Striatal, Hippocampal, and Cortical Networks Are Differentially Responsive to the M4- and M1-Muscarinic Acetylcholine Receptor Mediated Effects of Xanomeline

Preclinical and clinical data suggest that muscarinic acetyl­choline receptor activation may be therapeutically beneficial for the treatment of schizophrenia and Alzheimer’s diseases. This is best exemplified by clinical observations with xanomeline, the efficacy of which is thought to be mediated t...

Full description

Saved in:
Bibliographic Details
Published inACS chemical neuroscience Vol. 10; no. 3; pp. 1753 - 1764
Main Authors Thorn, Catherine A, Moon, Joshua, Bourbonais, Clinton A, Harms, John, Edgerton, Jeremy R, Stark, Eda, Steyn, Stefanus J, Butter, Christopher R, Lazzaro, John T, O’Connor, Rebecca E, Popiolek, Michael
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 20.03.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Preclinical and clinical data suggest that muscarinic acetyl­choline receptor activation may be therapeutically beneficial for the treatment of schizophrenia and Alzheimer’s diseases. This is best exemplified by clinical observations with xanomeline, the efficacy of which is thought to be mediated through co-activation of the M1 and M4 muscarinic acetyl­choline receptors (mAChRs). Here we examined the impact of treatment with xanomeline and compared it to the actions of selective M1 and M4 mAChR activators on in vivo intra­cellular signaling cascades in mice, including 3′-5′-cyclic adenosine monophosphate response element binding protein (CREB) phosphorylation and inositol phosphate-1 (IP1) accumulation in the striatum, hippocampus, and prefrontal cortex. We additionally assessed the effects of xanomeline on hippocampal electro­physiological signatures in rats using ex vivo recordings from CA1 (Cornu Ammonis 1) as well as in vivo hippocampal theta. As expected, xanomeline’s effects across these readouts were consistent with activation of both M1 and M4 mAChRs; however, differences were observed across different brain regions, suggesting non-uniform activation of these receptor subtypes in the central nervous system. Interestingly, despite having nearly equal in vitro potency at the M1 and the M4 mAChRs, during in vivo assays xanomeline produced M4-like effects at significantly lower brain exposures than those at which M1-like effects were observed. Our results raise the possibility that clinical efficacy observed with xanomeline was driven, in part, through its non-uniform activation of mAChR subtypes in the central nervous system and, at lower doses, through preferential agonism of the M4 mAChR.
AbstractList Preclinical and clinical data suggest that muscarinic acetylcholine receptor activation may be therapeutically beneficial for the treatment of schizophrenia and Alzheimer's diseases. This is best exemplified by clinical observations with xanomeline, the efficacy of which is thought to be mediated through co-activation of the M1 and M4 muscarinic acetylcholine receptors (mAChRs). Here we examined the impact of treatment with xanomeline and compared it to the actions of selective M1 and M4 mAChR activators on in vivo intracellular signaling cascades in mice, including 3'-5'-cyclic adenosine monophosphate response element binding protein (CREB) phosphorylation and inositol phosphate-1 (IP1) accumulation in the striatum, hippocampus, and prefrontal cortex. We additionally assessed the effects of xanomeline on hippocampal electrophysiological signatures in rats using ex vivo recordings from CA1 (Cornu Ammonis 1) as well as in vivo hippocampal theta. As expected, xanomeline's effects across these readouts were consistent with activation of both M1 and M4 mAChRs; however, differences were observed across different brain regions, suggesting non-uniform activation of these receptor subtypes in the central nervous system. Interestingly, despite having nearly equal in vitro potency at the M1 and the M4 mAChRs, during in vivo assays xanomeline produced M4-like effects at significantly lower brain exposures than those at which M1-like effects were observed. Our results raise the possibility that clinical efficacy observed with xanomeline was driven, in part, through its non-uniform activation of mAChR subtypes in the central nervous system and, at lower doses, through preferential agonism of the M4 mAChR.
Preclinical and clinical data suggest that muscarinic acetyl­choline receptor activation may be therapeutically beneficial for the treatment of schizophrenia and Alzheimer’s diseases. This is best exemplified by clinical observations with xanomeline, the efficacy of which is thought to be mediated through co-activation of the M1 and M4 muscarinic acetyl­choline receptors (mAChRs). Here we examined the impact of treatment with xanomeline and compared it to the actions of selective M1 and M4 mAChR activators on in vivo intra­cellular signaling cascades in mice, including 3′-5′-cyclic adenosine monophosphate response element binding protein (CREB) phosphorylation and inositol phosphate-1 (IP1) accumulation in the striatum, hippocampus, and prefrontal cortex. We additionally assessed the effects of xanomeline on hippocampal electro­physiological signatures in rats using ex vivo recordings from CA1 (Cornu Ammonis 1) as well as in vivo hippocampal theta. As expected, xanomeline’s effects across these readouts were consistent with activation of both M1 and M4 mAChRs; however, differences were observed across different brain regions, suggesting non-uniform activation of these receptor subtypes in the central nervous system. Interestingly, despite having nearly equal in vitro potency at the M1 and the M4 mAChRs, during in vivo assays xanomeline produced M4-like effects at significantly lower brain exposures than those at which M1-like effects were observed. Our results raise the possibility that clinical efficacy observed with xanomeline was driven, in part, through its non-uniform activation of mAChR subtypes in the central nervous system and, at lower doses, through preferential agonism of the M4 mAChR.
Author Moon, Joshua
Lazzaro, John T
O’Connor, Rebecca E
Thorn, Catherine A
Harms, John
Stark, Eda
Butter, Christopher R
Popiolek, Michael
Edgerton, Jeremy R
Bourbonais, Clinton A
Steyn, Stefanus J
AuthorAffiliation Pharmacokinetics, Dynamics and Metabolism
Pfizer Worldwide Research and Development
Primary Pharmacology Group
Medicine Design
Internal Medicine Research Unit
AuthorAffiliation_xml – name:
– name: Primary Pharmacology Group
– name: Medicine Design
– name: Pharmacokinetics, Dynamics and Metabolism
– name: Internal Medicine Research Unit
– name: Pfizer Worldwide Research and Development
Author_xml – sequence: 1
  givenname: Catherine A
  surname: Thorn
  fullname: Thorn, Catherine A
– sequence: 2
  givenname: Joshua
  surname: Moon
  fullname: Moon, Joshua
– sequence: 3
  givenname: Clinton A
  surname: Bourbonais
  fullname: Bourbonais, Clinton A
– sequence: 4
  givenname: John
  surname: Harms
  fullname: Harms, John
– sequence: 5
  givenname: Jeremy R
  surname: Edgerton
  fullname: Edgerton, Jeremy R
– sequence: 6
  givenname: Eda
  surname: Stark
  fullname: Stark, Eda
– sequence: 7
  givenname: Stefanus J
  surname: Steyn
  fullname: Steyn, Stefanus J
– sequence: 8
  givenname: Christopher R
  orcidid: 0000-0002-9387-5011
  surname: Butter
  fullname: Butter, Christopher R
– sequence: 9
  givenname: John T
  surname: Lazzaro
  fullname: Lazzaro, John T
  organization: Pfizer Worldwide Research and Development
– sequence: 10
  givenname: Rebecca E
  surname: O’Connor
  fullname: O’Connor, Rebecca E
  organization: Pfizer Worldwide Research and Development
– sequence: 11
  givenname: Michael
  orcidid: 0000-0001-7372-1982
  surname: Popiolek
  fullname: Popiolek, Michael
  email: michael.popiolek@gmail.com
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30480428$$D View this record in MEDLINE/PubMed
BookMark eNp9kctu1DAUhi1URC_wBgh5yYIU2_EkmeVoWlqkDkhcJHaRc3yscXHsYDugeZi-Kx5mQF2xsi193390_J-TEx88EvKSs0vOBH-rIMEWR49zDJfdwFgjFk_IGV_Krmr5sj55dD8l5yndF2TJuuYZOa2Z7JgU3Rl5-JyjVVm5N_TWTlMANU77h_KarkPMFpSjHzD_CvF7oquI9MoagxF9tsq5Hf2EaQo-2Z9Ic6B5i3Qjqz_6hlebOYGK1lugK8C8c7ANznosFuCUQ6Qb1GU8anpdUiEnGgz9pnwYcc89J0-NcglfHM8L8vXd9Zf1bXX38eb9enVXKcllrhbYDs1CAXBdi7ZpG4GqNq2BhnElddnVoOR64HoBoEFIA7wuX6HYIEEbrC_I60PuFMOPGVPuR5sAnVMew5x6weuukVw0oqDygEIMKUU0_RTtqOKu56zfF9M_LqY_FlO0V8cJ8zCi_if9baIA7AAUvb8Pc_Rl4f9n_gaUpKKR
CitedBy_id crossref_primary_10_2147_NDT_S406371
crossref_primary_10_1038_s41589_022_01247_5
crossref_primary_10_1038_s41386_020_00916_0
crossref_primary_10_1111_bph_16081
crossref_primary_10_1016_j_bpsgos_2021_11_012
crossref_primary_10_1093_ijnp_pyae018
crossref_primary_10_1038_s41398_022_01904_2
crossref_primary_10_1016_j_bbr_2021_113201
crossref_primary_10_1126_scitranslmed_abg3684
crossref_primary_10_1007_s40261_024_01377_9
crossref_primary_10_1016_j_exger_2022_112024
crossref_primary_10_1021_acs_jmedchem_4c00293
crossref_primary_10_1021_acsmedchemlett_9b00106
crossref_primary_10_1038_s41467_023_41199_5
Cites_doi 10.1016/j.bmcl.2016.11.086
10.1021/acsmedchemlett.8b00095
10.1124/jpet.108.140350
10.1007/BF00234110
10.1124/mol.116.104737
10.2174/1570159X13666150716165726
10.1021/acs.biochem.6b00688
10.1038/sj.bjp.0702359
10.1021/acschemneuro.8b00496
10.1016/j.neuropharm.2010.12.001
10.1002/hipo.22732
10.1016/j.neuron.2016.05.017
10.1021/acs.jmedchem.7b00597
10.1016/j.neuropharm.2017.11.018
10.1021/acschemneuro.8b00159
10.1016/S0006-8993(98)00267-4
10.1093/cercor/bhv227
10.1016/j.drudis.2013.09.005
10.1176/appi.ajp.2008.06091591
10.1186/1471-244X-12-64
10.2147/NDT.S55104
10.1016/j.neuron.2016.08.017
10.33549/physiolres.931449
10.1016/j.neuropharm.2013.06.020
10.1016/j.neuropharm.2017.07.013
10.1001/archneur.1997.00550160091022
10.1002/(SICI)1098-2299(199702)40:2<158::AID-DDR6>3.0.CO;2-K
10.1021/acschemneuro.8b00229
10.1016/0006-8993(95)00724-5
10.1016/j.neuron.2017.10.023
10.1056/NEJMoa051688
10.1016/j.ejphar.2008.12.044
10.1021/acs.jmedchem.6b00544
10.1007/s12264-010-0933-0
10.1212/WNL.44.12.2300
10.1007/s00213-014-3813-x
10.1046/j.1460-9568.2003.02588.x
10.1002/syn.20388
10.1016/S0006-8993(98)00878-6
10.1016/j.tips.2011.06.008
10.1021/acsmedchemlett.6b00461
10.1002/hipo.450040604
10.1371/journal.pone.0146021
10.1097/JGP.0b013e3181d5745d
10.1124/mol.109.056531
10.1016/0024-3205(87)90031-2
10.1016/j.biopsych.2013.08.020
10.1124/dmd.111.038778
10.1523/JNEUROSCI.0370-11.2011
10.1074/jbc.M008827200
10.3389/fncir.2012.00005
10.1016/j.ejphar.2008.12.020
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1021/acschemneuro.8b00625
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1948-7193
EndPage 1764
ExternalDocumentID 10_1021_acschemneuro_8b00625
30480428
g53827226
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
53G
55A
5EH
7~N
AABXI
AAKDD
ABMVS
ABUCX
ACGFS
ACS
ADBBV
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAWUL
DIK
EBS
ED
ED~
EJD
F5P
GNL
GX1
IH9
JG
JG~
OK1
RNS
ROL
RPM
UI2
VF5
VG9
W1F
---
5VS
6J9
ABJNI
ABQRX
ACGFO
ADHLV
AHGAQ
BAANH
CGR
CUPRZ
CUY
CVF
ECM
EIF
GGK
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-a414t-5e7b65acc1d3276762ea3f7fc601a4d480fe41db1d5ccdc24fc13908a0b4cdfe3
IEDL.DBID ACS
ISSN 1948-7193
IngestDate Fri Aug 16 01:19:14 EDT 2024
Fri Dec 06 05:04:01 EST 2024
Tue Aug 27 13:49:51 EDT 2024
Thu Aug 27 13:43:30 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Xanomeline
striatum
hippocampus
electrophysiology
muscarinic acetyl­choline receptor
in vivo potency
biochemistry
muscarinic acetylcholine receptor
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a414t-5e7b65acc1d3276762ea3f7fc601a4d480fe41db1d5ccdc24fc13908a0b4cdfe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7372-1982
0000-0002-9387-5011
PMID 30480428
PQID 2138641262
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2138641262
crossref_primary_10_1021_acschemneuro_8b00625
pubmed_primary_30480428
acs_journals_10_1021_acschemneuro_8b00625
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2019-03-20
PublicationDateYYYYMMDD 2019-03-20
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-20
  day: 20
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS chemical neuroscience
PublicationTitleAlternate ACS Chem. Neurosci
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References 31286767 - ACS Chem Neurosci. 2019 Aug 21;10(8):3910
ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref52/cit52
ref23/cit23
Hulme E. C. (ref22/cit22) 1990; 44
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
Jakubík J. (ref49/cit49) 2008; 57
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref42/cit42
ref46/cit46
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
R Development Core Team (ref54/cit54) 2017
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref27/cit27
  doi: 10.1016/j.bmcl.2016.11.086
– ident: ref28/cit28
  doi: 10.1021/acsmedchemlett.8b00095
– ident: ref24/cit24
  doi: 10.1124/jpet.108.140350
– ident: ref39/cit39
  doi: 10.1007/BF00234110
– ident: ref51/cit51
  doi: 10.1124/mol.116.104737
– ident: ref7/cit7
  doi: 10.2174/1570159X13666150716165726
– ident: ref10/cit10
  doi: 10.1021/acs.biochem.6b00688
– ident: ref31/cit31
  doi: 10.1038/sj.bjp.0702359
– ident: ref13/cit13
  doi: 10.1021/acschemneuro.8b00496
– ident: ref1/cit1
  doi: 10.1016/j.neuropharm.2010.12.001
– ident: ref25/cit25
  doi: 10.1002/hipo.22732
– ident: ref12/cit12
  doi: 10.1016/j.neuron.2016.05.017
– ident: ref16/cit16
  doi: 10.1021/acs.jmedchem.7b00597
– ident: ref9/cit9
  doi: 10.1016/j.neuropharm.2017.11.018
– ident: ref46/cit46
  doi: 10.1021/acschemneuro.8b00159
– ident: ref34/cit34
  doi: 10.1016/S0006-8993(98)00267-4
– ident: ref38/cit38
  doi: 10.1093/cercor/bhv227
– ident: ref55/cit55
  doi: 10.1016/j.drudis.2013.09.005
– ident: ref20/cit20
  doi: 10.1176/appi.ajp.2008.06091591
– ident: ref2/cit2
  doi: 10.1186/1471-244X-12-64
– ident: ref8/cit8
  doi: 10.2147/NDT.S55104
– ident: ref11/cit11
  doi: 10.1016/j.neuron.2016.08.017
– volume: 57
  start-page: S39
  issue: 3
  year: 2008
  ident: ref49/cit49
  publication-title: Physiol. Res.
  doi: 10.33549/physiolres.931449
  contributor:
    fullname: Jakubík J.
– ident: ref47/cit47
  doi: 10.1016/j.neuropharm.2013.06.020
– volume-title: R Internals
  year: 2017
  ident: ref54/cit54
  contributor:
    fullname: R Development Core Team
– ident: ref14/cit14
  doi: 10.1016/j.neuropharm.2017.07.013
– ident: ref19/cit19
  doi: 10.1001/archneur.1997.00550160091022
– ident: ref18/cit18
  doi: 10.1002/(SICI)1098-2299(199702)40:2<158::AID-DDR6>3.0.CO;2-K
– ident: ref32/cit32
  doi: 10.1021/acschemneuro.8b00229
– ident: ref33/cit33
  doi: 10.1016/0006-8993(95)00724-5
– ident: ref48/cit48
  doi: 10.1016/j.neuron.2017.10.023
– ident: ref3/cit3
  doi: 10.1056/NEJMoa051688
– ident: ref17/cit17
  doi: 10.1016/j.ejphar.2008.12.044
– ident: ref15/cit15
  doi: 10.1021/acs.jmedchem.6b00544
– ident: ref30/cit30
  doi: 10.1007/s12264-010-0933-0
– ident: ref5/cit5
  doi: 10.1212/WNL.44.12.2300
– ident: ref50/cit50
  doi: 10.1007/s00213-014-3813-x
– ident: ref35/cit35
  doi: 10.1046/j.1460-9568.2003.02588.x
– ident: ref42/cit42
  doi: 10.1002/syn.20388
– ident: ref40/cit40
  doi: 10.1016/S0006-8993(98)00878-6
– volume: 44
  start-page: 39
  year: 1990
  ident: ref22/cit22
  publication-title: Symp. Soc. Exp. Biol.
  contributor:
    fullname: Hulme E. C.
– ident: ref23/cit23
  doi: 10.1016/j.tips.2011.06.008
– ident: ref26/cit26
  doi: 10.1021/acsmedchemlett.6b00461
– ident: ref41/cit41
  doi: 10.1002/hipo.450040604
– ident: ref53/cit53
  doi: 10.1371/journal.pone.0146021
– ident: ref6/cit6
  doi: 10.1097/JGP.0b013e3181d5745d
– ident: ref36/cit36
  doi: 10.1124/mol.109.056531
– ident: ref37/cit37
  doi: 10.1016/0024-3205(87)90031-2
– ident: ref4/cit4
  doi: 10.1016/j.biopsych.2013.08.020
– ident: ref52/cit52
  doi: 10.1124/dmd.111.038778
– ident: ref44/cit44
  doi: 10.1523/JNEUROSCI.0370-11.2011
– ident: ref29/cit29
  doi: 10.1074/jbc.M008827200
– ident: ref43/cit43
  doi: 10.3389/fncir.2012.00005
– ident: ref45/cit45
  doi: 10.1016/j.ejphar.2008.12.020
SSID ssj0069086
Score 2.337358
Snippet Preclinical and clinical data suggest that muscarinic acetyl­choline receptor activation may be therapeutically beneficial for the treatment of schizophrenia...
Preclinical and clinical data suggest that muscarinic acetylcholine receptor activation may be therapeutically beneficial for the treatment of schizophrenia...
SourceID proquest
crossref
pubmed
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 1753
SubjectTerms Acetylcholine - metabolism
Acetylcholine - pharmacology
Animals
CA1 Region, Hippocampal - drug effects
CA1 Region, Hippocampal - metabolism
Corpus Striatum - drug effects
Corpus Striatum - metabolism
Hippocampus - drug effects
Hippocampus - metabolism
Muscarinic Agonists - pharmacology
Prefrontal Cortex - drug effects
Prefrontal Cortex - metabolism
Pyridines - pharmacology
Receptor, Muscarinic M1 - metabolism
Thiadiazoles - pharmacology
Title Striatal, Hippocampal, and Cortical Networks Are Differentially Responsive to the M4- and M1-Muscarinic Acetylcholine Receptor Mediated Effects of Xanomeline
URI http://dx.doi.org/10.1021/acschemneuro.8b00625
https://www.ncbi.nlm.nih.gov/pubmed/30480428
https://search.proquest.com/docview/2138641262
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9QwFA66vvjiqqvueCOCCIIZmzRtuo_D7C6jMiu4LsxbSU4SEGfaYdoRxv_if_UkbV0vLOpLS6ENbXpyzvfl3Ah5niQGQYADlqf2iEmBnLUQ0jMuFAAuPsVtjLY4y2cX8u0iW1wSxd89-IK_1oA0z61iecdxEaREZNfJDaGQgQcoND0fNC8SvdjZEXl5wRQikyFV7opRgkGC5leDdAXKjNbmdJ-8H3J2uiCTz-Nta8bw9c8Sjv_4IbfJrR540kknKXfINVfdJQeTCkn3akdf0BgKGvfYD8i389DMA2H5Kzr7tF6juUOlgRe6snRab-L2Nz3rAsgbHNLR477PCuqL5XJHP_SRt18cbWuKGJPOJYuPzzmbbxvQwXEEdAKu3S2DBkawi0-FGJt6Q-exf4iztKut3NDa04Wu6lVInnf3yMXpycfpjPV9HJiWXLYsc8rkmQbgNhUqRwlwOvXKA5JBLa0sEu8kt4bbDMACigogLk0KnRgJ1rv0Ptmr6sodEmoKKKRTPlSJl94oI6ULp9TyvPAqGZGXOM1lvw6bMrrYBS9_nvuyn_sRYcOPL9ddaY-_3P9skI4S12BwrOjK1dumFDwtcslFLkbkQSc2P0ZMQ9I-cryH__Fmj8hNxGVHIdRNJI_JXrvZuieIfVrzNAo8Ho_fvPsO1o4EhA
link.rule.ids 314,780,784,2765,27076,27924,27925,56738,56788
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zj9MwELaW5QFeuJajnEZCSEi4GztO7H2sCqsCmz6wu6hvkU8J0SZVkyKV_8J_ZewkyyGt0D5FiZKR7cyMv_FcCL1KEg0gwBmSp_aIcAY2q2TcE8qEMSB8gtoYbTHPZ-f84yJb7KFsyIWBQTRAqYlO_N_VBeghPINZrGKVx7EMzMKya-h6FrpWBkQ0PR0UMNh7scEjmOeSCAAoQ8bcJVTCvmSav_elS8Bm3HSOb6MvF8ONsSbfxttWj82Pfyo5Xnk-d9CtHobiScc3d9Geq-6hg0kFJvhqh1_jGBgaT9wP0M_T0NoDQPpbPPu6XsPmByoEblRl8bTexMNwPO_CyRsg6fC7vusKaI_lcoc_93G43x1uawyIExecxM8LSoptY1RwIxk8Ma7dLYM-BugLX4WIm3qDi9hNxFncVVpucO3xQlX1KqTSu_vo_Pj92XRG-q4ORHHKW5I5ofNMGUNtykQO_OBU6oU3YBoqbrlMvOPUamozY6wBxjGAUhOpEs2N9S59gParunKPENbSSO6EDzXjuddCc-7CJbU0l14kI_QGlrnspbIpo8Od0fLPtS_7tR8hMvz_ct0V-vjP-y8HJilBIoObRVWu3jYlo6nMOWU5G6GHHfdcUExDCj9YfI-vMLIX6MbsrDgpTz7MPz1BNwGxHYUgOJY8RfvtZuueASpq9fMoA78A7lcL-A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3raxQxEA_agvhFbevjrI8URBDMuclmN-nH4-px2t4h1sLhlyVPEO92j9s94fxf-r86ye6VKhTRT8sumyEJ8_hNZjKD0Ksk0QACnCF5ao8JZ-CzSsY9oUwYA8InqI3ZFtN8fME_zrLZtVZfMIkaKNUxiB-keml9V2GAvoPvsJJFrPTYl4FhWHYb7WagcEM212B4vlXC4PPFJo_goksiAKRsb83dQCXYJlP_bptuAJzR8Izuo69XU475Jt_760b3zc8_qjn-15oeoHsdHMWDln_20C1X7qODQQmu-GKDX-OYIBpP3g_Q5Xlo8QFg_S0ef1suwQiCKoEXVVo8rFbxUBxP27TyGkg6fNJ1XwEtMp9v8OcuH_eHw02FAXniCSdx-ISSybo2KoSTDB4Y12zmQS8DBIZRIfOmWuFJ7CriLG4rLte48nimymoRrtS7h-hi9P7LcEy67g5Eccobkjmh80wZQ23KRA584VTqhTfgIipuuUy849RqajNjrAEGMoBWE6kSzY31Ln2EdsqqdE8Q1tJI7oQPteO510Jz7sIjtTSXXiQ99Aa2ueiksy5i4J3R4vreF93e9xDZ8kCxbAt-_OX_oy2jFCCZIdyiSlet64LRVOacspz10OOWg64opuEqP3h-T_9hZi_RnU8no-Lsw_T0EN0F4HYccuFY8gztNKu1ew7gqNEvohj8AmspDns
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Striatal%2C+Hippocampal%2C+and+Cortical+Networks+Are+Differentially+Responsive+to+the+M4-+and+M1-Muscarinic+Acetylcholine+Receptor+Mediated+Effects+of+Xanomeline&rft.jtitle=ACS+chemical+neuroscience&rft.au=Thorn%2C+Catherine+A&rft.au=Moon%2C+Joshua&rft.au=Bourbonais%2C+Clinton+A&rft.au=Harms%2C+John&rft.date=2019-03-20&rft.pub=American+Chemical+Society&rft.issn=1948-7193&rft.eissn=1948-7193&rft.volume=10&rft.issue=3&rft.spage=1753&rft.epage=1764&rft_id=info:doi/10.1021%2Facschemneuro.8b00625&rft.externalDocID=g53827226
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1948-7193&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1948-7193&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1948-7193&client=summon