Three-Dimensional Nanostructured Architectures Enable Efficient Neural Differentiation of Mesenchymal Stem Cells via Mechanotransduction

Cell morphology and geometry affect cellular processes such as stem cell differentiation, suggesting that these parameters serve as fundamental regulators of biological processes within the cell. Hierarchical architectures featuring micro- and nanotopographical features therefore offer programmable...

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 18; no. 11; pp. 7188 - 7193
Main Authors Poudineh, Mahla, Wang, Zongjie, Labib, Mahmoud, Ahmadi, Moloud, Zhang, Libing, Das, Jagotamoy, Ahmed, Sharif, Angers, Stephane, Kelley, Shana O
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 14.11.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cell morphology and geometry affect cellular processes such as stem cell differentiation, suggesting that these parameters serve as fundamental regulators of biological processes within the cell. Hierarchical architectures featuring micro- and nanotopographical features therefore offer programmable systems for stem cell differentiation. However, a limited number of studies have explored the effects of hierarchical architectures due to the complexity of fabricating systems with rationally tunable micro- and nanostructuring. Here, we report three-dimensional (3D) nanostructured microarchitectures that efficiently regulate the fate of human mesenchymal stem cells (hMSCs). These nanostructured architectures strongly promote cell alignment and efficient neurogenic differentiation where over 85% of hMSCs express microtubule-associated protein 2 (MAP2), a mature neural marker, after 7 days of culture on the nanostructured surface. Remarkably, we found that the surface morphology of nanostructured surface is a key factor that promotes neurogenesis and that highly spiky structures promote more efficient neuronal differentiation. Immunostaining and gene expression profiling revealed significant upregulation of neuronal markers compared to unpatterned surfaces. These findings suggest that the 3D nanostructured microarchitectures can play a critical role in defining stem cell behavior.
AbstractList Cell morphology and geometry affect cellular processes such as stem cell differentiation, suggesting that these parameters serve as fundamental regulators of biological processes within the cell. Hierarchical architectures featuring micro- and nanotopographical features therefore offer programmable systems for stem cell differentiation. However, a limited number of studies have explored the effects of hierarchical architectures due to the complexity of fabricating systems with rationally tunable micro- and nanostructuring. Here, we report three-dimensional (3D) nanostructured microarchitectures that efficiently regulate the fate of human mesenchymal stem cells (hMSCs). These nanostructured architectures strongly promote cell alignment and efficient neurogenic differentiation where over 85% of hMSCs express microtubule-associated protein 2 (MAP2), a mature neural marker, after 7 days of culture on the nanostructured surface. Remarkably, we found that the surface morphology of nanostructured surface is a key factor that promotes neurogenesis and that highly spiky structures promote more efficient neuronal differentiation. Immunostaining and gene expression profiling revealed significant upregulation of neuronal markers compared to unpatterned surfaces. These findings suggest that the 3D nanostructured microarchitectures can play a critical role in defining stem cell behavior.
Cell morphology and geometry affect cellular processes such as stem cell differentiation, suggesting that these parameters serve as fundamental regulators of biological processes within the cell. Hierarchical architectures featuring micro- and nanotopographical features therefore offer programmable systems for stem cell differentiation. However, a limited number of studies have explored the effects of hierarchical architectures due to the complexity of fabricating systems with rationally tunable micro- and nanostructuring. Here, we report three-dimensional (3D) nanostructured microarchitectures that efficiently regulate the fate of human mesenchymal stem cells (hMSCs). These nanostructured architectures strongly promote cell alignment and efficient neurogenic differentiation where over 85% of hMSCs express microtubule-associated protein 2 (MAP2), a mature neural marker, after 7 days of culture on the nanostructured surface. Remarkably, we found that the surface morphology of nanostructured surface is a key factor that promotes neurogenesis and that highly spiky structures promote more efficient neuronal differentiation. Immunostaining and gene expression profiling revealed significant upregulation of neuronal markers compared to unpatterned surfaces. These findings suggest that the 3D nanostructured microarchitectures can play a critical role in defining stem cell behavior.Cell morphology and geometry affect cellular processes such as stem cell differentiation, suggesting that these parameters serve as fundamental regulators of biological processes within the cell. Hierarchical architectures featuring micro- and nanotopographical features therefore offer programmable systems for stem cell differentiation. However, a limited number of studies have explored the effects of hierarchical architectures due to the complexity of fabricating systems with rationally tunable micro- and nanostructuring. Here, we report three-dimensional (3D) nanostructured microarchitectures that efficiently regulate the fate of human mesenchymal stem cells (hMSCs). These nanostructured architectures strongly promote cell alignment and efficient neurogenic differentiation where over 85% of hMSCs express microtubule-associated protein 2 (MAP2), a mature neural marker, after 7 days of culture on the nanostructured surface. Remarkably, we found that the surface morphology of nanostructured surface is a key factor that promotes neurogenesis and that highly spiky structures promote more efficient neuronal differentiation. Immunostaining and gene expression profiling revealed significant upregulation of neuronal markers compared to unpatterned surfaces. These findings suggest that the 3D nanostructured microarchitectures can play a critical role in defining stem cell behavior.
Author Angers, Stephane
Ahmed, Sharif
Zhang, Libing
Wang, Zongjie
Ahmadi, Moloud
Das, Jagotamoy
Kelley, Shana O
Poudineh, Mahla
Labib, Mahmoud
AuthorAffiliation Institute for Biomaterials and Biomedical Engineering
Department of Biochemistry, Faculty of Medicine
Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy
University of Toronto
AuthorAffiliation_xml – name: Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy
– name: Institute for Biomaterials and Biomedical Engineering
– name: University of Toronto
– name: Department of Biochemistry, Faculty of Medicine
Author_xml – sequence: 1
  givenname: Mahla
  surname: Poudineh
  fullname: Poudineh, Mahla
  organization: Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy
– sequence: 2
  givenname: Zongjie
  surname: Wang
  fullname: Wang, Zongjie
  organization: Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy
– sequence: 3
  givenname: Mahmoud
  surname: Labib
  fullname: Labib, Mahmoud
  organization: Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy
– sequence: 4
  givenname: Moloud
  surname: Ahmadi
  fullname: Ahmadi, Moloud
  organization: Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy
– sequence: 5
  givenname: Libing
  surname: Zhang
  fullname: Zhang, Libing
  organization: Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy
– sequence: 6
  givenname: Jagotamoy
  orcidid: 0000-0003-2724-1827
  surname: Das
  fullname: Das, Jagotamoy
  organization: Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy
– sequence: 7
  givenname: Sharif
  surname: Ahmed
  fullname: Ahmed, Sharif
  organization: Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy
– sequence: 8
  givenname: Stephane
  surname: Angers
  fullname: Angers, Stephane
  organization: Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy
– sequence: 9
  givenname: Shana O
  orcidid: 0000-0003-3360-5359
  surname: Kelley
  fullname: Kelley, Shana O
  email: shana.kelley@utoronto.ca
  organization: University of Toronto
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30335391$$D View this record in MEDLINE/PubMed
BookMark eNqFkctOHDEQRS1ExCv8QRR5yaYnfk7j7NAwgUiELELWlttT1hh1u8F2R-IP8tkpmBkWWcDKj7rnlsv3mOynMQEhnzibcSb4F-fLLLk09lDr7LxjUnK5R464lqyZGyP2X_fn6pAcl3LPGDNSswNyKFGtpeFH5O_dOgM0l3GAVOKYXE9v0bTUPPk6ZVjRi-zXscLLqdBlcl0PdBlC9BFSpbcwZYQuYwiQ8SK6ijZ0DPQHFEh-_TRg-VeFgS6g7wv9Ex2W_Bq71OxSWWEjJD6SD8H1BU636wn5_W15t7hubn5efV9c3DROcVWb-cp549qgW62ck0wF4QTjbau6TggnQ9Aq8DnjQivNgTMdsOSNN9IIaLk8IWcb34c8Pk5Qqh1i8fgyl2CcihVcyFYYweco_byVTt0AK_uQ4-Dyk939Hgq-bgQ-j6VkCNbH-jI_ThZ7y5l9jspiVHYXld1GhbD6D975v4OxDfZcvR-njJGVt5F_oeGvdw
CitedBy_id crossref_primary_10_1002_adma_201903862
crossref_primary_10_3390_ijms24044051
crossref_primary_10_1039_D1BM00400J
crossref_primary_10_1021_acs_nanolett_2c05083
crossref_primary_10_1021_acsami_9b22258
crossref_primary_10_1186_s12967_024_05047_4
crossref_primary_10_1016_j_colsurfb_2022_112717
crossref_primary_10_3390_ijms20174142
crossref_primary_10_1007_s11033_020_05353_2
crossref_primary_10_1155_2020_8838046
crossref_primary_10_14348_molcells_2022_5015
crossref_primary_10_1002_adfm_201907701
crossref_primary_10_2174_1574888X15666200502000343
crossref_primary_10_1002_cnma_201900207
crossref_primary_10_1088_1758_5090_abc66f
crossref_primary_10_1039_D0BM00264J
crossref_primary_10_3389_fbioe_2022_865250
crossref_primary_10_1002_smll_202303530
crossref_primary_10_1021_acsbiomaterials_9b00812
crossref_primary_10_1016_j_cossms_2020_100873
crossref_primary_10_3390_bioengineering10070857
crossref_primary_10_3390_nano11030779
crossref_primary_10_1021_acsanm_2c00938
crossref_primary_10_3390_mi12030256
crossref_primary_10_1002_adfm_202010626
crossref_primary_10_1186_s40824_023_00393_8
crossref_primary_10_1021_acsnano_9b04109
crossref_primary_10_1002_adhm_201901445
crossref_primary_10_1002_anie_201907817
crossref_primary_10_1021_acsami_0c05012
crossref_primary_10_1016_j_msec_2020_111366
crossref_primary_10_1021_acsabm_2c00171
crossref_primary_10_1007_s12038_024_00445_8
crossref_primary_10_1002_adma_201905942
crossref_primary_10_1021_acsnano_9b07350
crossref_primary_10_1016_j_bioelechem_2020_107674
crossref_primary_10_1007_s10856_022_06681_4
crossref_primary_10_1021_acsami_3c08941
crossref_primary_10_1007_s12031_020_01714_5
crossref_primary_10_3390_biomedicines9010015
crossref_primary_10_1002_ange_201907817
crossref_primary_10_3762_bjnano_14_96
crossref_primary_10_1007_s00441_020_03191_z
crossref_primary_10_1016_j_colsurfa_2023_132506
crossref_primary_10_3390_diagnostics12102358
crossref_primary_10_1039_C9TB01929D
crossref_primary_10_1021_acsami_9b13694
crossref_primary_10_1002_anbr_202300042
crossref_primary_10_1007_s13206_021_00040_1
crossref_primary_10_3390_ijms21239274
crossref_primary_10_3389_fchem_2021_671922
crossref_primary_10_1002_smtd_202200798
crossref_primary_10_3390_mi11010050
crossref_primary_10_1016_j_mtcomm_2020_101692
crossref_primary_10_3390_mi9120679
crossref_primary_10_1007_s12015_020_09979_4
crossref_primary_10_1088_1361_6463_ac3a3d
crossref_primary_10_1002_adhm_202000117
Cites_doi 10.1038/nature06800
10.1038/s41563-017-0014-0
10.1002/adfm.201770015
10.1016/j.biomaterials.2005.04.024
10.1242/jcs.112.16.2677
10.1038/nmat4051
10.1038/nature08602
10.1002/adbi.201700172
10.1016/j.yexcr.2010.02.010
10.1039/c4lc00144c
10.1155/2013/374395
10.1126/science.276.5317.1425
10.1021/am402156f
10.1016/S1534-5807(03)00094-7
10.1073/pnas.1106467108
10.1038/nature10316
10.1038/nnano.2009.276
10.1126/scitranslmed.3001002
10.1016/j.biomaterials.2013.10.067
10.1088/0034-4885/73/9/094601
10.1038/nm1064
10.1021/acsbiomaterials.5b00377
10.1002/adfm.201703523
10.1007/s00441-014-1945-2
10.1016/S0006-291X(03)01285-3
10.1016/j.actbio.2012.08.018
10.1021/acs.jpcc.6b05158
10.1083/jcb.200210174
10.1016/j.cell.2006.06.044
10.1016/j.yexcr.2007.02.031
10.1038/nchem.2270
10.1016/j.stem.2015.06.007
10.1021/ar500130m
10.1021/acsami.5b11671
10.1002/smll.201200490
10.1021/nn501182f
10.1021/ac401221f
10.1242/jcs.01481
10.1155/2016/6737345
10.1016/j.biomaterials.2009.09.002
10.1021/nn304966z
10.1016/j.biomaterials.2005.01.058
10.1073/pnas.0903269107
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/acs.nanolett.8b03313
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1530-6992
EndPage 7193
ExternalDocumentID 30335391
10_1021_acs_nanolett_8b03313
g4459618
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
123
55A
5VS
7~N
AABXI
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
X
---
-~X
4.4
6P2
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-a414t-6dac9a7f5754aa304f2a201774bb22a3ff54f160125451e105f74bc9c9392e713
IEDL.DBID ACS
ISSN 1530-6984
1530-6992
IngestDate Fri Jul 11 02:13:20 EDT 2025
Mon Jul 21 05:57:31 EDT 2025
Thu Apr 24 23:11:35 EDT 2025
Tue Jul 01 03:14:02 EDT 2025
Thu Aug 27 13:42:12 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords nanostructured architectures
Stem cell differentiation
cell morphology
neural differentiation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a414t-6dac9a7f5754aa304f2a201774bb22a3ff54f160125451e105f74bc9c9392e713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2724-1827
0000-0003-3360-5359
PMID 30335391
PQID 2123729216
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_2123729216
pubmed_primary_30335391
crossref_citationtrail_10_1021_acs_nanolett_8b03313
crossref_primary_10_1021_acs_nanolett_8b03313
acs_journals_10_1021_acs_nanolett_8b03313
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-14
PublicationDateYYYYMMDD 2018-11-14
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-14
  day: 14
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref41/cit41
ref22/cit22
ref13/cit13
Sieg D. J. (ref39/cit39) 1999; 112
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref3/cit3
  doi: 10.1038/nature06800
– ident: ref18/cit18
  doi: 10.1038/s41563-017-0014-0
– ident: ref25/cit25
  doi: 10.1002/adfm.201770015
– ident: ref35/cit35
  doi: 10.1016/j.biomaterials.2005.04.024
– volume: 112
  start-page: 2677
  issue: 1
  year: 1999
  ident: ref39/cit39
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.112.16.2677
– ident: ref8/cit8
  doi: 10.1038/nmat4051
– ident: ref4/cit4
  doi: 10.1038/nature08602
– ident: ref22/cit22
  doi: 10.1002/adbi.201700172
– ident: ref15/cit15
  doi: 10.1016/j.yexcr.2010.02.010
– ident: ref33/cit33
  doi: 10.1039/c4lc00144c
– ident: ref41/cit41
  doi: 10.1155/2013/374395
– ident: ref5/cit5
  doi: 10.1126/science.276.5317.1425
– ident: ref19/cit19
  doi: 10.1021/am402156f
– ident: ref43/cit43
  doi: 10.1016/S1534-5807(03)00094-7
– ident: ref10/cit10
  doi: 10.1073/pnas.1106467108
– ident: ref17/cit17
  doi: 10.1038/nature10316
– ident: ref29/cit29
  doi: 10.1038/nnano.2009.276
– ident: ref16/cit16
  doi: 10.1126/scitranslmed.3001002
– ident: ref20/cit20
  doi: 10.1016/j.biomaterials.2013.10.067
– ident: ref37/cit37
  doi: 10.1088/0034-4885/73/9/094601
– ident: ref1/cit1
  doi: 10.1038/nm1064
– ident: ref13/cit13
  doi: 10.1021/acsbiomaterials.5b00377
– ident: ref26/cit26
  doi: 10.1002/adfm.201703523
– ident: ref40/cit40
  doi: 10.1007/s00441-014-1945-2
– ident: ref36/cit36
  doi: 10.1016/S0006-291X(03)01285-3
– ident: ref23/cit23
  doi: 10.1016/j.actbio.2012.08.018
– ident: ref30/cit30
  doi: 10.1021/acs.jpcc.6b05158
– ident: ref38/cit38
  doi: 10.1083/jcb.200210174
– ident: ref9/cit9
  doi: 10.1016/j.cell.2006.06.044
– ident: ref12/cit12
  doi: 10.1016/j.yexcr.2007.02.031
– ident: ref32/cit32
  doi: 10.1038/nchem.2270
– ident: ref2/cit2
  doi: 10.1016/j.stem.2015.06.007
– ident: ref31/cit31
  doi: 10.1021/ar500130m
– ident: ref21/cit21
  doi: 10.1021/acsami.5b11671
– ident: ref27/cit27
  doi: 10.1002/smll.201200490
– ident: ref28/cit28
  doi: 10.1021/nn501182f
– ident: ref34/cit34
  doi: 10.1021/ac401221f
– ident: ref42/cit42
  doi: 10.1242/jcs.01481
– ident: ref14/cit14
  doi: 10.1155/2016/6737345
– ident: ref7/cit7
  doi: 10.1016/j.biomaterials.2009.09.002
– ident: ref24/cit24
  doi: 10.1021/nn304966z
– ident: ref6/cit6
  doi: 10.1016/j.biomaterials.2005.01.058
– ident: ref11/cit11
  doi: 10.1073/pnas.0903269107
SSID ssj0009350
Score 2.5123987
Snippet Cell morphology and geometry affect cellular processes such as stem cell differentiation, suggesting that these parameters serve as fundamental regulators of...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7188
SubjectTerms Cell Culture Techniques - methods
Cell Differentiation
Humans
Mesenchymal Stem Cells - cytology
Mesenchymal Stem Cells - metabolism
Nanostructures - chemistry
Neurons - cytology
Neurons - metabolism
Time Factors
Title Three-Dimensional Nanostructured Architectures Enable Efficient Neural Differentiation of Mesenchymal Stem Cells via Mechanotransduction
URI http://dx.doi.org/10.1021/acs.nanolett.8b03313
https://www.ncbi.nlm.nih.gov/pubmed/30335391
https://www.proquest.com/docview/2123729216
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELUQXODAvpRNRuLCwaXe0uaI2qIKCThApd4i27UFoiSIpEjwBXw24ywti1DhGseWPEvmjSbzBqFj7QATGC4IazYlEa4piDZcEmqVYFrYQAnfjXx5FfT64mIgB9NE8XsFn9FTZdJ6rOIErpHVW7rBuR9Su8AC8GMPhdo3U5Jdnk9kBSeGlChsiapV7pdTfEAy6deA9AvKzKPN-Qq6rnp2ip9MHurjTNfN208Kxz9eZBUtl8ATnxWWsobmbLyOlj7REW6g91tQrCUdT_hfkHVg-PgmBcXs-NkO8dmnskOKu3nfFe7mLBQQvLBn-oBNnXLoSlaoHScOX_omJ3P3-gjLN5l9xG07GqX45V7Bkm8-TjIfNIcFl-0m6p93b9s9Uk5qIEpQkZFgqEyomg6wn1CKN4RjCpAFQEutGVPcOSkchdwP0lFJLWA6MAptQhMCPLOQJ2-h-TiJ7Q7CJmBDyZkRFqyFm6DFrJYq9NVZHkrjaugEBBmVnpZGeRGd0cg_rKQbldKtIV6pNjIl5bmfvDGasYtMdj0VlB8z3j-qrCYC3_QFFxXbZJxGHhZA8sJoUEPbhTlNTgTowCUP6e4_7rOHFkGqLd8KScU-mgf12wPARJk-zB3hA7AvC8c
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB4hOEAPPAotoYUaiUsPDvi1yR6jEBRawoVQcVvZji1Qwy5iN5XKL-BnM95HoJUQ4rpeW_Z4Zucbzc43AAfGIyawQlLe6SgqfUdSY4WizGnJjXSRlqEaeXQeDS_ljyt1tQCqqYXBTeS4Ul4m8Z_ZBdhheJbqNMPTFO2uORIi9KpdQjzCg2L3-hfPXLuibMyKtoyRUdyVTcXcK6sEv2Tzf_3SK2CzdDona_Brvt3yX5Pf7Vlh2vbhPybHd59nHVZrGEp6ld5swIJLP8KHF-SEm_A4xmt29DjQ_1fUHQQ_xVlFODu7dxPSe5GEyMmgrMIig5KTAl0ZCbwfOOm4bsFSVEpAMk9GoeTJXv-9xeGLwt2SvptOc_LnRuNQKEXOiuBCJxWz7RZcngzG_SGt-zZQLZksaDTRNtYdj0hQai2OpOcacQYCTWM418J7JT3DSBCDU8UcIjxUEWNjGyNYcxg1f4LFNEvdNhAb8YkS3EqHuiNs1OXOKB2HXK2IlfUt-I6CTGq7y5Mypc5ZEh420k1q6bZANDec2JoAPfThmL4xi85n3VUEIG-8v98oT4KWGtIvOnXZLE8CSMBQhrOoBZ8rrZqviEBCKBGznXec5xssD8ejs-Ts9PznF1hBCXdDkSSTX2ERVcHtIloqzF5pG0-oHRQo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQSKg9lEcfLK8aqZcevMWv7Oa42oegLagSIKFeItuxRcWSoCaLBL-An81Mkl0WJITaaxxb9ngm840m8w0hX2wATOCkYqLT0UyFjmLWSc24N0pY5SOjsBr56Dg6OFPfz_X5XKsv2EQBKxVVEh-t-joNDcMA_4bPM5PlcKKy3bX7UmK_2iXM3KFy9_onj3y7smrOCvYM0VHcVdOquRdWQd_kiqe-6QXAWTme0Qr5Pdty9b_JZXtS2ra7e8bm-F9nWiXvGjhKe7X-rJEFn62Tt3Mkhe_J_Slct2cDbANQU3hQ-CTnNfHs5K9PaW8uGVHQYVWNRYcVNwW4NIr8HzBp0LRiKWtloHmgR1j65C5ur2D4pPRXtO_H44Le_DEwhCXJeYmuNK0Zbj-Qs9HwtH_Amv4NzCiuShalxsWmEwARKmPkvgrCAN4AwGmtEEaGoFXgEBFCkKq5B6QHqmJd7GIAbR6i549kMcszv0Goi0SqpXDKgw5JF3WFt9rEePMy1i60yFcQZNLYX5FUqXXBE3w4lW7SSLdF5PSWE9cQoWM_jvErs9hs1nVNBPLK-3tTBUrAYjENYzKfT4oEwQKENIJHLfKp1qzZigAopJYx3_yH83wmy78Go-Tn4fGPLfIGBNzFWkmutskiaILfAdBU2t3KPB4AZYQWqw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three-Dimensional+Nanostructured+Architectures+Enable+Efficient+Neural+Differentiation+of+Mesenchymal+Stem+Cells+via+Mechanotransduction&rft.jtitle=Nano+letters&rft.au=Poudineh%2C+Mahla&rft.au=Wang%2C+Zongjie&rft.au=Labib%2C+Mahmoud&rft.au=Ahmadi%2C+Moloud&rft.date=2018-11-14&rft.issn=1530-6992&rft.eissn=1530-6992&rft.volume=18&rft.issue=11&rft.spage=7188&rft_id=info:doi/10.1021%2Facs.nanolett.8b03313&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon