Nanopore Stochastic Detection: Diversity, Sensitivity, and Beyond
Nanopore sensors have emerged as a label-free and amplification-free technique for measuring single molecules. First proposed in the mid-1990s, nanopore detection takes advantage of the ionic current modulations produced by the passage of target analytes through a single nanopore at a fixed applied...
Saved in:
Published in | Accounts of chemical research Vol. 46; no. 12; pp. 2867 - 2877 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
17.12.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nanopore sensors have emerged as a label-free and amplification-free technique for measuring single molecules. First proposed in the mid-1990s, nanopore detection takes advantage of the ionic current modulations produced by the passage of target analytes through a single nanopore at a fixed applied potential. Over the last 15 years, these nanoscale pores have been used to sequence DNA, to study covalent and non-covalent bonding interactions, to investigate biomolecular folding and unfolding, and for other applications. A major issue in the application of nanopore sensors is the rapid transport of target analyte molecules through the nanopore. Current recording techniques do not always accurately detect these rapid events. Therefore, researchers have looked for methods that slow molecular and ionic transport. Thus far, several strategies can improve the resolution and sensitivity of nanopore sensors including variation of the experimental conditions, use of a host compound, and modification of the analyte molecule and the nanopore sensor. In this Account, we highlight our recent research efforts that have focused on applications of nanopore sensors including the differentiation of chiral molecules, the study of enzyme kinetics, and the determination of sample purity and composition. Then we summarize our efforts to regulate molecular transport. We show that the introduction of various surface functional groups such as hydrophobic, aromatic, positively charged, and negatively charged residues in the nanopore interior, an increase in the ionic strength of the electrolyte solution, and the use of ionic liquid solutions as the electrolyte instead of inorganic salts may improve the resolution and sensitivity of nanopore stochastic sensors. Our experiments also demonstrate that the introduction of multiple functional groups into a single nanopore and the development of a pattern-recognition nanopore sensor array could further enhance sensor resolution. Although we have demonstrated the feasibility of nanopore sensors for various applications, challenges remain before nanopore sensing is deployed for routine use in applications such as medical diagnosis, homeland security, pharmaceutical screening, and environmental monitoring. |
---|---|
AbstractList | Nanopore sensors have emerged as a label-free and amplification-free technique for measuring single molecules. First proposed in the mid-1990s, nanopore detection takes advantage of the ionic current modulations produced by the passage of target analytes through a single nanopore at a fixed applied potential. Over the last 15 years, these nanoscale pores have been used to sequence DNA, to study covalent and non-covalent bonding interactions, to investigate biomolecular folding and unfolding, and for other applications. A major issue in the application of nanopore sensors is the rapid transport of target analyte molecules through the nanopore. Current recording techniques do not always accurately detect these rapid events. Therefore, researchers have looked for methods that slow molecular and ionic transport. Thus far, several strategies can improve the resolution and sensitivity of nanopore sensors including variation of the experimental conditions, use of a host compound, and modification of the analyte molecule and the nanopore sensor. In this Account, we highlight our recent research efforts that have focused on applications of nanopore sensors including the differentiation of chiral molecules, the study of enzyme kinetics, and the determination of sample purity and composition. Then we summarize our efforts to regulate molecular transport. We show that the introduction of various surface functional groups such as hydrophobic, aromatic, positively charged, and negatively charged residues in the nanopore interior, an increase in the ionic strength of the electrolyte solution, and the use of ionic liquid solutions as the electrolyte instead of inorganic salts may improve the resolution and sensitivity of nanopore stochastic sensors. Our experiments also demonstrate that the introduction of multiple functional groups into a single nanopore and the development of a pattern-recognition nanopore sensor array could further enhance sensor resolution. Although we have demonstrated the feasibility of nanopore sensors for various applications, challenges remain before nanopore sensing is deployed for routine use in applications such as medical diagnosis, homeland security, pharmaceutical screening, and environmental monitoring. Nanopore sensors have emerged as a label-free and amplification-free technique for measuring single molecules. First proposed in the mid-1990s, nanopore detection takes advantage of the ionic current modulations produced by the passage of target analytes through a single nanopore at a fixed applied potential. Over the last 15 years, these nanoscale pores have been used to sequence DNA, to study covalent and non-covalent bonding interactions, to investigate biomolecular folding and unfolding, and for other applications. Nanopore sensors have emerged as a label-free and amplification-free technique for measuring single molecules. First proposed in the mid-1990s, nanopore detection takes advantage of the ionic current modulations produced by the passage of target analytes through a single nanopore at a fixed applied potential. Over the last 15 years, these nanoscale pores have been used to sequence DNA, to study covalent and non-covalent bonding interactions, to investigate biomolecular folding and unfolding, and for other applications. A major issue in the application of nanopore sensors is the rapid transport of target analyte molecules through the nanopore. Current recording techniques do not always accurately detect these rapid events. Therefore, researchers have looked for methods that slow molecular and ionic transport. Thus far, several strategies can improve the resolution and sensitivity of nanopore sensors including variation of the experimental conditions, use of a host compound, and modification of the analyte molecule and the nanopore sensor. In this Account, we highlight our recent research efforts that have focused on applications of nanopore sensors including the differentiation of chiral molecules, the study of enzyme kinetics, and the determination of sample purity and composition. Then we summarize our efforts to regulate molecular transport. We show that the introduction of various surface functional groups such as hydrophobic, aromatic, positively charged, and negatively charged residues in the nanopore interior, an increase in the ionic strength of the electrolyte solution, and the use of ionic liquid solutions as the electrolyte instead of inorganic salts may improve the resolution and sensitivity of nanopore stochastic sensors. Our experiments also demonstrate that the introduction of multiple functional groups into a single nanopore and the development of a pattern-recognition nanopore sensor array could further enhance sensor resolution. Although we have demonstrated the feasibility of nanopore sensors for various applications, challenges remain before nanopore sensing is deployed for routine use in applications such as medical diagnosis, homeland security, pharmaceutical screening, and environmental monitoring.Nanopore sensors have emerged as a label-free and amplification-free technique for measuring single molecules. First proposed in the mid-1990s, nanopore detection takes advantage of the ionic current modulations produced by the passage of target analytes through a single nanopore at a fixed applied potential. Over the last 15 years, these nanoscale pores have been used to sequence DNA, to study covalent and non-covalent bonding interactions, to investigate biomolecular folding and unfolding, and for other applications. A major issue in the application of nanopore sensors is the rapid transport of target analyte molecules through the nanopore. Current recording techniques do not always accurately detect these rapid events. Therefore, researchers have looked for methods that slow molecular and ionic transport. Thus far, several strategies can improve the resolution and sensitivity of nanopore sensors including variation of the experimental conditions, use of a host compound, and modification of the analyte molecule and the nanopore sensor. In this Account, we highlight our recent research efforts that have focused on applications of nanopore sensors including the differentiation of chiral molecules, the study of enzyme kinetics, and the determination of sample purity and composition. Then we summarize our efforts to regulate molecular transport. We show that the introduction of various surface functional groups such as hydrophobic, aromatic, positively charged, and negatively charged residues in the nanopore interior, an increase in the ionic strength of the electrolyte solution, and the use of ionic liquid solutions as the electrolyte instead of inorganic salts may improve the resolution and sensitivity of nanopore stochastic sensors. Our experiments also demonstrate that the introduction of multiple functional groups into a single nanopore and the development of a pattern-recognition nanopore sensor array could further enhance sensor resolution. Although we have demonstrated the feasibility of nanopore sensors for various applications, challenges remain before nanopore sensing is deployed for routine use in applications such as medical diagnosis, homeland security, pharmaceutical screening, and environmental monitoring. |
Author | Wang, Guihua Wang, Liang Guan, Xiyun Zhou, Shuo Han, Yujing |
AuthorAffiliation | Illinois Institute of Technology |
AuthorAffiliation_xml | – name: Illinois Institute of Technology |
Author_xml | – sequence: 1 givenname: Guihua surname: Wang fullname: Wang, Guihua – sequence: 2 givenname: Liang surname: Wang fullname: Wang, Liang – sequence: 3 givenname: Yujing surname: Han fullname: Han, Yujing – sequence: 4 givenname: Shuo surname: Zhou fullname: Zhou, Shuo – sequence: 5 givenname: Xiyun surname: Guan fullname: Guan, Xiyun |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23614724$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtLAzEUhYMo9qEL_4DMRlCwmmQyM6m7Wp8guqj7cCeTYGSa1CQt9t-b2upCCq7uPZfvnMW5PbRrnVUIHRF8QTAll-AZxjgnnzuoSwqKB4wP-S7qpiNJO6Md1AvhPUnKymofdWheElZR1kWjZ7Bu5rzKJtHJNwjRyOxGRSWjcfYquzEL5YOJy_NsomxazOJbgG2ya7V0tjlAexraoA43s48md7ev44fB08v943j0NABGWBwUGPJc81JLWbKqUJLjpigxr4DXnOUwbGrNtFZQJgl6SIFoVeNcclZUkPfR6Tp15t3HXIUopiZI1bZglZsHQaoKU04xZv-jrBxSgnNOE3q8Qef1VDVi5s0U_FL89JOAyzUgvQvBKy2kibCqJnowrSBYrD4gfj-QHGd_HD-h29iTNQsyiHc39zYVuIX7Ar6KkK4 |
CitedBy_id | crossref_primary_10_1002_asia_202200261 crossref_primary_10_1021_acsabm_9b00961 crossref_primary_10_1016_j_snb_2018_12_143 crossref_primary_10_3390_biomedicines11061625 crossref_primary_10_3390_s17010074 crossref_primary_10_3390_app12031539 crossref_primary_10_1039_C6SC00296J crossref_primary_10_1002_elps_201800193 crossref_primary_10_1002_smtd_201900892 crossref_primary_10_1021_acs_analchem_0c00931 crossref_primary_10_1002_agt2_302 crossref_primary_10_1021_acssensors_7b00210 crossref_primary_10_1021_am5031177 crossref_primary_10_1016_j_snb_2017_09_014 crossref_primary_10_1016_j_talanta_2020_121684 crossref_primary_10_1021_acssensors_8b01375 crossref_primary_10_1021_acs_analchem_5b04542 crossref_primary_10_1021_acsnano_7b07835 crossref_primary_10_1021_acsami_2c03335 crossref_primary_10_1021_acs_analchem_3c00543 crossref_primary_10_1021_acsnano_1c08582 crossref_primary_10_1021_acsami_5b04406 crossref_primary_10_1002_ange_202214566 crossref_primary_10_1016_j_bios_2014_06_041 crossref_primary_10_3389_fchem_2019_00528 crossref_primary_10_1002_smtd_202000266 crossref_primary_10_1021_acs_accounts_6b00051 crossref_primary_10_1021_acsami_8b09505 crossref_primary_10_1039_C9AN01784D crossref_primary_10_1021_acsabm_8b00689 crossref_primary_10_1002_adma_202300589 crossref_primary_10_1016_j_talanta_2024_125873 crossref_primary_10_1021_am500749p crossref_primary_10_1021_acs_analchem_8b00848 crossref_primary_10_1016_j_bios_2022_114448 crossref_primary_10_1021_acs_analchem_9b02965 crossref_primary_10_1021_acsnano_8b09200 crossref_primary_10_3390_mi11121123 crossref_primary_10_1002_open_201500053 crossref_primary_10_1021_acsami_7b09488 crossref_primary_10_1021_acs_jpcb_5b04955 crossref_primary_10_1002_elps_201400255 crossref_primary_10_1021_acssensors_9b00236 crossref_primary_10_3390_toxins15030183 crossref_primary_10_1002_anie_202214566 crossref_primary_10_1039_C8CC07944G crossref_primary_10_1039_C4OB00480A crossref_primary_10_1021_acsnano_1c05139 crossref_primary_10_1007_s11427_020_1752_1 crossref_primary_10_1021_jacs_3c03563 crossref_primary_10_1016_j_trac_2015_12_003 crossref_primary_10_1021_acssensors_6b00043 crossref_primary_10_1039_D1NR04085E crossref_primary_10_1002_asia_202200774 crossref_primary_10_1039_C9TB00639G crossref_primary_10_2116_bunsekikagaku_72_87 crossref_primary_10_1021_la504243r crossref_primary_10_3389_fnano_2021_703673 crossref_primary_10_1021_acs_analchem_7b02961 crossref_primary_10_1038_nnano_2017_99 crossref_primary_10_1039_C5CC00680E crossref_primary_10_1021_acs_analchem_4c02016 crossref_primary_10_1039_C7CS00688H crossref_primary_10_1021_acsami_7b19774 crossref_primary_10_1039_C6RA09234A crossref_primary_10_1039_D0NR04900J crossref_primary_10_1063_1_4958719 |
Cites_doi | 10.1021/ac802348r 10.1016/S1074-5521(97)90321-5 10.1073/pnas.1001831107 10.1021/ac801877g 10.1073/pnas.93.24.13770 10.1038/nnano.2012.164 10.1039/b813796j 10.1021/nl048030d 10.1016/j.plrev.2012.05.010 10.1093/nar/gkn968 10.1021/ja061357r 10.1016/S1074-5521(02)00172-2 10.1039/C1NR11201E 10.1126/science.1071396 10.1103/PhysRevLett.86.3435 10.1021/jp9040293 10.1002/anie.200351313 10.1038/90236 10.1002/cbic.200500064 10.1021/nl071890k 10.1016/j.tins.2004.04.001 10.1038/19491 10.1021/ja063485l 10.1002/anie.200461885 10.1039/c1nr10974j 10.1039/C0SC00386G 10.1021/ac9006705 10.1021/nn3019943 10.1088/0957-4484/19/50/505504 10.1038/nrmicro823 10.1021/ja043910f 10.1016/j.snb.2009.02.069 10.1016/S0167-7799(98)01185-8 10.1126/science.1077353 10.1021/jz200525v 10.1088/0957-4484/24/1/015602 10.1023/A:1027309113522 10.1021/ja901088b 10.1021/ja0739943 10.1021/jz201006b 10.1088/0957-4484/23/22/225502 10.1038/35093038 10.1038/nnano.2012.24 10.1039/b414551h 10.1002/cphc.200400595 10.1016/j.snb.2012.10.058 10.1073/pnas.97.3.1079 10.1038/nature07600 10.1021/ja9004893 10.1002/elps.201100216 10.1529/biophysj.107.117598 10.1021/jp809842g |
ContentType | Journal Article |
Copyright | Copyright © 2013 American Chemical Society |
Copyright_xml | – notice: Copyright © 2013 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1021/ar400031x |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | MEDLINE Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
DocumentTitleAlternate | Nanopore Stochastic Detection |
EISSN | 1520-4898 |
EndPage | 2877 |
ExternalDocumentID | 23614724 10_1021_ar400031x b257945945 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Review Journal Article Research Support, N.I.H., Extramural |
GroupedDBID | - .K2 02 23M 4.4 53G 55A 5GY 5VS 7~N 85S AABXI ABFLS ABMVS ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 P2P RNS ROL TWZ UI2 UPT VF5 VG9 W1F WH7 X YZZ --- -DZ -~X 5ZA 6J9 6P2 AAYXX ABBLG ABJNI ABLBI ABQRX ACGFO ADHLV AFXLT AGXLV AHGAQ CITATION CUPRZ GGK IH2 XSW ZCA ~02 CGR CUY CVF ECM EIF NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-a414t-50a33f86fcc6475ec80d56087a8b843a9dbf4ffea6b84af92a1feb03c8457a3 |
IEDL.DBID | ACS |
ISSN | 0001-4842 1520-4898 |
IngestDate | Thu Jul 10 18:30:31 EDT 2025 Fri Jul 11 00:16:16 EDT 2025 Mon Jul 21 06:02:42 EDT 2025 Tue Jul 01 04:04:08 EDT 2025 Thu Apr 24 22:51:13 EDT 2025 Thu Aug 27 13:42:42 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a414t-50a33f86fcc6475ec80d56087a8b843a9dbf4ffea6b84af92a1feb03c8457a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 23614724 |
PQID | 1469210382 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1770282004 proquest_miscellaneous_1469210382 pubmed_primary_23614724 crossref_citationtrail_10_1021_ar400031x crossref_primary_10_1021_ar400031x acs_journals_10_1021_ar400031x |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-12-17 |
PublicationDateYYYYMMDD | 2013-12-17 |
PublicationDate_xml | – month: 12 year: 2013 text: 2013-12-17 day: 17 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Accounts of chemical research |
PublicationTitleAlternate | Acc. Chem. Res |
PublicationYear | 2013 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Guan X. (ref15/cit15) 2005; 6 Jovanovic-Talisman T. (ref31/cit31) 2009; 457 Talaga D. S. (ref25/cit25) 2009; 131 Kuyucak S. (ref9/cit9) 2003; 29 Wei R. (ref51/cit51) 2012; 7 Zhao Q. (ref38/cit38) 2009; 131 Dutzler R. (ref3/cit3) 2004; 27 Jayawardhana D. A. (ref13/cit13) 2009; 81 de Zoysa R. S. S. (ref7/cit7) 2011; 32 ref2/cit2 Storm A. J. (ref29/cit29) 2005; 5 Zhao Q. (ref5/cit5) 2009; 113 Kang X. (ref37/cit37) 2006; 128 Luan B. (ref45/cit45) 2012; 4 Pardon G. (ref53/cit53) 2013; 24 Shim J. W. (ref24/cit24) 2009; 37 Dickinson T. A. (ref46/cit46) 1998; 16 Meller A. (ref27/cit27) 2000; 97 Das G. (ref49/cit49) 2002; 298 Howorka S. (ref28/cit28) 2001; 19 Cheley S. (ref10/cit10) 2002; 9 Nasir S. (ref52/cit52) 2012; 23 Turner A. P. (ref47/cit47) 2004; 2 de Zoysa R. S. S. (ref43/cit43) 2009; 113 Liu A. (ref11/cit11) 2011; 2 Bhattacharya S. (ref44/cit44) 2012; 6 Lee S. B. (ref18/cit18) 2002; 296 Krishantha D. M. M. (ref39/cit39) 2011; 3 Braha O. (ref16/cit16) 1997; 4 Sigalov G. (ref30/cit30) 2008; 8 Zhao Q. (ref48/cit48) 2008; 19 Kang X. (ref6/cit6) 2005; 44 Schmidt J. (ref33/cit33) 2005; 15 Zhao Q. (ref23/cit23) 2008; 94 Wanunu M. (ref36/cit36) 2012; 9 Modi N. (ref42/cit42) 2011; 2 Meller A. (ref8/cit8) 2001; 86 Derrington I. M. (ref32/cit32) 2010; 107 Gupta J. (ref41/cit41) 2013; 176 Wang G. (ref4/cit4) 2006; 128 Bayley H. (ref1/cit1) 2001; 413 Howorka S. (ref34/cit34) 2009; 38 Takeuchi T. (ref50/cit50) 2011; 2 Gu L. (ref12/cit12) 1999; 398 Kasianowicz J. J. (ref26/cit26) 1996; 93 Luchian T. (ref22/cit22) 2003; 42 Wang D. (ref40/cit40) 2009; 139 Gao C. (ref17/cit17) 2009; 81 Sexton L. T. (ref21/cit21) 2007; 129 Venkatesan B. M. (ref35/cit35) 2012; 7 Ding S. (ref19/cit19) 2009; 81 Braha O. (ref14/cit14) 2005; 6 Siwy Z. (ref20/cit20) 2005; 127 |
References_xml | – volume: 81 start-page: 80 year: 2009 ident: ref17/cit17 publication-title: Anal. Chem. doi: 10.1021/ac802348r – volume: 4 start-page: 497 year: 1997 ident: ref16/cit16 publication-title: Chem. Biol. doi: 10.1016/S1074-5521(97)90321-5 – volume: 107 start-page: 16060 year: 2010 ident: ref32/cit32 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1001831107 – volume: 81 start-page: 460 year: 2009 ident: ref13/cit13 publication-title: Anal. Chem. doi: 10.1021/ac801877g – volume: 93 start-page: 13770 year: 1996 ident: ref26/cit26 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.93.24.13770 – volume: 7 start-page: 615 year: 2012 ident: ref35/cit35 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.164 – volume: 38 start-page: 2360 year: 2009 ident: ref34/cit34 publication-title: Chem. Soc. Rev. doi: 10.1039/b813796j – volume: 5 start-page: 1193 year: 2005 ident: ref29/cit29 publication-title: Nano Lett. doi: 10.1021/nl048030d – volume: 9 start-page: 125 year: 2012 ident: ref36/cit36 publication-title: Phys. Life Rev. doi: 10.1016/j.plrev.2012.05.010 – volume: 37 start-page: 972 year: 2009 ident: ref24/cit24 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn968 – volume: 128 start-page: 7679 year: 2006 ident: ref4/cit4 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja061357r – volume: 9 start-page: 829 year: 2002 ident: ref10/cit10 publication-title: Chem. Biol. doi: 10.1016/S1074-5521(02)00172-2 – volume: 4 start-page: 1068 year: 2012 ident: ref45/cit45 publication-title: Nanoscale doi: 10.1039/C1NR11201E – volume: 296 start-page: 2198 year: 2002 ident: ref18/cit18 publication-title: Science doi: 10.1126/science.1071396 – volume: 86 start-page: 3435 year: 2001 ident: ref8/cit8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.86.3435 – volume: 113 start-page: 13332 year: 2009 ident: ref43/cit43 publication-title: J. Phys. Chem. B doi: 10.1021/jp9040293 – volume: 42 start-page: 3766 year: 2003 ident: ref22/cit22 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200351313 – volume: 19 start-page: 636 year: 2001 ident: ref28/cit28 publication-title: Nat. Biotechnol. doi: 10.1038/90236 – volume: 6 start-page: 1875 year: 2005 ident: ref15/cit15 publication-title: ChemBioChem doi: 10.1002/cbic.200500064 – volume: 8 start-page: 56 year: 2008 ident: ref30/cit30 publication-title: Nano Lett. doi: 10.1021/nl071890k – volume: 27 start-page: 315 year: 2004 ident: ref3/cit3 publication-title: Trends Neurosci. doi: 10.1016/j.tins.2004.04.001 – volume: 398 start-page: 686 year: 1999 ident: ref12/cit12 publication-title: Nature doi: 10.1038/19491 – volume: 128 start-page: 10684 year: 2006 ident: ref37/cit37 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja063485l – volume: 44 start-page: 1495 year: 2005 ident: ref6/cit6 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200461885 – volume: 3 start-page: 4593 year: 2011 ident: ref39/cit39 publication-title: Nanoscale doi: 10.1039/c1nr10974j – volume: 2 start-page: 303 year: 2011 ident: ref50/cit50 publication-title: Chem. Sci. doi: 10.1039/C0SC00386G – volume: 81 start-page: 6649 year: 2009 ident: ref19/cit19 publication-title: Anal. Chem. doi: 10.1021/ac9006705 – ident: ref2/cit2 – volume: 6 start-page: 6960 year: 2012 ident: ref44/cit44 publication-title: ACS Nano doi: 10.1021/nn3019943 – volume: 19 start-page: 505504 year: 2008 ident: ref48/cit48 publication-title: Nanotechnology doi: 10.1088/0957-4484/19/50/505504 – volume: 2 start-page: 161 year: 2004 ident: ref47/cit47 publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro823 – volume: 127 start-page: 5000 year: 2005 ident: ref20/cit20 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja043910f – volume: 139 start-page: 440 year: 2009 ident: ref40/cit40 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2009.02.069 – volume: 16 start-page: 250 year: 1998 ident: ref46/cit46 publication-title: Trends Biotechnol. doi: 10.1016/S0167-7799(98)01185-8 – volume: 298 start-page: 1600 year: 2002 ident: ref49/cit49 publication-title: Science doi: 10.1126/science.1077353 – volume: 2 start-page: 1372 year: 2011 ident: ref11/cit11 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz200525v – volume: 24 start-page: 015602 year: 2013 ident: ref53/cit53 publication-title: Nanotechnology doi: 10.1088/0957-4484/24/1/015602 – volume: 29 start-page: 429 year: 2003 ident: ref9/cit9 publication-title: J. Biol. Phys. doi: 10.1023/A:1027309113522 – volume: 131 start-page: 9287 year: 2009 ident: ref25/cit25 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja901088b – volume: 129 start-page: 13144 year: 2007 ident: ref21/cit21 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0739943 – volume: 2 start-page: 2331 year: 2011 ident: ref42/cit42 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz201006b – volume: 23 start-page: 225502 year: 2012 ident: ref52/cit52 publication-title: Nanotechnology doi: 10.1088/0957-4484/23/22/225502 – volume: 413 start-page: 226 year: 2001 ident: ref1/cit1 publication-title: Nature doi: 10.1038/35093038 – volume: 7 start-page: 257 year: 2012 ident: ref51/cit51 publication-title: Nat Nanotechnol. doi: 10.1038/nnano.2012.24 – volume: 15 start-page: 831 year: 2005 ident: ref33/cit33 publication-title: J. Mater. Chem. doi: 10.1039/b414551h – volume: 6 start-page: 889 year: 2005 ident: ref14/cit14 publication-title: ChemPhysChem doi: 10.1002/cphc.200400595 – volume: 176 start-page: 625 year: 2013 ident: ref41/cit41 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2012.10.058 – volume: 97 start-page: 1079 year: 2000 ident: ref27/cit27 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.97.3.1079 – volume: 457 start-page: 1023 year: 2009 ident: ref31/cit31 publication-title: Nature doi: 10.1038/nature07600 – volume: 131 start-page: 6324 year: 2009 ident: ref38/cit38 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9004893 – volume: 32 start-page: 3034 year: 2011 ident: ref7/cit7 publication-title: Electrophoresis doi: 10.1002/elps.201100216 – volume: 94 start-page: 1267 year: 2008 ident: ref23/cit23 publication-title: Biophys. J. doi: 10.1529/biophysj.107.117598 – volume: 113 start-page: 3572 year: 2009 ident: ref5/cit5 publication-title: J. Phys. Chem. B doi: 10.1021/jp809842g |
SSID | ssj0002467 |
Score | 2.393164 |
SecondaryResourceType | review_article |
Snippet | Nanopore sensors have emerged as a label-free and amplification-free technique for measuring single molecules. First proposed in the mid-1990s, nanopore... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2867 |
SubjectTerms | Amplification Biosensing Techniques - standards Bonding Covalence Deoxyribonucleic acid Folding Limit of Detection Nanopores Nanostructure Peptides - analysis Peptides - chemistry Porosity Stochasticity |
Title | Nanopore Stochastic Detection: Diversity, Sensitivity, and Beyond |
URI | http://dx.doi.org/10.1021/ar400031x https://www.ncbi.nlm.nih.gov/pubmed/23614724 https://www.proquest.com/docview/1469210382 https://www.proquest.com/docview/1770282004 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT8MwDI4mOMCF92M8pvI4cFihSZ1HuU0bCCHBpSBxq5IsERKoQ1t34deTtGsFYoxjJVdpHNf-LDufETqn1mqjsQqJUUkIVOhQxFiH1EENDsowVXZVPjyyu2e4f6EvLXT2RwWf4Cs5Bg_csQOKy4S5n9fjn37auFsCrCLGdHkxCCA1fdD3V33o0ZOfoecPPFnGldt1NKhv51TtJG-X00Jd6s_fZI2LPnkDrc1wZdCrDGETtUy-hVb69Ti3bdRzfnTkwLYJ0mKkX6XnZw4GpihbsfLrYFA3aHSD1De1V1MluoHMh0F1zWUHpbc3T_27cDY_IZSAoQhpJOPYCma1ZsCp0SIaOoAjuBRKQCyTobJgrZHMPUqbEImtUVGsBVAu4120lI9ys48CG2lKOHdoQVswMlGac80MjZwBDJmBNuo49WYz659kZWGb4KzRQxtd1JrP9Ix73I_AeJ8netqIflSEG_OETurjy5wafY1D5mY0nfhMJiGe9J0skHFbcZmmcw9ttFedfbOU56IBTuDgvy0dolXiJ2NgEmJ-hJaK8dQcO3xSqE5pn1-L7t56 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9swDBaG7JBd2j27tF3mDjvsEKeWTFlyb0G6INuSXJIBuRmSImHABqeonUt_fSk_snXIHkcDtExJNPkRoj4S8p47Z6yhOmRWpyFwaUIZUxNyhBoCtE10VVU5XyTTr_B5zdcNTY6_C4NKFDhSUR3i_2QXoJfqFjx-p4gXHyMIYd6aR-Pl3usySGp-TEyPQQJrWYR-fdVHIFM8jEB_gJVVeJkc132KKsWqqpLvw12ph-buN87G_9P8KTlqUGYwqs3iGXlk8-ekO26bu70gI_SqW4TeNliWW_NNebbm4NqWVWFWfhVct-Uag2DpS9zrHhODQOWboL708pIsJx9X42nYdFMIFVAoQx6pOHYyccYkILg1Mtog3JFCSS0hVulGO3DOqgQflUuZos7qKDYSuFDxK9LJt7l9TQIXGc6EQOxgHFiVaiOESSyP0Bw2iYUe6eMyZM2_UGTVMTej2X4deuRDuwGZaZjIfUOMH4dE3-1Fb2r6jUNCF-0uZriM_sRD5Xa7K3xekzJPAc_-IoNTwbwTnUWPnNQmsP-UZ6YBweD0X1N6S7rT1XyWzT4tvpyRJ8z3zKAspOKcdMrbnX2DyKXU_cpk7wHwBebb |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYqKhUuLa_SpYWmiEMPBGJnHDvcVrtdQVug0lKJW2Q7tpBAWUSyF34947wEiBaOkSaJPR6Pv9GMvyFklztnrKE6ZFanIXBpQhlTE3KEGgK0TXRdVXlymhz9hZ8X_KINFP1dGBxEiV8q6yS-39U3uWsZBuiBugWP4Slixrc-Xectejia9p6XQdJwZGKIDBJYxyT08FV_Cpny8Sn0D2hZHzGTD-SsH1xdWXK1P6_0vrl7wtv4-tEvk_ct2gyGjXmskDe2WCWLo67J2xoZonedIQS3wbSamUvlWZuDsa3qAq3iMBh3ZRt7wdSXuje9JvYCVeRBc_llnUwnP85HR2HbVSFUQKEKeaTi2MnEGZOA4NbIKEfYI4WSWkKs0lw7cM6qBB-VS5mizuooNhK4UPFHslDMCvuJBC4ynAmBGMI4sCrVRgiTWB6hWeSJhQHZRlVk7Z4oszrdzWjW62FAvneLkJmWkdw3xrh-TnSnF71paDieE_rWrWSGavSZD1XY2bz08U3KPBU8-48MTgXjT3QaA7LRmEH_K89QA4LB5ktT-kre_RlPst_Hp78-kyXmW2dQFlLxhSxUt3O7hQCm0tu11d4DjcfpXg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanopore+Stochastic+Detection%3A+Diversity%2C+Sensitivity%2C+and+Beyond&rft.jtitle=Accounts+of+chemical+research&rft.au=Wang%2C+Guihua&rft.au=Wang%2C+Liang&rft.au=Han%2C+Yujing&rft.au=Zhou%2C+Shuo&rft.date=2013-12-17&rft.pub=American+Chemical+Society&rft.issn=0001-4842&rft.eissn=1520-4898&rft.volume=46&rft.issue=12&rft.spage=2867&rft.epage=2877&rft_id=info:doi/10.1021%2Far400031x&rft.externalDocID=b257945945 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon |