Nanopore Stochastic Detection: Diversity, Sensitivity, and Beyond

Nanopore sensors have emerged as a label-free and amplification-free technique for measuring single molecules. First proposed in the mid-1990s, nanopore detection takes advantage of the ionic current modulations produced by the passage of target analytes through a single nanopore at a fixed applied...

Full description

Saved in:
Bibliographic Details
Published inAccounts of chemical research Vol. 46; no. 12; pp. 2867 - 2877
Main Authors Wang, Guihua, Wang, Liang, Han, Yujing, Zhou, Shuo, Guan, Xiyun
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 17.12.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nanopore sensors have emerged as a label-free and amplification-free technique for measuring single molecules. First proposed in the mid-1990s, nanopore detection takes advantage of the ionic current modulations produced by the passage of target analytes through a single nanopore at a fixed applied potential. Over the last 15 years, these nanoscale pores have been used to sequence DNA, to study covalent and non-covalent bonding interactions, to investigate biomolecular folding and unfolding, and for other applications. A major issue in the application of nanopore sensors is the rapid transport of target analyte molecules through the nanopore. Current recording techniques do not always accurately detect these rapid events. Therefore, researchers have looked for methods that slow molecular and ionic transport. Thus far, several strategies can improve the resolution and sensitivity of nanopore sensors including variation of the experimental conditions, use of a host compound, and modification of the analyte molecule and the nanopore sensor. In this Account, we highlight our recent research efforts that have focused on applications of nanopore sensors including the differentiation of chiral molecules, the study of enzyme kinetics, and the determination of sample purity and composition. Then we summarize our efforts to regulate molecular transport. We show that the introduction of various surface functional groups such as hydrophobic, aromatic, positively charged, and negatively charged residues in the nanopore interior, an increase in the ionic strength of the electrolyte solution, and the use of ionic liquid solutions as the electrolyte instead of inorganic salts may improve the resolution and sensitivity of nanopore stochastic sensors. Our experiments also demonstrate that the introduction of multiple functional groups into a single nanopore and the development of a pattern-recognition nanopore sensor array could further enhance sensor resolution. Although we have demonstrated the feasibility of nanopore sensors for various applications, challenges remain before nanopore sensing is deployed for routine use in applications such as medical diagnosis, homeland security, pharmaceutical screening, and environmental monitoring.
AbstractList Nanopore sensors have emerged as a label-free and amplification-free technique for measuring single molecules. First proposed in the mid-1990s, nanopore detection takes advantage of the ionic current modulations produced by the passage of target analytes through a single nanopore at a fixed applied potential. Over the last 15 years, these nanoscale pores have been used to sequence DNA, to study covalent and non-covalent bonding interactions, to investigate biomolecular folding and unfolding, and for other applications. A major issue in the application of nanopore sensors is the rapid transport of target analyte molecules through the nanopore. Current recording techniques do not always accurately detect these rapid events. Therefore, researchers have looked for methods that slow molecular and ionic transport. Thus far, several strategies can improve the resolution and sensitivity of nanopore sensors including variation of the experimental conditions, use of a host compound, and modification of the analyte molecule and the nanopore sensor. In this Account, we highlight our recent research efforts that have focused on applications of nanopore sensors including the differentiation of chiral molecules, the study of enzyme kinetics, and the determination of sample purity and composition. Then we summarize our efforts to regulate molecular transport. We show that the introduction of various surface functional groups such as hydrophobic, aromatic, positively charged, and negatively charged residues in the nanopore interior, an increase in the ionic strength of the electrolyte solution, and the use of ionic liquid solutions as the electrolyte instead of inorganic salts may improve the resolution and sensitivity of nanopore stochastic sensors. Our experiments also demonstrate that the introduction of multiple functional groups into a single nanopore and the development of a pattern-recognition nanopore sensor array could further enhance sensor resolution. Although we have demonstrated the feasibility of nanopore sensors for various applications, challenges remain before nanopore sensing is deployed for routine use in applications such as medical diagnosis, homeland security, pharmaceutical screening, and environmental monitoring.
Nanopore sensors have emerged as a label-free and amplification-free technique for measuring single molecules. First proposed in the mid-1990s, nanopore detection takes advantage of the ionic current modulations produced by the passage of target analytes through a single nanopore at a fixed applied potential. Over the last 15 years, these nanoscale pores have been used to sequence DNA, to study covalent and non-covalent bonding interactions, to investigate biomolecular folding and unfolding, and for other applications.
Nanopore sensors have emerged as a label-free and amplification-free technique for measuring single molecules. First proposed in the mid-1990s, nanopore detection takes advantage of the ionic current modulations produced by the passage of target analytes through a single nanopore at a fixed applied potential. Over the last 15 years, these nanoscale pores have been used to sequence DNA, to study covalent and non-covalent bonding interactions, to investigate biomolecular folding and unfolding, and for other applications. A major issue in the application of nanopore sensors is the rapid transport of target analyte molecules through the nanopore. Current recording techniques do not always accurately detect these rapid events. Therefore, researchers have looked for methods that slow molecular and ionic transport. Thus far, several strategies can improve the resolution and sensitivity of nanopore sensors including variation of the experimental conditions, use of a host compound, and modification of the analyte molecule and the nanopore sensor. In this Account, we highlight our recent research efforts that have focused on applications of nanopore sensors including the differentiation of chiral molecules, the study of enzyme kinetics, and the determination of sample purity and composition. Then we summarize our efforts to regulate molecular transport. We show that the introduction of various surface functional groups such as hydrophobic, aromatic, positively charged, and negatively charged residues in the nanopore interior, an increase in the ionic strength of the electrolyte solution, and the use of ionic liquid solutions as the electrolyte instead of inorganic salts may improve the resolution and sensitivity of nanopore stochastic sensors. Our experiments also demonstrate that the introduction of multiple functional groups into a single nanopore and the development of a pattern-recognition nanopore sensor array could further enhance sensor resolution. Although we have demonstrated the feasibility of nanopore sensors for various applications, challenges remain before nanopore sensing is deployed for routine use in applications such as medical diagnosis, homeland security, pharmaceutical screening, and environmental monitoring.Nanopore sensors have emerged as a label-free and amplification-free technique for measuring single molecules. First proposed in the mid-1990s, nanopore detection takes advantage of the ionic current modulations produced by the passage of target analytes through a single nanopore at a fixed applied potential. Over the last 15 years, these nanoscale pores have been used to sequence DNA, to study covalent and non-covalent bonding interactions, to investigate biomolecular folding and unfolding, and for other applications. A major issue in the application of nanopore sensors is the rapid transport of target analyte molecules through the nanopore. Current recording techniques do not always accurately detect these rapid events. Therefore, researchers have looked for methods that slow molecular and ionic transport. Thus far, several strategies can improve the resolution and sensitivity of nanopore sensors including variation of the experimental conditions, use of a host compound, and modification of the analyte molecule and the nanopore sensor. In this Account, we highlight our recent research efforts that have focused on applications of nanopore sensors including the differentiation of chiral molecules, the study of enzyme kinetics, and the determination of sample purity and composition. Then we summarize our efforts to regulate molecular transport. We show that the introduction of various surface functional groups such as hydrophobic, aromatic, positively charged, and negatively charged residues in the nanopore interior, an increase in the ionic strength of the electrolyte solution, and the use of ionic liquid solutions as the electrolyte instead of inorganic salts may improve the resolution and sensitivity of nanopore stochastic sensors. Our experiments also demonstrate that the introduction of multiple functional groups into a single nanopore and the development of a pattern-recognition nanopore sensor array could further enhance sensor resolution. Although we have demonstrated the feasibility of nanopore sensors for various applications, challenges remain before nanopore sensing is deployed for routine use in applications such as medical diagnosis, homeland security, pharmaceutical screening, and environmental monitoring.
Author Wang, Guihua
Wang, Liang
Guan, Xiyun
Zhou, Shuo
Han, Yujing
AuthorAffiliation Illinois Institute of Technology
AuthorAffiliation_xml – name: Illinois Institute of Technology
Author_xml – sequence: 1
  givenname: Guihua
  surname: Wang
  fullname: Wang, Guihua
– sequence: 2
  givenname: Liang
  surname: Wang
  fullname: Wang, Liang
– sequence: 3
  givenname: Yujing
  surname: Han
  fullname: Han, Yujing
– sequence: 4
  givenname: Shuo
  surname: Zhou
  fullname: Zhou, Shuo
– sequence: 5
  givenname: Xiyun
  surname: Guan
  fullname: Guan, Xiyun
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23614724$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtLAzEUhYMo9qEL_4DMRlCwmmQyM6m7Wp8guqj7cCeTYGSa1CQt9t-b2upCCq7uPZfvnMW5PbRrnVUIHRF8QTAll-AZxjgnnzuoSwqKB4wP-S7qpiNJO6Md1AvhPUnKymofdWheElZR1kWjZ7Bu5rzKJtHJNwjRyOxGRSWjcfYquzEL5YOJy_NsomxazOJbgG2ya7V0tjlAexraoA43s48md7ev44fB08v943j0NABGWBwUGPJc81JLWbKqUJLjpigxr4DXnOUwbGrNtFZQJgl6SIFoVeNcclZUkPfR6Tp15t3HXIUopiZI1bZglZsHQaoKU04xZv-jrBxSgnNOE3q8Qef1VDVi5s0U_FL89JOAyzUgvQvBKy2kibCqJnowrSBYrD4gfj-QHGd_HD-h29iTNQsyiHc39zYVuIX7Ar6KkK4
CitedBy_id crossref_primary_10_1002_asia_202200261
crossref_primary_10_1021_acsabm_9b00961
crossref_primary_10_1016_j_snb_2018_12_143
crossref_primary_10_3390_biomedicines11061625
crossref_primary_10_3390_s17010074
crossref_primary_10_3390_app12031539
crossref_primary_10_1039_C6SC00296J
crossref_primary_10_1002_elps_201800193
crossref_primary_10_1002_smtd_201900892
crossref_primary_10_1021_acs_analchem_0c00931
crossref_primary_10_1002_agt2_302
crossref_primary_10_1021_acssensors_7b00210
crossref_primary_10_1021_am5031177
crossref_primary_10_1016_j_snb_2017_09_014
crossref_primary_10_1016_j_talanta_2020_121684
crossref_primary_10_1021_acssensors_8b01375
crossref_primary_10_1021_acs_analchem_5b04542
crossref_primary_10_1021_acsnano_7b07835
crossref_primary_10_1021_acsami_2c03335
crossref_primary_10_1021_acs_analchem_3c00543
crossref_primary_10_1021_acsnano_1c08582
crossref_primary_10_1021_acsami_5b04406
crossref_primary_10_1002_ange_202214566
crossref_primary_10_1016_j_bios_2014_06_041
crossref_primary_10_3389_fchem_2019_00528
crossref_primary_10_1002_smtd_202000266
crossref_primary_10_1021_acs_accounts_6b00051
crossref_primary_10_1021_acsami_8b09505
crossref_primary_10_1039_C9AN01784D
crossref_primary_10_1021_acsabm_8b00689
crossref_primary_10_1002_adma_202300589
crossref_primary_10_1016_j_talanta_2024_125873
crossref_primary_10_1021_am500749p
crossref_primary_10_1021_acs_analchem_8b00848
crossref_primary_10_1016_j_bios_2022_114448
crossref_primary_10_1021_acs_analchem_9b02965
crossref_primary_10_1021_acsnano_8b09200
crossref_primary_10_3390_mi11121123
crossref_primary_10_1002_open_201500053
crossref_primary_10_1021_acsami_7b09488
crossref_primary_10_1021_acs_jpcb_5b04955
crossref_primary_10_1002_elps_201400255
crossref_primary_10_1021_acssensors_9b00236
crossref_primary_10_3390_toxins15030183
crossref_primary_10_1002_anie_202214566
crossref_primary_10_1039_C8CC07944G
crossref_primary_10_1039_C4OB00480A
crossref_primary_10_1021_acsnano_1c05139
crossref_primary_10_1007_s11427_020_1752_1
crossref_primary_10_1021_jacs_3c03563
crossref_primary_10_1016_j_trac_2015_12_003
crossref_primary_10_1021_acssensors_6b00043
crossref_primary_10_1039_D1NR04085E
crossref_primary_10_1002_asia_202200774
crossref_primary_10_1039_C9TB00639G
crossref_primary_10_2116_bunsekikagaku_72_87
crossref_primary_10_1021_la504243r
crossref_primary_10_3389_fnano_2021_703673
crossref_primary_10_1021_acs_analchem_7b02961
crossref_primary_10_1038_nnano_2017_99
crossref_primary_10_1039_C5CC00680E
crossref_primary_10_1021_acs_analchem_4c02016
crossref_primary_10_1039_C7CS00688H
crossref_primary_10_1021_acsami_7b19774
crossref_primary_10_1039_C6RA09234A
crossref_primary_10_1039_D0NR04900J
crossref_primary_10_1063_1_4958719
Cites_doi 10.1021/ac802348r
10.1016/S1074-5521(97)90321-5
10.1073/pnas.1001831107
10.1021/ac801877g
10.1073/pnas.93.24.13770
10.1038/nnano.2012.164
10.1039/b813796j
10.1021/nl048030d
10.1016/j.plrev.2012.05.010
10.1093/nar/gkn968
10.1021/ja061357r
10.1016/S1074-5521(02)00172-2
10.1039/C1NR11201E
10.1126/science.1071396
10.1103/PhysRevLett.86.3435
10.1021/jp9040293
10.1002/anie.200351313
10.1038/90236
10.1002/cbic.200500064
10.1021/nl071890k
10.1016/j.tins.2004.04.001
10.1038/19491
10.1021/ja063485l
10.1002/anie.200461885
10.1039/c1nr10974j
10.1039/C0SC00386G
10.1021/ac9006705
10.1021/nn3019943
10.1088/0957-4484/19/50/505504
10.1038/nrmicro823
10.1021/ja043910f
10.1016/j.snb.2009.02.069
10.1016/S0167-7799(98)01185-8
10.1126/science.1077353
10.1021/jz200525v
10.1088/0957-4484/24/1/015602
10.1023/A:1027309113522
10.1021/ja901088b
10.1021/ja0739943
10.1021/jz201006b
10.1088/0957-4484/23/22/225502
10.1038/35093038
10.1038/nnano.2012.24
10.1039/b414551h
10.1002/cphc.200400595
10.1016/j.snb.2012.10.058
10.1073/pnas.97.3.1079
10.1038/nature07600
10.1021/ja9004893
10.1002/elps.201100216
10.1529/biophysj.107.117598
10.1021/jp809842g
ContentType Journal Article
Copyright Copyright © 2013 American Chemical Society
Copyright_xml – notice: Copyright © 2013 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1021/ar400031x
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList MEDLINE
Materials Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
DocumentTitleAlternate Nanopore Stochastic Detection
EISSN 1520-4898
EndPage 2877
ExternalDocumentID 23614724
10_1021_ar400031x
b257945945
Genre Research Support, U.S. Gov't, Non-P.H.S
Review
Journal Article
Research Support, N.I.H., Extramural
GroupedDBID -
.K2
02
23M
4.4
53G
55A
5GY
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
RNS
ROL
TWZ
UI2
UPT
VF5
VG9
W1F
WH7
X
YZZ
---
-DZ
-~X
5ZA
6J9
6P2
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
AFXLT
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
ZCA
~02
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-a414t-50a33f86fcc6475ec80d56087a8b843a9dbf4ffea6b84af92a1feb03c8457a3
IEDL.DBID ACS
ISSN 0001-4842
1520-4898
IngestDate Thu Jul 10 18:30:31 EDT 2025
Fri Jul 11 00:16:16 EDT 2025
Mon Jul 21 06:02:42 EDT 2025
Tue Jul 01 04:04:08 EDT 2025
Thu Apr 24 22:51:13 EDT 2025
Thu Aug 27 13:42:42 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a414t-50a33f86fcc6475ec80d56087a8b843a9dbf4ffea6b84af92a1feb03c8457a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 23614724
PQID 1469210382
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_1770282004
proquest_miscellaneous_1469210382
pubmed_primary_23614724
crossref_citationtrail_10_1021_ar400031x
crossref_primary_10_1021_ar400031x
acs_journals_10_1021_ar400031x
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-12-17
PublicationDateYYYYMMDD 2013-12-17
PublicationDate_xml – month: 12
  year: 2013
  text: 2013-12-17
  day: 17
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Accounts of chemical research
PublicationTitleAlternate Acc. Chem. Res
PublicationYear 2013
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Guan X. (ref15/cit15) 2005; 6
Jovanovic-Talisman T. (ref31/cit31) 2009; 457
Talaga D. S. (ref25/cit25) 2009; 131
Kuyucak S. (ref9/cit9) 2003; 29
Wei R. (ref51/cit51) 2012; 7
Zhao Q. (ref38/cit38) 2009; 131
Dutzler R. (ref3/cit3) 2004; 27
Jayawardhana D. A. (ref13/cit13) 2009; 81
de Zoysa R. S. S. (ref7/cit7) 2011; 32
ref2/cit2
Storm A. J. (ref29/cit29) 2005; 5
Zhao Q. (ref5/cit5) 2009; 113
Kang X. (ref37/cit37) 2006; 128
Luan B. (ref45/cit45) 2012; 4
Pardon G. (ref53/cit53) 2013; 24
Shim J. W. (ref24/cit24) 2009; 37
Dickinson T. A. (ref46/cit46) 1998; 16
Meller A. (ref27/cit27) 2000; 97
Das G. (ref49/cit49) 2002; 298
Howorka S. (ref28/cit28) 2001; 19
Cheley S. (ref10/cit10) 2002; 9
Nasir S. (ref52/cit52) 2012; 23
Turner A. P. (ref47/cit47) 2004; 2
de Zoysa R. S. S. (ref43/cit43) 2009; 113
Liu A. (ref11/cit11) 2011; 2
Bhattacharya S. (ref44/cit44) 2012; 6
Lee S. B. (ref18/cit18) 2002; 296
Krishantha D. M. M. (ref39/cit39) 2011; 3
Braha O. (ref16/cit16) 1997; 4
Sigalov G. (ref30/cit30) 2008; 8
Zhao Q. (ref48/cit48) 2008; 19
Kang X. (ref6/cit6) 2005; 44
Schmidt J. (ref33/cit33) 2005; 15
Zhao Q. (ref23/cit23) 2008; 94
Wanunu M. (ref36/cit36) 2012; 9
Modi N. (ref42/cit42) 2011; 2
Meller A. (ref8/cit8) 2001; 86
Derrington I. M. (ref32/cit32) 2010; 107
Gupta J. (ref41/cit41) 2013; 176
Wang G. (ref4/cit4) 2006; 128
Bayley H. (ref1/cit1) 2001; 413
Howorka S. (ref34/cit34) 2009; 38
Takeuchi T. (ref50/cit50) 2011; 2
Gu L. (ref12/cit12) 1999; 398
Kasianowicz J. J. (ref26/cit26) 1996; 93
Luchian T. (ref22/cit22) 2003; 42
Wang D. (ref40/cit40) 2009; 139
Gao C. (ref17/cit17) 2009; 81
Sexton L. T. (ref21/cit21) 2007; 129
Venkatesan B. M. (ref35/cit35) 2012; 7
Ding S. (ref19/cit19) 2009; 81
Braha O. (ref14/cit14) 2005; 6
Siwy Z. (ref20/cit20) 2005; 127
References_xml – volume: 81
  start-page: 80
  year: 2009
  ident: ref17/cit17
  publication-title: Anal. Chem.
  doi: 10.1021/ac802348r
– volume: 4
  start-page: 497
  year: 1997
  ident: ref16/cit16
  publication-title: Chem. Biol.
  doi: 10.1016/S1074-5521(97)90321-5
– volume: 107
  start-page: 16060
  year: 2010
  ident: ref32/cit32
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1001831107
– volume: 81
  start-page: 460
  year: 2009
  ident: ref13/cit13
  publication-title: Anal. Chem.
  doi: 10.1021/ac801877g
– volume: 93
  start-page: 13770
  year: 1996
  ident: ref26/cit26
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.93.24.13770
– volume: 7
  start-page: 615
  year: 2012
  ident: ref35/cit35
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.164
– volume: 38
  start-page: 2360
  year: 2009
  ident: ref34/cit34
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b813796j
– volume: 5
  start-page: 1193
  year: 2005
  ident: ref29/cit29
  publication-title: Nano Lett.
  doi: 10.1021/nl048030d
– volume: 9
  start-page: 125
  year: 2012
  ident: ref36/cit36
  publication-title: Phys. Life Rev.
  doi: 10.1016/j.plrev.2012.05.010
– volume: 37
  start-page: 972
  year: 2009
  ident: ref24/cit24
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkn968
– volume: 128
  start-page: 7679
  year: 2006
  ident: ref4/cit4
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja061357r
– volume: 9
  start-page: 829
  year: 2002
  ident: ref10/cit10
  publication-title: Chem. Biol.
  doi: 10.1016/S1074-5521(02)00172-2
– volume: 4
  start-page: 1068
  year: 2012
  ident: ref45/cit45
  publication-title: Nanoscale
  doi: 10.1039/C1NR11201E
– volume: 296
  start-page: 2198
  year: 2002
  ident: ref18/cit18
  publication-title: Science
  doi: 10.1126/science.1071396
– volume: 86
  start-page: 3435
  year: 2001
  ident: ref8/cit8
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.86.3435
– volume: 113
  start-page: 13332
  year: 2009
  ident: ref43/cit43
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp9040293
– volume: 42
  start-page: 3766
  year: 2003
  ident: ref22/cit22
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200351313
– volume: 19
  start-page: 636
  year: 2001
  ident: ref28/cit28
  publication-title: Nat. Biotechnol.
  doi: 10.1038/90236
– volume: 6
  start-page: 1875
  year: 2005
  ident: ref15/cit15
  publication-title: ChemBioChem
  doi: 10.1002/cbic.200500064
– volume: 8
  start-page: 56
  year: 2008
  ident: ref30/cit30
  publication-title: Nano Lett.
  doi: 10.1021/nl071890k
– volume: 27
  start-page: 315
  year: 2004
  ident: ref3/cit3
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2004.04.001
– volume: 398
  start-page: 686
  year: 1999
  ident: ref12/cit12
  publication-title: Nature
  doi: 10.1038/19491
– volume: 128
  start-page: 10684
  year: 2006
  ident: ref37/cit37
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja063485l
– volume: 44
  start-page: 1495
  year: 2005
  ident: ref6/cit6
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200461885
– volume: 3
  start-page: 4593
  year: 2011
  ident: ref39/cit39
  publication-title: Nanoscale
  doi: 10.1039/c1nr10974j
– volume: 2
  start-page: 303
  year: 2011
  ident: ref50/cit50
  publication-title: Chem. Sci.
  doi: 10.1039/C0SC00386G
– volume: 81
  start-page: 6649
  year: 2009
  ident: ref19/cit19
  publication-title: Anal. Chem.
  doi: 10.1021/ac9006705
– ident: ref2/cit2
– volume: 6
  start-page: 6960
  year: 2012
  ident: ref44/cit44
  publication-title: ACS Nano
  doi: 10.1021/nn3019943
– volume: 19
  start-page: 505504
  year: 2008
  ident: ref48/cit48
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/19/50/505504
– volume: 2
  start-page: 161
  year: 2004
  ident: ref47/cit47
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro823
– volume: 127
  start-page: 5000
  year: 2005
  ident: ref20/cit20
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja043910f
– volume: 139
  start-page: 440
  year: 2009
  ident: ref40/cit40
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2009.02.069
– volume: 16
  start-page: 250
  year: 1998
  ident: ref46/cit46
  publication-title: Trends Biotechnol.
  doi: 10.1016/S0167-7799(98)01185-8
– volume: 298
  start-page: 1600
  year: 2002
  ident: ref49/cit49
  publication-title: Science
  doi: 10.1126/science.1077353
– volume: 2
  start-page: 1372
  year: 2011
  ident: ref11/cit11
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz200525v
– volume: 24
  start-page: 015602
  year: 2013
  ident: ref53/cit53
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/24/1/015602
– volume: 29
  start-page: 429
  year: 2003
  ident: ref9/cit9
  publication-title: J. Biol. Phys.
  doi: 10.1023/A:1027309113522
– volume: 131
  start-page: 9287
  year: 2009
  ident: ref25/cit25
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja901088b
– volume: 129
  start-page: 13144
  year: 2007
  ident: ref21/cit21
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0739943
– volume: 2
  start-page: 2331
  year: 2011
  ident: ref42/cit42
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz201006b
– volume: 23
  start-page: 225502
  year: 2012
  ident: ref52/cit52
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/23/22/225502
– volume: 413
  start-page: 226
  year: 2001
  ident: ref1/cit1
  publication-title: Nature
  doi: 10.1038/35093038
– volume: 7
  start-page: 257
  year: 2012
  ident: ref51/cit51
  publication-title: Nat Nanotechnol.
  doi: 10.1038/nnano.2012.24
– volume: 15
  start-page: 831
  year: 2005
  ident: ref33/cit33
  publication-title: J. Mater. Chem.
  doi: 10.1039/b414551h
– volume: 6
  start-page: 889
  year: 2005
  ident: ref14/cit14
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.200400595
– volume: 176
  start-page: 625
  year: 2013
  ident: ref41/cit41
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2012.10.058
– volume: 97
  start-page: 1079
  year: 2000
  ident: ref27/cit27
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.97.3.1079
– volume: 457
  start-page: 1023
  year: 2009
  ident: ref31/cit31
  publication-title: Nature
  doi: 10.1038/nature07600
– volume: 131
  start-page: 6324
  year: 2009
  ident: ref38/cit38
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9004893
– volume: 32
  start-page: 3034
  year: 2011
  ident: ref7/cit7
  publication-title: Electrophoresis
  doi: 10.1002/elps.201100216
– volume: 94
  start-page: 1267
  year: 2008
  ident: ref23/cit23
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.107.117598
– volume: 113
  start-page: 3572
  year: 2009
  ident: ref5/cit5
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp809842g
SSID ssj0002467
Score 2.393164
SecondaryResourceType review_article
Snippet Nanopore sensors have emerged as a label-free and amplification-free technique for measuring single molecules. First proposed in the mid-1990s, nanopore...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2867
SubjectTerms Amplification
Biosensing Techniques - standards
Bonding
Covalence
Deoxyribonucleic acid
Folding
Limit of Detection
Nanopores
Nanostructure
Peptides - analysis
Peptides - chemistry
Porosity
Stochasticity
Title Nanopore Stochastic Detection: Diversity, Sensitivity, and Beyond
URI http://dx.doi.org/10.1021/ar400031x
https://www.ncbi.nlm.nih.gov/pubmed/23614724
https://www.proquest.com/docview/1469210382
https://www.proquest.com/docview/1770282004
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT8MwDI4mOMCF92M8pvI4cFihSZ1HuU0bCCHBpSBxq5IsERKoQ1t34deTtGsFYoxjJVdpHNf-LDufETqn1mqjsQqJUUkIVOhQxFiH1EENDsowVXZVPjyyu2e4f6EvLXT2RwWf4Cs5Bg_csQOKy4S5n9fjn37auFsCrCLGdHkxCCA1fdD3V33o0ZOfoecPPFnGldt1NKhv51TtJG-X00Jd6s_fZI2LPnkDrc1wZdCrDGETtUy-hVb69Ti3bdRzfnTkwLYJ0mKkX6XnZw4GpihbsfLrYFA3aHSD1De1V1MluoHMh0F1zWUHpbc3T_27cDY_IZSAoQhpJOPYCma1ZsCp0SIaOoAjuBRKQCyTobJgrZHMPUqbEImtUVGsBVAu4120lI9ys48CG2lKOHdoQVswMlGac80MjZwBDJmBNuo49WYz659kZWGb4KzRQxtd1JrP9Ix73I_AeJ8netqIflSEG_OETurjy5wafY1D5mY0nfhMJiGe9J0skHFbcZmmcw9ttFedfbOU56IBTuDgvy0dolXiJ2NgEmJ-hJaK8dQcO3xSqE5pn1-L7t56
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9swDBaG7JBd2j27tF3mDjvsEKeWTFlyb0G6INuSXJIBuRmSImHABqeonUt_fSk_snXIHkcDtExJNPkRoj4S8p47Z6yhOmRWpyFwaUIZUxNyhBoCtE10VVU5XyTTr_B5zdcNTY6_C4NKFDhSUR3i_2QXoJfqFjx-p4gXHyMIYd6aR-Pl3usySGp-TEyPQQJrWYR-fdVHIFM8jEB_gJVVeJkc132KKsWqqpLvw12ph-buN87G_9P8KTlqUGYwqs3iGXlk8-ekO26bu70gI_SqW4TeNliWW_NNebbm4NqWVWFWfhVct-Uag2DpS9zrHhODQOWboL708pIsJx9X42nYdFMIFVAoQx6pOHYyccYkILg1Mtog3JFCSS0hVulGO3DOqgQflUuZos7qKDYSuFDxK9LJt7l9TQIXGc6EQOxgHFiVaiOESSyP0Bw2iYUe6eMyZM2_UGTVMTej2X4deuRDuwGZaZjIfUOMH4dE3-1Fb2r6jUNCF-0uZriM_sRD5Xa7K3xekzJPAc_-IoNTwbwTnUWPnNQmsP-UZ6YBweD0X1N6S7rT1XyWzT4tvpyRJ8z3zKAspOKcdMrbnX2DyKXU_cpk7wHwBebb
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYqKhUuLa_SpYWmiEMPBGJnHDvcVrtdQVug0lKJW2Q7tpBAWUSyF34947wEiBaOkSaJPR6Pv9GMvyFklztnrKE6ZFanIXBpQhlTE3KEGgK0TXRdVXlymhz9hZ8X_KINFP1dGBxEiV8q6yS-39U3uWsZBuiBugWP4Slixrc-Xectejia9p6XQdJwZGKIDBJYxyT08FV_Cpny8Sn0D2hZHzGTD-SsH1xdWXK1P6_0vrl7wtv4-tEvk_ct2gyGjXmskDe2WCWLo67J2xoZonedIQS3wbSamUvlWZuDsa3qAq3iMBh3ZRt7wdSXuje9JvYCVeRBc_llnUwnP85HR2HbVSFUQKEKeaTi2MnEGZOA4NbIKEfYI4WSWkKs0lw7cM6qBB-VS5mizuooNhK4UPFHslDMCvuJBC4ynAmBGMI4sCrVRgiTWB6hWeSJhQHZRlVk7Z4oszrdzWjW62FAvneLkJmWkdw3xrh-TnSnF71paDieE_rWrWSGavSZD1XY2bz08U3KPBU8-48MTgXjT3QaA7LRmEH_K89QA4LB5ktT-kre_RlPst_Hp78-kyXmW2dQFlLxhSxUt3O7hQCm0tu11d4DjcfpXg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanopore+Stochastic+Detection%3A+Diversity%2C+Sensitivity%2C+and+Beyond&rft.jtitle=Accounts+of+chemical+research&rft.au=Wang%2C+Guihua&rft.au=Wang%2C+Liang&rft.au=Han%2C+Yujing&rft.au=Zhou%2C+Shuo&rft.date=2013-12-17&rft.pub=American+Chemical+Society&rft.issn=0001-4842&rft.eissn=1520-4898&rft.volume=46&rft.issue=12&rft.spage=2867&rft.epage=2877&rft_id=info:doi/10.1021%2Far400031x&rft.externalDocID=b257945945
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon