau5L3yKt6h3U9umvW2ZGJeP0P89klj072R-mXj8eft8gTge8CnmSCb5PVcr4wO055KtWb6phcA-njHF0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+the+Chemistry+of+Spiroindolenines+by+Mechanistically-Driven+Reaction+Development%3A+Asymmetric+Pictet-Spengler-type+Reactions+and+Beyond&rft.jtitle=Accounts+of+chemical+research&rft.au=Zheng%2C+Chao&rft.au=You%2C+Shu-Li&rft.date=2020-04-21&rft.eissn=1520-4898&rft.volume=53&rft.issue=4&rft.spage=974&rft_id=info:doi/10.1021%2Facs.accounts.0c00074&rft_id=info%3Apmid%2F32275392&rft.externalDocID=32275392
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon