Three-Dimensional Nanostructured Architectures Enable Efficient Neural Differentiation of Mesenchymal Stem Cells via Mechanotransduction
Cell morphology and geometry affect cellular processes such as stem cell differentiation, suggesting that these parameters serve as fundamental regulators of biological processes within the cell. Hierarchical architectures featuring micro- and nanotopographical features therefore offer programmable...
Saved in:
Published in | Nano letters Vol. 18; no. 11; pp. 7188 - 7193 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
14.11.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cell morphology and geometry affect cellular processes such as stem cell differentiation, suggesting that these parameters serve as fundamental regulators of biological processes within the cell. Hierarchical architectures featuring micro- and nanotopographical features therefore offer programmable systems for stem cell differentiation. However, a limited number of studies have explored the effects of hierarchical architectures due to the complexity of fabricating systems with rationally tunable micro- and nanostructuring. Here, we report three-dimensional (3D) nanostructured microarchitectures that efficiently regulate the fate of human mesenchymal stem cells (hMSCs). These nanostructured architectures strongly promote cell alignment and efficient neurogenic differentiation where over 85% of hMSCs express microtubule-associated protein 2 (MAP2), a mature neural marker, after 7 days of culture on the nanostructured surface. Remarkably, we found that the surface morphology of nanostructured surface is a key factor that promotes neurogenesis and that highly spiky structures promote more efficient neuronal differentiation. Immunostaining and gene expression profiling revealed significant upregulation of neuronal markers compared to unpatterned surfaces. These findings suggest that the 3D nanostructured microarchitectures can play a critical role in defining stem cell behavior. |
---|---|
AbstractList | Cell morphology and geometry affect cellular processes such as stem cell differentiation, suggesting that these parameters serve as fundamental regulators of biological processes within the cell. Hierarchical architectures featuring micro- and nanotopographical features therefore offer programmable systems for stem cell differentiation. However, a limited number of studies have explored the effects of hierarchical architectures due to the complexity of fabricating systems with rationally tunable micro- and nanostructuring. Here, we report three-dimensional (3D) nanostructured microarchitectures that efficiently regulate the fate of human mesenchymal stem cells (hMSCs). These nanostructured architectures strongly promote cell alignment and efficient neurogenic differentiation where over 85% of hMSCs express microtubule-associated protein 2 (MAP2), a mature neural marker, after 7 days of culture on the nanostructured surface. Remarkably, we found that the surface morphology of nanostructured surface is a key factor that promotes neurogenesis and that highly spiky structures promote more efficient neuronal differentiation. Immunostaining and gene expression profiling revealed significant upregulation of neuronal markers compared to unpatterned surfaces. These findings suggest that the 3D nanostructured microarchitectures can play a critical role in defining stem cell behavior. Cell morphology and geometry affect cellular processes such as stem cell differentiation, suggesting that these parameters serve as fundamental regulators of biological processes within the cell. Hierarchical architectures featuring micro- and nanotopographical features therefore offer programmable systems for stem cell differentiation. However, a limited number of studies have explored the effects of hierarchical architectures due to the complexity of fabricating systems with rationally tunable micro- and nanostructuring. Here, we report three-dimensional (3D) nanostructured microarchitectures that efficiently regulate the fate of human mesenchymal stem cells (hMSCs). These nanostructured architectures strongly promote cell alignment and efficient neurogenic differentiation where over 85% of hMSCs express microtubule-associated protein 2 (MAP2), a mature neural marker, after 7 days of culture on the nanostructured surface. Remarkably, we found that the surface morphology of nanostructured surface is a key factor that promotes neurogenesis and that highly spiky structures promote more efficient neuronal differentiation. Immunostaining and gene expression profiling revealed significant upregulation of neuronal markers compared to unpatterned surfaces. These findings suggest that the 3D nanostructured microarchitectures can play a critical role in defining stem cell behavior.Cell morphology and geometry affect cellular processes such as stem cell differentiation, suggesting that these parameters serve as fundamental regulators of biological processes within the cell. Hierarchical architectures featuring micro- and nanotopographical features therefore offer programmable systems for stem cell differentiation. However, a limited number of studies have explored the effects of hierarchical architectures due to the complexity of fabricating systems with rationally tunable micro- and nanostructuring. Here, we report three-dimensional (3D) nanostructured microarchitectures that efficiently regulate the fate of human mesenchymal stem cells (hMSCs). These nanostructured architectures strongly promote cell alignment and efficient neurogenic differentiation where over 85% of hMSCs express microtubule-associated protein 2 (MAP2), a mature neural marker, after 7 days of culture on the nanostructured surface. Remarkably, we found that the surface morphology of nanostructured surface is a key factor that promotes neurogenesis and that highly spiky structures promote more efficient neuronal differentiation. Immunostaining and gene expression profiling revealed significant upregulation of neuronal markers compared to unpatterned surfaces. These findings suggest that the 3D nanostructured microarchitectures can play a critical role in defining stem cell behavior. |
Author | Angers, Stephane Ahmed, Sharif Zhang, Libing Wang, Zongjie Ahmadi, Moloud Das, Jagotamoy Kelley, Shana O Poudineh, Mahla Labib, Mahmoud |
AuthorAffiliation | Institute for Biomaterials and Biomedical Engineering Department of Biochemistry, Faculty of Medicine Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy University of Toronto |
AuthorAffiliation_xml | – name: Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy – name: Institute for Biomaterials and Biomedical Engineering – name: University of Toronto – name: Department of Biochemistry, Faculty of Medicine |
Author_xml | – sequence: 1 givenname: Mahla surname: Poudineh fullname: Poudineh, Mahla organization: Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy – sequence: 2 givenname: Zongjie surname: Wang fullname: Wang, Zongjie organization: Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy – sequence: 3 givenname: Mahmoud surname: Labib fullname: Labib, Mahmoud organization: Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy – sequence: 4 givenname: Moloud surname: Ahmadi fullname: Ahmadi, Moloud organization: Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy – sequence: 5 givenname: Libing surname: Zhang fullname: Zhang, Libing organization: Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy – sequence: 6 givenname: Jagotamoy orcidid: 0000-0003-2724-1827 surname: Das fullname: Das, Jagotamoy organization: Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy – sequence: 7 givenname: Sharif surname: Ahmed fullname: Ahmed, Sharif organization: Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy – sequence: 8 givenname: Stephane surname: Angers fullname: Angers, Stephane organization: Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy – sequence: 9 givenname: Shana O orcidid: 0000-0003-3360-5359 surname: Kelley fullname: Kelley, Shana O email: shana.kelley@utoronto.ca organization: University of Toronto |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30335391$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctOHDEQRS1ExCv8QRR5yaYnfk7j7NAwgUiELELWlttT1hh1u8F2R-IP8tkpmBkWWcDKj7rnlsv3mOynMQEhnzibcSb4F-fLLLk09lDr7LxjUnK5R464lqyZGyP2X_fn6pAcl3LPGDNSswNyKFGtpeFH5O_dOgM0l3GAVOKYXE9v0bTUPPk6ZVjRi-zXscLLqdBlcl0PdBlC9BFSpbcwZYQuYwiQ8SK6ijZ0DPQHFEh-_TRg-VeFgS6g7wv9Ex2W_Bq71OxSWWEjJD6SD8H1BU636wn5_W15t7hubn5efV9c3DROcVWb-cp549qgW62ck0wF4QTjbau6TggnQ9Aq8DnjQivNgTMdsOSNN9IIaLk8IWcb34c8Pk5Qqh1i8fgyl2CcihVcyFYYweco_byVTt0AK_uQ4-Dyk939Hgq-bgQ-j6VkCNbH-jI_ThZ7y5l9jspiVHYXld1GhbD6D975v4OxDfZcvR-njJGVt5F_oeGvdw |
CitedBy_id | crossref_primary_10_1002_adma_201903862 crossref_primary_10_3390_ijms24044051 crossref_primary_10_1039_D1BM00400J crossref_primary_10_1021_acs_nanolett_2c05083 crossref_primary_10_1021_acsami_9b22258 crossref_primary_10_1186_s12967_024_05047_4 crossref_primary_10_1016_j_colsurfb_2022_112717 crossref_primary_10_3390_ijms20174142 crossref_primary_10_1007_s11033_020_05353_2 crossref_primary_10_1155_2020_8838046 crossref_primary_10_14348_molcells_2022_5015 crossref_primary_10_1002_adfm_201907701 crossref_primary_10_2174_1574888X15666200502000343 crossref_primary_10_1002_cnma_201900207 crossref_primary_10_1088_1758_5090_abc66f crossref_primary_10_1039_D0BM00264J crossref_primary_10_3389_fbioe_2022_865250 crossref_primary_10_1002_smll_202303530 crossref_primary_10_1021_acsbiomaterials_9b00812 crossref_primary_10_1016_j_cossms_2020_100873 crossref_primary_10_3390_bioengineering10070857 crossref_primary_10_3390_nano11030779 crossref_primary_10_1021_acsanm_2c00938 crossref_primary_10_3390_mi12030256 crossref_primary_10_1002_adfm_202010626 crossref_primary_10_1186_s40824_023_00393_8 crossref_primary_10_1021_acsnano_9b04109 crossref_primary_10_1002_adhm_201901445 crossref_primary_10_1002_anie_201907817 crossref_primary_10_1021_acsami_0c05012 crossref_primary_10_1016_j_msec_2020_111366 crossref_primary_10_1021_acsabm_2c00171 crossref_primary_10_1007_s12038_024_00445_8 crossref_primary_10_1002_adma_201905942 crossref_primary_10_1021_acsnano_9b07350 crossref_primary_10_1016_j_bioelechem_2020_107674 crossref_primary_10_1007_s10856_022_06681_4 crossref_primary_10_1021_acsami_3c08941 crossref_primary_10_1007_s12031_020_01714_5 crossref_primary_10_3390_biomedicines9010015 crossref_primary_10_1002_ange_201907817 crossref_primary_10_3762_bjnano_14_96 crossref_primary_10_1007_s00441_020_03191_z crossref_primary_10_1016_j_colsurfa_2023_132506 crossref_primary_10_3390_diagnostics12102358 crossref_primary_10_1039_C9TB01929D crossref_primary_10_1021_acsami_9b13694 crossref_primary_10_1002_anbr_202300042 crossref_primary_10_1007_s13206_021_00040_1 crossref_primary_10_3390_ijms21239274 crossref_primary_10_3389_fchem_2021_671922 crossref_primary_10_1002_smtd_202200798 crossref_primary_10_3390_mi11010050 crossref_primary_10_1016_j_mtcomm_2020_101692 crossref_primary_10_3390_mi9120679 crossref_primary_10_1007_s12015_020_09979_4 crossref_primary_10_1088_1361_6463_ac3a3d crossref_primary_10_1002_adhm_202000117 |
Cites_doi | 10.1038/nature06800 10.1038/s41563-017-0014-0 10.1002/adfm.201770015 10.1016/j.biomaterials.2005.04.024 10.1242/jcs.112.16.2677 10.1038/nmat4051 10.1038/nature08602 10.1002/adbi.201700172 10.1016/j.yexcr.2010.02.010 10.1039/c4lc00144c 10.1155/2013/374395 10.1126/science.276.5317.1425 10.1021/am402156f 10.1016/S1534-5807(03)00094-7 10.1073/pnas.1106467108 10.1038/nature10316 10.1038/nnano.2009.276 10.1126/scitranslmed.3001002 10.1016/j.biomaterials.2013.10.067 10.1088/0034-4885/73/9/094601 10.1038/nm1064 10.1021/acsbiomaterials.5b00377 10.1002/adfm.201703523 10.1007/s00441-014-1945-2 10.1016/S0006-291X(03)01285-3 10.1016/j.actbio.2012.08.018 10.1021/acs.jpcc.6b05158 10.1083/jcb.200210174 10.1016/j.cell.2006.06.044 10.1016/j.yexcr.2007.02.031 10.1038/nchem.2270 10.1016/j.stem.2015.06.007 10.1021/ar500130m 10.1021/acsami.5b11671 10.1002/smll.201200490 10.1021/nn501182f 10.1021/ac401221f 10.1242/jcs.01481 10.1155/2016/6737345 10.1016/j.biomaterials.2009.09.002 10.1021/nn304966z 10.1016/j.biomaterials.2005.01.058 10.1073/pnas.0903269107 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1021/acs.nanolett.8b03313 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1530-6992 |
EndPage | 7193 |
ExternalDocumentID | 30335391 10_1021_acs_nanolett_8b03313 g4459618 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 123 55A 5VS 7~N AABXI ABMVS ABPTK ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 PK8 RNS ROL TN5 UI2 VF5 VG9 W1F X --- -~X 4.4 6P2 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ GGK CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-a414t-6dac9a7f5754aa304f2a201774bb22a3ff54f160125451e105f74bc9c9392e713 |
IEDL.DBID | ACS |
ISSN | 1530-6984 1530-6992 |
IngestDate | Fri Jul 11 02:13:20 EDT 2025 Mon Jul 21 05:57:31 EDT 2025 Thu Apr 24 23:11:35 EDT 2025 Tue Jul 01 03:14:02 EDT 2025 Thu Aug 27 13:42:12 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | nanostructured architectures Stem cell differentiation cell morphology neural differentiation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a414t-6dac9a7f5754aa304f2a201774bb22a3ff54f160125451e105f74bc9c9392e713 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2724-1827 0000-0003-3360-5359 |
PMID | 30335391 |
PQID | 2123729216 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2123729216 pubmed_primary_30335391 crossref_citationtrail_10_1021_acs_nanolett_8b03313 crossref_primary_10_1021_acs_nanolett_8b03313 acs_journals_10_1021_acs_nanolett_8b03313 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-11-14 |
PublicationDateYYYYMMDD | 2018-11-14 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-14 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Nano letters |
PublicationTitleAlternate | Nano Lett |
PublicationYear | 2018 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref41/cit41 ref22/cit22 ref13/cit13 Sieg D. J. (ref39/cit39) 1999; 112 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref7/cit7 |
References_xml | – ident: ref3/cit3 doi: 10.1038/nature06800 – ident: ref18/cit18 doi: 10.1038/s41563-017-0014-0 – ident: ref25/cit25 doi: 10.1002/adfm.201770015 – ident: ref35/cit35 doi: 10.1016/j.biomaterials.2005.04.024 – volume: 112 start-page: 2677 issue: 1 year: 1999 ident: ref39/cit39 publication-title: J. Cell Sci. doi: 10.1242/jcs.112.16.2677 – ident: ref8/cit8 doi: 10.1038/nmat4051 – ident: ref4/cit4 doi: 10.1038/nature08602 – ident: ref22/cit22 doi: 10.1002/adbi.201700172 – ident: ref15/cit15 doi: 10.1016/j.yexcr.2010.02.010 – ident: ref33/cit33 doi: 10.1039/c4lc00144c – ident: ref41/cit41 doi: 10.1155/2013/374395 – ident: ref5/cit5 doi: 10.1126/science.276.5317.1425 – ident: ref19/cit19 doi: 10.1021/am402156f – ident: ref43/cit43 doi: 10.1016/S1534-5807(03)00094-7 – ident: ref10/cit10 doi: 10.1073/pnas.1106467108 – ident: ref17/cit17 doi: 10.1038/nature10316 – ident: ref29/cit29 doi: 10.1038/nnano.2009.276 – ident: ref16/cit16 doi: 10.1126/scitranslmed.3001002 – ident: ref20/cit20 doi: 10.1016/j.biomaterials.2013.10.067 – ident: ref37/cit37 doi: 10.1088/0034-4885/73/9/094601 – ident: ref1/cit1 doi: 10.1038/nm1064 – ident: ref13/cit13 doi: 10.1021/acsbiomaterials.5b00377 – ident: ref26/cit26 doi: 10.1002/adfm.201703523 – ident: ref40/cit40 doi: 10.1007/s00441-014-1945-2 – ident: ref36/cit36 doi: 10.1016/S0006-291X(03)01285-3 – ident: ref23/cit23 doi: 10.1016/j.actbio.2012.08.018 – ident: ref30/cit30 doi: 10.1021/acs.jpcc.6b05158 – ident: ref38/cit38 doi: 10.1083/jcb.200210174 – ident: ref9/cit9 doi: 10.1016/j.cell.2006.06.044 – ident: ref12/cit12 doi: 10.1016/j.yexcr.2007.02.031 – ident: ref32/cit32 doi: 10.1038/nchem.2270 – ident: ref2/cit2 doi: 10.1016/j.stem.2015.06.007 – ident: ref31/cit31 doi: 10.1021/ar500130m – ident: ref21/cit21 doi: 10.1021/acsami.5b11671 – ident: ref27/cit27 doi: 10.1002/smll.201200490 – ident: ref28/cit28 doi: 10.1021/nn501182f – ident: ref34/cit34 doi: 10.1021/ac401221f – ident: ref42/cit42 doi: 10.1242/jcs.01481 – ident: ref14/cit14 doi: 10.1155/2016/6737345 – ident: ref7/cit7 doi: 10.1016/j.biomaterials.2009.09.002 – ident: ref24/cit24 doi: 10.1021/nn304966z – ident: ref6/cit6 doi: 10.1016/j.biomaterials.2005.01.058 – ident: ref11/cit11 doi: 10.1073/pnas.0903269107 |
SSID | ssj0009350 |
Score | 2.5123987 |
Snippet | Cell morphology and geometry affect cellular processes such as stem cell differentiation, suggesting that these parameters serve as fundamental regulators of... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7188 |
SubjectTerms | Cell Culture Techniques - methods Cell Differentiation Humans Mesenchymal Stem Cells - cytology Mesenchymal Stem Cells - metabolism Nanostructures - chemistry Neurons - cytology Neurons - metabolism Time Factors |
Title | Three-Dimensional Nanostructured Architectures Enable Efficient Neural Differentiation of Mesenchymal Stem Cells via Mechanotransduction |
URI | http://dx.doi.org/10.1021/acs.nanolett.8b03313 https://www.ncbi.nlm.nih.gov/pubmed/30335391 https://www.proquest.com/docview/2123729216 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELUQXODAvpRNRuLCwaXe0uaI2qIKCThApd4i27UFoiSIpEjwBXw24ywti1DhGseWPEvmjSbzBqFj7QATGC4IazYlEa4piDZcEmqVYFrYQAnfjXx5FfT64mIgB9NE8XsFn9FTZdJ6rOIErpHVW7rBuR9Su8AC8GMPhdo3U5Jdnk9kBSeGlChsiapV7pdTfEAy6deA9AvKzKPN-Qq6rnp2ip9MHurjTNfN208Kxz9eZBUtl8ATnxWWsobmbLyOlj7REW6g91tQrCUdT_hfkHVg-PgmBcXs-NkO8dmnskOKu3nfFe7mLBQQvLBn-oBNnXLoSlaoHScOX_omJ3P3-gjLN5l9xG07GqX45V7Bkm8-TjIfNIcFl-0m6p93b9s9Uk5qIEpQkZFgqEyomg6wn1CKN4RjCpAFQEutGVPcOSkchdwP0lFJLWA6MAptQhMCPLOQJ2-h-TiJ7Q7CJmBDyZkRFqyFm6DFrJYq9NVZHkrjaugEBBmVnpZGeRGd0cg_rKQbldKtIV6pNjIl5bmfvDGasYtMdj0VlB8z3j-qrCYC3_QFFxXbZJxGHhZA8sJoUEPbhTlNTgTowCUP6e4_7rOHFkGqLd8KScU-mgf12wPARJk-zB3hA7AvC8c |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB4hOEAPPAotoYUaiUsPDvi1yR6jEBRawoVQcVvZji1Qwy5iN5XKL-BnM95HoJUQ4rpeW_Z4Zucbzc43AAfGIyawQlLe6SgqfUdSY4WizGnJjXSRlqEaeXQeDS_ljyt1tQCqqYXBTeS4Ul4m8Z_ZBdhheJbqNMPTFO2uORIi9KpdQjzCg2L3-hfPXLuibMyKtoyRUdyVTcXcK6sEv2Tzf_3SK2CzdDona_Brvt3yX5Pf7Vlh2vbhPybHd59nHVZrGEp6ld5swIJLP8KHF-SEm_A4xmt29DjQ_1fUHQQ_xVlFODu7dxPSe5GEyMmgrMIig5KTAl0ZCbwfOOm4bsFSVEpAMk9GoeTJXv-9xeGLwt2SvptOc_LnRuNQKEXOiuBCJxWz7RZcngzG_SGt-zZQLZksaDTRNtYdj0hQai2OpOcacQYCTWM418J7JT3DSBCDU8UcIjxUEWNjGyNYcxg1f4LFNEvdNhAb8YkS3EqHuiNs1OXOKB2HXK2IlfUt-I6CTGq7y5Mypc5ZEh420k1q6bZANDec2JoAPfThmL4xi85n3VUEIG-8v98oT4KWGtIvOnXZLE8CSMBQhrOoBZ8rrZqviEBCKBGznXec5xssD8ejs-Ts9PznF1hBCXdDkSSTX2ERVcHtIloqzF5pG0-oHRQo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQSKg9lEcfLK8aqZcevMWv7Oa42oegLagSIKFeItuxRcWSoCaLBL-An81Mkl0WJITaaxxb9ngm840m8w0hX2wATOCkYqLT0UyFjmLWSc24N0pY5SOjsBr56Dg6OFPfz_X5XKsv2EQBKxVVEh-t-joNDcMA_4bPM5PlcKKy3bX7UmK_2iXM3KFy9_onj3y7smrOCvYM0VHcVdOquRdWQd_kiqe-6QXAWTme0Qr5Pdty9b_JZXtS2ra7e8bm-F9nWiXvGjhKe7X-rJEFn62Tt3Mkhe_J_Slct2cDbANQU3hQ-CTnNfHs5K9PaW8uGVHQYVWNRYcVNwW4NIr8HzBp0LRiKWtloHmgR1j65C5ur2D4pPRXtO_H44Le_DEwhCXJeYmuNK0Zbj-Qs9HwtH_Amv4NzCiuShalxsWmEwARKmPkvgrCAN4AwGmtEEaGoFXgEBFCkKq5B6QHqmJd7GIAbR6i549kMcszv0Goi0SqpXDKgw5JF3WFt9rEePMy1i60yFcQZNLYX5FUqXXBE3w4lW7SSLdF5PSWE9cQoWM_jvErs9hs1nVNBPLK-3tTBUrAYjENYzKfT4oEwQKENIJHLfKp1qzZigAopJYx3_yH83wmy78Go-Tn4fGPLfIGBNzFWkmutskiaILfAdBU2t3KPB4AZYQWqw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three-Dimensional+Nanostructured+Architectures+Enable+Efficient+Neural+Differentiation+of+Mesenchymal+Stem+Cells+via+Mechanotransduction&rft.jtitle=Nano+letters&rft.au=Poudineh%2C+Mahla&rft.au=Wang%2C+Zongjie&rft.au=Labib%2C+Mahmoud&rft.au=Ahmadi%2C+Moloud&rft.date=2018-11-14&rft.issn=1530-6992&rft.eissn=1530-6992&rft.volume=18&rft.issue=11&rft.spage=7188&rft_id=info:doi/10.1021%2Facs.nanolett.8b03313&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon |