Transition-Metal-Catalyzed Enantioselective Heteroatom–Hydrogen Bond Insertion Reactions

Carbon–heteroatom bonds (C–X) are ubiquitous and are among the most reactive components of organic compounds. Therefore investigations of the construction of C–X bonds are fundamental and vibrant fields in organic chemistry. Transition-metal-catalyzed heteroatom–hydrogen bond (X–H) insertions via a...

Full description

Saved in:
Bibliographic Details
Published inAccounts of chemical research Vol. 45; no. 8; pp. 1365 - 1377
Main Authors Zhu, Shou-Fei, Zhou, Qi-Lin
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 21.08.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Carbon–heteroatom bonds (C–X) are ubiquitous and are among the most reactive components of organic compounds. Therefore investigations of the construction of C–X bonds are fundamental and vibrant fields in organic chemistry. Transition-metal-catalyzed heteroatom–hydrogen bond (X–H) insertions via a metal carbene or carbenoid intermediate represent one of the most efficient approaches to form C–X bonds. Because of the availability of substrates, neutral and mild reaction conditions, and high reactivity of these transformations, researchers have widely applied transition-metal-catalyzed X–H insertions in organic synthesis. Researchers have developed a variety of rhodium-catalyzed asymmetric C–H insertion reactions with high to excellent enantioselectivities for a wide range of substrates. However, at the time that we launched our research, very few highly enantioselective X–H insertions had been documented primarily because of a lack of efficient chiral catalysts and indistinct insertion mechanisms. In this Account, we describe our recent studies of copper- and iron-catalyzed asymmetric X–H insertion reactions by using chiral spiro-bisoxazoline and diimine ligands. The copper complexes of chiral spiro-bisoxazoline ligands proved to be highly enantioselective catalysts for N–H insertions of α-diazoesters into anilines, O–H insertions of α-diazoesters into phenols and water, O–H insertions of α-diazophosphonates into alcohols, and S–H insertions of α-diazoesters into mercaptans. The iron complexes of chiral spiro-bisoxazoline ligands afforded the O–H insertion of α-diazoesters into alcohols and water with unprecedented enantioselectivities. The copper complexes of chiral spiro-diimine ligands exhibited excellent reactivity and enantioselectivity in the Si–H insertion of α-diazoacetates into a wide range of silanes. These transition-metal-catalyzed X–H insertions have many potential applications in organic synthesis because the insertion products, including chiral α-aminoesters, α-hydroxyesters, α-hydroxyphosphonates, α-mercaptoesters, and α-silyl esters, are important building blocks for the synthesis of biologically active compounds. The electronic properties of α-diazoesters and anilines markedly affected the enantioselectivity of N–H insertion reaction, which supports a stepwise ylide insertion mechanism. A novel binuclear spiro copper complex was isolated and fully characterized using X-ray diffraction analysis and ESI-MS analysis. The positive nonlinear effect indicated that binuclear copper complexes were the catalytically active species. The 14-electron copper centers, trans coordination model, perfect C 2-symmetric chiral pocket, and Cu–Cu interaction facilitate the performance of the chiral spiro catalysts in X–H insertion reactions.
AbstractList Carbon–heteroatom bonds (C–X) are ubiquitous and are among the most reactive components of organic compounds. Therefore investigations of the construction of C–X bonds are fundamental and vibrant fields in organic chemistry. Transition-metal-catalyzed heteroatom–hydrogen bond (X–H) insertions via a metal carbene or carbenoid intermediate represent one of the most efficient approaches to form C–X bonds. Because of the availability of substrates, neutral and mild reaction conditions, and high reactivity of these transformations, researchers have widely applied transition-metal-catalyzed X–H insertions in organic synthesis. Researchers have developed a variety of rhodium-catalyzed asymmetric C–H insertion reactions with high to excellent enantioselectivities for a wide range of substrates. However, at the time that we launched our research, very few highly enantioselective X–H insertions had been documented primarily because of a lack of efficient chiral catalysts and indistinct insertion mechanisms. In this Account, we describe our recent studies of copper- and iron-catalyzed asymmetric X–H insertion reactions by using chiral spiro-bisoxazoline and diimine ligands. The copper complexes of chiral spiro-bisoxazoline ligands proved to be highly enantioselective catalysts for N–H insertions of α-diazoesters into anilines, O–H insertions of α-diazoesters into phenols and water, O–H insertions of α-diazophosphonates into alcohols, and S–H insertions of α-diazoesters into mercaptans. The iron complexes of chiral spiro-bisoxazoline ligands afforded the O–H insertion of α-diazoesters into alcohols and water with unprecedented enantioselectivities. The copper complexes of chiral spiro-diimine ligands exhibited excellent reactivity and enantioselectivity in the Si–H insertion of α-diazoacetates into a wide range of silanes. These transition-metal-catalyzed X–H insertions have many potential applications in organic synthesis because the insertion products, including chiral α-aminoesters, α-hydroxyesters, α-hydroxyphosphonates, α-mercaptoesters, and α-silyl esters, are important building blocks for the synthesis of biologically active compounds. The electronic properties of α-diazoesters and anilines markedly affected the enantioselectivity of N–H insertion reaction, which supports a stepwise ylide insertion mechanism. A novel binuclear spiro copper complex was isolated and fully characterized using X-ray diffraction analysis and ESI-MS analysis. The positive nonlinear effect indicated that binuclear copper complexes were the catalytically active species. The 14-electron copper centers, trans coordination model, perfect C 2-symmetric chiral pocket, and Cu–Cu interaction facilitate the performance of the chiral spiro catalysts in X–H insertion reactions.
Carbon-heteroatom bonds (C-X) are ubiquitous and are among the most reactive components of organic compounds. Therefore investigations of the construction of C-X bonds are fundamental and vibrant fields in organic chemistry. Transition-metal-catalyzed heteroatom-hydrogen bond (X-H) insertions via a metal carbene or carbenoid intermediate represent one of the most efficient approaches to form C-X bonds. Because of the availability of substrates, neutral and mild reaction conditions, and high reactivity of these transformations, researchers have widely applied transition-metal-catalyzed X-H insertions in organic synthesis. Researchers have developed a variety of rhodium-catalyzed asymmetric C-H insertion reactions with high to excellent enantioselectivities for a wide range of substrates. However, at the time that we launched our research, very few highly enantioselective X-H insertions had been documented primarily because of a lack of efficient chiral catalysts and indistinct insertion mechanisms. In this Account, we describe our recent studies of copper- and iron-catalyzed asymmetric X-H insertion reactions by using chiral spiro-bisoxazoline and diimine ligands. The copper complexes of chiral spiro-bisoxazoline ligands proved to be highly enantioselective catalysts for N-H insertions of α-diazoesters into anilines, O-H insertions of α-diazoesters into phenols and water, O-H insertions of α-diazophosphonates into alcohols, and S-H insertions of α-diazoesters into mercaptans. The iron complexes of chiral spiro-bisoxazoline ligands afforded the O-H insertion of α-diazoesters into alcohols and water with unprecedented enantioselectivities. The copper complexes of chiral spiro-diimine ligands exhibited excellent reactivity and enantioselectivity in the Si-H insertion of α-diazoacetates into a wide range of silanes. These transition-metal-catalyzed X-H insertions have many potential applications in organic synthesis because the insertion products, including chiral α-aminoesters, α-hydroxyesters, α-hydroxyphosphonates, α-mercaptoesters, and α-silyl esters, are important building blocks for the synthesis of biologically active compounds. The electronic properties of α-diazoesters and anilines markedly affected the enantioselectivity of N-H insertion reaction, which supports a stepwise ylide insertion mechanism. A novel binuclear spiro copper complex was isolated and fully characterized using X-ray diffraction analysis and ESI-MS analysis. The positive nonlinear effect indicated that binuclear copper complexes were the catalytically active species. The 14-electron copper centers, trans coordination model, perfect C(2)-symmetric chiral pocket, and Cu-Cu interaction facilitate the performance of the chiral spiro catalysts in X-H insertion reactions.Carbon-heteroatom bonds (C-X) are ubiquitous and are among the most reactive components of organic compounds. Therefore investigations of the construction of C-X bonds are fundamental and vibrant fields in organic chemistry. Transition-metal-catalyzed heteroatom-hydrogen bond (X-H) insertions via a metal carbene or carbenoid intermediate represent one of the most efficient approaches to form C-X bonds. Because of the availability of substrates, neutral and mild reaction conditions, and high reactivity of these transformations, researchers have widely applied transition-metal-catalyzed X-H insertions in organic synthesis. Researchers have developed a variety of rhodium-catalyzed asymmetric C-H insertion reactions with high to excellent enantioselectivities for a wide range of substrates. However, at the time that we launched our research, very few highly enantioselective X-H insertions had been documented primarily because of a lack of efficient chiral catalysts and indistinct insertion mechanisms. In this Account, we describe our recent studies of copper- and iron-catalyzed asymmetric X-H insertion reactions by using chiral spiro-bisoxazoline and diimine ligands. The copper complexes of chiral spiro-bisoxazoline ligands proved to be highly enantioselective catalysts for N-H insertions of α-diazoesters into anilines, O-H insertions of α-diazoesters into phenols and water, O-H insertions of α-diazophosphonates into alcohols, and S-H insertions of α-diazoesters into mercaptans. The iron complexes of chiral spiro-bisoxazoline ligands afforded the O-H insertion of α-diazoesters into alcohols and water with unprecedented enantioselectivities. The copper complexes of chiral spiro-diimine ligands exhibited excellent reactivity and enantioselectivity in the Si-H insertion of α-diazoacetates into a wide range of silanes. These transition-metal-catalyzed X-H insertions have many potential applications in organic synthesis because the insertion products, including chiral α-aminoesters, α-hydroxyesters, α-hydroxyphosphonates, α-mercaptoesters, and α-silyl esters, are important building blocks for the synthesis of biologically active compounds. The electronic properties of α-diazoesters and anilines markedly affected the enantioselectivity of N-H insertion reaction, which supports a stepwise ylide insertion mechanism. A novel binuclear spiro copper complex was isolated and fully characterized using X-ray diffraction analysis and ESI-MS analysis. The positive nonlinear effect indicated that binuclear copper complexes were the catalytically active species. The 14-electron copper centers, trans coordination model, perfect C(2)-symmetric chiral pocket, and Cu-Cu interaction facilitate the performance of the chiral spiro catalysts in X-H insertion reactions.
Carbon-heteroatom bonds (C-X) are ubiquitous and are among the most reactive components of organic compounds. Therefore investigations of the construction of C-X bonds are fundamental and vibrant fields in organic chemistry. Transition-metal-catalyzed heteroatom-hydrogen bond (X-H) insertions via a metal carbene or carbenoid intermediate represent one of the most efficient approaches to form C-X bonds. Because of the availability of substrates, neutral and mild reaction conditions, and high reactivity of these transformations, researchers have widely applied transition-metal-catalyzed X-H insertions in organic synthesis. Researchers have developed a variety of rhodium-catalyzed asymmetric C-H insertion reactions with high to excellent enantioselectivities for a wide range of substrates. However, at the time that we launched our research, very few highly enantioselective X-H insertions had been documented primarily because of a lack of efficient chiral catalysts and indistinct insertion mechanisms.
Author Zhou, Qi-Lin
Zhu, Shou-Fei
AuthorAffiliation Nankai University
AuthorAffiliation_xml – name: Nankai University
Author_xml – sequence: 1
  givenname: Shou-Fei
  surname: Zhu
  fullname: Zhu, Shou-Fei
– sequence: 2
  givenname: Qi-Lin
  surname: Zhou
  fullname: Zhou, Qi-Lin
  email: qlzhou@nankai.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22651217$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9KAzEQxoMo2lYPvoDsRdDDapJNNrtHLdUKiiD14mWZZqeysk00yQr15Dv4hj6JKdUeRPCS-ZPffAzf9MmmsQYJ2Wf0hFHOTsFllFLJug3SY5LTVBRlsUl6scliLvgO6Xv_FEsucrVNdjjPJeNM9cjDxIHxTWisSW8wQJsOIb6LN6yTkQETPzy2qEPziskYAzoLwc4_3z_Gi9rZRzTJuTV1cmU8uqVKcoegl4nfJVszaD3ufccBub8YTYbj9Pr28mp4dp2CYCKkUgPLSgUzlitVKk2ntJhK5LxArWshAbNa0jKfqjwurUuWqdhRFKiSimmRDcjRSvfZ2ZcOfajmjdfYtmDQdr5iSlFesCj_P0ozkctc5DSiB99oN51jXT27Zg5uUf1YF4HjFaCd9d7hbI0wWi3PUq3PEtnTX6xuAixdCg6a9s-Jw9UEaF892c6ZaOEf3BeadZs1
CitedBy_id crossref_primary_10_1016_j_tet_2024_133869
crossref_primary_10_1021_acs_joc_9b02035
crossref_primary_10_1039_C9CC04890A
crossref_primary_10_1021_acs_orglett_2c02313
crossref_primary_10_1021_jacs_0c05183
crossref_primary_10_1002_anie_201404946
crossref_primary_10_1002_adsc_202000360
crossref_primary_10_1021_jacs_8b07125
crossref_primary_10_1002_cjoc_202300716
crossref_primary_10_1002_ejoc_202400362
crossref_primary_10_1002_ange_202207008
crossref_primary_10_1002_cctc_201901602
crossref_primary_10_1016_j_tetlet_2017_07_021
crossref_primary_10_1021_acs_iecr_9b05709
crossref_primary_10_1039_C5QO00381D
crossref_primary_10_1002_cjoc_202401301
crossref_primary_10_1002_cssc_202300596
crossref_primary_10_1016_j_cclet_2022_107791
crossref_primary_10_1021_acs_orglett_8b02251
crossref_primary_10_1039_D3RA03510G
crossref_primary_10_1039_C8CC01656A
crossref_primary_10_1016_j_tet_2018_11_022
crossref_primary_10_1021_acs_orglett_6b03288
crossref_primary_10_1002_ejoc_201800863
crossref_primary_10_1002_anie_202212889
crossref_primary_10_1021_ol501508f
crossref_primary_10_1039_D4NJ00289J
crossref_primary_10_1039_C5CC10096H
crossref_primary_10_1021_jacs_9b04619
crossref_primary_10_1021_jacs_6b11435
crossref_primary_10_1039_C7OB01801K
crossref_primary_10_1055_a_1951_2950
crossref_primary_10_1002_ajoc_202400539
crossref_primary_10_1002_anie_201410284
crossref_primary_10_1002_asia_201800341
crossref_primary_10_1016_j_tet_2019_05_040
crossref_primary_10_1021_acs_joc_8b02850
crossref_primary_10_1002_cctc_201600560
crossref_primary_10_1021_jacs_3c10596
crossref_primary_10_1002_ange_202312793
crossref_primary_10_1002_ejoc_201600064
crossref_primary_10_1002_anie_201400236
crossref_primary_10_1021_acs_chemrev_4c00742
crossref_primary_10_1039_D3CC03253A
crossref_primary_10_1021_jacs_7b07602
crossref_primary_10_1002_adsc_202400252
crossref_primary_10_1021_om5005572
crossref_primary_10_1002_ejoc_202300658
crossref_primary_10_1021_jacs_1c05701
crossref_primary_10_1039_C7CC03765A
crossref_primary_10_1039_D2OB01048H
crossref_primary_10_1002_ange_201704091
crossref_primary_10_1039_D4CS00742E
crossref_primary_10_1021_jacs_1c05709
crossref_primary_10_1002_anie_201711647
crossref_primary_10_1039_C3SC52535J
crossref_primary_10_1002_anie_201710317
crossref_primary_10_1002_anie_202300011
crossref_primary_10_1002_ange_201504640
crossref_primary_10_1039_D0CS00221F
crossref_primary_10_1039_D1CC06041D
crossref_primary_10_1039_C9SC02189B
crossref_primary_10_1016_j_trechm_2023_05_005
crossref_primary_10_1039_D1SC03328J
crossref_primary_10_1002_adsc_201801637
crossref_primary_10_1002_chem_202302371
crossref_primary_10_1039_C7OB01628J
crossref_primary_10_1016_j_mencom_2021_04_022
crossref_primary_10_1021_acs_orglett_2c00153
crossref_primary_10_1007_s11426_021_1003_9
crossref_primary_10_1021_acs_joc_6b01249
crossref_primary_10_1021_acs_orglett_8b03126
crossref_primary_10_1021_acs_orglett_9b00757
crossref_primary_10_1039_C3CC48067D
crossref_primary_10_1002_anie_201812266
crossref_primary_10_1021_jacs_9b11262
crossref_primary_10_1039_C8CC01436A
crossref_primary_10_1039_C9CC09470A
crossref_primary_10_1021_acs_joc_2c00513
crossref_primary_10_1021_acs_orglett_9b01848
crossref_primary_10_1002_ejoc_202001451
crossref_primary_10_1055_a_2050_4967
crossref_primary_10_1021_acs_joc_0c01974
crossref_primary_10_1002_adsc_201501106
crossref_primary_10_1016_j_tetlet_2017_07_053
crossref_primary_10_1039_D5QO00051C
crossref_primary_10_1016_j_tetlet_2018_09_061
crossref_primary_10_6023_cjoc202206041
crossref_primary_10_1039_C7CC02650A
crossref_primary_10_1002_ange_201900265
crossref_primary_10_1002_ange_201511047
crossref_primary_10_1039_c3ob41331d
crossref_primary_10_1002_ange_201608937
crossref_primary_10_1002_tcr_201600124
crossref_primary_10_1039_D1SC02773E
crossref_primary_10_1021_acs_orglett_4c01634
crossref_primary_10_1016_j_tetlet_2016_06_088
crossref_primary_10_1021_acs_joc_3c02112
crossref_primary_10_1039_C6OB00873A
crossref_primary_10_1039_C7OB02802D
crossref_primary_10_1002_adsc_202001309
crossref_primary_10_1021_acs_orglett_5b01776
crossref_primary_10_1002_anie_202417636
crossref_primary_10_1021_jacs_3c06906
crossref_primary_10_1021_acs_orglett_7b01558
crossref_primary_10_1002_anie_201511047
crossref_primary_10_1021_jacs_5b10860
crossref_primary_10_1039_C6CC10187A
crossref_primary_10_1039_D1CC04830A
crossref_primary_10_1021_cr500425u
crossref_primary_10_1002_asia_202001219
crossref_primary_10_1039_C8OB00473K
crossref_primary_10_1021_acs_orglett_7b02885
crossref_primary_10_1039_C5OB00452G
crossref_primary_10_1002_anie_201301509
crossref_primary_10_1039_C6QO00169F
crossref_primary_10_1002_anie_202412193
crossref_primary_10_1002_anie_201704091
crossref_primary_10_1021_acs_orglett_5b02868
crossref_primary_10_1002_anie_201504640
crossref_primary_10_1016_j_tet_2023_133558
crossref_primary_10_1002_anie_201611625
crossref_primary_10_1021_acs_orglett_0c02586
crossref_primary_10_1016_j_mcat_2023_113679
crossref_primary_10_1039_D1CC05099K
crossref_primary_10_1039_D2OB02133A
crossref_primary_10_1039_C6CC05524A
crossref_primary_10_1021_acscatal_2c04022
crossref_primary_10_1002_asia_202000378
crossref_primary_10_1039_C8RA04985H
crossref_primary_10_1002_adsc_201500678
crossref_primary_10_1021_acs_chemrev_5b00121
crossref_primary_10_1002_ange_202412193
crossref_primary_10_1021_acs_chemrev_5b00381
crossref_primary_10_1039_C4RA06986B
crossref_primary_10_1360_SSC_2022_0219
crossref_primary_10_1021_acs_accounts_7b00007
crossref_primary_10_1002_ange_202208874
crossref_primary_10_1021_acs_organomet_9b00219
crossref_primary_10_1002_cjoc_201900456
crossref_primary_10_1007_s00214_022_02876_8
crossref_primary_10_1039_D2NJ05584H
crossref_primary_10_1002_ange_201810030
crossref_primary_10_1002_adsc_202400364
crossref_primary_10_1002_ange_201308501
crossref_primary_10_1021_acs_joc_6b01286
crossref_primary_10_1021_jacs_1c03435
crossref_primary_10_1021_acs_orglett_8b03040
crossref_primary_10_1021_acscatal_4c05410
crossref_primary_10_1021_acs_orglett_4c01782
crossref_primary_10_1039_D4CC00959B
crossref_primary_10_1021_acs_accounts_1c00075
crossref_primary_10_1039_D3QO01112G
crossref_primary_10_1039_C7CC02521A
crossref_primary_10_1002_anie_201611845
crossref_primary_10_1016_j_tetlet_2024_155331
crossref_primary_10_1021_acs_orglett_7b00579
crossref_primary_10_1002_ange_202417636
crossref_primary_10_1002_adsc_201300838
crossref_primary_10_1039_C9OB02733E
crossref_primary_10_1021_jacs_4c15161
crossref_primary_10_1039_D0CC04495D
crossref_primary_10_1016_j_tetlet_2015_05_070
crossref_primary_10_1021_acs_orglett_9b00307
crossref_primary_10_1002_ejoc_202001528
crossref_primary_10_1002_ange_201605502
crossref_primary_10_1021_jacs_3c14766
crossref_primary_10_1021_jacs_6b02302
crossref_primary_10_1002_ange_201309820
crossref_primary_10_1002_anie_201810030
crossref_primary_10_1248_cpb_c18_00519
crossref_primary_10_1039_D0OB02309D
crossref_primary_10_1002_ange_202210822
crossref_primary_10_1039_D1SC00979F
crossref_primary_10_1002_advs_202403437
crossref_primary_10_1016_j_tetlet_2018_04_055
crossref_primary_10_1002_anie_202003081
crossref_primary_10_1021_acs_orglett_0c00596
crossref_primary_10_6023_cjoc202303010
crossref_primary_10_1002_anie_201308501
crossref_primary_10_1002_ange_201611845
crossref_primary_10_1021_acsorginorgau_3c00024
crossref_primary_10_1039_D1SC02439F
crossref_primary_10_1021_acs_orglett_8b03989
crossref_primary_10_1021_acs_orglett_1c03830
crossref_primary_10_1038_s41467_020_16098_8
crossref_primary_10_1002_anie_201900265
crossref_primary_10_1021_acs_joc_3c02605
crossref_primary_10_1002_ajoc_202100195
crossref_primary_10_1039_D5OB00001G
crossref_primary_10_1039_D1QO01184G
crossref_primary_10_1039_D4CC04832F
crossref_primary_10_1002_ange_201509247
crossref_primary_10_1021_acs_accounts_2c00186
crossref_primary_10_1039_C5SC04237B
crossref_primary_10_1002_ejoc_202001155
crossref_primary_10_1016_j_poly_2014_01_033
crossref_primary_10_1002_ange_202302371
crossref_primary_10_1039_D3QO01275A
crossref_primary_10_1002_ange_202115554
crossref_primary_10_1021_acs_orglett_2c01751
crossref_primary_10_1039_C7OB00177K
crossref_primary_10_1039_C9RA07203A
crossref_primary_10_1002_anie_201406853
crossref_primary_10_1021_acscatal_8b02822
crossref_primary_10_1021_acscatal_0c02941
crossref_primary_10_1021_jo401050c
crossref_primary_10_1039_C7OB02488F
crossref_primary_10_1021_acs_orglett_7b03425
crossref_primary_10_1021_acs_orglett_9b00687
crossref_primary_10_1021_acs_chemrev_1c00740
crossref_primary_10_1039_C6DT01272H
crossref_primary_10_1039_C4OB02454K
crossref_primary_10_1002_chem_202303862
crossref_primary_10_1016_j_tetlet_2023_154496
crossref_primary_10_1021_om400098v
crossref_primary_10_1021_acs_orglett_7b00128
crossref_primary_10_1039_D2SC05149D
crossref_primary_10_1021_acs_orglett_0c00579
crossref_primary_10_1039_C8QO00475G
crossref_primary_10_1002_cctc_201900459
crossref_primary_10_1021_acs_joc_8b00946
crossref_primary_10_3390_molecules24224122
crossref_primary_10_1002_asia_202000305
crossref_primary_10_1039_C3CC49837A
crossref_primary_10_1002_adsc_202001158
crossref_primary_10_1039_C9CC08389H
crossref_primary_10_1021_acs_orglett_9b02414
crossref_primary_10_1021_jacs_1c01972
crossref_primary_10_1016_j_jcat_2022_11_025
crossref_primary_10_1039_c3cy00350g
crossref_primary_10_1039_C4CC04154B
crossref_primary_10_1016_j_chempr_2024_02_021
crossref_primary_10_1021_acs_orglett_3c00722
crossref_primary_10_1039_D2SC00721E
crossref_primary_10_1246_cl_200099
crossref_primary_10_6023_cjoc202405016
crossref_primary_10_1039_C8OB01067F
crossref_primary_10_1039_D4QO00136B
crossref_primary_10_1039_C6CC05235E
crossref_primary_10_1021_acs_orglett_0c00587
crossref_primary_10_1002_anie_201511954
crossref_primary_10_1002_anie_202202552
crossref_primary_10_1039_D1SC06025B
crossref_primary_10_1039_c3cs35496b
crossref_primary_10_1039_c3sc51363g
crossref_primary_10_1039_C9OB00470J
crossref_primary_10_1021_acs_jpca_6b00636
crossref_primary_10_1021_acs_orglett_9b01312
crossref_primary_10_1002_ange_201812266
crossref_primary_10_1002_ejoc_201901738
crossref_primary_10_1021_acs_joc_2c02649
crossref_primary_10_1002_ange_202212889
crossref_primary_10_1021_jacs_7b12486
crossref_primary_10_1126_science_aaw9939
crossref_primary_10_1002_ejoc_202200790
crossref_primary_10_1021_acs_orglett_0c01764
crossref_primary_10_1039_C8SC00443A
crossref_primary_10_1021_jacs_0c04725
crossref_primary_10_1039_C5SC00080G
crossref_primary_10_1002_chem_201805406
crossref_primary_10_1002_anie_201810410
crossref_primary_10_1021_acs_joc_4c01893
crossref_primary_10_1021_acs_orglett_0c02619
crossref_primary_10_1021_acs_chemrev_3c00869
crossref_primary_10_1021_acs_joc_4c02620
crossref_primary_10_1007_s11030_022_10457_x
crossref_primary_10_1002_ange_201306824
crossref_primary_10_1002_chem_201700101
crossref_primary_10_1039_C4OB01671H
crossref_primary_10_1021_acs_joc_0c01171
crossref_primary_10_1021_acs_orglett_7b02488
crossref_primary_10_1002_ajoc_201600251
crossref_primary_10_1021_acs_orglett_6b01189
crossref_primary_10_1021_ja3061529
crossref_primary_10_1002_ange_201710317
crossref_primary_10_1002_ange_201711647
crossref_primary_10_1002_ange_202300011
crossref_primary_10_1016_j_tchem_2022_100016
crossref_primary_10_1039_D3QO00370A
crossref_primary_10_3390_molecules28165995
crossref_primary_10_1016_j_cej_2022_140182
crossref_primary_10_1021_jacs_1c09148
crossref_primary_10_1039_D2SC00419D
crossref_primary_10_1039_D3SC03452F
crossref_primary_10_3390_sym16091171
crossref_primary_10_1021_acs_joc_8b02091
crossref_primary_10_1002_anie_202203343
crossref_primary_10_1016_j_checat_2023_100778
crossref_primary_10_1002_chem_201805639
crossref_primary_10_1039_C9SC01657K
crossref_primary_10_1002_slct_202200552
crossref_primary_10_1002_asia_202401081
crossref_primary_10_1002_cjoc_202100064
crossref_primary_10_1021_acs_joc_3c02652
crossref_primary_10_1021_acs_orglett_6b02264
crossref_primary_10_1021_acs_orglett_3c01983
crossref_primary_10_1039_C4CC00402G
crossref_primary_10_1002_ange_201805676
crossref_primary_10_1002_chir_22467
crossref_primary_10_1021_acs_chemrev_1c00220
crossref_primary_10_1360_SSC_2023_0060
crossref_primary_10_1021_jacs_6b13168
crossref_primary_10_1016_j_gresc_2021_10_007
crossref_primary_10_1002_anie_201609033
crossref_primary_10_1021_acscatal_8b03865
crossref_primary_10_1039_C8OB02683A
crossref_primary_10_1039_C5CC01979F
crossref_primary_10_1002_adsc_201600603
crossref_primary_10_1002_chem_201503621
crossref_primary_10_1021_acscatal_3c05040
crossref_primary_10_1039_C7DT02532G
crossref_primary_10_1021_acs_orglett_9b03787
crossref_primary_10_1039_C9CC01632E
crossref_primary_10_1039_D1SC02930D
crossref_primary_10_1055_s_0042_1751542
crossref_primary_10_1002_anie_202002289
crossref_primary_10_1016_j_tet_2013_06_088
crossref_primary_10_1002_asia_201800389
crossref_primary_10_1016_j_tet_2021_132274
crossref_primary_10_1039_D3OB00843F
crossref_primary_10_1039_C6CC10246H
crossref_primary_10_1039_C7CS00324B
crossref_primary_10_1002_slct_202405088
crossref_primary_10_1039_C7QO01131H
crossref_primary_10_1021_ol502029z
crossref_primary_10_1002_anie_201612655
crossref_primary_10_1039_C7CC02440A
crossref_primary_10_1039_c3sc52807c
crossref_primary_10_6023_cjoc202208023
crossref_primary_10_1002_ajoc_201402151
crossref_primary_10_1021_acs_orglett_9b00382
crossref_primary_10_1039_D2SC06349B
crossref_primary_10_1246_bcsj_20200350
crossref_primary_10_1021_om500064d
crossref_primary_10_3390_molecules27103088
crossref_primary_10_1055_a_2134_0352
crossref_primary_10_1039_C7QO00815E
crossref_primary_10_1002_ange_201209455
crossref_primary_10_1002_asia_201402080
crossref_primary_10_1021_acs_joc_8b02064
crossref_primary_10_1021_jacs_6b06770
crossref_primary_10_3390_molecules28041907
crossref_primary_10_1002_ange_201511954
crossref_primary_10_1016_j_tet_2019_01_016
crossref_primary_10_1021_acs_organomet_9b00833
crossref_primary_10_1002_ajoc_202300241
crossref_primary_10_1002_ange_201612655
crossref_primary_10_1002_anie_201508119
crossref_primary_10_1021_acscatal_3c04443
crossref_primary_10_1002_ajoc_202200631
crossref_primary_10_1002_ange_202423746
crossref_primary_10_1038_s41929_022_00811_5
crossref_primary_10_1039_C6CC00333H
crossref_primary_10_1248_cpb_c24_00091
crossref_primary_10_1055_a_2338_4544
crossref_primary_10_1002_cctc_202100914
crossref_primary_10_1021_acs_organomet_0c00174
crossref_primary_10_1021_om401092h
crossref_primary_10_1021_acscatal_7b02909
crossref_primary_10_1016_j_gresc_2020_08_001
crossref_primary_10_1021_acscatal_0c02794
crossref_primary_10_1002_chem_201601227
crossref_primary_10_1039_C9CC09521G
crossref_primary_10_1002_ange_201700042
crossref_primary_10_1021_acs_joc_2c01262
crossref_primary_10_1002_cctc_202301215
crossref_primary_10_1021_acscatal_2c03937
crossref_primary_10_1038_s41467_022_35394_z
crossref_primary_10_1039_D4GC05690F
crossref_primary_10_1039_c3ob27285k
crossref_primary_10_1021_ar5000055
crossref_primary_10_1039_C9QO00856J
crossref_primary_10_1002_adsc_201600855
crossref_primary_10_1016_j_tetlet_2015_08_076
crossref_primary_10_1039_C5RA05377C
crossref_primary_10_1039_C5CS00622H
crossref_primary_10_1002_cjoc_202300056
crossref_primary_10_1021_acs_joc_9b02605
crossref_primary_10_1039_C3CC48547A
crossref_primary_10_1016_j_chemphys_2021_111280
crossref_primary_10_1016_j_tet_2015_02_053
crossref_primary_10_1021_ja513275c
crossref_primary_10_1002_ange_201303987
crossref_primary_10_1002_ejoc_202400909
crossref_primary_10_1002_ange_202104708
crossref_primary_10_1002_anie_201612208
crossref_primary_10_1016_j_poly_2025_117452
crossref_primary_10_1021_jacs_5b09135
crossref_primary_10_1039_C5OB01975C
crossref_primary_10_1002_anie_201810638
crossref_primary_10_1039_c3ob40429c
crossref_primary_10_1002_ange_201406853
crossref_primary_10_1002_chem_202301846
crossref_primary_10_1007_s11426_022_1275_9
crossref_primary_10_1021_jacs_4c01408
crossref_primary_10_1021_acs_orglett_8b01988
crossref_primary_10_1021_acs_orglett_9b02135
crossref_primary_10_1021_acs_orglett_9b04312
crossref_primary_10_1021_ol403011r
crossref_primary_10_1016_j_tetlet_2013_12_026
crossref_primary_10_1002_adsc_201700572
crossref_primary_10_1002_adsc_201600883
crossref_primary_10_1016_j_tetlet_2022_154135
crossref_primary_10_1021_acs_joc_9b00875
crossref_primary_10_1016_j_tet_2024_134014
crossref_primary_10_1002_ajoc_202200665
crossref_primary_10_1002_ange_202003081
crossref_primary_10_1002_ange_201909872
crossref_primary_10_1039_D2OB01644C
crossref_primary_10_1039_D4CC00557K
crossref_primary_10_1021_acs_orglett_8b03919
crossref_primary_10_6023_cjoc202201037
crossref_primary_10_1039_C6OB02136K
crossref_primary_10_1021_acs_orglett_8b00888
crossref_primary_10_1039_D4QO01396D
crossref_primary_10_1055_a_2185_0673
crossref_primary_10_1002_chem_202500274
crossref_primary_10_1021_acs_orglett_0c01957
crossref_primary_10_1002_chem_202301851
crossref_primary_10_1002_chem_201806275
crossref_primary_10_1002_adsc_201700202
crossref_primary_10_1002_anie_201509247
crossref_primary_10_1002_ange_202202552
crossref_primary_10_1038_s44160_023_00372_w
crossref_primary_10_1021_acs_orglett_9b03480
crossref_primary_10_1021_jacs_8b05946
crossref_primary_10_1039_D0RA06537D
crossref_primary_10_1021_acscatal_2c04832
crossref_primary_10_1021_jacs_8b03642
crossref_primary_10_1021_acs_orglett_9b03005
crossref_primary_10_1002_chem_201403283
crossref_primary_10_1002_ejoc_201900944
crossref_primary_10_1039_C8RA03842B
crossref_primary_10_1021_acs_orglett_9b04452
crossref_primary_10_1002_adsc_201801497
crossref_primary_10_1007_s11244_021_01484_3
crossref_primary_10_1021_acscatal_9b04199
crossref_primary_10_1039_C9OB00261H
crossref_primary_10_1021_acs_joc_6b01940
crossref_primary_10_1002_slct_202202440
crossref_primary_10_1021_acs_organomet_6b00924
crossref_primary_10_1016_j_cattod_2023_114443
crossref_primary_10_1002_anie_202210822
crossref_primary_10_1016_j_tet_2015_10_009
crossref_primary_10_1021_jacs_7b12673
crossref_primary_10_1021_acs_orglett_6b01346
crossref_primary_10_1021_jacs_4c12325
crossref_primary_10_1021_acs_orglett_3c03536
crossref_primary_10_1016_j_tet_2012_11_064
crossref_primary_10_1021_acs_orglett_6b02428
crossref_primary_10_1016_j_ccr_2014_02_026
crossref_primary_10_1021_acscatal_1c04354
crossref_primary_10_1002_ajoc_202300053
crossref_primary_10_1093_nsr_nwu019
crossref_primary_10_1021_acscatal_6b02184
crossref_primary_10_1021_acs_orglett_0c01812
crossref_primary_10_1002_anie_202208874
crossref_primary_10_1021_jo5016097
crossref_primary_10_1039_D1CC02888J
crossref_primary_10_1002_anie_201700042
crossref_primary_10_1002_ejoc_201600664
crossref_primary_10_1021_acscatal_5b02867
crossref_primary_10_1021_acs_orglett_4c04049
crossref_primary_10_1039_D1CC02876F
crossref_primary_10_1021_acs_orglett_6b03752
crossref_primary_10_1002_chem_201901579
crossref_primary_10_1039_D1CC05576C
crossref_primary_10_1002_anie_202104708
crossref_primary_10_1021_acs_joc_1c02632
crossref_primary_10_1021_acs_organomet_0c00268
crossref_primary_10_1021_jacs_4c14614
crossref_primary_10_1055_a_1786_6496
crossref_primary_10_1002_ejoc_201700678
crossref_primary_10_1021_acs_orglett_1c01113
crossref_primary_10_1002_ange_201611625
crossref_primary_10_1021_acs_orglett_0c00810
crossref_primary_10_1039_D2SC03552A
crossref_primary_10_1016_j_cclet_2014_12_014
crossref_primary_10_1021_acscatal_0c02776
crossref_primary_10_1021_acs_orglett_2c04161
crossref_primary_10_1021_jacs_4c11014
crossref_primary_10_1021_acs_organomet_5b00242
crossref_primary_10_1002_anie_201605502
crossref_primary_10_1002_ange_201700021
crossref_primary_10_1021_acs_jpca_9b11991
crossref_primary_10_1002_cjoc_201800247
crossref_primary_10_1021_acs_orglett_6b02532
crossref_primary_10_1039_D4QO02395A
crossref_primary_10_1021_acs_orglett_0c04069
crossref_primary_10_1002_adsc_201801389
crossref_primary_10_1021_jacs_1c10750
crossref_primary_10_1002_ange_201508119
crossref_primary_10_1021_jacs_5b13321
crossref_primary_10_1002_cctc_202300539
crossref_primary_10_1016_j_tet_2018_06_042
crossref_primary_10_1002_anie_201309820
crossref_primary_10_1002_anie_202423746
crossref_primary_10_1016_j_isci_2023_106344
crossref_primary_10_1002_anie_201612138
crossref_primary_10_1021_acs_joc_6b02947
crossref_primary_10_3987_COM_17_S_T_9
crossref_primary_10_1055_a_1929_4890
crossref_primary_10_1021_acs_jpca_9b07274
crossref_primary_10_1039_C9GC01751H
crossref_primary_10_1021_jacs_0c04532
crossref_primary_10_1021_jacs_9b08960
crossref_primary_10_1039_D2QO00410K
crossref_primary_10_1021_acscatal_0c02405
crossref_primary_10_1039_C9CC06599G
crossref_primary_10_1002_anie_201700021
crossref_primary_10_1039_D0PY00185F
crossref_primary_10_1016_j_tetlet_2019_06_026
crossref_primary_10_1039_C6CC06320A
crossref_primary_10_1021_acs_accounts_4c00709
crossref_primary_10_1039_C7OB00807D
crossref_primary_10_1016_j_colsurfa_2022_129153
crossref_primary_10_1002_adsc_201800001
crossref_primary_10_1039_C8CC05420G
crossref_primary_10_1039_c2cc34406h
crossref_primary_10_1002_asia_202200465
crossref_primary_10_1002_ange_201612138
crossref_primary_10_6023_cjoc202204057
crossref_primary_10_1016_j_checat_2022_10_016
crossref_primary_10_1016_j_tetlet_2013_05_131
crossref_primary_10_1021_acs_joc_6b01864
crossref_primary_10_1002_anie_201909872
crossref_primary_10_1016_j_tetlet_2014_01_084
crossref_primary_10_1021_acs_organomet_3c00179
crossref_primary_10_1039_D2CC04538A
crossref_primary_10_1021_acs_joc_7b01601
crossref_primary_10_1142_S1088424616500383
crossref_primary_10_1002_anie_201805676
crossref_primary_10_1002_chem_201700828
crossref_primary_10_1021_acs_orglett_4c01483
crossref_primary_10_1016_j_cplett_2021_139126
crossref_primary_10_3762_bjoc_13_253
crossref_primary_10_1021_jacs_5b05086
crossref_primary_10_1021_jacs_7b03086
crossref_primary_10_1002_cjoc_201700808
crossref_primary_10_1021_acs_jpca_6b05735
crossref_primary_10_1016_j_cclet_2021_05_031
crossref_primary_10_1039_C7SC02867A
crossref_primary_10_1002_ange_201810410
crossref_primary_10_1007_s11426_022_1547_0
crossref_primary_10_1016_j_tetlet_2016_11_017
crossref_primary_10_1021_acs_orglett_4c03797
crossref_primary_10_1002_ange_202002289
crossref_primary_10_1016_j_tchem_2023_100040
crossref_primary_10_1039_C9CC01374A
crossref_primary_10_1002_ange_201410284
crossref_primary_10_1039_c4cc02060j
crossref_primary_10_1007_s11426_022_1480_y
crossref_primary_10_1021_jacs_5b08476
crossref_primary_10_1039_C7SC03183A
crossref_primary_10_1021_jacs_6b07692
crossref_primary_10_1039_D4NJ00347K
crossref_primary_10_1039_D3CC04817A
crossref_primary_10_1021_acscatal_2c02434
crossref_primary_10_1021_acscatal_2c05824
crossref_primary_10_1021_acscatal_1c01051
crossref_primary_10_1002_ajoc_202100723
crossref_primary_10_1002_cjoc_201900492
crossref_primary_10_1016_j_jorganchem_2017_02_027
crossref_primary_10_1039_D1OB00948F
crossref_primary_10_1002_anie_202312793
crossref_primary_10_1002_ange_201400236
crossref_primary_10_1021_acs_orglett_4c01345
crossref_primary_10_1021_acs_orglett_4c04612
crossref_primary_10_1021_ol401414w
crossref_primary_10_1039_D1QO00134E
crossref_primary_10_1002_adsc_202300844
crossref_primary_10_1080_00304948_2019_1569409
crossref_primary_10_1002_chem_201603706
crossref_primary_10_1021_jacs_1c02146
crossref_primary_10_1021_ja409859x
crossref_primary_10_1039_C9NJ02064K
crossref_primary_10_1039_C9CC02257K
crossref_primary_10_3390_molecules28041767
crossref_primary_10_1002_adsc_201500769
crossref_primary_10_1002_anie_201608937
crossref_primary_10_1038_s41467_024_48266_5
crossref_primary_10_1002_cctc_202000684
crossref_primary_10_1002_anie_201303987
crossref_primary_10_1039_D1OB01035B
crossref_primary_10_1021_acs_accounts_2c00764
crossref_primary_10_1021_acs_orglett_0c04268
crossref_primary_10_1039_D1SC01019K
crossref_primary_10_1002_ange_201404946
crossref_primary_10_1002_ange_201810638
crossref_primary_10_1002_ange_201301509
crossref_primary_10_1016_j_tet_2016_06_044
crossref_primary_10_1039_C7QO00430C
crossref_primary_10_1021_ja503163k
crossref_primary_10_1021_acs_orglett_1c04376
crossref_primary_10_1002_chem_202005014
crossref_primary_10_1021_acs_orglett_4c03656
crossref_primary_10_1021_jacs_8b08384
crossref_primary_10_1039_D3OB02104A
crossref_primary_10_1039_D1OB00506E
crossref_primary_10_1002_adsc_201600353
crossref_primary_10_1007_s11434_014_0708_5
crossref_primary_10_1021_acs_accounts_1c00664
crossref_primary_10_1002_cjoc_202100449
crossref_primary_10_1002_adsc_201500418
crossref_primary_10_1002_cjoc_202100569
crossref_primary_10_1002_cctc_202100271
crossref_primary_10_1002_anie_202302371
crossref_primary_10_1002_chem_202304299
crossref_primary_10_1039_C8CC07764A
crossref_primary_10_1002_anie_202115554
crossref_primary_10_1021_acs_joc_1c02909
crossref_primary_10_1039_D4QO00753K
crossref_primary_10_1039_C6RA16868J
crossref_primary_10_1002_advs_202409457
crossref_primary_10_1016_j_eurpolymj_2022_111578
crossref_primary_10_1021_acs_joc_6b02998
crossref_primary_10_1039_C5CC05183E
crossref_primary_10_1016_j_jorganchem_2013_06_017
crossref_primary_10_1016_j_tet_2018_07_001
crossref_primary_10_1021_acs_orglett_4c02135
crossref_primary_10_1021_acscatal_8b04144
crossref_primary_10_1038_s41467_021_21335_9
crossref_primary_10_1002_cjoc_202401107
crossref_primary_10_1016_j_jorganchem_2019_06_032
crossref_primary_10_1021_acs_orglett_1c03469
crossref_primary_10_1039_D4QO00401A
crossref_primary_10_1007_s11164_017_3000_x
crossref_primary_10_1002_ange_201612208
crossref_primary_10_1021_acscatal_1c05844
crossref_primary_10_1021_acs_orglett_2c01399
crossref_primary_10_1002_ejoc_202100034
crossref_primary_10_1039_D0DT04090H
crossref_primary_10_1002_asia_201800934
crossref_primary_10_1002_adsc_202000957
crossref_primary_10_1021_acs_orglett_5b02912
crossref_primary_10_1021_ja408306a
crossref_primary_10_1016_j_molcata_2016_02_031
crossref_primary_10_1021_acs_orglett_0c04251
crossref_primary_10_1038_s41929_022_00779_2
crossref_primary_10_1002_ange_202203343
crossref_primary_10_1039_C7CC01070B
crossref_primary_10_1021_acs_jcim_1c00849
crossref_primary_10_1021_acs_orglett_1c03252
crossref_primary_10_1021_acscatal_1c05611
crossref_primary_10_1515_znb_2015_0115
crossref_primary_10_1021_acscentsci_2c00004
crossref_primary_10_1002_adsc_202000701
crossref_primary_10_1021_jacs_4c12069
crossref_primary_10_1021_acscatal_9b05577
crossref_primary_10_1021_jacs_9b09303
crossref_primary_10_1039_D2QO00475E
crossref_primary_10_1021_acs_orglett_4c03329
crossref_primary_10_1021_acs_joc_6b00233
crossref_primary_10_1021_jacs_1c04367
crossref_primary_10_1016_j_comptc_2018_07_002
crossref_primary_10_1016_j_jorganchem_2016_01_016
crossref_primary_10_1002_anie_201209455
crossref_primary_10_1039_D3QO00566F
crossref_primary_10_1021_acs_orglett_9b01926
crossref_primary_10_1002_ange_201609033
crossref_primary_10_1039_D3CC01620J
crossref_primary_10_1002_ajoc_202000276
crossref_primary_10_1038_s41929_021_00637_7
crossref_primary_10_1021_acs_orglett_8b01931
crossref_primary_10_1039_C5SC03558A
crossref_primary_10_1002_anie_202207008
crossref_primary_10_1039_C9SC03354H
crossref_primary_10_1039_C5SC04319K
crossref_primary_10_1021_jacs_8b12832
crossref_primary_10_1021_acs_inorgchem_1c00127
crossref_primary_10_1021_jacs_1c06414
crossref_primary_10_1002_adsc_202000818
crossref_primary_10_1039_C5RA05804J
crossref_primary_10_1002_adsc_201600390
crossref_primary_10_1002_anie_201306824
crossref_primary_10_1021_jacs_5b00892
crossref_primary_10_1002_chem_201902126
Cites_doi 10.1007/BF00808368
10.1002/anie.200803192
10.1021/ar700137z
10.1021/ja074729k
10.1021/cr0200217
10.1016/j.tetasy.2006.02.010
10.1055/s-2001-14660
10.1021/ja2077075
10.1248/cpb.58.872
10.1002/anie.200704651
10.1021/ja01141a047
10.1038/nchem.651
10.1016/0040-4039(96)01679-6
10.1021/ja074483j
10.3998/ark.5550190.0003.803
10.1039/B412053A
10.1021/ja100833h
10.1002/anie.201105485
10.1016/S0040-4039(01)82283-8
10.1021/ja00539a040
10.1002/anie.201001686
10.1021/cen-v084n049.p017
10.3998/ark.5550190.0004.210
10.1016/S0040-4039(98)01538-X
10.1021/ja1078464
10.1039/b911670b
10.1021/ja0711765
10.1021/ja103747h
10.1002/9783527635207.ch4
10.1002/anie.200703016
10.1016/S0040-4039(98)00194-4
10.1021/jo961952j
10.1016/j.tetlet.2006.02.014
10.1016/S0040-4039(97)00205-0
10.3987/COM-10-11930
10.1002/adsc.200505361
10.1039/CC9960001465
10.1016/S0957-4166(00)00384-0
10.1016/S0040-4039(98)02013-9
10.1021/ja0607739
10.1021/ja9086566
10.1021/ol202977j
10.1021/om0003786
ContentType Journal Article
Copyright Copyright © 2012 American Chemical Society
Copyright_xml – notice: Copyright © 2012 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1021/ar300051u
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
MEDLINE - Academic
PubMed
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
DocumentTitleAlternate Heteroatom−Hydrogen Bond Insertion Reactions
EISSN 1520-4898
EndPage 1377
ExternalDocumentID 22651217
10_1021_ar300051u
a08704779
Genre Journal Article
GroupedDBID -
.K2
02
23M
4.4
53G
55A
5GY
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
RNS
ROL
TWZ
UI2
UPT
VF5
VG9
W1F
WH7
X
YZZ
---
-DZ
-~X
5ZA
6J9
6P2
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
AFXLT
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
ZCA
~02
NPM
YIN
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-a414t-5ca1397af167797c0b08b5e228eccd45ae3d5096b76651c9137e3d70a07571c43
IEDL.DBID ACS
ISSN 0001-4842
1520-4898
IngestDate Fri Jul 11 09:53:25 EDT 2025
Fri Jul 11 06:23:09 EDT 2025
Wed Feb 19 01:51:30 EST 2025
Tue Jul 01 04:04:07 EDT 2025
Thu Apr 24 23:01:47 EDT 2025
Thu Aug 27 13:42:12 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a414t-5ca1397af167797c0b08b5e228eccd45ae3d5096b76651c9137e3d70a07571c43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 22651217
PQID 1034656460
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_1770281167
proquest_miscellaneous_1034656460
pubmed_primary_22651217
crossref_primary_10_1021_ar300051u
crossref_citationtrail_10_1021_ar300051u
acs_journals_10_1021_ar300051u
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-08-21
PublicationDateYYYYMMDD 2012-08-21
PublicationDate_xml – month: 08
  year: 2012
  text: 2012-08-21
  day: 21
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Accounts of chemical research
PublicationTitleAlternate Acc. Chem. Res
PublicationYear 2012
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Yates P. (ref3/cit3) 1952; 74
Kitagaki S. (ref12/cit12c) 2000; 11
Zhu S.-F. (ref20/cit20) 2011
Zhu S.-F. (ref24/cit24) 2010; 132
Doyle M. P. (ref2/cit2) 1998
ref15/cit15a
Grimley J. (ref23/cit23) 2006
Ge M. (ref13/cit13b) 2006; 47
Osako T. (ref28/cit28e) 2012; 14
García C. F. (ref7/cit7) 1996
Liu B. (ref15/cit15c) 2006; 17
Kagan H. B. (ref27/cit27) 2001
Zhu S.-F. (ref17/cit17) 2012; 134
Saito H. (ref28/cit28c) 2010; 81
Liang Y. (ref28/cit28h) 2009; 131
Moody C. J. (ref16/cit16b) 2007; 46
Schmidt B. (ref19/cit19) 2006; 348
Dakin L. A. (ref26/cit26a) 1998; 39
Yudin A. K. (ref1/cit1) 2011
Maier T. C. (ref14/cit14) 2006; 128
Bulugahapitiya P. (ref10/cit10) 1997; 62
Galardon E. (ref11/cit11b) 1998; 39
Lee E. C. (ref28/cit28a) 2007; 129
Yasutomi Y. (ref28/cit28f) 2010; 132
Sambasivan R. (ref28/cit28g) 2010; 132
Bachmann S. (ref9/cit9) 2004; 2
Zhang Y.-Z. (ref25/cit25) 2009
Saito H. (ref28/cit28d) 2010; 58
Salzmann T. N. (ref5/cit5) 1980; 102
Buck R. T. (ref12/cit12a) 1996; 37
Zhu S.-F. (ref18/cit18) 2010; 2
Hou Z.-R. (ref28/cit28b) 2010; 49
Brunner H. (ref11/cit11a) 1990; 121
Davies H. M. L. (ref6/cit6) 2003; 103
Davies H. M. L. (ref13/cit13a) 1997; 38
Liu B. (ref16/cit16a) 2007; 129
Buck R. T. (ref12/cit12b) 1998; 39
Chen C. (ref21/cit21) 2007; 129
Buck R. T. (ref8/cit8) 2002
Zhang X.-M (ref11/cit11c) 2003
Dakin L. A. (ref26/cit26b) 2000; 19
Zhang Y.-Z. (ref15/cit15d) 2008; 47
Zhu S.-F. (ref22/cit22) 2008; 47
Xu B. (ref29/cit29) 2011; 50
Xie J.-H. (ref15/cit15b) 2008; 41
Paulissen R. (ref4/cit4) 1974; 15
References_xml – volume: 121
  start-page: 755
  year: 1990
  ident: ref11/cit11a
  publication-title: Monatsh. Chem.
  doi: 10.1007/BF00808368
– volume: 47
  start-page: 8496
  year: 2008
  ident: ref15/cit15d
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200803192
– volume: 41
  start-page: 581
  year: 2008
  ident: ref15/cit15b
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar700137z
– volume: 129
  start-page: 12616
  year: 2007
  ident: ref21/cit21
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja074729k
– volume: 103
  start-page: 2861
  year: 2003
  ident: ref6/cit6
  publication-title: Chem. Rev.
  doi: 10.1021/cr0200217
– volume: 17
  start-page: 634
  year: 2006
  ident: ref15/cit15c
  publication-title: Tetrahedron: Asymmetry
  doi: 10.1016/j.tetasy.2006.02.010
– start-page: 888
  year: 2001
  ident: ref27/cit27
  publication-title: Synlett
  doi: 10.1055/s-2001-14660
– volume: 134
  start-page: 346
  year: 2012
  ident: ref17/cit17
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2077075
– volume: 58
  start-page: 872
  year: 2010
  ident: ref28/cit28d
  publication-title: Chem. Pharm. Bull.
  doi: 10.1248/cpb.58.872
– volume: 47
  start-page: 932
  year: 2008
  ident: ref22/cit22
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200704651
– volume: 74
  start-page: 5376
  year: 1952
  ident: ref3/cit3
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01141a047
– volume: 2
  start-page: 546
  year: 2010
  ident: ref18/cit18
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.651
– volume: 37
  start-page: 7631
  year: 1996
  ident: ref12/cit12a
  publication-title: Tetrahedron Lett.
  doi: 10.1016/0040-4039(96)01679-6
– volume: 129
  start-page: 12066
  year: 2007
  ident: ref28/cit28a
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja074483j
– volume-title: Catalyzed Carbon-Heteroatom Bond Formation
  year: 2011
  ident: ref1/cit1
– start-page: 16
  year: 2002
  ident: ref8/cit8
  publication-title: ARKIVOC
  doi: 10.3998/ark.5550190.0003.803
– volume: 2
  start-page: 3044
  year: 2004
  ident: ref9/cit9
  publication-title: Org. Biomol. Chem
  doi: 10.1039/B412053A
– volume: 132
  start-page: 4510
  year: 2010
  ident: ref28/cit28f
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja100833h
– volume: 50
  start-page: 11483
  year: 2011
  ident: ref29/cit29
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201105485
– start-page: 919
  year: 2011
  ident: ref20/cit20
  publication-title: Synlett
– volume-title: Modern Catalytic Methods for Organic Synthesis with Diazo Compounds
  year: 1998
  ident: ref2/cit2
– volume: 15
  start-page: 607
  year: 1974
  ident: ref4/cit4
  publication-title: Tetrahedron Lett.
  doi: 10.1016/S0040-4039(01)82283-8
– volume: 102
  start-page: 6161
  year: 1980
  ident: ref5/cit5
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00539a040
– volume: 49
  start-page: 4763
  year: 2010
  ident: ref28/cit28b
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201001686
– start-page: 17
  issue: 4
  year: 2006
  ident: ref23/cit23
  publication-title: Chem. Eng. News
  doi: 10.1021/cen-v084n049.p017
– start-page: 84
  year: 2003
  ident: ref11/cit11c
  publication-title: ARKIVOC
  doi: 10.3998/ark.5550190.0004.210
– volume: 39
  start-page: 7181
  year: 1998
  ident: ref12/cit12b
  publication-title: Tetrahedron Lett.
  doi: 10.1016/S0040-4039(98)01538-X
– volume: 132
  start-page: 16374
  year: 2010
  ident: ref24/cit24
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1078464
– start-page: 5362
  year: 2009
  ident: ref25/cit25
  publication-title: Chem. Commun.
  doi: 10.1039/b911670b
– volume: 129
  start-page: 5834
  year: 2007
  ident: ref16/cit16a
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0711765
– volume: 132
  start-page: 9289
  year: 2010
  ident: ref28/cit28g
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja103747h
– ident: ref15/cit15a
  doi: 10.1002/9783527635207.ch4
– volume: 46
  start-page: 9148
  year: 2007
  ident: ref16/cit16b
  publication-title: Angew. Chem., Int. Ed
  doi: 10.1002/anie.200703016
– volume: 39
  start-page: 2333
  year: 1998
  ident: ref11/cit11b
  publication-title: Tetrahedron Lett.
  doi: 10.1016/S0040-4039(98)00194-4
– volume: 62
  start-page: 1630
  year: 1997
  ident: ref10/cit10
  publication-title: J. Org. Chem.
  doi: 10.1021/jo961952j
– volume: 47
  start-page: 2319
  year: 2006
  ident: ref13/cit13b
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2006.02.014
– volume: 38
  start-page: 1741
  year: 1997
  ident: ref13/cit13a
  publication-title: Tetrahedron Lett.
  doi: 10.1016/S0040-4039(97)00205-0
– volume: 81
  start-page: 1149
  year: 2010
  ident: ref28/cit28c
  publication-title: Heterocycles
  doi: 10.3987/COM-10-11930
– volume: 348
  start-page: 531
  year: 2006
  ident: ref19/cit19
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.200505361
– start-page: 1465
  year: 1996
  ident: ref7/cit7
  publication-title: Chem. Commun.
  doi: 10.1039/CC9960001465
– volume: 11
  start-page: 3855
  year: 2000
  ident: ref12/cit12c
  publication-title: Tetrahedron: Asymmetry
  doi: 10.1016/S0957-4166(00)00384-0
– volume: 39
  start-page: 8947
  year: 1998
  ident: ref26/cit26a
  publication-title: Tetrahedron Lett.
  doi: 10.1016/S0040-4039(98)02013-9
– volume: 128
  start-page: 4594
  year: 2006
  ident: ref14/cit14
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0607739
– volume: 131
  start-page: 17783
  year: 2009
  ident: ref28/cit28h
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9086566
– volume: 14
  start-page: 194
  year: 2012
  ident: ref28/cit28e
  publication-title: Org. Lett.
  doi: 10.1021/ol202977j
– volume: 19
  start-page: 2896
  year: 2000
  ident: ref26/cit26b
  publication-title: Organometallics
  doi: 10.1021/om0003786
SSID ssj0002467
Score 2.5917861
Snippet Carbon–heteroatom bonds (C–X) are ubiquitous and are among the most reactive components of organic compounds. Therefore investigations of the construction of...
Carbon-heteroatom bonds (C-X) are ubiquitous and are among the most reactive components of organic compounds. Therefore investigations of the construction of...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1365
SubjectTerms Asymmetry
Availability
Bonding
Carbenes
Insertion
Organic chemistry
Organic compounds
Transformations
Title Transition-Metal-Catalyzed Enantioselective Heteroatom–Hydrogen Bond Insertion Reactions
URI http://dx.doi.org/10.1021/ar300051u
https://www.ncbi.nlm.nih.gov/pubmed/22651217
https://www.proquest.com/docview/1034656460
https://www.proquest.com/docview/1770281167
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTsMwEB2VcoAL-1KWKiwHLgHbceL0WBWqglQOLBLiEsWOKyEgQV0OcOIf-EO-hJmkqUBs12gSJ56J59kz8wZgnxmfBVopVzGDG5QkVm4se9ZNeGi130Ona6jAuXsedK7l2Y1_U4G9XyL4gh_FfS8HGqMpmBZBqGiH1WxdTpZbIYOCGBP3xTKUoqQP-nwruR4z-Op6fsGTuV9pz8NxWZ1TpJPcH46G-tC8fCdr_OuVF2BujCudZmEIi1Cx6RLMtMp2bstwm3ulPEHL7VqE3G6LTm6eX2zinFA2zF02yHvi4PLndChJJsP9-OP761vnOelnaGcOtSB2TlOK3-NTnAtbFEUMVuC6fXLV6rjjxgqoBy6Hrm9iAn5xjwdKNZRhmoXat0KEqNBE-rH1EqKF0SoIfG4a3FN4RbEY8YXiRnqrUE2z1K6D41EpLaICxHlM9jTXDUuc9xRs9FkiZA3qOPPR-McYRHnMW_BoMkU1OCiVEpkxLTl1x3j4SXR3IvpUcHH8JLRTajbCGabwR5zabERDe0QOJwP2h4xSCLgoNlWDtcIsJkMhUEV0xNXGf5-0CbMIqwSdPAu-BdVhf2S3EboMdT033Q84m-cf
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VciiX8oblUQICiUuK7Tjx7oFDtbTK0m4P0EoVl9R2vBIqJGiTFdqe-A_c-Cv8G34JM86DhwqcKnGNLD_Hnm8yM98APGY2ZolRKlTMooGSaxVqOXNhzofOxDNUupYSnKf7SXooXx7FRyvwpcuFwUlU2FPlnfg_2AX4Mz2PPN5YtAGUu275Ec2z6vnkBZ7lEyF2tg_GadhWEMABuazD2GpCOHrGE6VGyjLDhiZ2Qgxx5rmMtYty4j8xKklibkc8UvhFMY2KVHErI-z3AlxE0CPIsNsav-5feSGTho8TzXE5lKJjLfp5qqTxbPWrxvsDjPXqbOcyfO03wkexnGwuarNpT3_jiPw_d-oKrLcoOthqxP4qrLjiGqyNu-J11-GN18E-HC2cOjQwwjH9p1qeujzYptift2XlKwDhYx-kFBJU6rp8_-3T53SZz0u8VQEVXA4mBUUrYC_BK9ekgFQ34PBclnYTVouycLchiChxGDEQolomZ4abkSOGf3KtxiwXcgAbeCJZ-wxUmffwC571RzKAp50sZLYlYadaIO_Oavqob_qhYR45q9HDTqAy3GFy9ujClQsaOiIqPJmwv7RRCuEleeIGcKuRxn4ohOWIBbm6868lPYC19GC6l-1N9nfvwiUElIL-uQt-D1br-cLdR9BWmw1_ewI4Pm8h_A4dyUe6
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VIkEvvB_LowQEEpcU23Hi3QOHatvVLqUVAipVvQTbcaQKSKpNVmh74j9w56_wX_glzDgPASpwqsQ1svwce77JzHwD8JjZmCVGqVAxiwZKplWoZe7CjA-diXNUupYSnHf3kum-fHEQH6zA1y4XBidRYU-Vd-LTrT7O8pZhgD_T88hjjkUbRLnjlp_QRKuez7bwPJ8IMdl-O56GbRUBHJTLOoytJpSjc54oNVKWGTY0sRNiiLPPZKxdlBEHilFJEnM74pHCL4ppVKaKWxlhv-fgPLkHybjbHL_pX3ohk4aTE01yOZSiYy76eaqk9Wz1q9b7A5T1Km1yGb71m-EjWd5vLGqzYU9-44n8f3frClxq0XSw2Yj_VVhxxTW4OO6K2F2HQ6-LfVhauOvQ0AjH9L9qeeKyYJtigI7KylcCwkc_mFJoUKnr8uP3z1-my2xe4u0KqPByMCsoagF7CV67JhWkugH7Z7K0m7BalIW7DUFECcSIhRDdMpkbbkaOmP7JxRqzTMgBrOOppO1zUKXe0y942h_JAJ528pDaloydaoJ8OK3po77pccNAclqjh51QpbjD5PTRhSsXNHRElHgyYX9poxTCTPLIDeBWI5H9UAjPERNydedfS3oAF15tTdKXs72du7CGuFLQr3fB78FqPV-4-4jdarPuL1AA785aBn8AHYJKPQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transition-Metal-Catalyzed+Enantioselective+Heteroatom%E2%80%93Hydrogen+Bond+Insertion+Reactions&rft.jtitle=Accounts+of+chemical+research&rft.au=Zhu%2C+Shou-Fei&rft.au=Zhou%2C+Qi-Lin&rft.date=2012-08-21&rft.issn=0001-4842&rft.eissn=1520-4898&rft.volume=45&rft.issue=8&rft.spage=1365&rft.epage=1377&rft_id=info:doi/10.1021%2Far300051u&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_ar300051u
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon