Transition-Metal-Catalyzed Enantioselective Heteroatom–Hydrogen Bond Insertion Reactions
Carbon–heteroatom bonds (C–X) are ubiquitous and are among the most reactive components of organic compounds. Therefore investigations of the construction of C–X bonds are fundamental and vibrant fields in organic chemistry. Transition-metal-catalyzed heteroatom–hydrogen bond (X–H) insertions via a...
Saved in:
Published in | Accounts of chemical research Vol. 45; no. 8; pp. 1365 - 1377 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
21.08.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Carbon–heteroatom bonds (C–X) are ubiquitous and are among the most reactive components of organic compounds. Therefore investigations of the construction of C–X bonds are fundamental and vibrant fields in organic chemistry. Transition-metal-catalyzed heteroatom–hydrogen bond (X–H) insertions via a metal carbene or carbenoid intermediate represent one of the most efficient approaches to form C–X bonds. Because of the availability of substrates, neutral and mild reaction conditions, and high reactivity of these transformations, researchers have widely applied transition-metal-catalyzed X–H insertions in organic synthesis. Researchers have developed a variety of rhodium-catalyzed asymmetric C–H insertion reactions with high to excellent enantioselectivities for a wide range of substrates. However, at the time that we launched our research, very few highly enantioselective X–H insertions had been documented primarily because of a lack of efficient chiral catalysts and indistinct insertion mechanisms. In this Account, we describe our recent studies of copper- and iron-catalyzed asymmetric X–H insertion reactions by using chiral spiro-bisoxazoline and diimine ligands. The copper complexes of chiral spiro-bisoxazoline ligands proved to be highly enantioselective catalysts for N–H insertions of α-diazoesters into anilines, O–H insertions of α-diazoesters into phenols and water, O–H insertions of α-diazophosphonates into alcohols, and S–H insertions of α-diazoesters into mercaptans. The iron complexes of chiral spiro-bisoxazoline ligands afforded the O–H insertion of α-diazoesters into alcohols and water with unprecedented enantioselectivities. The copper complexes of chiral spiro-diimine ligands exhibited excellent reactivity and enantioselectivity in the Si–H insertion of α-diazoacetates into a wide range of silanes. These transition-metal-catalyzed X–H insertions have many potential applications in organic synthesis because the insertion products, including chiral α-aminoesters, α-hydroxyesters, α-hydroxyphosphonates, α-mercaptoesters, and α-silyl esters, are important building blocks for the synthesis of biologically active compounds. The electronic properties of α-diazoesters and anilines markedly affected the enantioselectivity of N–H insertion reaction, which supports a stepwise ylide insertion mechanism. A novel binuclear spiro copper complex was isolated and fully characterized using X-ray diffraction analysis and ESI-MS analysis. The positive nonlinear effect indicated that binuclear copper complexes were the catalytically active species. The 14-electron copper centers, trans coordination model, perfect C 2-symmetric chiral pocket, and Cu–Cu interaction facilitate the performance of the chiral spiro catalysts in X–H insertion reactions. |
---|---|
AbstractList | Carbon–heteroatom bonds (C–X) are ubiquitous and are among the most reactive components of organic compounds. Therefore investigations of the construction of C–X bonds are fundamental and vibrant fields in organic chemistry. Transition-metal-catalyzed heteroatom–hydrogen bond (X–H) insertions via a metal carbene or carbenoid intermediate represent one of the most efficient approaches to form C–X bonds. Because of the availability of substrates, neutral and mild reaction conditions, and high reactivity of these transformations, researchers have widely applied transition-metal-catalyzed X–H insertions in organic synthesis. Researchers have developed a variety of rhodium-catalyzed asymmetric C–H insertion reactions with high to excellent enantioselectivities for a wide range of substrates. However, at the time that we launched our research, very few highly enantioselective X–H insertions had been documented primarily because of a lack of efficient chiral catalysts and indistinct insertion mechanisms. In this Account, we describe our recent studies of copper- and iron-catalyzed asymmetric X–H insertion reactions by using chiral spiro-bisoxazoline and diimine ligands. The copper complexes of chiral spiro-bisoxazoline ligands proved to be highly enantioselective catalysts for N–H insertions of α-diazoesters into anilines, O–H insertions of α-diazoesters into phenols and water, O–H insertions of α-diazophosphonates into alcohols, and S–H insertions of α-diazoesters into mercaptans. The iron complexes of chiral spiro-bisoxazoline ligands afforded the O–H insertion of α-diazoesters into alcohols and water with unprecedented enantioselectivities. The copper complexes of chiral spiro-diimine ligands exhibited excellent reactivity and enantioselectivity in the Si–H insertion of α-diazoacetates into a wide range of silanes. These transition-metal-catalyzed X–H insertions have many potential applications in organic synthesis because the insertion products, including chiral α-aminoesters, α-hydroxyesters, α-hydroxyphosphonates, α-mercaptoesters, and α-silyl esters, are important building blocks for the synthesis of biologically active compounds. The electronic properties of α-diazoesters and anilines markedly affected the enantioselectivity of N–H insertion reaction, which supports a stepwise ylide insertion mechanism. A novel binuclear spiro copper complex was isolated and fully characterized using X-ray diffraction analysis and ESI-MS analysis. The positive nonlinear effect indicated that binuclear copper complexes were the catalytically active species. The 14-electron copper centers, trans coordination model, perfect C 2-symmetric chiral pocket, and Cu–Cu interaction facilitate the performance of the chiral spiro catalysts in X–H insertion reactions. Carbon-heteroatom bonds (C-X) are ubiquitous and are among the most reactive components of organic compounds. Therefore investigations of the construction of C-X bonds are fundamental and vibrant fields in organic chemistry. Transition-metal-catalyzed heteroatom-hydrogen bond (X-H) insertions via a metal carbene or carbenoid intermediate represent one of the most efficient approaches to form C-X bonds. Because of the availability of substrates, neutral and mild reaction conditions, and high reactivity of these transformations, researchers have widely applied transition-metal-catalyzed X-H insertions in organic synthesis. Researchers have developed a variety of rhodium-catalyzed asymmetric C-H insertion reactions with high to excellent enantioselectivities for a wide range of substrates. However, at the time that we launched our research, very few highly enantioselective X-H insertions had been documented primarily because of a lack of efficient chiral catalysts and indistinct insertion mechanisms. In this Account, we describe our recent studies of copper- and iron-catalyzed asymmetric X-H insertion reactions by using chiral spiro-bisoxazoline and diimine ligands. The copper complexes of chiral spiro-bisoxazoline ligands proved to be highly enantioselective catalysts for N-H insertions of α-diazoesters into anilines, O-H insertions of α-diazoesters into phenols and water, O-H insertions of α-diazophosphonates into alcohols, and S-H insertions of α-diazoesters into mercaptans. The iron complexes of chiral spiro-bisoxazoline ligands afforded the O-H insertion of α-diazoesters into alcohols and water with unprecedented enantioselectivities. The copper complexes of chiral spiro-diimine ligands exhibited excellent reactivity and enantioselectivity in the Si-H insertion of α-diazoacetates into a wide range of silanes. These transition-metal-catalyzed X-H insertions have many potential applications in organic synthesis because the insertion products, including chiral α-aminoesters, α-hydroxyesters, α-hydroxyphosphonates, α-mercaptoesters, and α-silyl esters, are important building blocks for the synthesis of biologically active compounds. The electronic properties of α-diazoesters and anilines markedly affected the enantioselectivity of N-H insertion reaction, which supports a stepwise ylide insertion mechanism. A novel binuclear spiro copper complex was isolated and fully characterized using X-ray diffraction analysis and ESI-MS analysis. The positive nonlinear effect indicated that binuclear copper complexes were the catalytically active species. The 14-electron copper centers, trans coordination model, perfect C(2)-symmetric chiral pocket, and Cu-Cu interaction facilitate the performance of the chiral spiro catalysts in X-H insertion reactions.Carbon-heteroatom bonds (C-X) are ubiquitous and are among the most reactive components of organic compounds. Therefore investigations of the construction of C-X bonds are fundamental and vibrant fields in organic chemistry. Transition-metal-catalyzed heteroatom-hydrogen bond (X-H) insertions via a metal carbene or carbenoid intermediate represent one of the most efficient approaches to form C-X bonds. Because of the availability of substrates, neutral and mild reaction conditions, and high reactivity of these transformations, researchers have widely applied transition-metal-catalyzed X-H insertions in organic synthesis. Researchers have developed a variety of rhodium-catalyzed asymmetric C-H insertion reactions with high to excellent enantioselectivities for a wide range of substrates. However, at the time that we launched our research, very few highly enantioselective X-H insertions had been documented primarily because of a lack of efficient chiral catalysts and indistinct insertion mechanisms. In this Account, we describe our recent studies of copper- and iron-catalyzed asymmetric X-H insertion reactions by using chiral spiro-bisoxazoline and diimine ligands. The copper complexes of chiral spiro-bisoxazoline ligands proved to be highly enantioselective catalysts for N-H insertions of α-diazoesters into anilines, O-H insertions of α-diazoesters into phenols and water, O-H insertions of α-diazophosphonates into alcohols, and S-H insertions of α-diazoesters into mercaptans. The iron complexes of chiral spiro-bisoxazoline ligands afforded the O-H insertion of α-diazoesters into alcohols and water with unprecedented enantioselectivities. The copper complexes of chiral spiro-diimine ligands exhibited excellent reactivity and enantioselectivity in the Si-H insertion of α-diazoacetates into a wide range of silanes. These transition-metal-catalyzed X-H insertions have many potential applications in organic synthesis because the insertion products, including chiral α-aminoesters, α-hydroxyesters, α-hydroxyphosphonates, α-mercaptoesters, and α-silyl esters, are important building blocks for the synthesis of biologically active compounds. The electronic properties of α-diazoesters and anilines markedly affected the enantioselectivity of N-H insertion reaction, which supports a stepwise ylide insertion mechanism. A novel binuclear spiro copper complex was isolated and fully characterized using X-ray diffraction analysis and ESI-MS analysis. The positive nonlinear effect indicated that binuclear copper complexes were the catalytically active species. The 14-electron copper centers, trans coordination model, perfect C(2)-symmetric chiral pocket, and Cu-Cu interaction facilitate the performance of the chiral spiro catalysts in X-H insertion reactions. Carbon-heteroatom bonds (C-X) are ubiquitous and are among the most reactive components of organic compounds. Therefore investigations of the construction of C-X bonds are fundamental and vibrant fields in organic chemistry. Transition-metal-catalyzed heteroatom-hydrogen bond (X-H) insertions via a metal carbene or carbenoid intermediate represent one of the most efficient approaches to form C-X bonds. Because of the availability of substrates, neutral and mild reaction conditions, and high reactivity of these transformations, researchers have widely applied transition-metal-catalyzed X-H insertions in organic synthesis. Researchers have developed a variety of rhodium-catalyzed asymmetric C-H insertion reactions with high to excellent enantioselectivities for a wide range of substrates. However, at the time that we launched our research, very few highly enantioselective X-H insertions had been documented primarily because of a lack of efficient chiral catalysts and indistinct insertion mechanisms. |
Author | Zhou, Qi-Lin Zhu, Shou-Fei |
AuthorAffiliation | Nankai University |
AuthorAffiliation_xml | – name: Nankai University |
Author_xml | – sequence: 1 givenname: Shou-Fei surname: Zhu fullname: Zhu, Shou-Fei – sequence: 2 givenname: Qi-Lin surname: Zhou fullname: Zhou, Qi-Lin email: qlzhou@nankai.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22651217$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9KAzEQxoMo2lYPvoDsRdDDapJNNrtHLdUKiiD14mWZZqeysk00yQr15Dv4hj6JKdUeRPCS-ZPffAzf9MmmsQYJ2Wf0hFHOTsFllFLJug3SY5LTVBRlsUl6scliLvgO6Xv_FEsucrVNdjjPJeNM9cjDxIHxTWisSW8wQJsOIb6LN6yTkQETPzy2qEPziskYAzoLwc4_3z_Gi9rZRzTJuTV1cmU8uqVKcoegl4nfJVszaD3ufccBub8YTYbj9Pr28mp4dp2CYCKkUgPLSgUzlitVKk2ntJhK5LxArWshAbNa0jKfqjwurUuWqdhRFKiSimmRDcjRSvfZ2ZcOfajmjdfYtmDQdr5iSlFesCj_P0ozkctc5DSiB99oN51jXT27Zg5uUf1YF4HjFaCd9d7hbI0wWi3PUq3PEtnTX6xuAixdCg6a9s-Jw9UEaF892c6ZaOEf3BeadZs1 |
CitedBy_id | crossref_primary_10_1016_j_tet_2024_133869 crossref_primary_10_1021_acs_joc_9b02035 crossref_primary_10_1039_C9CC04890A crossref_primary_10_1021_acs_orglett_2c02313 crossref_primary_10_1021_jacs_0c05183 crossref_primary_10_1002_anie_201404946 crossref_primary_10_1002_adsc_202000360 crossref_primary_10_1021_jacs_8b07125 crossref_primary_10_1002_cjoc_202300716 crossref_primary_10_1002_ejoc_202400362 crossref_primary_10_1002_ange_202207008 crossref_primary_10_1002_cctc_201901602 crossref_primary_10_1016_j_tetlet_2017_07_021 crossref_primary_10_1021_acs_iecr_9b05709 crossref_primary_10_1039_C5QO00381D crossref_primary_10_1002_cjoc_202401301 crossref_primary_10_1002_cssc_202300596 crossref_primary_10_1016_j_cclet_2022_107791 crossref_primary_10_1021_acs_orglett_8b02251 crossref_primary_10_1039_D3RA03510G crossref_primary_10_1039_C8CC01656A crossref_primary_10_1016_j_tet_2018_11_022 crossref_primary_10_1021_acs_orglett_6b03288 crossref_primary_10_1002_ejoc_201800863 crossref_primary_10_1002_anie_202212889 crossref_primary_10_1021_ol501508f crossref_primary_10_1039_D4NJ00289J crossref_primary_10_1039_C5CC10096H crossref_primary_10_1021_jacs_9b04619 crossref_primary_10_1021_jacs_6b11435 crossref_primary_10_1039_C7OB01801K crossref_primary_10_1055_a_1951_2950 crossref_primary_10_1002_ajoc_202400539 crossref_primary_10_1002_anie_201410284 crossref_primary_10_1002_asia_201800341 crossref_primary_10_1016_j_tet_2019_05_040 crossref_primary_10_1021_acs_joc_8b02850 crossref_primary_10_1002_cctc_201600560 crossref_primary_10_1021_jacs_3c10596 crossref_primary_10_1002_ange_202312793 crossref_primary_10_1002_ejoc_201600064 crossref_primary_10_1002_anie_201400236 crossref_primary_10_1021_acs_chemrev_4c00742 crossref_primary_10_1039_D3CC03253A crossref_primary_10_1021_jacs_7b07602 crossref_primary_10_1002_adsc_202400252 crossref_primary_10_1021_om5005572 crossref_primary_10_1002_ejoc_202300658 crossref_primary_10_1021_jacs_1c05701 crossref_primary_10_1039_C7CC03765A crossref_primary_10_1039_D2OB01048H crossref_primary_10_1002_ange_201704091 crossref_primary_10_1039_D4CS00742E crossref_primary_10_1021_jacs_1c05709 crossref_primary_10_1002_anie_201711647 crossref_primary_10_1039_C3SC52535J crossref_primary_10_1002_anie_201710317 crossref_primary_10_1002_anie_202300011 crossref_primary_10_1002_ange_201504640 crossref_primary_10_1039_D0CS00221F crossref_primary_10_1039_D1CC06041D crossref_primary_10_1039_C9SC02189B crossref_primary_10_1016_j_trechm_2023_05_005 crossref_primary_10_1039_D1SC03328J crossref_primary_10_1002_adsc_201801637 crossref_primary_10_1002_chem_202302371 crossref_primary_10_1039_C7OB01628J crossref_primary_10_1016_j_mencom_2021_04_022 crossref_primary_10_1021_acs_orglett_2c00153 crossref_primary_10_1007_s11426_021_1003_9 crossref_primary_10_1021_acs_joc_6b01249 crossref_primary_10_1021_acs_orglett_8b03126 crossref_primary_10_1021_acs_orglett_9b00757 crossref_primary_10_1039_C3CC48067D crossref_primary_10_1002_anie_201812266 crossref_primary_10_1021_jacs_9b11262 crossref_primary_10_1039_C8CC01436A crossref_primary_10_1039_C9CC09470A crossref_primary_10_1021_acs_joc_2c00513 crossref_primary_10_1021_acs_orglett_9b01848 crossref_primary_10_1002_ejoc_202001451 crossref_primary_10_1055_a_2050_4967 crossref_primary_10_1021_acs_joc_0c01974 crossref_primary_10_1002_adsc_201501106 crossref_primary_10_1016_j_tetlet_2017_07_053 crossref_primary_10_1039_D5QO00051C crossref_primary_10_1016_j_tetlet_2018_09_061 crossref_primary_10_6023_cjoc202206041 crossref_primary_10_1039_C7CC02650A crossref_primary_10_1002_ange_201900265 crossref_primary_10_1002_ange_201511047 crossref_primary_10_1039_c3ob41331d crossref_primary_10_1002_ange_201608937 crossref_primary_10_1002_tcr_201600124 crossref_primary_10_1039_D1SC02773E crossref_primary_10_1021_acs_orglett_4c01634 crossref_primary_10_1016_j_tetlet_2016_06_088 crossref_primary_10_1021_acs_joc_3c02112 crossref_primary_10_1039_C6OB00873A crossref_primary_10_1039_C7OB02802D crossref_primary_10_1002_adsc_202001309 crossref_primary_10_1021_acs_orglett_5b01776 crossref_primary_10_1002_anie_202417636 crossref_primary_10_1021_jacs_3c06906 crossref_primary_10_1021_acs_orglett_7b01558 crossref_primary_10_1002_anie_201511047 crossref_primary_10_1021_jacs_5b10860 crossref_primary_10_1039_C6CC10187A crossref_primary_10_1039_D1CC04830A crossref_primary_10_1021_cr500425u crossref_primary_10_1002_asia_202001219 crossref_primary_10_1039_C8OB00473K crossref_primary_10_1021_acs_orglett_7b02885 crossref_primary_10_1039_C5OB00452G crossref_primary_10_1002_anie_201301509 crossref_primary_10_1039_C6QO00169F crossref_primary_10_1002_anie_202412193 crossref_primary_10_1002_anie_201704091 crossref_primary_10_1021_acs_orglett_5b02868 crossref_primary_10_1002_anie_201504640 crossref_primary_10_1016_j_tet_2023_133558 crossref_primary_10_1002_anie_201611625 crossref_primary_10_1021_acs_orglett_0c02586 crossref_primary_10_1016_j_mcat_2023_113679 crossref_primary_10_1039_D1CC05099K crossref_primary_10_1039_D2OB02133A crossref_primary_10_1039_C6CC05524A crossref_primary_10_1021_acscatal_2c04022 crossref_primary_10_1002_asia_202000378 crossref_primary_10_1039_C8RA04985H crossref_primary_10_1002_adsc_201500678 crossref_primary_10_1021_acs_chemrev_5b00121 crossref_primary_10_1002_ange_202412193 crossref_primary_10_1021_acs_chemrev_5b00381 crossref_primary_10_1039_C4RA06986B crossref_primary_10_1360_SSC_2022_0219 crossref_primary_10_1021_acs_accounts_7b00007 crossref_primary_10_1002_ange_202208874 crossref_primary_10_1021_acs_organomet_9b00219 crossref_primary_10_1002_cjoc_201900456 crossref_primary_10_1007_s00214_022_02876_8 crossref_primary_10_1039_D2NJ05584H crossref_primary_10_1002_ange_201810030 crossref_primary_10_1002_adsc_202400364 crossref_primary_10_1002_ange_201308501 crossref_primary_10_1021_acs_joc_6b01286 crossref_primary_10_1021_jacs_1c03435 crossref_primary_10_1021_acs_orglett_8b03040 crossref_primary_10_1021_acscatal_4c05410 crossref_primary_10_1021_acs_orglett_4c01782 crossref_primary_10_1039_D4CC00959B crossref_primary_10_1021_acs_accounts_1c00075 crossref_primary_10_1039_D3QO01112G crossref_primary_10_1039_C7CC02521A crossref_primary_10_1002_anie_201611845 crossref_primary_10_1016_j_tetlet_2024_155331 crossref_primary_10_1021_acs_orglett_7b00579 crossref_primary_10_1002_ange_202417636 crossref_primary_10_1002_adsc_201300838 crossref_primary_10_1039_C9OB02733E crossref_primary_10_1021_jacs_4c15161 crossref_primary_10_1039_D0CC04495D crossref_primary_10_1016_j_tetlet_2015_05_070 crossref_primary_10_1021_acs_orglett_9b00307 crossref_primary_10_1002_ejoc_202001528 crossref_primary_10_1002_ange_201605502 crossref_primary_10_1021_jacs_3c14766 crossref_primary_10_1021_jacs_6b02302 crossref_primary_10_1002_ange_201309820 crossref_primary_10_1002_anie_201810030 crossref_primary_10_1248_cpb_c18_00519 crossref_primary_10_1039_D0OB02309D crossref_primary_10_1002_ange_202210822 crossref_primary_10_1039_D1SC00979F crossref_primary_10_1002_advs_202403437 crossref_primary_10_1016_j_tetlet_2018_04_055 crossref_primary_10_1002_anie_202003081 crossref_primary_10_1021_acs_orglett_0c00596 crossref_primary_10_6023_cjoc202303010 crossref_primary_10_1002_anie_201308501 crossref_primary_10_1002_ange_201611845 crossref_primary_10_1021_acsorginorgau_3c00024 crossref_primary_10_1039_D1SC02439F crossref_primary_10_1021_acs_orglett_8b03989 crossref_primary_10_1021_acs_orglett_1c03830 crossref_primary_10_1038_s41467_020_16098_8 crossref_primary_10_1002_anie_201900265 crossref_primary_10_1021_acs_joc_3c02605 crossref_primary_10_1002_ajoc_202100195 crossref_primary_10_1039_D5OB00001G crossref_primary_10_1039_D1QO01184G crossref_primary_10_1039_D4CC04832F crossref_primary_10_1002_ange_201509247 crossref_primary_10_1021_acs_accounts_2c00186 crossref_primary_10_1039_C5SC04237B crossref_primary_10_1002_ejoc_202001155 crossref_primary_10_1016_j_poly_2014_01_033 crossref_primary_10_1002_ange_202302371 crossref_primary_10_1039_D3QO01275A crossref_primary_10_1002_ange_202115554 crossref_primary_10_1021_acs_orglett_2c01751 crossref_primary_10_1039_C7OB00177K crossref_primary_10_1039_C9RA07203A crossref_primary_10_1002_anie_201406853 crossref_primary_10_1021_acscatal_8b02822 crossref_primary_10_1021_acscatal_0c02941 crossref_primary_10_1021_jo401050c crossref_primary_10_1039_C7OB02488F crossref_primary_10_1021_acs_orglett_7b03425 crossref_primary_10_1021_acs_orglett_9b00687 crossref_primary_10_1021_acs_chemrev_1c00740 crossref_primary_10_1039_C6DT01272H crossref_primary_10_1039_C4OB02454K crossref_primary_10_1002_chem_202303862 crossref_primary_10_1016_j_tetlet_2023_154496 crossref_primary_10_1021_om400098v crossref_primary_10_1021_acs_orglett_7b00128 crossref_primary_10_1039_D2SC05149D crossref_primary_10_1021_acs_orglett_0c00579 crossref_primary_10_1039_C8QO00475G crossref_primary_10_1002_cctc_201900459 crossref_primary_10_1021_acs_joc_8b00946 crossref_primary_10_3390_molecules24224122 crossref_primary_10_1002_asia_202000305 crossref_primary_10_1039_C3CC49837A crossref_primary_10_1002_adsc_202001158 crossref_primary_10_1039_C9CC08389H crossref_primary_10_1021_acs_orglett_9b02414 crossref_primary_10_1021_jacs_1c01972 crossref_primary_10_1016_j_jcat_2022_11_025 crossref_primary_10_1039_c3cy00350g crossref_primary_10_1039_C4CC04154B crossref_primary_10_1016_j_chempr_2024_02_021 crossref_primary_10_1021_acs_orglett_3c00722 crossref_primary_10_1039_D2SC00721E crossref_primary_10_1246_cl_200099 crossref_primary_10_6023_cjoc202405016 crossref_primary_10_1039_C8OB01067F crossref_primary_10_1039_D4QO00136B crossref_primary_10_1039_C6CC05235E crossref_primary_10_1021_acs_orglett_0c00587 crossref_primary_10_1002_anie_201511954 crossref_primary_10_1002_anie_202202552 crossref_primary_10_1039_D1SC06025B crossref_primary_10_1039_c3cs35496b crossref_primary_10_1039_c3sc51363g crossref_primary_10_1039_C9OB00470J crossref_primary_10_1021_acs_jpca_6b00636 crossref_primary_10_1021_acs_orglett_9b01312 crossref_primary_10_1002_ange_201812266 crossref_primary_10_1002_ejoc_201901738 crossref_primary_10_1021_acs_joc_2c02649 crossref_primary_10_1002_ange_202212889 crossref_primary_10_1021_jacs_7b12486 crossref_primary_10_1126_science_aaw9939 crossref_primary_10_1002_ejoc_202200790 crossref_primary_10_1021_acs_orglett_0c01764 crossref_primary_10_1039_C8SC00443A crossref_primary_10_1021_jacs_0c04725 crossref_primary_10_1039_C5SC00080G crossref_primary_10_1002_chem_201805406 crossref_primary_10_1002_anie_201810410 crossref_primary_10_1021_acs_joc_4c01893 crossref_primary_10_1021_acs_orglett_0c02619 crossref_primary_10_1021_acs_chemrev_3c00869 crossref_primary_10_1021_acs_joc_4c02620 crossref_primary_10_1007_s11030_022_10457_x crossref_primary_10_1002_ange_201306824 crossref_primary_10_1002_chem_201700101 crossref_primary_10_1039_C4OB01671H crossref_primary_10_1021_acs_joc_0c01171 crossref_primary_10_1021_acs_orglett_7b02488 crossref_primary_10_1002_ajoc_201600251 crossref_primary_10_1021_acs_orglett_6b01189 crossref_primary_10_1021_ja3061529 crossref_primary_10_1002_ange_201710317 crossref_primary_10_1002_ange_201711647 crossref_primary_10_1002_ange_202300011 crossref_primary_10_1016_j_tchem_2022_100016 crossref_primary_10_1039_D3QO00370A crossref_primary_10_3390_molecules28165995 crossref_primary_10_1016_j_cej_2022_140182 crossref_primary_10_1021_jacs_1c09148 crossref_primary_10_1039_D2SC00419D crossref_primary_10_1039_D3SC03452F crossref_primary_10_3390_sym16091171 crossref_primary_10_1021_acs_joc_8b02091 crossref_primary_10_1002_anie_202203343 crossref_primary_10_1016_j_checat_2023_100778 crossref_primary_10_1002_chem_201805639 crossref_primary_10_1039_C9SC01657K crossref_primary_10_1002_slct_202200552 crossref_primary_10_1002_asia_202401081 crossref_primary_10_1002_cjoc_202100064 crossref_primary_10_1021_acs_joc_3c02652 crossref_primary_10_1021_acs_orglett_6b02264 crossref_primary_10_1021_acs_orglett_3c01983 crossref_primary_10_1039_C4CC00402G crossref_primary_10_1002_ange_201805676 crossref_primary_10_1002_chir_22467 crossref_primary_10_1021_acs_chemrev_1c00220 crossref_primary_10_1360_SSC_2023_0060 crossref_primary_10_1021_jacs_6b13168 crossref_primary_10_1016_j_gresc_2021_10_007 crossref_primary_10_1002_anie_201609033 crossref_primary_10_1021_acscatal_8b03865 crossref_primary_10_1039_C8OB02683A crossref_primary_10_1039_C5CC01979F crossref_primary_10_1002_adsc_201600603 crossref_primary_10_1002_chem_201503621 crossref_primary_10_1021_acscatal_3c05040 crossref_primary_10_1039_C7DT02532G crossref_primary_10_1021_acs_orglett_9b03787 crossref_primary_10_1039_C9CC01632E crossref_primary_10_1039_D1SC02930D crossref_primary_10_1055_s_0042_1751542 crossref_primary_10_1002_anie_202002289 crossref_primary_10_1016_j_tet_2013_06_088 crossref_primary_10_1002_asia_201800389 crossref_primary_10_1016_j_tet_2021_132274 crossref_primary_10_1039_D3OB00843F crossref_primary_10_1039_C6CC10246H crossref_primary_10_1039_C7CS00324B crossref_primary_10_1002_slct_202405088 crossref_primary_10_1039_C7QO01131H crossref_primary_10_1021_ol502029z crossref_primary_10_1002_anie_201612655 crossref_primary_10_1039_C7CC02440A crossref_primary_10_1039_c3sc52807c crossref_primary_10_6023_cjoc202208023 crossref_primary_10_1002_ajoc_201402151 crossref_primary_10_1021_acs_orglett_9b00382 crossref_primary_10_1039_D2SC06349B crossref_primary_10_1246_bcsj_20200350 crossref_primary_10_1021_om500064d crossref_primary_10_3390_molecules27103088 crossref_primary_10_1055_a_2134_0352 crossref_primary_10_1039_C7QO00815E crossref_primary_10_1002_ange_201209455 crossref_primary_10_1002_asia_201402080 crossref_primary_10_1021_acs_joc_8b02064 crossref_primary_10_1021_jacs_6b06770 crossref_primary_10_3390_molecules28041907 crossref_primary_10_1002_ange_201511954 crossref_primary_10_1016_j_tet_2019_01_016 crossref_primary_10_1021_acs_organomet_9b00833 crossref_primary_10_1002_ajoc_202300241 crossref_primary_10_1002_ange_201612655 crossref_primary_10_1002_anie_201508119 crossref_primary_10_1021_acscatal_3c04443 crossref_primary_10_1002_ajoc_202200631 crossref_primary_10_1002_ange_202423746 crossref_primary_10_1038_s41929_022_00811_5 crossref_primary_10_1039_C6CC00333H crossref_primary_10_1248_cpb_c24_00091 crossref_primary_10_1055_a_2338_4544 crossref_primary_10_1002_cctc_202100914 crossref_primary_10_1021_acs_organomet_0c00174 crossref_primary_10_1021_om401092h crossref_primary_10_1021_acscatal_7b02909 crossref_primary_10_1016_j_gresc_2020_08_001 crossref_primary_10_1021_acscatal_0c02794 crossref_primary_10_1002_chem_201601227 crossref_primary_10_1039_C9CC09521G crossref_primary_10_1002_ange_201700042 crossref_primary_10_1021_acs_joc_2c01262 crossref_primary_10_1002_cctc_202301215 crossref_primary_10_1021_acscatal_2c03937 crossref_primary_10_1038_s41467_022_35394_z crossref_primary_10_1039_D4GC05690F crossref_primary_10_1039_c3ob27285k crossref_primary_10_1021_ar5000055 crossref_primary_10_1039_C9QO00856J crossref_primary_10_1002_adsc_201600855 crossref_primary_10_1016_j_tetlet_2015_08_076 crossref_primary_10_1039_C5RA05377C crossref_primary_10_1039_C5CS00622H crossref_primary_10_1002_cjoc_202300056 crossref_primary_10_1021_acs_joc_9b02605 crossref_primary_10_1039_C3CC48547A crossref_primary_10_1016_j_chemphys_2021_111280 crossref_primary_10_1016_j_tet_2015_02_053 crossref_primary_10_1021_ja513275c crossref_primary_10_1002_ange_201303987 crossref_primary_10_1002_ejoc_202400909 crossref_primary_10_1002_ange_202104708 crossref_primary_10_1002_anie_201612208 crossref_primary_10_1016_j_poly_2025_117452 crossref_primary_10_1021_jacs_5b09135 crossref_primary_10_1039_C5OB01975C crossref_primary_10_1002_anie_201810638 crossref_primary_10_1039_c3ob40429c crossref_primary_10_1002_ange_201406853 crossref_primary_10_1002_chem_202301846 crossref_primary_10_1007_s11426_022_1275_9 crossref_primary_10_1021_jacs_4c01408 crossref_primary_10_1021_acs_orglett_8b01988 crossref_primary_10_1021_acs_orglett_9b02135 crossref_primary_10_1021_acs_orglett_9b04312 crossref_primary_10_1021_ol403011r crossref_primary_10_1016_j_tetlet_2013_12_026 crossref_primary_10_1002_adsc_201700572 crossref_primary_10_1002_adsc_201600883 crossref_primary_10_1016_j_tetlet_2022_154135 crossref_primary_10_1021_acs_joc_9b00875 crossref_primary_10_1016_j_tet_2024_134014 crossref_primary_10_1002_ajoc_202200665 crossref_primary_10_1002_ange_202003081 crossref_primary_10_1002_ange_201909872 crossref_primary_10_1039_D2OB01644C crossref_primary_10_1039_D4CC00557K crossref_primary_10_1021_acs_orglett_8b03919 crossref_primary_10_6023_cjoc202201037 crossref_primary_10_1039_C6OB02136K crossref_primary_10_1021_acs_orglett_8b00888 crossref_primary_10_1039_D4QO01396D crossref_primary_10_1055_a_2185_0673 crossref_primary_10_1002_chem_202500274 crossref_primary_10_1021_acs_orglett_0c01957 crossref_primary_10_1002_chem_202301851 crossref_primary_10_1002_chem_201806275 crossref_primary_10_1002_adsc_201700202 crossref_primary_10_1002_anie_201509247 crossref_primary_10_1002_ange_202202552 crossref_primary_10_1038_s44160_023_00372_w crossref_primary_10_1021_acs_orglett_9b03480 crossref_primary_10_1021_jacs_8b05946 crossref_primary_10_1039_D0RA06537D crossref_primary_10_1021_acscatal_2c04832 crossref_primary_10_1021_jacs_8b03642 crossref_primary_10_1021_acs_orglett_9b03005 crossref_primary_10_1002_chem_201403283 crossref_primary_10_1002_ejoc_201900944 crossref_primary_10_1039_C8RA03842B crossref_primary_10_1021_acs_orglett_9b04452 crossref_primary_10_1002_adsc_201801497 crossref_primary_10_1007_s11244_021_01484_3 crossref_primary_10_1021_acscatal_9b04199 crossref_primary_10_1039_C9OB00261H crossref_primary_10_1021_acs_joc_6b01940 crossref_primary_10_1002_slct_202202440 crossref_primary_10_1021_acs_organomet_6b00924 crossref_primary_10_1016_j_cattod_2023_114443 crossref_primary_10_1002_anie_202210822 crossref_primary_10_1016_j_tet_2015_10_009 crossref_primary_10_1021_jacs_7b12673 crossref_primary_10_1021_acs_orglett_6b01346 crossref_primary_10_1021_jacs_4c12325 crossref_primary_10_1021_acs_orglett_3c03536 crossref_primary_10_1016_j_tet_2012_11_064 crossref_primary_10_1021_acs_orglett_6b02428 crossref_primary_10_1016_j_ccr_2014_02_026 crossref_primary_10_1021_acscatal_1c04354 crossref_primary_10_1002_ajoc_202300053 crossref_primary_10_1093_nsr_nwu019 crossref_primary_10_1021_acscatal_6b02184 crossref_primary_10_1021_acs_orglett_0c01812 crossref_primary_10_1002_anie_202208874 crossref_primary_10_1021_jo5016097 crossref_primary_10_1039_D1CC02888J crossref_primary_10_1002_anie_201700042 crossref_primary_10_1002_ejoc_201600664 crossref_primary_10_1021_acscatal_5b02867 crossref_primary_10_1021_acs_orglett_4c04049 crossref_primary_10_1039_D1CC02876F crossref_primary_10_1021_acs_orglett_6b03752 crossref_primary_10_1002_chem_201901579 crossref_primary_10_1039_D1CC05576C crossref_primary_10_1002_anie_202104708 crossref_primary_10_1021_acs_joc_1c02632 crossref_primary_10_1021_acs_organomet_0c00268 crossref_primary_10_1021_jacs_4c14614 crossref_primary_10_1055_a_1786_6496 crossref_primary_10_1002_ejoc_201700678 crossref_primary_10_1021_acs_orglett_1c01113 crossref_primary_10_1002_ange_201611625 crossref_primary_10_1021_acs_orglett_0c00810 crossref_primary_10_1039_D2SC03552A crossref_primary_10_1016_j_cclet_2014_12_014 crossref_primary_10_1021_acscatal_0c02776 crossref_primary_10_1021_acs_orglett_2c04161 crossref_primary_10_1021_jacs_4c11014 crossref_primary_10_1021_acs_organomet_5b00242 crossref_primary_10_1002_anie_201605502 crossref_primary_10_1002_ange_201700021 crossref_primary_10_1021_acs_jpca_9b11991 crossref_primary_10_1002_cjoc_201800247 crossref_primary_10_1021_acs_orglett_6b02532 crossref_primary_10_1039_D4QO02395A crossref_primary_10_1021_acs_orglett_0c04069 crossref_primary_10_1002_adsc_201801389 crossref_primary_10_1021_jacs_1c10750 crossref_primary_10_1002_ange_201508119 crossref_primary_10_1021_jacs_5b13321 crossref_primary_10_1002_cctc_202300539 crossref_primary_10_1016_j_tet_2018_06_042 crossref_primary_10_1002_anie_201309820 crossref_primary_10_1002_anie_202423746 crossref_primary_10_1016_j_isci_2023_106344 crossref_primary_10_1002_anie_201612138 crossref_primary_10_1021_acs_joc_6b02947 crossref_primary_10_3987_COM_17_S_T_9 crossref_primary_10_1055_a_1929_4890 crossref_primary_10_1021_acs_jpca_9b07274 crossref_primary_10_1039_C9GC01751H crossref_primary_10_1021_jacs_0c04532 crossref_primary_10_1021_jacs_9b08960 crossref_primary_10_1039_D2QO00410K crossref_primary_10_1021_acscatal_0c02405 crossref_primary_10_1039_C9CC06599G crossref_primary_10_1002_anie_201700021 crossref_primary_10_1039_D0PY00185F crossref_primary_10_1016_j_tetlet_2019_06_026 crossref_primary_10_1039_C6CC06320A crossref_primary_10_1021_acs_accounts_4c00709 crossref_primary_10_1039_C7OB00807D crossref_primary_10_1016_j_colsurfa_2022_129153 crossref_primary_10_1002_adsc_201800001 crossref_primary_10_1039_C8CC05420G crossref_primary_10_1039_c2cc34406h crossref_primary_10_1002_asia_202200465 crossref_primary_10_1002_ange_201612138 crossref_primary_10_6023_cjoc202204057 crossref_primary_10_1016_j_checat_2022_10_016 crossref_primary_10_1016_j_tetlet_2013_05_131 crossref_primary_10_1021_acs_joc_6b01864 crossref_primary_10_1002_anie_201909872 crossref_primary_10_1016_j_tetlet_2014_01_084 crossref_primary_10_1021_acs_organomet_3c00179 crossref_primary_10_1039_D2CC04538A crossref_primary_10_1021_acs_joc_7b01601 crossref_primary_10_1142_S1088424616500383 crossref_primary_10_1002_anie_201805676 crossref_primary_10_1002_chem_201700828 crossref_primary_10_1021_acs_orglett_4c01483 crossref_primary_10_1016_j_cplett_2021_139126 crossref_primary_10_3762_bjoc_13_253 crossref_primary_10_1021_jacs_5b05086 crossref_primary_10_1021_jacs_7b03086 crossref_primary_10_1002_cjoc_201700808 crossref_primary_10_1021_acs_jpca_6b05735 crossref_primary_10_1016_j_cclet_2021_05_031 crossref_primary_10_1039_C7SC02867A crossref_primary_10_1002_ange_201810410 crossref_primary_10_1007_s11426_022_1547_0 crossref_primary_10_1016_j_tetlet_2016_11_017 crossref_primary_10_1021_acs_orglett_4c03797 crossref_primary_10_1002_ange_202002289 crossref_primary_10_1016_j_tchem_2023_100040 crossref_primary_10_1039_C9CC01374A crossref_primary_10_1002_ange_201410284 crossref_primary_10_1039_c4cc02060j crossref_primary_10_1007_s11426_022_1480_y crossref_primary_10_1021_jacs_5b08476 crossref_primary_10_1039_C7SC03183A crossref_primary_10_1021_jacs_6b07692 crossref_primary_10_1039_D4NJ00347K crossref_primary_10_1039_D3CC04817A crossref_primary_10_1021_acscatal_2c02434 crossref_primary_10_1021_acscatal_2c05824 crossref_primary_10_1021_acscatal_1c01051 crossref_primary_10_1002_ajoc_202100723 crossref_primary_10_1002_cjoc_201900492 crossref_primary_10_1016_j_jorganchem_2017_02_027 crossref_primary_10_1039_D1OB00948F crossref_primary_10_1002_anie_202312793 crossref_primary_10_1002_ange_201400236 crossref_primary_10_1021_acs_orglett_4c01345 crossref_primary_10_1021_acs_orglett_4c04612 crossref_primary_10_1021_ol401414w crossref_primary_10_1039_D1QO00134E crossref_primary_10_1002_adsc_202300844 crossref_primary_10_1080_00304948_2019_1569409 crossref_primary_10_1002_chem_201603706 crossref_primary_10_1021_jacs_1c02146 crossref_primary_10_1021_ja409859x crossref_primary_10_1039_C9NJ02064K crossref_primary_10_1039_C9CC02257K crossref_primary_10_3390_molecules28041767 crossref_primary_10_1002_adsc_201500769 crossref_primary_10_1002_anie_201608937 crossref_primary_10_1038_s41467_024_48266_5 crossref_primary_10_1002_cctc_202000684 crossref_primary_10_1002_anie_201303987 crossref_primary_10_1039_D1OB01035B crossref_primary_10_1021_acs_accounts_2c00764 crossref_primary_10_1021_acs_orglett_0c04268 crossref_primary_10_1039_D1SC01019K crossref_primary_10_1002_ange_201404946 crossref_primary_10_1002_ange_201810638 crossref_primary_10_1002_ange_201301509 crossref_primary_10_1016_j_tet_2016_06_044 crossref_primary_10_1039_C7QO00430C crossref_primary_10_1021_ja503163k crossref_primary_10_1021_acs_orglett_1c04376 crossref_primary_10_1002_chem_202005014 crossref_primary_10_1021_acs_orglett_4c03656 crossref_primary_10_1021_jacs_8b08384 crossref_primary_10_1039_D3OB02104A crossref_primary_10_1039_D1OB00506E crossref_primary_10_1002_adsc_201600353 crossref_primary_10_1007_s11434_014_0708_5 crossref_primary_10_1021_acs_accounts_1c00664 crossref_primary_10_1002_cjoc_202100449 crossref_primary_10_1002_adsc_201500418 crossref_primary_10_1002_cjoc_202100569 crossref_primary_10_1002_cctc_202100271 crossref_primary_10_1002_anie_202302371 crossref_primary_10_1002_chem_202304299 crossref_primary_10_1039_C8CC07764A crossref_primary_10_1002_anie_202115554 crossref_primary_10_1021_acs_joc_1c02909 crossref_primary_10_1039_D4QO00753K crossref_primary_10_1039_C6RA16868J crossref_primary_10_1002_advs_202409457 crossref_primary_10_1016_j_eurpolymj_2022_111578 crossref_primary_10_1021_acs_joc_6b02998 crossref_primary_10_1039_C5CC05183E crossref_primary_10_1016_j_jorganchem_2013_06_017 crossref_primary_10_1016_j_tet_2018_07_001 crossref_primary_10_1021_acs_orglett_4c02135 crossref_primary_10_1021_acscatal_8b04144 crossref_primary_10_1038_s41467_021_21335_9 crossref_primary_10_1002_cjoc_202401107 crossref_primary_10_1016_j_jorganchem_2019_06_032 crossref_primary_10_1021_acs_orglett_1c03469 crossref_primary_10_1039_D4QO00401A crossref_primary_10_1007_s11164_017_3000_x crossref_primary_10_1002_ange_201612208 crossref_primary_10_1021_acscatal_1c05844 crossref_primary_10_1021_acs_orglett_2c01399 crossref_primary_10_1002_ejoc_202100034 crossref_primary_10_1039_D0DT04090H crossref_primary_10_1002_asia_201800934 crossref_primary_10_1002_adsc_202000957 crossref_primary_10_1021_acs_orglett_5b02912 crossref_primary_10_1021_ja408306a crossref_primary_10_1016_j_molcata_2016_02_031 crossref_primary_10_1021_acs_orglett_0c04251 crossref_primary_10_1038_s41929_022_00779_2 crossref_primary_10_1002_ange_202203343 crossref_primary_10_1039_C7CC01070B crossref_primary_10_1021_acs_jcim_1c00849 crossref_primary_10_1021_acs_orglett_1c03252 crossref_primary_10_1021_acscatal_1c05611 crossref_primary_10_1515_znb_2015_0115 crossref_primary_10_1021_acscentsci_2c00004 crossref_primary_10_1002_adsc_202000701 crossref_primary_10_1021_jacs_4c12069 crossref_primary_10_1021_acscatal_9b05577 crossref_primary_10_1021_jacs_9b09303 crossref_primary_10_1039_D2QO00475E crossref_primary_10_1021_acs_orglett_4c03329 crossref_primary_10_1021_acs_joc_6b00233 crossref_primary_10_1021_jacs_1c04367 crossref_primary_10_1016_j_comptc_2018_07_002 crossref_primary_10_1016_j_jorganchem_2016_01_016 crossref_primary_10_1002_anie_201209455 crossref_primary_10_1039_D3QO00566F crossref_primary_10_1021_acs_orglett_9b01926 crossref_primary_10_1002_ange_201609033 crossref_primary_10_1039_D3CC01620J crossref_primary_10_1002_ajoc_202000276 crossref_primary_10_1038_s41929_021_00637_7 crossref_primary_10_1021_acs_orglett_8b01931 crossref_primary_10_1039_C5SC03558A crossref_primary_10_1002_anie_202207008 crossref_primary_10_1039_C9SC03354H crossref_primary_10_1039_C5SC04319K crossref_primary_10_1021_jacs_8b12832 crossref_primary_10_1021_acs_inorgchem_1c00127 crossref_primary_10_1021_jacs_1c06414 crossref_primary_10_1002_adsc_202000818 crossref_primary_10_1039_C5RA05804J crossref_primary_10_1002_adsc_201600390 crossref_primary_10_1002_anie_201306824 crossref_primary_10_1021_jacs_5b00892 crossref_primary_10_1002_chem_201902126 |
Cites_doi | 10.1007/BF00808368 10.1002/anie.200803192 10.1021/ar700137z 10.1021/ja074729k 10.1021/cr0200217 10.1016/j.tetasy.2006.02.010 10.1055/s-2001-14660 10.1021/ja2077075 10.1248/cpb.58.872 10.1002/anie.200704651 10.1021/ja01141a047 10.1038/nchem.651 10.1016/0040-4039(96)01679-6 10.1021/ja074483j 10.3998/ark.5550190.0003.803 10.1039/B412053A 10.1021/ja100833h 10.1002/anie.201105485 10.1016/S0040-4039(01)82283-8 10.1021/ja00539a040 10.1002/anie.201001686 10.1021/cen-v084n049.p017 10.3998/ark.5550190.0004.210 10.1016/S0040-4039(98)01538-X 10.1021/ja1078464 10.1039/b911670b 10.1021/ja0711765 10.1021/ja103747h 10.1002/9783527635207.ch4 10.1002/anie.200703016 10.1016/S0040-4039(98)00194-4 10.1021/jo961952j 10.1016/j.tetlet.2006.02.014 10.1016/S0040-4039(97)00205-0 10.3987/COM-10-11930 10.1002/adsc.200505361 10.1039/CC9960001465 10.1016/S0957-4166(00)00384-0 10.1016/S0040-4039(98)02013-9 10.1021/ja0607739 10.1021/ja9086566 10.1021/ol202977j 10.1021/om0003786 |
ContentType | Journal Article |
Copyright | Copyright © 2012 American Chemical Society |
Copyright_xml | – notice: Copyright © 2012 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1021/ar300051u |
DatabaseName | CrossRef PubMed MEDLINE - Academic Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
DocumentTitleAlternate | Heteroatom−Hydrogen Bond Insertion Reactions |
EISSN | 1520-4898 |
EndPage | 1377 |
ExternalDocumentID | 22651217 10_1021_ar300051u a08704779 |
Genre | Journal Article |
GroupedDBID | - .K2 02 23M 4.4 53G 55A 5GY 5VS 7~N 85S AABXI ABFLS ABMVS ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 P2P RNS ROL TWZ UI2 UPT VF5 VG9 W1F WH7 X YZZ --- -DZ -~X 5ZA 6J9 6P2 AAYXX ABBLG ABJNI ABLBI ABQRX ACGFO ADHLV AFXLT AGXLV AHGAQ CITATION CUPRZ GGK IH2 XSW ZCA ~02 NPM YIN 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-a414t-5ca1397af167797c0b08b5e228eccd45ae3d5096b76651c9137e3d70a07571c43 |
IEDL.DBID | ACS |
ISSN | 0001-4842 1520-4898 |
IngestDate | Fri Jul 11 09:53:25 EDT 2025 Fri Jul 11 06:23:09 EDT 2025 Wed Feb 19 01:51:30 EST 2025 Tue Jul 01 04:04:07 EDT 2025 Thu Apr 24 23:01:47 EDT 2025 Thu Aug 27 13:42:12 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a414t-5ca1397af167797c0b08b5e228eccd45ae3d5096b76651c9137e3d70a07571c43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 22651217 |
PQID | 1034656460 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1770281167 proquest_miscellaneous_1034656460 pubmed_primary_22651217 crossref_primary_10_1021_ar300051u crossref_citationtrail_10_1021_ar300051u acs_journals_10_1021_ar300051u |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-08-21 |
PublicationDateYYYYMMDD | 2012-08-21 |
PublicationDate_xml | – month: 08 year: 2012 text: 2012-08-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Accounts of chemical research |
PublicationTitleAlternate | Acc. Chem. Res |
PublicationYear | 2012 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Yates P. (ref3/cit3) 1952; 74 Kitagaki S. (ref12/cit12c) 2000; 11 Zhu S.-F. (ref20/cit20) 2011 Zhu S.-F. (ref24/cit24) 2010; 132 Doyle M. P. (ref2/cit2) 1998 ref15/cit15a Grimley J. (ref23/cit23) 2006 Ge M. (ref13/cit13b) 2006; 47 Osako T. (ref28/cit28e) 2012; 14 García C. F. (ref7/cit7) 1996 Liu B. (ref15/cit15c) 2006; 17 Kagan H. B. (ref27/cit27) 2001 Zhu S.-F. (ref17/cit17) 2012; 134 Saito H. (ref28/cit28c) 2010; 81 Liang Y. (ref28/cit28h) 2009; 131 Moody C. J. (ref16/cit16b) 2007; 46 Schmidt B. (ref19/cit19) 2006; 348 Dakin L. A. (ref26/cit26a) 1998; 39 Yudin A. K. (ref1/cit1) 2011 Maier T. C. (ref14/cit14) 2006; 128 Bulugahapitiya P. (ref10/cit10) 1997; 62 Galardon E. (ref11/cit11b) 1998; 39 Lee E. C. (ref28/cit28a) 2007; 129 Yasutomi Y. (ref28/cit28f) 2010; 132 Sambasivan R. (ref28/cit28g) 2010; 132 Bachmann S. (ref9/cit9) 2004; 2 Zhang Y.-Z. (ref25/cit25) 2009 Saito H. (ref28/cit28d) 2010; 58 Salzmann T. N. (ref5/cit5) 1980; 102 Buck R. T. (ref12/cit12a) 1996; 37 Zhu S.-F. (ref18/cit18) 2010; 2 Hou Z.-R. (ref28/cit28b) 2010; 49 Brunner H. (ref11/cit11a) 1990; 121 Davies H. M. L. (ref6/cit6) 2003; 103 Davies H. M. L. (ref13/cit13a) 1997; 38 Liu B. (ref16/cit16a) 2007; 129 Buck R. T. (ref12/cit12b) 1998; 39 Chen C. (ref21/cit21) 2007; 129 Buck R. T. (ref8/cit8) 2002 Zhang X.-M (ref11/cit11c) 2003 Dakin L. A. (ref26/cit26b) 2000; 19 Zhang Y.-Z. (ref15/cit15d) 2008; 47 Zhu S.-F. (ref22/cit22) 2008; 47 Xu B. (ref29/cit29) 2011; 50 Xie J.-H. (ref15/cit15b) 2008; 41 Paulissen R. (ref4/cit4) 1974; 15 |
References_xml | – volume: 121 start-page: 755 year: 1990 ident: ref11/cit11a publication-title: Monatsh. Chem. doi: 10.1007/BF00808368 – volume: 47 start-page: 8496 year: 2008 ident: ref15/cit15d publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200803192 – volume: 41 start-page: 581 year: 2008 ident: ref15/cit15b publication-title: Acc. Chem. Res. doi: 10.1021/ar700137z – volume: 129 start-page: 12616 year: 2007 ident: ref21/cit21 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja074729k – volume: 103 start-page: 2861 year: 2003 ident: ref6/cit6 publication-title: Chem. Rev. doi: 10.1021/cr0200217 – volume: 17 start-page: 634 year: 2006 ident: ref15/cit15c publication-title: Tetrahedron: Asymmetry doi: 10.1016/j.tetasy.2006.02.010 – start-page: 888 year: 2001 ident: ref27/cit27 publication-title: Synlett doi: 10.1055/s-2001-14660 – volume: 134 start-page: 346 year: 2012 ident: ref17/cit17 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2077075 – volume: 58 start-page: 872 year: 2010 ident: ref28/cit28d publication-title: Chem. Pharm. Bull. doi: 10.1248/cpb.58.872 – volume: 47 start-page: 932 year: 2008 ident: ref22/cit22 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200704651 – volume: 74 start-page: 5376 year: 1952 ident: ref3/cit3 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01141a047 – volume: 2 start-page: 546 year: 2010 ident: ref18/cit18 publication-title: Nat. Chem. doi: 10.1038/nchem.651 – volume: 37 start-page: 7631 year: 1996 ident: ref12/cit12a publication-title: Tetrahedron Lett. doi: 10.1016/0040-4039(96)01679-6 – volume: 129 start-page: 12066 year: 2007 ident: ref28/cit28a publication-title: J. Am. Chem. Soc. doi: 10.1021/ja074483j – volume-title: Catalyzed Carbon-Heteroatom Bond Formation year: 2011 ident: ref1/cit1 – start-page: 16 year: 2002 ident: ref8/cit8 publication-title: ARKIVOC doi: 10.3998/ark.5550190.0003.803 – volume: 2 start-page: 3044 year: 2004 ident: ref9/cit9 publication-title: Org. Biomol. Chem doi: 10.1039/B412053A – volume: 132 start-page: 4510 year: 2010 ident: ref28/cit28f publication-title: J. Am. Chem. Soc. doi: 10.1021/ja100833h – volume: 50 start-page: 11483 year: 2011 ident: ref29/cit29 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201105485 – start-page: 919 year: 2011 ident: ref20/cit20 publication-title: Synlett – volume-title: Modern Catalytic Methods for Organic Synthesis with Diazo Compounds year: 1998 ident: ref2/cit2 – volume: 15 start-page: 607 year: 1974 ident: ref4/cit4 publication-title: Tetrahedron Lett. doi: 10.1016/S0040-4039(01)82283-8 – volume: 102 start-page: 6161 year: 1980 ident: ref5/cit5 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00539a040 – volume: 49 start-page: 4763 year: 2010 ident: ref28/cit28b publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201001686 – start-page: 17 issue: 4 year: 2006 ident: ref23/cit23 publication-title: Chem. Eng. News doi: 10.1021/cen-v084n049.p017 – start-page: 84 year: 2003 ident: ref11/cit11c publication-title: ARKIVOC doi: 10.3998/ark.5550190.0004.210 – volume: 39 start-page: 7181 year: 1998 ident: ref12/cit12b publication-title: Tetrahedron Lett. doi: 10.1016/S0040-4039(98)01538-X – volume: 132 start-page: 16374 year: 2010 ident: ref24/cit24 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1078464 – start-page: 5362 year: 2009 ident: ref25/cit25 publication-title: Chem. Commun. doi: 10.1039/b911670b – volume: 129 start-page: 5834 year: 2007 ident: ref16/cit16a publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0711765 – volume: 132 start-page: 9289 year: 2010 ident: ref28/cit28g publication-title: J. Am. Chem. Soc. doi: 10.1021/ja103747h – ident: ref15/cit15a doi: 10.1002/9783527635207.ch4 – volume: 46 start-page: 9148 year: 2007 ident: ref16/cit16b publication-title: Angew. Chem., Int. Ed doi: 10.1002/anie.200703016 – volume: 39 start-page: 2333 year: 1998 ident: ref11/cit11b publication-title: Tetrahedron Lett. doi: 10.1016/S0040-4039(98)00194-4 – volume: 62 start-page: 1630 year: 1997 ident: ref10/cit10 publication-title: J. Org. Chem. doi: 10.1021/jo961952j – volume: 47 start-page: 2319 year: 2006 ident: ref13/cit13b publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2006.02.014 – volume: 38 start-page: 1741 year: 1997 ident: ref13/cit13a publication-title: Tetrahedron Lett. doi: 10.1016/S0040-4039(97)00205-0 – volume: 81 start-page: 1149 year: 2010 ident: ref28/cit28c publication-title: Heterocycles doi: 10.3987/COM-10-11930 – volume: 348 start-page: 531 year: 2006 ident: ref19/cit19 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.200505361 – start-page: 1465 year: 1996 ident: ref7/cit7 publication-title: Chem. Commun. doi: 10.1039/CC9960001465 – volume: 11 start-page: 3855 year: 2000 ident: ref12/cit12c publication-title: Tetrahedron: Asymmetry doi: 10.1016/S0957-4166(00)00384-0 – volume: 39 start-page: 8947 year: 1998 ident: ref26/cit26a publication-title: Tetrahedron Lett. doi: 10.1016/S0040-4039(98)02013-9 – volume: 128 start-page: 4594 year: 2006 ident: ref14/cit14 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0607739 – volume: 131 start-page: 17783 year: 2009 ident: ref28/cit28h publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9086566 – volume: 14 start-page: 194 year: 2012 ident: ref28/cit28e publication-title: Org. Lett. doi: 10.1021/ol202977j – volume: 19 start-page: 2896 year: 2000 ident: ref26/cit26b publication-title: Organometallics doi: 10.1021/om0003786 |
SSID | ssj0002467 |
Score | 2.5917861 |
Snippet | Carbon–heteroatom bonds (C–X) are ubiquitous and are among the most reactive components of organic compounds. Therefore investigations of the construction of... Carbon-heteroatom bonds (C-X) are ubiquitous and are among the most reactive components of organic compounds. Therefore investigations of the construction of... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1365 |
SubjectTerms | Asymmetry Availability Bonding Carbenes Insertion Organic chemistry Organic compounds Transformations |
Title | Transition-Metal-Catalyzed Enantioselective Heteroatom–Hydrogen Bond Insertion Reactions |
URI | http://dx.doi.org/10.1021/ar300051u https://www.ncbi.nlm.nih.gov/pubmed/22651217 https://www.proquest.com/docview/1034656460 https://www.proquest.com/docview/1770281167 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTsMwEB2VcoAL-1KWKiwHLgHbceL0WBWqglQOLBLiEsWOKyEgQV0OcOIf-EO-hJmkqUBs12gSJ56J59kz8wZgnxmfBVopVzGDG5QkVm4se9ZNeGi130Ona6jAuXsedK7l2Y1_U4G9XyL4gh_FfS8HGqMpmBZBqGiH1WxdTpZbIYOCGBP3xTKUoqQP-nwruR4z-Op6fsGTuV9pz8NxWZ1TpJPcH46G-tC8fCdr_OuVF2BujCudZmEIi1Cx6RLMtMp2bstwm3ulPEHL7VqE3G6LTm6eX2zinFA2zF02yHvi4PLndChJJsP9-OP761vnOelnaGcOtSB2TlOK3-NTnAtbFEUMVuC6fXLV6rjjxgqoBy6Hrm9iAn5xjwdKNZRhmoXat0KEqNBE-rH1EqKF0SoIfG4a3FN4RbEY8YXiRnqrUE2z1K6D41EpLaICxHlM9jTXDUuc9xRs9FkiZA3qOPPR-McYRHnMW_BoMkU1OCiVEpkxLTl1x3j4SXR3IvpUcHH8JLRTajbCGabwR5zabERDe0QOJwP2h4xSCLgoNlWDtcIsJkMhUEV0xNXGf5-0CbMIqwSdPAu-BdVhf2S3EboMdT033Q84m-cf |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VciiX8oblUQICiUuK7Tjx7oFDtbTK0m4P0EoVl9R2vBIqJGiTFdqe-A_c-Cv8G34JM86DhwqcKnGNLD_Hnm8yM98APGY2ZolRKlTMooGSaxVqOXNhzofOxDNUupYSnKf7SXooXx7FRyvwpcuFwUlU2FPlnfg_2AX4Mz2PPN5YtAGUu275Ec2z6vnkBZ7lEyF2tg_GadhWEMABuazD2GpCOHrGE6VGyjLDhiZ2Qgxx5rmMtYty4j8xKklibkc8UvhFMY2KVHErI-z3AlxE0CPIsNsav-5feSGTho8TzXE5lKJjLfp5qqTxbPWrxvsDjPXqbOcyfO03wkexnGwuarNpT3_jiPw_d-oKrLcoOthqxP4qrLjiGqyNu-J11-GN18E-HC2cOjQwwjH9p1qeujzYptift2XlKwDhYx-kFBJU6rp8_-3T53SZz0u8VQEVXA4mBUUrYC_BK9ekgFQ34PBclnYTVouycLchiChxGDEQolomZ4abkSOGf3KtxiwXcgAbeCJZ-wxUmffwC571RzKAp50sZLYlYadaIO_Oavqob_qhYR45q9HDTqAy3GFy9ujClQsaOiIqPJmwv7RRCuEleeIGcKuRxn4ohOWIBbm6868lPYC19GC6l-1N9nfvwiUElIL-uQt-D1br-cLdR9BWmw1_ewI4Pm8h_A4dyUe6 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VIkEvvB_LowQEEpcU23Hi3QOHatvVLqUVAipVvQTbcaQKSKpNVmh74j9w56_wX_glzDgPASpwqsQ1svwce77JzHwD8JjZmCVGqVAxiwZKplWoZe7CjA-diXNUupYSnHf3kum-fHEQH6zA1y4XBidRYU-Vd-LTrT7O8pZhgD_T88hjjkUbRLnjlp_QRKuez7bwPJ8IMdl-O56GbRUBHJTLOoytJpSjc54oNVKWGTY0sRNiiLPPZKxdlBEHilFJEnM74pHCL4ppVKaKWxlhv-fgPLkHybjbHL_pX3ohk4aTE01yOZSiYy76eaqk9Wz1q9b7A5T1Km1yGb71m-EjWd5vLGqzYU9-44n8f3frClxq0XSw2Yj_VVhxxTW4OO6K2F2HQ6-LfVhauOvQ0AjH9L9qeeKyYJtigI7KylcCwkc_mFJoUKnr8uP3z1-my2xe4u0KqPByMCsoagF7CV67JhWkugH7Z7K0m7BalIW7DUFECcSIhRDdMpkbbkaOmP7JxRqzTMgBrOOppO1zUKXe0y942h_JAJ528pDaloydaoJ8OK3po77pccNAclqjh51QpbjD5PTRhSsXNHRElHgyYX9poxTCTPLIDeBWI5H9UAjPERNydedfS3oAF15tTdKXs72du7CGuFLQr3fB78FqPV-4-4jdarPuL1AA785aBn8AHYJKPQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transition-Metal-Catalyzed+Enantioselective+Heteroatom%E2%80%93Hydrogen+Bond+Insertion+Reactions&rft.jtitle=Accounts+of+chemical+research&rft.au=Zhu%2C+Shou-Fei&rft.au=Zhou%2C+Qi-Lin&rft.date=2012-08-21&rft.issn=0001-4842&rft.eissn=1520-4898&rft.volume=45&rft.issue=8&rft.spage=1365&rft.epage=1377&rft_id=info:doi/10.1021%2Far300051u&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_ar300051u |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon |