Regulation of the Biological Functions of Osteoblasts and Bone Formation by Zn-Incorporated Coating on Microrough Titanium

To improve the biological performance of titanium implant, a series of Zn-incorporated coatings were fabricated on the microrough titanium (Micro-Ti) via sol–gel method by spin-coating technique. The successful fabrication of the coating was verified by combined techniques of scanning electron micro...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 6; no. 18; pp. 16426 - 16440
Main Authors Shen, Xinkun, Hu, Yan, Xu, Gaoqiang, Chen, Weizhen, Xu, Kui, Ran, Qichun, Ma, Pingping, Zhang, Yarong, Li, Jinghua, Cai, Kaiyong
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 24.09.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To improve the biological performance of titanium implant, a series of Zn-incorporated coatings were fabricated on the microrough titanium (Micro-Ti) via sol–gel method by spin-coating technique. The successful fabrication of the coating was verified by combined techniques of scanning electron microscopy, surface profiler, X-ray diffraction, X-ray photoelectron spectroscopy, and water contact angle measurements. The incorporated zinc existed as ZnO, which released Zn ions in a sustained manner. The Zn-incorporated samples (Ti–Zn0.08, Ti–Zn0.16, and Ti–Zn0.24) efficiently inhibited the adhesion of both Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa) bacteria. The in vitro evaluations including cell activity, alkaline phosphatase (ALP), mineralization, osteogenic genes expressions (Runx2, ALP, OPG, Col I, OPN, and OC), and tartrate-resistant acid phosphatase, confirmed that Ti–Zn0.16 sample was the optimal one to regulate the proliferation or differentiation for both osteoblasts and osteoclasts. More importantly, in vivo evaluations including Micro-CT analysis, push-out test, and histological observations verified that Ti–Zn0.16 implants could efficiently promote new bone formation after implantation for 4 and 12 weeks, respectively. The resulting material thus has potential application in orthopedic field.
AbstractList To improve the biological performance of titanium implant, a series of Zn-incorporated coatings were fabricated on the microrough titanium (Micro-Ti) via sol-gel method by spin-coating technique. The successful fabrication of the coating was verified by combined techniques of scanning electron microscopy, surface profiler, X-ray diffraction, X-ray photoelectron spectroscopy, and water contact angle measurements. The incorporated zinc existed as ZnO, which released Zn ions in a sustained manner. The Zn-incorporated samples (Ti-Zn0.08, Ti-Zn0.16, and Ti-Zn0.24) efficiently inhibited the adhesion of both Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa) bacteria. The in vitro evaluations including cell activity, alkaline phosphatase (ALP), mineralization, osteogenic genes expressions (Runx2, ALP, OPG, Col I, OPN, and OC), and tartrate-resistant acid phosphatase, confirmed that Ti-Zn0.16 sample was the optimal one to regulate the proliferation or differentiation for both osteoblasts and osteoclasts. More importantly, in vivo evaluations including Micro-CT analysis, push-out test, and histological observations verified that Ti-Zn0.16 implants could efficiently promote new bone formation after implantation for 4 and 12 weeks, respectively. The resulting material thus has potential application in orthopedic field.
To improve the biological performance of titanium implant, a series of Zn-incorporated coatings were fabricated on the microrough titanium (Micro-Ti) via sol-gel method by spin-coating technique. The successful fabrication of the coating was verified by combined techniques of scanning electron microscopy, surface profiler, X-ray diffraction, X-ray photoelectron spectroscopy, and water contact angle measurements. The incorporated zinc existed as ZnO, which released Zn ions in a sustained manner. The Zn-incorporated samples (Ti-Zn0.08, Ti-Zn0.16, and Ti-Zn0.24) efficiently inhibited the adhesion of both Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa) bacteria. The in vitro evaluations including cell activity, alkaline phosphatase (ALP), mineralization, osteogenic genes expressions (Runx2, ALP, OPG, Col I, OPN, and OC), and tartrate-resistant acid phosphatase, confirmed that Ti-Zn0.16 sample was the optimal one to regulate the proliferation or differentiation for both osteoblasts and osteoclasts. More importantly, in vivo evaluations including Micro-CT analysis, push-out test, and histological observations verified that Ti-Zn0.16 implants could efficiently promote new bone formation after implantation for 4 and 12 weeks, respectively. The resulting material thus has potential application in orthopedic field.To improve the biological performance of titanium implant, a series of Zn-incorporated coatings were fabricated on the microrough titanium (Micro-Ti) via sol-gel method by spin-coating technique. The successful fabrication of the coating was verified by combined techniques of scanning electron microscopy, surface profiler, X-ray diffraction, X-ray photoelectron spectroscopy, and water contact angle measurements. The incorporated zinc existed as ZnO, which released Zn ions in a sustained manner. The Zn-incorporated samples (Ti-Zn0.08, Ti-Zn0.16, and Ti-Zn0.24) efficiently inhibited the adhesion of both Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa) bacteria. The in vitro evaluations including cell activity, alkaline phosphatase (ALP), mineralization, osteogenic genes expressions (Runx2, ALP, OPG, Col I, OPN, and OC), and tartrate-resistant acid phosphatase, confirmed that Ti-Zn0.16 sample was the optimal one to regulate the proliferation or differentiation for both osteoblasts and osteoclasts. More importantly, in vivo evaluations including Micro-CT analysis, push-out test, and histological observations verified that Ti-Zn0.16 implants could efficiently promote new bone formation after implantation for 4 and 12 weeks, respectively. The resulting material thus has potential application in orthopedic field.
Author Cai, Kaiyong
Hu, Yan
Xu, Gaoqiang
Xu, Kui
Ma, Pingping
Shen, Xinkun
Li, Jinghua
Chen, Weizhen
Ran, Qichun
Zhang, Yarong
AuthorAffiliation Chongqing University
Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering
AuthorAffiliation_xml – name: Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering
– name: Chongqing University
Author_xml – sequence: 1
  givenname: Xinkun
  surname: Shen
  fullname: Shen, Xinkun
– sequence: 2
  givenname: Yan
  surname: Hu
  fullname: Hu, Yan
– sequence: 3
  givenname: Gaoqiang
  surname: Xu
  fullname: Xu, Gaoqiang
– sequence: 4
  givenname: Weizhen
  surname: Chen
  fullname: Chen, Weizhen
– sequence: 5
  givenname: Kui
  surname: Xu
  fullname: Xu, Kui
– sequence: 6
  givenname: Qichun
  surname: Ran
  fullname: Ran, Qichun
– sequence: 7
  givenname: Pingping
  surname: Ma
  fullname: Ma, Pingping
– sequence: 8
  givenname: Yarong
  surname: Zhang
  fullname: Zhang, Yarong
– sequence: 9
  givenname: Jinghua
  surname: Li
  fullname: Li, Jinghua
– sequence: 10
  givenname: Kaiyong
  surname: Cai
  fullname: Cai, Kaiyong
  email: kaiyong_cai@cqu.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25148131$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1KJDEUhcOgjD8zi3mBIRtBF6X5rapeamOroAiDs5lNkaRu2khV0pOkFvr0pmnthQiubuB8JyTfPUA7PnhA6Bclp5QweqZGScSM8_Yb2qczIaqWSbazPQuxhw5SeiKk5ozI72iPSSpayuk-evkDy2lQ2QWPg8X5EfCFC0NYOqMGvJi8WUdpnd2nDEEPKuWEle_xRXkEXoQ4btr6Gf_z1Y03Ia5CVBl6PA8l8ktc0jtnYohhWj7iB5eVd9P4A-1aNST4-TYP0d_F5cP8urq9v7qZn99WSlCRq9o2Rvd0ZkGa3rZCcdEY0IQzzTlY6LUhTSOtkoLWkoHVqtG1hVkx0nLG-SE63ty7iuH_BCl3o0sGhkF5CFPqGCGEt20ZX6JU1lISThta0N9v6KRH6LtVdKOKz9272gKcbIDy8ZQi2C1CSbdeW7ddW2HPPrCmSFprzVG54dPG0aahTOqewhR9UfgJ9woosqXd
CitedBy_id crossref_primary_10_1002_mabi_201800028
crossref_primary_10_1021_acsami_5b03172
crossref_primary_10_1016_j_surfin_2022_102275
crossref_primary_10_1049_mnl_2019_0524
crossref_primary_10_1016_j_apsusc_2017_04_152
crossref_primary_10_2139_ssrn_3960581
crossref_primary_10_1016_j_apsusc_2020_146107
crossref_primary_10_1021_acsnano_1c06036
crossref_primary_10_1016_j_actbio_2020_01_029
crossref_primary_10_1016_j_colsurfb_2019_02_014
crossref_primary_10_1021_acsami_5b03209
crossref_primary_10_1016_j_jmst_2022_04_046
crossref_primary_10_1177_15353702211019008
crossref_primary_10_1016_j_surfcoat_2016_03_085
crossref_primary_10_1007_s42235_024_00511_9
crossref_primary_10_1039_D0NR06297A
crossref_primary_10_1002_jbm_a_36977
crossref_primary_10_1080_2374068X_2024_2391192
crossref_primary_10_1016_j_jmbbm_2018_04_010
crossref_primary_10_1002_jbm_a_37284
crossref_primary_10_1039_C6NR02844F
crossref_primary_10_1021_acsabm_8b00486
crossref_primary_10_1016_j_addr_2017_01_007
crossref_primary_10_1021_acsami_6b02740
crossref_primary_10_1016_j_matdes_2020_109086
crossref_primary_10_1016_j_actbio_2018_03_007
crossref_primary_10_3389_fbioe_2022_848769
crossref_primary_10_1016_j_apsusc_2015_12_045
crossref_primary_10_1002_adem_201700299
crossref_primary_10_1016_j_colsurfb_2016_08_023
crossref_primary_10_1002_adhm_201500461
crossref_primary_10_1016_j_cej_2021_130176
crossref_primary_10_1016_j_colsurfb_2017_08_043
crossref_primary_10_3390_jfb15010015
crossref_primary_10_1016_j_surfcoat_2018_08_051
crossref_primary_10_1039_C6TB01779G
crossref_primary_10_1007_s42600_024_00347_6
crossref_primary_10_1016_j_diamond_2017_06_006
crossref_primary_10_1021_acsbiomaterials_9b00841
crossref_primary_10_1002_jbm_a_36740
crossref_primary_10_1016_j_bioactmat_2023_03_005
crossref_primary_10_1016_j_matdes_2022_110596
crossref_primary_10_1016_j_actbio_2019_05_001
crossref_primary_10_1016_j_jconrel_2023_11_049
crossref_primary_10_1016_j_carbon_2018_10_081
crossref_primary_10_1016_j_msec_2018_04_098
crossref_primary_10_1021_acsami_7b02320
crossref_primary_10_1021_acsbiomaterials_4c00972
crossref_primary_10_1016_j_cej_2020_124621
crossref_primary_10_1021_acsabm_3c00284
crossref_primary_10_1021_acsbiomaterials_4c02118
crossref_primary_10_1088_1674_1056_25_5_058301
crossref_primary_10_3390_coatings10111012
crossref_primary_10_1177_0885328218809239
crossref_primary_10_1016_j_biomaterials_2023_122465
crossref_primary_10_1016_j_jmrt_2023_09_025
crossref_primary_10_3389_fchem_2024_1353950
crossref_primary_10_1021_acsbiomaterials_4c00210
crossref_primary_10_1016_j_surfcoat_2021_127453
crossref_primary_10_1039_C8TB00192H
crossref_primary_10_1016_j_heliyon_2023_e23779
crossref_primary_10_1016_j_apsusc_2021_152263
crossref_primary_10_1038_s41598_017_04395_0
crossref_primary_10_1002_chem_201703232
crossref_primary_10_1080_09205063_2022_2088524
crossref_primary_10_1016_j_msec_2017_04_063
crossref_primary_10_1021_acsbiomaterials_8b01137
crossref_primary_10_1007_s42235_022_00152_w
crossref_primary_10_1016_j_msec_2021_111969
crossref_primary_10_3390_antibiotics11020235
crossref_primary_10_1016_j_matdes_2015_12_126
crossref_primary_10_1039_C5TB02391B
crossref_primary_10_1016_j_actbio_2020_11_032
crossref_primary_10_1039_C4RA17058J
crossref_primary_10_1021_acsami_7b17351
crossref_primary_10_1016_j_msec_2020_110851
crossref_primary_10_1039_D4TB00226A
crossref_primary_10_1016_j_msec_2019_04_074
crossref_primary_10_1039_C6RA26060H
crossref_primary_10_3390_nano10091672
crossref_primary_10_1007_s10856_021_06497_8
crossref_primary_10_1016_j_surfcoat_2024_131063
crossref_primary_10_1021_acsbiomaterials_8b00791
crossref_primary_10_1016_j_jmst_2020_10_066
crossref_primary_10_1016_j_ceramint_2019_08_216
crossref_primary_10_1016_j_msec_2018_10_068
crossref_primary_10_1016_j_jallcom_2017_08_078
crossref_primary_10_3390_ma17174309
crossref_primary_10_4103_tdj_tdj_20_22
crossref_primary_10_1016_j_msec_2017_03_020
crossref_primary_10_1016_j_msec_2018_03_024
crossref_primary_10_1016_j_mtbio_2024_101150
crossref_primary_10_1002_adem_202300563
crossref_primary_10_1021_acsami_4c02644
crossref_primary_10_1016_j_mtbio_2023_100586
crossref_primary_10_2174_1573413716666200217104004
crossref_primary_10_1007_s12274_022_4644_4
crossref_primary_10_1016_j_mtbio_2022_100216
crossref_primary_10_1002_jbm_a_36273
crossref_primary_10_1016_j_jma_2020_02_008
crossref_primary_10_1039_D2TB00931E
crossref_primary_10_1039_D0RA09395E
crossref_primary_10_1016_j_jcis_2016_02_022
crossref_primary_10_1016_j_jallcom_2022_165223
crossref_primary_10_2147_IJN_S262876
crossref_primary_10_1016_j_bioadv_2024_214070
crossref_primary_10_1039_C5TB01956G
crossref_primary_10_1039_C6RA12100D
crossref_primary_10_1016_j_apmt_2020_100673
crossref_primary_10_1016_j_matdes_2023_112071
crossref_primary_10_1016_j_msec_2016_04_106
crossref_primary_10_1515_ntrev_2022_0037
crossref_primary_10_1016_j_inoche_2022_109621
crossref_primary_10_1016_j_cej_2024_149278
crossref_primary_10_1016_j_biomaterials_2024_122515
crossref_primary_10_1016_j_ijheatmasstransfer_2017_08_064
crossref_primary_10_1039_C6TB00724D
crossref_primary_10_1039_D1TB01479J
crossref_primary_10_1039_C7TB03071A
crossref_primary_10_1016_j_matdes_2022_110987
crossref_primary_10_1016_j_actbio_2020_02_044
crossref_primary_10_2139_ssrn_4015427
crossref_primary_10_1016_j_colsurfb_2016_08_056
crossref_primary_10_1016_j_prosdent_2022_05_007
crossref_primary_10_1021_acsnano_7b05620
crossref_primary_10_1016_j_jiec_2017_01_023
crossref_primary_10_1016_j_surfcoat_2022_128143
crossref_primary_10_1021_acsami_8b10992
crossref_primary_10_1039_C8RA09112A
crossref_primary_10_1016_j_apsusc_2018_05_097
crossref_primary_10_1002_adhm_202000681
crossref_primary_10_1016_j_biomaterials_2023_122268
crossref_primary_10_1016_j_colsurfb_2018_07_052
crossref_primary_10_1002_jbm_a_35941
crossref_primary_10_1016_j_biomaterials_2019_119366
crossref_primary_10_1016_j_mtchem_2021_100670
crossref_primary_10_1016_j_matchemphys_2022_126872
crossref_primary_10_1371_journal_pone_0214384
crossref_primary_10_1039_D5TB00111K
crossref_primary_10_1016_j_surfcoat_2024_130483
crossref_primary_10_1016_j_prosdent_2016_06_003
crossref_primary_10_1016_j_cej_2021_133094
crossref_primary_10_1021_acsami_3c08233
crossref_primary_10_1021_acsnano_2c12488
crossref_primary_10_1088_2053_1591_ad7785
crossref_primary_10_3390_bioengineering9080409
crossref_primary_10_3390_ma12060866
crossref_primary_10_1021_acsami_1c23631
crossref_primary_10_3390_nano10122401
crossref_primary_10_1002_biot_202000116
crossref_primary_10_1002_pat_6438
crossref_primary_10_1016_j_inoche_2023_110885
crossref_primary_10_1016_j_biomaterials_2022_121683
crossref_primary_10_1016_j_biomaterials_2019_05_008
crossref_primary_10_1002_chem_202004529
crossref_primary_10_1016_j_cej_2022_134802
crossref_primary_10_3390_biology13040237
crossref_primary_10_1002_adhm_202001369
Cites_doi 10.1021/am300292v
10.1021/am501119k
10.1039/C2BM00012A
10.1002/smll.201101170
10.1016/j.actbio.2008.03.005
10.1002/jbm.10067
10.1016/j.actbio.2013.10.011
10.1016/j.bone.2011.08.031
10.1016/j.biocel.2014.03.005
10.1016/j.msec.2013.05.012
10.1016/j.actbio.2011.10.021
10.1002/adma.201000854
10.1016/j.biomaterials.2009.12.029
10.1016/j.actbio.2013.08.039
10.1016/j.msec.2012.12.019
10.1016/j.biomaterials.2004.02.022
10.1016/j.cbi.2007.03.002
10.1007/s00784-013-0953-z
10.1016/j.biomaterials.2010.03.014
10.1016/j.actbio.2008.12.017
10.1016/j.biomaterials.2005.03.020
10.1016/j.ejphar.2013.05.020
10.1021/am500974v
10.1111/j.1600-0501.2011.02397.x
10.1016/j.bjoms.2011.12.008
10.1002/sia.1041
10.1016/j.biomaterials.2014.05.028
10.1016/j.biomaterials.2011.01.029
10.1016/j.biomaterials.2013.01.071
10.1016/j.biomaterials.2011.10.027
10.3390/ijms150713030
10.1002/smll.200801476
10.11607/jomi.2436
10.1088/1748-6041/6/4/045007
10.1016/j.biomaterials.2014.04.101
10.1016/j.apsusc.2010.06.002
10.1016/j.dental.2014.04.001
10.1021/la104825u
10.1016/j.biomaterials.2009.03.037
10.1093/toxsci/kft187
10.1093/carcin/bgu045
10.1016/j.actbio.2011.09.031
10.1039/b515219b
10.1002/adem.201180073
10.1016/j.biomaterials.2013.01.008
10.1126/science.271.5252.1081
10.1016/j.biomaterials.2014.04.054
10.1021/am4053317
10.1016/j.mser.2004.11.001
10.1016/j.biomaterials.2009.03.047
10.1016/j.biomaterials.2010.01.024
10.1016/j.biomaterials.2003.11.053
10.1016/j.jeurceramsoc.2013.11.010
10.1016/j.biomaterials.2012.01.040
10.1021/bm1014365
10.1002/anie.200800412
10.4162/nrp.2010.4.5.356
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1021/am5049338
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 16440
ExternalDocumentID 25148131
10_1021_am5049338
d085028310
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
23M
4.4
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
LG6
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
---
.K2
5VS
5ZA
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a414t-6f7cbd19fe5cdf84a347ceb032b33efedbc0775fa541652efba7b6fe949383233
IEDL.DBID ACS
ISSN 1944-8244
1944-8252
IngestDate Fri Jul 11 06:54:11 EDT 2025
Fri Jul 11 15:36:59 EDT 2025
Mon Jul 21 06:00:36 EDT 2025
Thu Apr 24 22:51:13 EDT 2025
Tue Jul 01 04:12:25 EDT 2025
Thu Aug 27 13:42:20 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords in vivo
osteoblasts
osteogenesis
zinc
titanium
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a414t-6f7cbd19fe5cdf84a347ceb032b33efedbc0775fa541652efba7b6fe949383233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25148131
PQID 1565503171
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_2000388200
proquest_miscellaneous_1565503171
pubmed_primary_25148131
crossref_primary_10_1021_am5049338
crossref_citationtrail_10_1021_am5049338
acs_journals_10_1021_am5049338
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-09-24
PublicationDateYYYYMMDD 2014-09-24
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-09-24
  day: 24
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2014
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Conserva E. (ref14/cit14) 2013; 24
Cai K. (ref10/cit10) 2008; 47
Peng S. (ref51/cit51) 2011; 49
Hu Y. (ref53/cit53) 2010; 22
Lai M. (ref8/cit8) 2011; 12
Mladenović Ž. (ref54/cit54) 2014; 10
Jain A. (ref25/cit25) 2013; 33
Gittens R. A. (ref34/cit34) 2011; 32
Yuan K. (ref7/cit7) 2014; 29
Roy M. (ref55/cit55) 2013; 1
Han Y. (ref36/cit36) 2008; 4
Palza H. (ref39/cit39) 2013; 33
ref37/cit37
Shen C. (ref42/cit42) 2013; 136
Carbajal L. (ref30/cit30) 2014; 34
Hetrick E. M. (ref5/cit5) 2006; 35
Zhang W. (ref60/cit60) 2013; 34
Liu X. (ref1/cit1) 2004; 92
Schliephake H. (ref19/cit19) 2012; 33
Zhao B. (ref6/cit6) 2014; 30
Yavari S. A. (ref11/cit11) 2014; 35
Wrighton K. H. (ref47/cit47) 2014; 15
Raghupathi K. R. (ref43/cit43) 2011; 27
Wätjen W. (ref28/cit28) 2002; 110
Zreiqat H. (ref58/cit58) 2010; 31
Cai K. (ref4/cit4) 2011; 7
Ma X. Y. (ref18/cit18) 2014; 35
Zhao L. (ref16/cit16) 2010; 31
Luo X. (ref56/cit56) 2014; 10
Farahani E. (ref46/cit46) 2014; 35
Cai K. (ref38/cit38) 2005; 26
Misra R. D. (ref22/cit22) 2009; 5
Zhu Y. (ref32/cit32) 2001; 1
Aina V. (ref40/cit40) 2007; 167
Esteban-Tejeda L. (ref23/cit23) 2014; 15
Li Y. (ref15/cit15) 2012; 50
Berg J. M. (ref27/cit27) 1996; 271
Cai K. (ref59/cit59) 2002; 62
Hu Y. (ref45/cit45) 2012; 8
Gil F. J. (ref2/cit2) 2014; 18
Huo K. (ref44/cit44) 2013; 34
Wang Y. W. (ref41/cit41) 2014; 6
Brauer D. S. (ref29/cit29) 2011; 6
Yada M. (ref9/cit9) 2014; 6
Tschernitschek H. (ref3/cit3) 2005; 36
Hu Y. (ref17/cit17) 2009; 30
Hu Y. (ref48/cit48) 2012; 33
Park J. (ref57/cit57) 2009; 5
Kumar P. T. (ref31/cit31) 2012; 4
Ong J. L. (ref61/cit61) 2004; 25
Bagherifardet S. (ref21/cit21) 2014; 6
Qiao Y. (ref20/cit20) 2014; 35
Hu H. (ref24/cit24) 2012; 8
Chen X. (ref35/cit35) 2012; 14
Xu D. (ref50/cit50) 2014; 51
Xu J. (ref26/cit26) 2010; 256
Gan L. (ref33/cit33) 2005; 26
Litsuka N. (ref52/cit52) 2013; 714
Seo H. J. (ref49/cit49) 2010; 4
Schwartz Z. (ref13/cit13) 2009; 30
Olivares-Navarrete R. (ref12/cit12) 2010; 31
References_xml – volume: 4
  start-page: 2618
  year: 2012
  ident: ref31/cit31
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am300292v
– volume: 6
  start-page: 7963
  year: 2014
  ident: ref21/cit21
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am501119k
– volume: 1
  start-page: 74
  year: 2013
  ident: ref55/cit55
  publication-title: Biomater. Sci.
  doi: 10.1039/C2BM00012A
– volume: 7
  start-page: 3026
  year: 2011
  ident: ref4/cit4
  publication-title: Small
  doi: 10.1002/smll.201101170
– volume: 4
  start-page: 1518
  year: 2008
  ident: ref36/cit36
  publication-title: Acta. Biomater.
  doi: 10.1016/j.actbio.2008.03.005
– volume: 62
  start-page: 283
  year: 2002
  ident: ref59/cit59
  publication-title: J. Biomed. Mater. Res.
  doi: 10.1002/jbm.10067
– volume: 10
  start-page: 477
  year: 2014
  ident: ref56/cit56
  publication-title: Acta. Biomater.
  doi: 10.1016/j.actbio.2013.10.011
– volume: 49
  start-page: 1290
  year: 2011
  ident: ref51/cit51
  publication-title: Bone
  doi: 10.1016/j.bone.2011.08.031
– volume: 51
  start-page: 1
  year: 2014
  ident: ref50/cit50
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/j.biocel.2014.03.005
– volume: 33
  start-page: 3795
  year: 2013
  ident: ref39/cit39
  publication-title: Mater. Sci. Eng., C
  doi: 10.1016/j.msec.2013.05.012
– volume: 8
  start-page: 439
  year: 2012
  ident: ref45/cit45
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2011.10.021
– volume: 22
  start-page: 4146
  year: 2010
  ident: ref53/cit53
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201000854
– volume: 31
  start-page: 2728
  year: 2010
  ident: ref12/cit12
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.12.029
– volume: 15
  start-page: 367
  year: 2014
  ident: ref47/cit47
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 10
  start-page: 406
  year: 2014
  ident: ref54/cit54
  publication-title: Acta. Biomater.
  doi: 10.1016/j.actbio.2013.08.039
– volume: 33
  start-page: 1247
  year: 2013
  ident: ref25/cit25
  publication-title: Mater. Sci. Eng., C
  doi: 10.1016/j.msec.2012.12.019
– volume: 26
  start-page: 189
  year: 2005
  ident: ref33/cit33
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2004.02.022
– volume: 167
  start-page: 207
  year: 2007
  ident: ref40/cit40
  publication-title: Chem.-Biol. Interact.
  doi: 10.1016/j.cbi.2007.03.002
– volume: 18
  start-page: 59
  year: 2014
  ident: ref2/cit2
  publication-title: Clin. Oral Invest.
  doi: 10.1007/s00784-013-0953-z
– volume: 110
  start-page: 865
  year: 2002
  ident: ref28/cit28
  publication-title: Environ. Health Perspect.
– volume: 31
  start-page: 5072
  year: 2010
  ident: ref16/cit16
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.03.014
– volume: 5
  start-page: 1455
  year: 2009
  ident: ref22/cit22
  publication-title: Acta. Biomater.
  doi: 10.1016/j.actbio.2008.12.017
– volume: 26
  start-page: 5960
  year: 2005
  ident: ref38/cit38
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2005.03.020
– volume: 714
  start-page: 41
  year: 2013
  ident: ref52/cit52
  publication-title: Eur. J. Pharmacol.
  doi: 10.1016/j.ejphar.2013.05.020
– volume: 6
  start-page: 7695
  year: 2014
  ident: ref9/cit9
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am500974v
– volume: 24
  start-page: 880
  year: 2013
  ident: ref14/cit14
  publication-title: Clin. Oral Implants Res.
  doi: 10.1111/j.1600-0501.2011.02397.x
– volume: 50
  start-page: 779
  year: 2012
  ident: ref15/cit15
  publication-title: Br. J. Oral Maxillofac. Surg.
  doi: 10.1016/j.bjoms.2011.12.008
– volume: 1
  start-page: 218
  year: 2001
  ident: ref32/cit32
  publication-title: Surf. Interface Anal.
  doi: 10.1002/sia.1041
– volume: 35
  start-page: 7259
  year: 2014
  ident: ref18/cit18
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.05.028
– volume: 32
  start-page: 3395
  year: 2011
  ident: ref34/cit34
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.01.029
– volume: 34
  start-page: 3467
  year: 2013
  ident: ref44/cit44
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.01.071
– volume: 33
  start-page: 1315
  year: 2012
  ident: ref19/cit19
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.10.027
– volume: 15
  start-page: 13030
  year: 2014
  ident: ref23/cit23
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms150713030
– ident: ref37/cit37
– volume: 5
  start-page: 666
  year: 2009
  ident: ref57/cit57
  publication-title: Small
  doi: 10.1002/smll.200801476
– volume: 29
  start-page: 32
  year: 2014
  ident: ref7/cit7
  publication-title: Int. J. Oral Maxillofac. Implants
  doi: 10.11607/jomi.2436
– volume: 6
  start-page: 045007
  year: 2011
  ident: ref29/cit29
  publication-title: Biomed. Mater.
  doi: 10.1088/1748-6041/6/4/045007
– volume: 35
  start-page: 6882
  year: 2014
  ident: ref20/cit20
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.04.101
– volume: 256
  start-page: 7540
  year: 2010
  ident: ref26/cit26
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2010.06.002
– volume: 30
  start-page: 716
  year: 2014
  ident: ref6/cit6
  publication-title: Dent. Mater.
  doi: 10.1016/j.dental.2014.04.001
– volume: 27
  start-page: 4020
  year: 2011
  ident: ref43/cit43
  publication-title: Langmuir
  doi: 10.1021/la104825u
– volume: 30
  start-page: 3626
  year: 2009
  ident: ref17/cit17
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.03.037
– volume: 136
  start-page: 120
  year: 2013
  ident: ref42/cit42
  publication-title: Toxicol. Sci.
  doi: 10.1093/toxsci/kft187
– volume: 35
  start-page: 747
  year: 2014
  ident: ref46/cit46
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgu045
– volume: 8
  start-page: 904
  year: 2012
  ident: ref24/cit24
  publication-title: Acta. Biomater.
  doi: 10.1016/j.actbio.2011.09.031
– volume: 35
  start-page: 780
  year: 2006
  ident: ref5/cit5
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b515219b
– volume: 14
  start-page: 216
  year: 2012
  ident: ref35/cit35
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.201180073
– volume: 34
  start-page: 3184
  year: 2013
  ident: ref60/cit60
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.01.008
– volume: 271
  start-page: 1081
  year: 1996
  ident: ref27/cit27
  publication-title: Science
  doi: 10.1126/science.271.5252.1081
– volume: 35
  start-page: 6172
  year: 2014
  ident: ref11/cit11
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.04.054
– volume: 6
  start-page: 2791
  year: 2014
  ident: ref41/cit41
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am4053317
– volume: 92
  start-page: 49
  year: 2004
  ident: ref1/cit1
  publication-title: Mater. Sci. Eng., R.
  doi: 10.1016/j.mser.2004.11.001
– volume: 30
  start-page: 3390
  year: 2009
  ident: ref13/cit13
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.03.047
– volume: 31
  start-page: 3175
  year: 2010
  ident: ref58/cit58
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.01.024
– volume: 25
  start-page: 4601
  year: 2004
  ident: ref61/cit61
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2003.11.053
– volume: 34
  start-page: 1375
  year: 2014
  ident: ref30/cit30
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2013.11.010
– volume: 33
  start-page: 3515
  year: 2012
  ident: ref48/cit48
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.01.040
– volume: 12
  start-page: 1097
  year: 2011
  ident: ref8/cit8
  publication-title: Biomacromolecules
  doi: 10.1021/bm1014365
– volume: 47
  start-page: 7479
  year: 2008
  ident: ref10/cit10
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200800412
– volume: 4
  start-page: 356
  year: 2010
  ident: ref49/cit49
  publication-title: Nutr. Res. Pract.
  doi: 10.4162/nrp.2010.4.5.356
– volume: 36
  start-page: 523
  year: 2005
  ident: ref3/cit3
  publication-title: Quintessence Int.
SSID ssj0063205
Score 2.5110881
Snippet To improve the biological performance of titanium implant, a series of Zn-incorporated coatings were fabricated on the microrough titanium (Micro-Ti) via...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 16426
SubjectTerms acid phosphatase
adhesion
alkaline phosphatase
Animals
Anti-Bacterial Agents - chemistry
Anti-Bacterial Agents - pharmacology
Anti-Bacterial Agents - toxicity
bacteria
bone formation
cell differentiation
Cell Line
cell proliferation
Cell Survival - drug effects
Coated Materials, Biocompatible - chemistry
Coated Materials, Biocompatible - pharmacology
Coated Materials, Biocompatible - toxicity
coatings
contact angle
Femur - surgery
gene expression
in vitro studies
in vivo studies
ions
Mice
micro-computed tomography
mineralization
orthopedics
osteoblasts
Osteoblasts - cytology
Osteoblasts - drug effects
Osteoblasts - metabolism
Osteoblasts - transplantation
osteoclasts
Osteogenesis - drug effects
prostheses
Pseudomonas aeruginosa
Rabbits
Rats
scanning electron microscopy
sol-gel processing
Staphylococcus aureus
Surface Properties
titanium
Titanium - chemistry
Titanium - pharmacology
Titanium - toxicity
X-ray diffraction
X-ray photoelectron spectroscopy
zinc
Zinc - chemistry
Zinc - pharmacology
Zinc - toxicity
zinc oxide
Title Regulation of the Biological Functions of Osteoblasts and Bone Formation by Zn-Incorporated Coating on Microrough Titanium
URI http://dx.doi.org/10.1021/am5049338
https://www.ncbi.nlm.nih.gov/pubmed/25148131
https://www.proquest.com/docview/1565503171
https://www.proquest.com/docview/2000388200
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTsMwEB2xXODAvpRNZjlwMTS2s_QIhQqQAIlFQlwiO7alCkgQTQ_w9YydpgJB4ZyJbGfGnjeZ8RuAvZbjcGlZRgNhIio0hjsKvSQ1LS6FYSqR0v2HvLyKzu7FxUP4MAa7IzL4LDiULyGiWIykxmGSRUnsIqyj9m193Eac-TpFDMYFTdBZ1fRBX191rifrfXc9I_Ck9yudWTipb-dU5SRPB_1SHWQfP8ka_5ryHMwMcCU5qgxhHsZMvgDTX9gGF-Hjpuo7j5oghSWI_EjVidLpiXTQwXkbdM-uUfeFQmBd9ojMNTkuckM69T1Hot7JY07PHQWmp0E2mrQL6QqoCT69dDV-vvsPuesi9uz2X5bgvnN61z6jg9YLVIpAlDSycaY0KtGEmbaJkFzEmVFNzhTnxhqtMsedZ2WIgC5kxioZq8iaFi4bzwjOl2Eix6mtAlFhoDzuCzEAjriWjFmpmhaBSZZoLRuwhbpJB1unl_qsOAvS4UdswH6ttjQbEJe7_hnPv4nuDEVfK7aO34S2a92nuJdcgkTmpujj0IhuQzzl4mC0DPPJVMRNzQasVIYzHAqxokjQ9tf-W9I6TCHwEtRntzZgonzrm00EN6Xa8sb9Cdhv8m8
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHIADUFpgebQu6qEXtxvbyWaPy4rV9rFFolup6iWyY1uqoAki2QP76_nsJNuCWsE5k_gxY8_nzPgbQnaHnsNl6DiLpE2YNDjuaHhJZodCSct1qpT_Dzk7Tabn8ugivmhpcvxdGHSiwpeqEMS_YReIDtR1DDCLA9VD8ggghPuD1mh81u26ieAhXRFncslS-KyORej2q94D5dWfHugeWBncy-R5U6codCxklXzbX9R6P1_-xdn4fz1_QZ61KJOOGrNYJw9s8ZI8vcU9uEGWX5sq9NALLR0FDqRNXUqvNTqBuwsW6Z99gSWUGjC7rqgqDP1UFpZOuluPVP-ilwU79ISYgRTZGjoulU-npng68xl_oRYQnV8BiV4trjfJ-eTzfDxlbSEGpmQka5a4Qa4NVGrj3LhUKiEHudV9wbUQ1lmjc8-k51QMeBdz67Qa6MTZIYaNHUOIV2StQNfeEKrjSAcUCA3KRBjFuVO67wBT8tQY1SNbmMOsXUhVFmLkPMpWk9gje532srylMffVNL7fJfpxJfqj4e64S2inM4EMK8uHS1RhywWahpnF2PMG0f0yPIRWgaL6PfK6sZ9VU0COMsVKePuvIW2Tx9P57CQ7OTw9fkeeAJJJFuJe78la_XNhPwD21Hor2PtvbU360A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4VkBAcyqOUbnmZigMX043tZLPHZWnEm4qChLhEdmxLCEhQkz2UX9-xk6y2FQjOceLHzHi-ydjfAOz0HYdL3zIaCBNRoTHcUeglqelzKQxTsZTuP-TZeXR4LY5vwpsmUHR3YXAQJX6p9El8Z9VP2jYMA8F3-RgioMWgagpmXLrOBVuD4a92540480cWMS4XNEa_1TIJTb7qvFBW_uuFXoGW3sUkC3AxHpw_WXK_N6rUXvb8H2_j-0e_CB8btEkGtXoswQeTL8P8BAfhJ3i-rKvRo3xIYQniQVLXp3TSIwm6Pa-Z7tkFakShEG5XJZG5JvtFbkjS3n4k6g-5zemRI8b05MhGk2Eh3bFqgk_P3Mk_XxOIXN0hIr0bPa7AdfLjanhIm4IMVIpAVDSyvUxpFK0JM21jIbnoZUZ1OVOcG2u0yhyjnpUhwryQGatkT0XW9HHauHNw_hmmcxzaFyAqDJRHgyGGxRHXkjErVdciXMlirWUHNnEd08agytTnylmQjhexA7utBNOsoTN3VTUeXmr6bdz0qebweKnRdqsGKVqYS5vI3BQj7BpVLcS9rxe83ob5FCuiqW4HVmsdGneFCFLEaBFf35rSFsz-PEjS06PzkzWYQ2QmqE9_rcN09XtkNhD9VGrTq_xfn2b9Uw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulation+of+the+biological+functions+of+osteoblasts+and+bone+formation+by+Zn-incorporated+coating+on+microrough+titanium&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Shen%2C+Xinkun&rft.au=Hu%2C+Yan&rft.au=Xu%2C+Gaoqiang&rft.au=Chen%2C+Weizhen&rft.date=2014-09-24&rft.eissn=1944-8252&rft.volume=6&rft.issue=18&rft.spage=16426&rft_id=info:doi/10.1021%2Fam5049338&rft_id=info%3Apmid%2F25148131&rft.externalDocID=25148131
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon