Organocatalytic Asymmetric Synthesis of Indole-Based Chiral Heterocycles: Strategies, Reactions, and Outreach
Conspectus Indole-based chiral heterocycles constitute a class of important heterocyclic compounds that are found in numerous pharmaceuticals, functional materials, and chiral catalysts or ligands. Catalytic asymmetric synthesis, for which the 2001 Nobel Prize in Chemistry was awarded, has been demo...
Saved in:
Published in | Accounts of chemical research Vol. 53; no. 2; pp. 425 - 446 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
18.02.2020
|
Online Access | Get full text |
Cover
Loading…
Abstract | Conspectus Indole-based chiral heterocycles constitute a class of important heterocyclic compounds that are found in numerous pharmaceuticals, functional materials, and chiral catalysts or ligands. Catalytic asymmetric synthesis, for which the 2001 Nobel Prize in Chemistry was awarded, has been demonstrated to be the most efficient method for accessing chiral compounds. Therefore, the catalytic asymmetric synthesis of indole-based chiral heterocycles has attracted great interest from the scientific community. However, the strategies toward this goal are rather limited, and great challenges remain in this field, such as metal contamination in the products, the limited number of platform molecules with versatile reactivity, and the limited number of catalytic asymmetric reactions that offer high step economy, atom economy, and excellent enantiocontrol. Therefore, novel strategies for the catalytic asymmetric synthesis of indole-based chiral heterocycles are urgently needed. To achieve this goal, our group has developed a series of unique strategies, such as designing and developing versatile platform molecules and their corresponding organocatalytic asymmetric reactions to access indole-based chiral heterocycles. In this Account, we describe our efforts to address the remaining challenges in this research field. Namely, we have designed and developed vinylindoles, indolylmethanols, arylindoles and indole derivatives as versatile platform molecules for the construction of indole-based chiral heterocyclic scaffolds with structural diversity and complexity. Based on the reactivities of these platform molecules, we have designed and accomplished a series of organocatalytic asymmetric cycloaddition, cyclization, addition and dearomatization reactions with a high step economy, atom economy and excellent enantiocontrol. Using these strategies, a wide range of indole-based chiral heterocycles, including five-membered to seven-membered heterocycles, axially chiral heterocycles and tetrasubstituted heterocycles, have been synthesized with high efficiency and excellent enantioselectivity. In addition, we have investigated the properties of some indole-based chiral heterocycles, including their bioactivities and catalytic activities, and showed that these chiral heterocycles have potent anticancer activities and promising catalytic activities in asymmetric catalysis. These results help elucidate the potential applications of indole-based chiral heterocycles in drug development and chiral catalysts. The organocatalytic asymmetric synthesis of indole-based chiral heterocycles has undoubtedly become and will continue to be a hot topic in the field of asymmetric catalysis and synthesis. Our efforts, summarized in this Account, will not only open a window for the future development of innovative strategies toward organocatalytic asymmetric synthesis of indole-based chiral heterocycles but also inspire chemists worldwide to confront the remaining challenges in this field and prompt further advances. |
---|---|
AbstractList | Conspectus Indole-based chiral heterocycles constitute a class of important heterocyclic compounds that are found in numerous pharmaceuticals, functional materials, and chiral catalysts or ligands. Catalytic asymmetric synthesis, for which the 2001 Nobel Prize in Chemistry was awarded, has been demonstrated to be the most efficient method for accessing chiral compounds. Therefore, the catalytic asymmetric synthesis of indole-based chiral heterocycles has attracted great interest from the scientific community. However, the strategies toward this goal are rather limited, and great challenges remain in this field, such as metal contamination in the products, the limited number of platform molecules with versatile reactivity, and the limited number of catalytic asymmetric reactions that offer high step economy, atom economy, and excellent enantiocontrol. Therefore, novel strategies for the catalytic asymmetric synthesis of indole-based chiral heterocycles are urgently needed. To achieve this goal, our group has developed a series of unique strategies, such as designing and developing versatile platform molecules and their corresponding organocatalytic asymmetric reactions to access indole-based chiral heterocycles. In this Account, we describe our efforts to address the remaining challenges in this research field. Namely, we have designed and developed vinylindoles, indolylmethanols, arylindoles and indole derivatives as versatile platform molecules for the construction of indole-based chiral heterocyclic scaffolds with structural diversity and complexity. Based on the reactivities of these platform molecules, we have designed and accomplished a series of organocatalytic asymmetric cycloaddition, cyclization, addition and dearomatization reactions with a high step economy, atom economy and excellent enantiocontrol. Using these strategies, a wide range of indole-based chiral heterocycles, including five-membered to seven-membered heterocycles, axially chiral heterocycles and tetrasubstituted heterocycles, have been synthesized with high efficiency and excellent enantioselectivity. In addition, we have investigated the properties of some indole-based chiral heterocycles, including their bioactivities and catalytic activities, and showed that these chiral heterocycles have potent anticancer activities and promising catalytic activities in asymmetric catalysis. These results help elucidate the potential applications of indole-based chiral heterocycles in drug development and chiral catalysts. The organocatalytic asymmetric synthesis of indole-based chiral heterocycles has undoubtedly become and will continue to be a hot topic in the field of asymmetric catalysis and synthesis. Our efforts, summarized in this Account, will not only open a window for the future development of innovative strategies toward organocatalytic asymmetric synthesis of indole-based chiral heterocycles but also inspire chemists worldwide to confront the remaining challenges in this field and prompt further advances. Indole-based chiral heterocycles constitute a class of important heterocyclic compounds that are found in numerous pharmaceuticals, functional materials, and chiral catalysts or ligands. Catalytic asymmetric synthesis, for which the 2001 Nobel Prize in Chemistry was awarded, has been demonstrated to be the most efficient method for accessing chiral compounds. Therefore, the catalytic asymmetric synthesis of indole-based chiral heterocycles has attracted great interest from the scientific community. However, the strategies toward this goal are rather limited, and great challenges remain in this field, such as metal contamination in the products, the limited number of platform molecules with versatile reactivity, and the limited number of catalytic asymmetric reactions that offer high step economy, atom economy, and excellent enantiocontrol. Therefore, novel strategies for the catalytic asymmetric synthesis of indole-based chiral heterocycles are urgently needed. To achieve this goal, our group has developed a series of unique strategies, such as designing and developing versatile platform molecules and their corresponding organocatalytic asymmetric reactions to access indole-based chiral heterocycles. In this Account, we describe our efforts to address the remaining challenges in this research field. Namely, we have designed and developed vinylindoles, indolylmethanols, arylindoles and indole derivatives as versatile platform molecules for the construction of indole-based chiral heterocyclic scaffolds with structural diversity and complexity. Based on the reactivities of these platform molecules, we have designed and accomplished a series of organocatalytic asymmetric cycloaddition, cyclization, addition and dearomatization reactions with a high step economy, atom economy and excellent enantiocontrol. Using these strategies, a wide range of indole-based chiral heterocycles, including five-membered to seven-membered heterocycles, axially chiral heterocycles and tetrasubstituted heterocycles, have been synthesized with high efficiency and excellent enantioselectivity. In addition, we have investigated the properties of some indole-based chiral heterocycles, including their bioactivities and catalytic activities, and showed that these chiral heterocycles have potent anticancer activities and promising catalytic activities in asymmetric catalysis. These results help elucidate the potential applications of indole-based chiral heterocycles in drug development and chiral catalysts. The organocatalytic asymmetric synthesis of indole-based chiral heterocycles has undoubtedly become and will continue to be a hot topic in the field of asymmetric catalysis and synthesis. Our efforts, summarized in this Account, will not only open a window for the future development of innovative strategies toward organocatalytic asymmetric synthesis of indole-based chiral heterocycles but also inspire chemists worldwide to confront the remaining challenges in this field and prompt further advances.Indole-based chiral heterocycles constitute a class of important heterocyclic compounds that are found in numerous pharmaceuticals, functional materials, and chiral catalysts or ligands. Catalytic asymmetric synthesis, for which the 2001 Nobel Prize in Chemistry was awarded, has been demonstrated to be the most efficient method for accessing chiral compounds. Therefore, the catalytic asymmetric synthesis of indole-based chiral heterocycles has attracted great interest from the scientific community. However, the strategies toward this goal are rather limited, and great challenges remain in this field, such as metal contamination in the products, the limited number of platform molecules with versatile reactivity, and the limited number of catalytic asymmetric reactions that offer high step economy, atom economy, and excellent enantiocontrol. Therefore, novel strategies for the catalytic asymmetric synthesis of indole-based chiral heterocycles are urgently needed. To achieve this goal, our group has developed a series of unique strategies, such as designing and developing versatile platform molecules and their corresponding organocatalytic asymmetric reactions to access indole-based chiral heterocycles. In this Account, we describe our efforts to address the remaining challenges in this research field. Namely, we have designed and developed vinylindoles, indolylmethanols, arylindoles and indole derivatives as versatile platform molecules for the construction of indole-based chiral heterocyclic scaffolds with structural diversity and complexity. Based on the reactivities of these platform molecules, we have designed and accomplished a series of organocatalytic asymmetric cycloaddition, cyclization, addition and dearomatization reactions with a high step economy, atom economy and excellent enantiocontrol. Using these strategies, a wide range of indole-based chiral heterocycles, including five-membered to seven-membered heterocycles, axially chiral heterocycles and tetrasubstituted heterocycles, have been synthesized with high efficiency and excellent enantioselectivity. In addition, we have investigated the properties of some indole-based chiral heterocycles, including their bioactivities and catalytic activities, and showed that these chiral heterocycles have potent anticancer activities and promising catalytic activities in asymmetric catalysis. These results help elucidate the potential applications of indole-based chiral heterocycles in drug development and chiral catalysts. The organocatalytic asymmetric synthesis of indole-based chiral heterocycles has undoubtedly become and will continue to be a hot topic in the field of asymmetric catalysis and synthesis. Our efforts, summarized in this Account, will not only open a window for the future development of innovative strategies toward organocatalytic asymmetric synthesis of indole-based chiral heterocycles but also inspire chemists worldwide to confront the remaining challenges in this field and prompt further advances. Indole-based chiral heterocycles constitute a class of important heterocyclic compounds that are found in numerous pharmaceuticals, functional materials, and chiral catalysts or ligands. Catalytic asymmetric synthesis, for which the 2001 Nobel Prize in Chemistry was awarded, has been demonstrated to be the most efficient method for accessing chiral compounds. Therefore, the catalytic asymmetric synthesis of indole-based chiral heterocycles has attracted great interest from the scientific community. However, the strategies toward this goal are rather limited, and great challenges remain in this field, such as metal contamination in the products, the limited number of platform molecules with versatile reactivity, and the limited number of catalytic asymmetric reactions that offer high step economy, atom economy, and excellent enantiocontrol. Therefore, novel strategies for the catalytic asymmetric synthesis of indole-based chiral heterocycles are urgently needed. To achieve this goal, our group has developed a series of unique strategies, such as designing and developing versatile platform molecules and their corresponding organocatalytic asymmetric reactions to access indole-based chiral heterocycles. In this Account, we describe our efforts to address the remaining challenges in this research field. Namely, we have designed and developed vinylindoles, indolylmethanols, arylindoles and indole derivatives as versatile platform molecules for the construction of indole-based chiral heterocyclic scaffolds with structural diversity and complexity. Based on the reactivities of these platform molecules, we have designed and accomplished a series of organocatalytic asymmetric cycloaddition, cyclization, addition and dearomatization reactions with a high step economy, atom economy and excellent enantiocontrol. Using these strategies, a wide range of indole-based chiral heterocycles, including five-membered to seven-membered heterocycles, axially chiral heterocycles and tetrasubstituted heterocycles, have been synthesized with high efficiency and excellent enantioselectivity. In addition, we have investigated the properties of some indole-based chiral heterocycles, including their bioactivities and catalytic activities, and showed that these chiral heterocycles have potent anticancer activities and promising catalytic activities in asymmetric catalysis. These results help elucidate the potential applications of indole-based chiral heterocycles in drug development and chiral catalysts. The organocatalytic asymmetric synthesis of indole-based chiral heterocycles has undoubtedly become and will continue to be a hot topic in the field of asymmetric catalysis and synthesis. Our efforts, summarized in this Account, will not only open a window for the future development of innovative strategies toward organocatalytic asymmetric synthesis of indole-based chiral heterocycles but also inspire chemists worldwide to confront the remaining challenges in this field and prompt further advances. |
Author | Jiang, Fei Shi, Feng Zhang, Yu-Chen |
AuthorAffiliation | School of Chemistry and Materials Science |
AuthorAffiliation_xml | – name: School of Chemistry and Materials Science |
Author_xml | – sequence: 1 givenname: Yu-Chen surname: Zhang fullname: Zhang, Yu-Chen – sequence: 2 givenname: Fei surname: Jiang fullname: Jiang, Fei – sequence: 3 givenname: Feng orcidid: 0000-0003-3922-0708 surname: Shi fullname: Shi, Feng email: fshi@jsnu.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31820922$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFP3DAQhS1EVRbaf4BQjhyare3YIeYGq7YgIa1U2rM1cSasUWKD7Rzy7_Fqdy8c4ORn-32jmXmn5Nh5h4ScM7pklLOfYOISjPGTS3GpWkqlUEdkwSSnpWhUc0wWlFKWteAn5DTG53zlor76Sk4q1nCqOF-QcR2ewHkDCYY5WVPcxHkcMYUsH2eXNhhtLHxf3LvOD1jeQsSuWG1sgKG4w4TBm9kMGK-LxxQg4ZPF-KP4i2CS9S5LcF2xnlLIL5tv5EsPQ8Tv-_OM_P_969_qrnxY_7lf3TyUIJhIpWDMdEyoXlBGc6tMGFQ1GNUq1YHsGyNZiy1SbCrZCKxRqopK2V0x2TCoqzNyuav7EvzrhDHp0UaDwwAO_RQ1r7hQTNUVz9aLvXVqR-z0S7AjhFkfVpQN1zuDCT7GgL02NsF2uDyvHTSjepuHznnoQx56n0eGxTv4UP8TjO6w7e-zn4LL2_oYeQOL96Rw |
CitedBy_id | crossref_primary_10_1039_D1QO01864G crossref_primary_10_1002_anie_202316739 crossref_primary_10_1021_acs_joc_0c01528 crossref_primary_10_1039_D3OB01312J crossref_primary_10_1039_D4CC03420A crossref_primary_10_1002_cjoc_202000304 crossref_primary_10_6023_cjoc202104046 crossref_primary_10_1055_a_2382_0292 crossref_primary_10_1039_D1CC03653J crossref_primary_10_1002_adsc_202401348 crossref_primary_10_1002_anie_202311053 crossref_primary_10_1021_acsenergylett_1c02489 crossref_primary_10_1021_acs_joc_3c02338 crossref_primary_10_1039_D1CC00590A crossref_primary_10_2139_ssrn_4145115 crossref_primary_10_1016_j_tet_2020_131436 crossref_primary_10_1016_j_tet_2020_131678 crossref_primary_10_1039_D2OB00395C crossref_primary_10_1021_acs_nanolett_1c04669 crossref_primary_10_1039_D3OB00212H crossref_primary_10_1039_D0QO01597K crossref_primary_10_1002_ajoc_202100462 crossref_primary_10_1002_ejoc_202000693 crossref_primary_10_1039_D3SC00610G crossref_primary_10_1021_acs_orglett_2c03543 crossref_primary_10_1021_acs_joc_2c02816 crossref_primary_10_1002_adsc_202200918 crossref_primary_10_1039_D4QO01557F crossref_primary_10_1002_cctc_202200099 crossref_primary_10_1002_cjoc_202300505 crossref_primary_10_1002_adsc_202000343 crossref_primary_10_1021_acs_joc_2c00878 crossref_primary_10_1039_C9CC09939E crossref_primary_10_1039_D4OB00897A crossref_primary_10_1002_ange_202205159 crossref_primary_10_1002_anie_202300481 crossref_primary_10_1016_j_tet_2021_131950 crossref_primary_10_1021_acs_orglett_0c03452 crossref_primary_10_1002_slct_202002765 crossref_primary_10_1002_anie_202405222 crossref_primary_10_1039_D0QO00038H crossref_primary_10_1002_adsc_202400274 crossref_primary_10_1002_ange_202300481 crossref_primary_10_1002_anie_202210456 crossref_primary_10_1039_D4QO00248B crossref_primary_10_1002_anie_202201436 crossref_primary_10_1007_s11426_020_9832_9 crossref_primary_10_1002_adsc_202200611 crossref_primary_10_1055_a_1986_7969 crossref_primary_10_1002_ajoc_202200399 crossref_primary_10_1021_acs_joc_0c00119 crossref_primary_10_1002_ange_202300419 crossref_primary_10_1021_acs_orglett_3c04070 crossref_primary_10_1039_D1SC07134C crossref_primary_10_3390_sym14030435 crossref_primary_10_1038_s41467_022_29557_1 crossref_primary_10_1039_D1CC02570H crossref_primary_10_1039_D3SC02800C crossref_primary_10_1002_ange_202011267 crossref_primary_10_1021_acs_orglett_2c01559 crossref_primary_10_1021_acs_orglett_3c01905 crossref_primary_10_1021_acs_orglett_2c02642 crossref_primary_10_1002_chem_202001397 crossref_primary_10_1039_D2RA04498F crossref_primary_10_1016_j_isci_2022_105669 crossref_primary_10_3762_bjoc_17_114 crossref_primary_10_1002_cjoc_202100221 crossref_primary_10_3390_molecules26216751 crossref_primary_10_1021_acs_oprd_9b00511 crossref_primary_10_1002_ajoc_202100408 crossref_primary_10_1002_adsc_202200835 crossref_primary_10_1039_D1OB02281D crossref_primary_10_1038_s41467_021_25165_7 crossref_primary_10_1039_D0CC02380A crossref_primary_10_1002_adsc_202300241 crossref_primary_10_1016_j_mcat_2021_111549 crossref_primary_10_1021_acs_joc_1c02164 crossref_primary_10_1002_anie_202208174 crossref_primary_10_1002_adsc_202300246 crossref_primary_10_1002_asia_202300526 crossref_primary_10_1039_D0QO01124J crossref_primary_10_6023_cjoc202404006 crossref_primary_10_1039_D2OB02179J crossref_primary_10_1002_cctc_202000810 crossref_primary_10_1039_D1OB01517F crossref_primary_10_1039_D2OB00604A crossref_primary_10_1021_acscatal_2c05570 crossref_primary_10_1021_acs_orglett_3c04162 crossref_primary_10_1002_adsc_202101168 crossref_primary_10_1002_chem_202100700 crossref_primary_10_1002_ejoc_202100090 crossref_primary_10_1021_acscatal_4c04455 crossref_primary_10_3390_molecules29020484 crossref_primary_10_1055_a_1514_1049 crossref_primary_10_1021_jacs_0c00208 crossref_primary_10_6023_cjoc202405040 crossref_primary_10_1002_anie_202318876 crossref_primary_10_1007_s11426_023_1927_3 crossref_primary_10_1002_anie_202316454 crossref_primary_10_1021_acs_joc_0c01123 crossref_primary_10_1002_adsc_202400307 crossref_primary_10_1002_ejoc_202200878 crossref_primary_10_1039_D0QO00990C crossref_primary_10_6023_cjoc202211022 crossref_primary_10_1002_ejoc_202300802 crossref_primary_10_1021_acs_joc_1c00484 crossref_primary_10_3390_molecules25184124 crossref_primary_10_1039_D4OB01936A crossref_primary_10_1021_acs_joc_3c01990 crossref_primary_10_1177_1934578X20953289 crossref_primary_10_1039_D0QO01643H crossref_primary_10_1002_asia_202000681 crossref_primary_10_3390_molecules25235595 crossref_primary_10_1002_anie_202205720 crossref_primary_10_1002_adsc_202400533 crossref_primary_10_1002_anie_202400143 crossref_primary_10_1039_D0QO00699H crossref_primary_10_1021_jacs_1c03923 crossref_primary_10_1002_ange_202208174 crossref_primary_10_1002_anie_202300419 crossref_primary_10_1039_D0QO00772B crossref_primary_10_1021_acs_joc_2c02624 crossref_primary_10_1039_D0QO00348D crossref_primary_10_1002_cjoc_202000131 crossref_primary_10_1021_acs_joc_1c01105 crossref_primary_10_1039_D4NJ00088A crossref_primary_10_1021_jacs_2c01852 crossref_primary_10_1039_D2SC00636G crossref_primary_10_1039_D0OB00048E crossref_primary_10_1039_D0OB02489A crossref_primary_10_1002_slct_202104245 crossref_primary_10_1039_D3NJ04907H crossref_primary_10_2174_2213337207999200713145440 crossref_primary_10_1039_D0OB01049A crossref_primary_10_1039_D1OB02504J crossref_primary_10_1055_a_2085_5256 crossref_primary_10_1021_acs_joc_3c02866 crossref_primary_10_1039_D0CC07116A crossref_primary_10_1002_anie_202212101 crossref_primary_10_1002_cctc_202100539 crossref_primary_10_1021_acs_joc_2c01204 crossref_primary_10_1002_anie_202313091 crossref_primary_10_1002_ejoc_202300901 crossref_primary_10_6023_cjoc202210037 crossref_primary_10_1039_D2QO00996J crossref_primary_10_1021_acs_joc_2c00598 crossref_primary_10_1016_j_ejmech_2024_116898 crossref_primary_10_6023_A23100472 crossref_primary_10_1007_s11030_020_10087_1 crossref_primary_10_1039_D1OB00453K crossref_primary_10_1021_acs_orglett_0c03611 crossref_primary_10_1021_acs_orglett_2c00686 crossref_primary_10_1039_D4QO01671H crossref_primary_10_1021_acs_orglett_0c02769 crossref_primary_10_1039_D1QO00623A crossref_primary_10_1021_acs_orglett_0c01558 crossref_primary_10_1021_acs_joc_4c00552 crossref_primary_10_1002_ange_202405222 crossref_primary_10_6023_cjoc202210026 crossref_primary_10_1039_D0OB01038C crossref_primary_10_1002_ange_202306864 crossref_primary_10_1055_a_1781_6538 crossref_primary_10_1055_a_2081_9249 crossref_primary_10_1038_s41467_023_40978_4 crossref_primary_10_1021_acs_joc_2c02641 crossref_primary_10_13005_ojc_400519 crossref_primary_10_1021_acscatal_2c06175 crossref_primary_10_1007_s11030_022_10531_4 crossref_primary_10_1021_acs_joc_0c02252 crossref_primary_10_1021_acs_joc_4c01772 crossref_primary_10_1039_D1SC01171E crossref_primary_10_1002_anie_202317104 crossref_primary_10_1002_jhet_4781 crossref_primary_10_1021_acs_orglett_0c03827 crossref_primary_10_1016_j_matpr_2021_05_160 crossref_primary_10_1055_a_1965_2928 crossref_primary_10_1002_anie_202421060 crossref_primary_10_1002_cjoc_202000104 crossref_primary_10_1126_sciadv_ado4489 crossref_primary_10_1021_acscatal_3c06032 crossref_primary_10_1039_D2OB00960A crossref_primary_10_1002_ange_202210456 crossref_primary_10_1021_acsami_4c02003 crossref_primary_10_1021_acs_joc_3c00462 crossref_primary_10_1021_acs_orglett_3c03933 crossref_primary_10_1016_j_tet_2021_132297 crossref_primary_10_1021_acs_joc_2c02310 crossref_primary_10_6023_cjoc202500004 crossref_primary_10_1002_ejoc_202401405 crossref_primary_10_1002_advs_202403125 crossref_primary_10_1002_adsc_202400855 crossref_primary_10_1002_adsc_202400852 crossref_primary_10_1016_j_fmre_2022_01_002 crossref_primary_10_1002_adsc_202301286 crossref_primary_10_1021_acs_orglett_1c01600 crossref_primary_10_1021_acs_jpcc_3c03053 crossref_primary_10_1039_D1OB01313K crossref_primary_10_1021_acscatal_4c06131 crossref_primary_10_1021_acs_joc_2c02303 crossref_primary_10_1039_D2QO00840H crossref_primary_10_1039_D0OB01105C crossref_primary_10_1002_adsc_202001486 crossref_primary_10_1002_slct_202201408 crossref_primary_10_1021_acs_orglett_3c01503 crossref_primary_10_6023_cjoc202103027 crossref_primary_10_1016_j_cclet_2021_02_001 crossref_primary_10_1021_acs_joc_9b03025 crossref_primary_10_1002_ange_202422951 crossref_primary_10_1021_acs_joc_0c00175 crossref_primary_10_1021_acs_orglett_1c01518 crossref_primary_10_1002_ange_202311053 crossref_primary_10_1039_D1OB02318G crossref_primary_10_1021_acs_joc_2c00275 crossref_primary_10_1002_cjoc_202000446 crossref_primary_10_1021_jacs_2c01985 crossref_primary_10_1039_D1NJ05170A crossref_primary_10_1016_j_tchem_2022_100007 crossref_primary_10_1021_acs_orglett_1c02834 crossref_primary_10_1002_cjoc_202200503 crossref_primary_10_1002_ange_202316739 crossref_primary_10_1021_acscatal_1c05067 crossref_primary_10_1002_cssc_202301604 crossref_primary_10_1038_s41557_024_01468_2 crossref_primary_10_1007_s11426_025_2577_7 crossref_primary_10_1021_acs_chemrev_0c01306 crossref_primary_10_1039_D3CC04542K crossref_primary_10_1002_ange_202212846 crossref_primary_10_1039_D3SC02474A crossref_primary_10_1002_chir_23455 crossref_primary_10_1039_D4NJ05018E crossref_primary_10_1021_acs_joc_1c01618 crossref_primary_10_1021_acs_orglett_2c00812 crossref_primary_10_1002_ajoc_202300120 crossref_primary_10_1002_anie_202218871 crossref_primary_10_1002_ejoc_202100502 crossref_primary_10_1021_acs_orglett_1c01494 crossref_primary_10_1002_anie_202312930 crossref_primary_10_1055_a_1729_9572 crossref_primary_10_1039_D3NJ01991H crossref_primary_10_1039_D1QO00394A crossref_primary_10_1021_acs_joc_2c01026 crossref_primary_10_1007_s11426_022_1471_2 crossref_primary_10_1080_00397911_2021_1874016 crossref_primary_10_1002_ange_202008437 crossref_primary_10_1002_ange_202006137 crossref_primary_10_1016_j_tet_2022_132893 crossref_primary_10_1021_acs_orglett_1c00156 crossref_primary_10_1021_acs_accounts_2c00465 crossref_primary_10_1021_acs_joc_0c01076 crossref_primary_10_1021_acs_orglett_5c00420 crossref_primary_10_1039_D1QO00912E crossref_primary_10_1016_j_mcat_2022_112648 crossref_primary_10_1039_D0CC00693A crossref_primary_10_1002_ange_202313091 crossref_primary_10_1016_j_cclet_2022_108097 crossref_primary_10_1007_s11426_022_1363_y crossref_primary_10_1016_j_tet_2024_134026 crossref_primary_10_1039_D4QO01905A crossref_primary_10_1039_D2OB02180C crossref_primary_10_1039_D2NJ05987H crossref_primary_10_1021_acs_joc_2c01376 crossref_primary_10_1002_anie_202410581 crossref_primary_10_1002_ange_202205720 crossref_primary_10_1002_ejoc_202201466 crossref_primary_10_1039_D2NJ01571D crossref_primary_10_1016_j_gresc_2021_11_003 crossref_primary_10_1021_acs_joc_4c00269 crossref_primary_10_1039_D1OB00010A crossref_primary_10_1002_aoc_5997 crossref_primary_10_1002_slct_202100722 crossref_primary_10_1039_D0QO01160F crossref_primary_10_6023_A24030094 crossref_primary_10_1055_a_1529_7739 crossref_primary_10_1002_chem_202101267 crossref_primary_10_1039_D1OB02217B crossref_primary_10_1002_chem_202402416 crossref_primary_10_1039_D2QO00685E crossref_primary_10_1021_acs_orglett_4c02151 crossref_primary_10_1021_acsomega_4c02409 crossref_primary_10_1002_cctc_202300343 crossref_primary_10_1039_D0QO01196G crossref_primary_10_1016_j_tet_2021_132112 crossref_primary_10_1039_D4OB01365D crossref_primary_10_1038_s41467_023_41299_2 crossref_primary_10_1021_jacs_3c04498 crossref_primary_10_1039_D2NJ03349F crossref_primary_10_1002_ajoc_202300231 crossref_primary_10_1002_ange_202317104 crossref_primary_10_1039_D4QO01396D crossref_primary_10_1039_D5NJ00294J crossref_primary_10_1002_anie_202400441 crossref_primary_10_1039_D1NJ02836G crossref_primary_10_1016_j_gresc_2024_01_002 crossref_primary_10_1021_acs_orglett_2c01818 crossref_primary_10_1021_acs_orglett_4c02167 crossref_primary_10_1039_D2OB00773H crossref_primary_10_1055_a_1967_1073 crossref_primary_10_1039_D3OB02011H crossref_primary_10_1039_D4OB01552E crossref_primary_10_1002_cctc_202401143 crossref_primary_10_1002_jhet_4147 crossref_primary_10_1039_D0OB00393J crossref_primary_10_1055_a_1833_8979 crossref_primary_10_1039_D0CY00008F crossref_primary_10_1021_jacs_1c05079 crossref_primary_10_1002_ejoc_202201128 crossref_primary_10_1021_acs_joc_4c02101 crossref_primary_10_1021_acs_orglett_1c00489 crossref_primary_10_1021_prechem_4c00008 crossref_primary_10_1002_ange_202112226 crossref_primary_10_1039_D2QO00675H crossref_primary_10_1039_D3QO01877F crossref_primary_10_1021_jacs_2c02216 crossref_primary_10_1002_ange_202410581 crossref_primary_10_1007_s40242_024_4128_z crossref_primary_10_1016_j_chemolab_2021_104384 crossref_primary_10_1021_acs_orglett_1c00354 crossref_primary_10_1021_acs_joc_4c01021 crossref_primary_10_6023_cjoc202200046 crossref_primary_10_1021_acs_joc_3c01609 crossref_primary_10_1038_s42004_023_00910_9 crossref_primary_10_1021_acs_joc_2c01179 crossref_primary_10_1080_10406638_2020_1768566 crossref_primary_10_1039_D3QO02085A crossref_primary_10_3389_fchem_2022_1110240 crossref_primary_10_1002_ange_202212101 crossref_primary_10_1039_D3CC02654J crossref_primary_10_1038_s44160_022_00072_x crossref_primary_10_1021_acs_orglett_3c03406 crossref_primary_10_1039_D0OB01230K crossref_primary_10_1039_D3NJ05076A crossref_primary_10_1002_advs_202402429 crossref_primary_10_1055_s_0042_1751351 crossref_primary_10_1039_D2OB01206E crossref_primary_10_1039_D4OB00488D crossref_primary_10_1055_a_2395_5804 crossref_primary_10_1021_acs_orglett_3c03525 crossref_primary_10_1039_D0OB02388D crossref_primary_10_1002_anie_202012932 crossref_primary_10_1002_ange_202305450 crossref_primary_10_3390_molecules28186488 crossref_primary_10_1002_anie_202006137 crossref_primary_10_1038_s44160_023_00417_0 crossref_primary_10_1002_tcr_202200225 crossref_primary_10_1002_anie_202008437 crossref_primary_10_1002_slct_202303643 crossref_primary_10_1007_s11426_024_2472_2 crossref_primary_10_1021_acsomega_1c00515 crossref_primary_10_1002_anie_202116829 crossref_primary_10_1002_anie_202112226 crossref_primary_10_1039_D1OB02443D crossref_primary_10_1021_acscatal_4c00519 crossref_primary_10_1021_jacs_2c08090 crossref_primary_10_1039_D0QO00888E crossref_primary_10_1126_sciadv_adk1704 crossref_primary_10_1039_D3QO01734F crossref_primary_10_1055_a_2013_9885 crossref_primary_10_1039_D0CC01210F crossref_primary_10_1055_a_2513_1926 crossref_primary_10_1038_s41557_021_00778_z crossref_primary_10_1055_a_2295_5417 crossref_primary_10_1039_D4NJ00306C crossref_primary_10_1002_anie_202305450 crossref_primary_10_1021_acs_joc_4c03100 crossref_primary_10_1002_adsc_202100516 crossref_primary_10_1002_ange_202012932 crossref_primary_10_1002_ange_202316454 crossref_primary_10_1021_acs_orglett_5c00441 crossref_primary_10_1039_D1OB02432A crossref_primary_10_1002_slct_202304866 crossref_primary_10_1039_D4OB01127A crossref_primary_10_1038_s41467_023_39968_3 crossref_primary_10_1002_ange_202201436 crossref_primary_10_6023_cjoc202112023 crossref_primary_10_1002_ange_202318876 crossref_primary_10_1021_acs_orglett_1c03402 crossref_primary_10_1002_ange_202116829 crossref_primary_10_1002_chem_202402843 crossref_primary_10_1039_D2OB00466F crossref_primary_10_1039_D3QO01529G crossref_primary_10_1021_acs_joc_2c02166 crossref_primary_10_1142_S225123732440001X crossref_primary_10_1039_D4QO00515E crossref_primary_10_1002_anie_202011267 crossref_primary_10_1002_chem_202303165 crossref_primary_10_1039_D3QO00577A crossref_primary_10_1055_s_0040_1706682 crossref_primary_10_1002_ejoc_202201166 crossref_primary_10_1002_adsc_202101338 crossref_primary_10_1002_anie_202205159 crossref_primary_10_1021_acs_orglett_2c03003 crossref_primary_10_1021_acscatal_1c03459 crossref_primary_10_1016_j_checat_2022_10_011 crossref_primary_10_1039_D1NJ02257A crossref_primary_10_1021_acs_orglett_4c01003 crossref_primary_10_1039_D2QO00275B crossref_primary_10_1246_cl_220129 crossref_primary_10_1039_D0CC03201H crossref_primary_10_1039_D2QO00021K crossref_primary_10_1021_acscatal_2c04504 crossref_primary_10_1039_D0OB01614D crossref_primary_10_1002_ejoc_202100232 crossref_primary_10_1002_ejoc_202401287 crossref_primary_10_1021_acs_orglett_1c03389 crossref_primary_10_1039_D1QO00269D crossref_primary_10_1039_D3QO01558K crossref_primary_10_1021_acs_orglett_4c02345 crossref_primary_10_1039_D2OB00440B crossref_primary_10_1039_D3RA07466H crossref_primary_10_1021_acs_orglett_3c03445 crossref_primary_10_1039_D3QO00551H crossref_primary_10_1021_acs_joc_0c00930 crossref_primary_10_1002_ajoc_202100724 crossref_primary_10_1021_acscatal_2c02556 crossref_primary_10_1039_D3OB01451G crossref_primary_10_1002_ange_202400441 crossref_primary_10_1021_acsomega_2c06637 crossref_primary_10_1039_D0GC00130A crossref_primary_10_1039_D4RA03231D crossref_primary_10_1039_D1QO00220A crossref_primary_10_1016_j_cclet_2024_110539 crossref_primary_10_1002_cjoc_202400033 crossref_primary_10_1002_ange_202218871 crossref_primary_10_1002_cjoc_202100214 crossref_primary_10_1021_acs_orglett_3c03438 crossref_primary_10_1021_acs_joc_4c01080 crossref_primary_10_4236_ijoc_2022_123011 crossref_primary_10_1016_j_bmc_2021_116597 crossref_primary_10_1002_anie_202306864 crossref_primary_10_1021_acscatal_3c01680 crossref_primary_10_1002_adsc_202100039 crossref_primary_10_1002_ejoc_202100331 crossref_primary_10_1002_adsc_202000613 crossref_primary_10_1002_adsc_202100275 crossref_primary_10_1039_D0OB00318B crossref_primary_10_1021_acs_orglett_4c04862 crossref_primary_10_6023_A23040192 crossref_primary_10_1016_j_tet_2020_131498 crossref_primary_10_1016_j_tetlet_2022_153791 crossref_primary_10_1021_acs_joc_2c03056 crossref_primary_10_1039_D4QO00753K crossref_primary_10_1002_ejoc_202100022 crossref_primary_10_1021_acs_orglett_1c03596 crossref_primary_10_1039_D1CC02785A crossref_primary_10_1002_ange_202400143 crossref_primary_10_1021_acssuschemeng_4c03189 crossref_primary_10_1055_a_2503_3181 crossref_primary_10_1039_D4GC03113J crossref_primary_10_1002_anie_202212846 crossref_primary_10_1021_acs_orglett_4c01166 crossref_primary_10_1002_cctc_202001750 crossref_primary_10_1002_slct_202300204 crossref_primary_10_1039_D4QO00401A crossref_primary_10_1021_acscatal_1c02450 crossref_primary_10_1021_acs_orglett_2c01037 crossref_primary_10_1021_acs_orglett_2c03578 crossref_primary_10_1039_D0OB02189J crossref_primary_10_1002_anie_202422951 crossref_primary_10_1021_acs_orglett_1c02012 crossref_primary_10_3390_catal12101209 crossref_primary_10_1021_acs_orglett_1c03224 crossref_primary_10_1021_acs_orglett_2c03691 crossref_primary_10_3390_molecules29061251 crossref_primary_10_1016_j_cclet_2020_04_010 crossref_primary_10_1016_j_gresc_2024_05_006 crossref_primary_10_1021_acs_orglett_0c02071 crossref_primary_10_1016_j_xcrp_2022_101005 crossref_primary_10_1021_jacs_4c12063 crossref_primary_10_1016_j_cclet_2023_108145 crossref_primary_10_1021_acsomega_2c07767 crossref_primary_10_1055_a_2017_4738 crossref_primary_10_1002_ejoc_202300787 crossref_primary_10_1002_adsc_202401296 crossref_primary_10_6023_cjoc202401010 crossref_primary_10_1002_chem_202401008 crossref_primary_10_1021_acs_orglett_1c04350 crossref_primary_10_1021_acscatal_4c00001 crossref_primary_10_3390_molecules27249008 crossref_primary_10_1021_acs_orglett_4c04410 crossref_primary_10_1039_D4QO00657G crossref_primary_10_1021_acscatal_3c03304 crossref_primary_10_1021_acs_orglett_0c02166 crossref_primary_10_1002_ange_202312930 crossref_primary_10_1021_acs_orglett_1c04217 crossref_primary_10_6023_cjoc202203018 crossref_primary_10_1002_asia_202200256 crossref_primary_10_1021_acscatal_3c03422 crossref_primary_10_6023_cjoc202203019 crossref_primary_10_1016_j_checat_2025_101329 crossref_primary_10_1039_D2OB01692C crossref_primary_10_1021_jacs_1c07741 crossref_primary_10_1039_D3NJ00013C crossref_primary_10_26599_POM_2023_9140048 crossref_primary_10_1002_ange_202421060 crossref_primary_10_1039_D1CC05865G crossref_primary_10_1002_adsc_202401160 |
Cites_doi | 10.1039/C7OB00413C 10.1021/acs.accounts.8b00473 10.1021/jo500644v 10.1002/chem.201402485 10.1002/adsc.201800829 10.1002/adsc.201501175 10.1021/acscatal.7b01855 10.1039/C4CC07246D 10.1021/ol102933q 10.1002/anie.201811177 10.1039/C1CS15147A 10.1002/ajoc.201402093 10.1002/chem.201603049 10.1021/acs.orglett.8b03833 10.1002/chem.201000243 10.1039/C2CS35380F 10.1002/chem.201304187 10.1002/adsc.201701521 10.1039/C4CC02056A 10.1021/ar500167f 10.1039/C6OB01282E 10.1002/chem.201405245 10.1002/anie.201106275 10.1021/acs.joc.5b02476 10.1039/cs9932200025 10.1002/anie.201901955 10.1002/adsc.201800150 10.1039/C5CS00012B 10.1021/acs.accounts.6b00604 10.1002/ejoc.201800078 10.1039/C5CS00356C 10.1002/chem.201601020 10.1002/adsc.201600508 10.1021/acs.accounts.7b00602 10.1021/cs401172r 10.1038/nchem.2866 10.1002/anie.201500215 10.1021/acs.orglett.7b00351 10.1002/adsc.201600931 10.1021/acs.orglett.8b02361 10.1002/cctc.201500093 10.1039/C7CC06547G 10.1039/C6QO00446F 10.1021/jacs.8b00641 10.1002/ejoc.201700120 10.1002/anie.201107079 10.1021/acscatal.9b01350 10.1002/anie.200703668 10.1002/anie.201908279 10.1002/anie.201608150 10.6023/cjoc201904030 10.1021/cr5001496 10.1002/anie.201408551 10.1021/acs.chemrev.5b00041 10.1002/chem.200901369 10.1021/ol901892s 10.1039/C8QO00014J 10.1002/adsc.201500901 10.6023/cjoc201510024 10.1039/C8QO00565F 10.1055/s-0029-1218801 10.1021/acs.joc.6b01367 10.1021/cr900211p 10.1016/j.ejmech.2019.111691 10.1002/cjoc.201800368 10.1021/acscatal.7b02279 10.1126/science.1188403 10.1055/s-0035-1560356 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acs.accounts.9b00549 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-4898 |
EndPage | 446 |
ExternalDocumentID | 31820922 10_1021_acs_accounts_9b00549 d078963695 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 23M 53G 55A 5GY 5VS 7~N 85S AABXI ABFLS ABMVS ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DZ EBS ED ED~ F5P GNL IH9 JG JG~ K2 LG6 P2P RNS ROL TWZ UI2 UPT VF5 VG9 W1F WH7 X YZZ --- -DZ -~X 4.4 5ZA 6J9 6P2 AAYXX ABBLG ABJNI ABLBI ABQRX ACGFO ADHLV AFXLT AGXLV AHGAQ CITATION CUPRZ GGK IH2 XSW ZCA ~02 NPM YIN 7X8 |
ID | FETCH-LOGICAL-a414t-411cd149f401018214ce96ac9b99da5f8c51bebe0e83584e6e593055d71581a63 |
IEDL.DBID | ACS |
ISSN | 0001-4842 1520-4898 |
IngestDate | Thu Jul 10 18:03:22 EDT 2025 Wed Feb 19 02:30:01 EST 2025 Thu Apr 24 22:58:21 EDT 2025 Tue Jul 01 03:16:04 EDT 2025 Thu Aug 27 22:10:51 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a414t-411cd149f401018214ce96ac9b99da5f8c51bebe0e83584e6e593055d71581a63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3922-0708 |
PMID | 31820922 |
PQID | 2324919632 |
PQPubID | 23479 |
PageCount | 22 |
ParticipantIDs | proquest_miscellaneous_2324919632 pubmed_primary_31820922 crossref_citationtrail_10_1021_acs_accounts_9b00549 crossref_primary_10_1021_acs_accounts_9b00549 acs_journals_10_1021_acs_accounts_9b00549 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-18 |
PublicationDateYYYYMMDD | 2020-02-18 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Accounts of chemical research |
PublicationTitleAlternate | Acc. Chem. Res |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref27/cit27 ref16/cit16 ref23/cit23 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref43/cit43a ref20/cit20 ref48/cit48 ref43/cit43b ref5/cit5b ref17/cit17 ref5/cit5c ref10/cit10 ref5/cit5a ref35/cit35 ref36/cit36a ref36/cit36b ref19/cit19 ref21/cit21 ref7/cit7d ref3/cit3b ref42/cit42 ref11/cit11b ref46/cit46 ref3/cit3a ref11/cit11a ref49/cit49 ref13/cit13 ref7/cit7c ref7/cit7b ref7/cit7a ref24/cit24 ref6/cit6 ref25/cit25 ref29/cit29 ref8/cit8a ref8/cit8c ref8/cit8b ref32/cit32 ref14/cit14 ref39/cit39a ref39/cit39b ref28/cit28 ref26/cit26 ref18/cit18b ref4/cit4a ref4/cit4b ref4/cit4c ref18/cit18a ref38/cit38b ref38/cit38c ref12/cit12 ref15/cit15 ref38/cit38a ref41/cit41 ref22/cit22 ref40/cit40b ref40/cit40c ref33/cit33 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref40/cit40a |
References_xml | – ident: ref2/cit2 doi: 10.1039/C7OB00413C – ident: ref5/cit5c doi: 10.1021/acs.accounts.8b00473 – ident: ref25/cit25 doi: 10.1021/jo500644v – ident: ref29/cit29 doi: 10.1002/chem.201402485 – ident: ref14/cit14 doi: 10.1002/adsc.201800829 – ident: ref27/cit27 doi: 10.1002/adsc.201501175 – ident: ref40/cit40b doi: 10.1021/acscatal.7b01855 – ident: ref9/cit9 doi: 10.1039/C4CC07246D – ident: ref4/cit4a doi: 10.1021/ol102933q – ident: ref41/cit41 doi: 10.1002/anie.201811177 – ident: ref6/cit6 doi: 10.1039/C1CS15147A – ident: ref18/cit18a doi: 10.1002/ajoc.201402093 – ident: ref34/cit34 doi: 10.1002/chem.201603049 – ident: ref17/cit17 doi: 10.1021/acs.orglett.8b03833 – ident: ref40/cit40a doi: 10.1002/chem.201000243 – ident: ref5/cit5a doi: 10.1039/C2CS35380F – ident: ref28/cit28 doi: 10.1002/chem.201304187 – ident: ref36/cit36a doi: 10.1002/adsc.201701521 – ident: ref24/cit24 doi: 10.1039/C4CC02056A – ident: ref43/cit43a doi: 10.1021/ar500167f – ident: ref30/cit30 doi: 10.1039/C6OB01282E – ident: ref10/cit10 doi: 10.1002/chem.201405245 – ident: ref23/cit23 doi: 10.1002/anie.201106275 – ident: ref13/cit13 doi: 10.1021/acs.joc.5b02476 – ident: ref1/cit1 doi: 10.1039/cs9932200025 – ident: ref35/cit35 doi: 10.1002/anie.201901955 – ident: ref37/cit37 doi: 10.1002/adsc.201800150 – ident: ref38/cit38b doi: 10.1039/C5CS00012B – ident: ref5/cit5b doi: 10.1021/acs.accounts.6b00604 – ident: ref39/cit39a doi: 10.1002/ejoc.201800078 – ident: ref43/cit43b doi: 10.1039/C5CS00356C – ident: ref16/cit16 doi: 10.1002/chem.201601020 – ident: ref49/cit49 doi: 10.1002/adsc.201600508 – ident: ref38/cit38c doi: 10.1021/acs.accounts.7b00602 – ident: ref7/cit7a doi: 10.1021/cs401172r – ident: ref40/cit40c doi: 10.1038/nchem.2866 – ident: ref12/cit12 doi: 10.1002/anie.201500215 – ident: ref32/cit32 doi: 10.1021/acs.orglett.7b00351 – ident: ref33/cit33 doi: 10.1002/adsc.201600931 – ident: ref7/cit7d doi: 10.1021/acs.orglett.8b02361 – ident: ref26/cit26 doi: 10.1002/cctc.201500093 – ident: ref46/cit46 doi: 10.1039/C7CC06547G – ident: ref15/cit15 doi: 10.1039/C6QO00446F – ident: ref4/cit4b doi: 10.1021/jacs.8b00641 – ident: ref7/cit7b doi: 10.1002/ejoc.201700120 – ident: ref22/cit22 doi: 10.1002/anie.201107079 – ident: ref4/cit4c doi: 10.1021/acscatal.9b01350 – ident: ref19/cit19 doi: 10.1002/anie.200703668 – ident: ref42/cit42 doi: 10.1002/anie.201908279 – ident: ref31/cit31 doi: 10.1002/anie.201608150 – ident: ref39/cit39b doi: 10.6023/cjoc201904030 – ident: ref8/cit8b doi: 10.1021/cr5001496 – ident: ref44/cit44 doi: 10.1002/anie.201408551 – ident: ref8/cit8c doi: 10.1021/acs.chemrev.5b00041 – ident: ref21/cit21 doi: 10.1002/chem.200901369 – ident: ref20/cit20 doi: 10.1021/ol901892s – ident: ref36/cit36b doi: 10.1039/C8QO00014J – ident: ref47/cit47 doi: 10.1002/adsc.201500901 – ident: ref18/cit18b doi: 10.6023/cjoc201510024 – ident: ref48/cit48 doi: 10.1039/C8QO00565F – ident: ref8/cit8a doi: 10.1055/s-0029-1218801 – ident: ref11/cit11b doi: 10.1021/acs.joc.6b01367 – ident: ref3/cit3a doi: 10.1021/cr900211p – ident: ref3/cit3b doi: 10.1016/j.ejmech.2019.111691 – ident: ref7/cit7c doi: 10.1002/cjoc.201800368 – ident: ref45/cit45 doi: 10.1021/acscatal.7b02279 – ident: ref38/cit38a doi: 10.1126/science.1188403 – ident: ref11/cit11a doi: 10.1055/s-0035-1560356 |
SSID | ssj0002467 |
Score | 2.7040918 |
Snippet | Conspectus Indole-based chiral heterocycles constitute a class of important heterocyclic compounds that are found in numerous pharmaceuticals, functional... Indole-based chiral heterocycles constitute a class of important heterocyclic compounds that are found in numerous pharmaceuticals, functional materials, and... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 425 |
Title | Organocatalytic Asymmetric Synthesis of Indole-Based Chiral Heterocycles: Strategies, Reactions, and Outreach |
URI | http://dx.doi.org/10.1021/acs.accounts.9b00549 https://www.ncbi.nlm.nih.gov/pubmed/31820922 https://www.proquest.com/docview/2324919632 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fTxQxEG4UH_QFARVOlNTEFxP3vHbbpfXtuEgOEiERSXjbdNvZQOB2Db17OP96ZvbHGTUEfdts2knazna-2Zn5hrH3YF3wRYZuiVPooChTJm4UXGJBOE2Vmd5TNfLXk2x6ro4v9MUvR_HPCL4Un5yPKLrpnBCHDYOfso_ZE5mZfXK2xpOz1c0rVdZyZKKLrIySfancPVLIIPn4u0G6B2U21ubwOTvta3baJJPr4WJeDP3Pvykc_3EhG2y9A5583GrKJnsE1RZ7Oun7vb1gs6Yss27-5yxxEB_H5WxGDbc8P1tWCBTjVeR1yY8qYoFKDtD-BT65vLpFsVPKqqn9knLsPvOe8hbiR_4N2tIJfHRV4KcLSm33ly_Z-eGX75Np0jVjSPAQ1TxRQviA7lSpiJXOSKE82Mx5W1gbnC6N16JAjRgBYjqjIANtiU0s7AtthMvSV2ytqivYYRx0CBniSJMqUBKMG0kI2oMvSqPSUg_YB9yrvPuYYt7EyaXI6WW_gXm3gQOW9qeX-47VnJpr3DwwK1nN-tGyejww_l2vGDmeCsVUXAX1IuYESC3dYnLAtluNWUlMiRzfSvn6P9azy55J8uip5Yx5w9bmtwt4i7BnXuw1un4HE10BAQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcigX3o_laSQ4IJFl7TjBRuKwLFS79IFEW6m34NiOWsEmqN4VCv-Hv8LvYiaPRSBVFYdK3CIrHtmesWfGnvkG4InXxtk8RbfESHRQpCoiM3Im0p6bhDIzraVs5J3ddHog3x8mh2vwo8-FwUEEpBSaR_zf6AL8BbWZtoBCGDZAflJ3sZRbvv6Gnlp4PXuLbH0qxOa7_ck06ooJRDgIuYgk59ahO1BIQlVTgkvrdWqszrV2JimUTXiOMxp5tEmU9KlPNKFhuZc8UdykMdK9ABfR_hHk440ne6sDX8i0heZEz1wqKfoMvVNGTXrQhj_14CnGbaPkNq_Az9XyNLEtn4fLRT603_9Cjvzv1-8qXO7MbDZu98U1WPPlddiY9NXtbsC8SUKtmturGn9i41DP51RezLK9ukSzOBwHVhVsVhLmVfQGtb1jk6PjEyQ7pRiiytYUUfiK9QC_PjxnH32bKIKfpnTsw5IC-e3RTTg4l9negvWyKv0dYD5xLkWrWcXSS-GVGQnvEuttXigZF8kAniFvsu7oCFkTFSB4Ro09w7KOYQOIe6HJbIfhTqVEvpzRK1r1-tpimJzx_-NeHjPkCr0gmdJXy5CR-a3pzBYDuN0K6opiTKUAtBB3_2E-j2Bjur-znW3PdrfuwSVBdxlUbEfdh_XFydI_QINvkT9sthuDT-ctn78AOPJhkw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIkEvlFfpUh5GggMSWTaOE2wkDsuW1S6Fgmgr9ZY6tqNWsElV7wqFf8Rf4Vcxk8dKIFUVhx64RVY8sj1jz4w98w3AU6e0NVmCbokW6KAImQd6YHWgXKhjysw0hrKRP-4mkwPx_jA-XIGfXS4MDsIjJV8_4tOuPrV5izAQvqR23RRR8P0azE-oNp5yx1Xf0Vvzb6bbyNpnnI_f7Y8mQVtQIMCBiHkgwtBYdAlyQchqkofCOJVoozKlrI5zaeIww1kNHNolUrjExYoQseyrMJahTiKkewWu0ksh-XnD0d7y0OciaeA50TsXUvAuS--cUZMuNP5PXXiOgVsruvE6_FouUR3f8rW_mGd98-Mv9Mj_Yg1vwo3W3GbDZn_cghVX3Ibro67K3R2Y1cmoZX2LVeFPbOir2YzKjBm2VxVoHvsTz8qcTQvCvgreota3bHR8coZkJxRLVJqKIgtfsw7o1_kX7ItrEkbwUxeWfVpQQL85vgsHlzLbDVgtysJtAnOxtQlazzISTnAn9YA7GxtnslyKKI978Bx5k7ZHiE_r6AAeptTYMSxtGdaDqBOc1LRY7lRS5NsFvYJlr9MGy-SC_590MpkiV-glSReuXPiUzHBFZzfvwb1GWJcUIyoJoDi__w_zeQzXPm-P0w_T3Z0tWON0pUE1d-QDWJ2fLdxDtPvm2aN6xzE4umzx_A3OmmQW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Organocatalytic+Asymmetric+Synthesis+of+Indole-Based+Chiral+Heterocycles%3A+Strategies%2C+Reactions%2C+and+Outreach&rft.jtitle=Accounts+of+chemical+research&rft.au=Zhang%2C+Yu-Chen&rft.au=Jiang%2C+Fei&rft.au=Shi%2C+Feng&rft.date=2020-02-18&rft.pub=American+Chemical+Society&rft.issn=0001-4842&rft.eissn=1520-4898&rft.volume=53&rft.issue=2&rft.spage=425&rft.epage=446&rft_id=info:doi/10.1021%2Facs.accounts.9b00549&rft.externalDocID=d078963695 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon |