Organocatalytic Asymmetric Synthesis of Indole-Based Chiral Heterocycles: Strategies, Reactions, and Outreach

Conspectus Indole-based chiral heterocycles constitute a class of important heterocyclic compounds that are found in numerous pharmaceuticals, functional materials, and chiral catalysts or ligands. Catalytic asymmetric synthesis, for which the 2001 Nobel Prize in Chemistry was awarded, has been demo...

Full description

Saved in:
Bibliographic Details
Published inAccounts of chemical research Vol. 53; no. 2; pp. 425 - 446
Main Authors Zhang, Yu-Chen, Jiang, Fei, Shi, Feng
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 18.02.2020
Online AccessGet full text

Cover

Loading…
Abstract Conspectus Indole-based chiral heterocycles constitute a class of important heterocyclic compounds that are found in numerous pharmaceuticals, functional materials, and chiral catalysts or ligands. Catalytic asymmetric synthesis, for which the 2001 Nobel Prize in Chemistry was awarded, has been demonstrated to be the most efficient method for accessing chiral compounds. Therefore, the catalytic asymmetric synthesis of indole-based chiral heterocycles has attracted great interest from the scientific community. However, the strategies toward this goal are rather limited, and great challenges remain in this field, such as metal contamination in the products, the limited number of platform molecules with versatile reactivity, and the limited number of catalytic asymmetric reactions that offer high step economy, atom economy, and excellent enantiocontrol. Therefore, novel strategies for the catalytic asymmetric synthesis of indole-based chiral heterocycles are urgently needed. To achieve this goal, our group has developed a series of unique strategies, such as designing and developing versatile platform molecules and their corresponding organocatalytic asymmetric reactions to access indole-based chiral heterocycles. In this Account, we describe our efforts to address the remaining challenges in this research field. Namely, we have designed and developed vinylindoles, indolylmethanols, arylindoles and indole derivatives as versatile platform molecules for the construction of indole-based chiral heterocyclic scaffolds with structural diversity and complexity. Based on the reactivities of these platform molecules, we have designed and accomplished a series of organocatalytic asymmetric cycloaddition, cyclization, addition and dearomatization reactions with a high step economy, atom economy and excellent enantiocontrol. Using these strategies, a wide range of indole-based chiral heterocycles, including five-membered to seven-membered heterocycles, axially chiral heterocycles and tetrasubstituted heterocycles, have been synthesized with high efficiency and excellent enantioselectivity. In addition, we have investigated the properties of some indole-based chiral heterocycles, including their bioactivities and catalytic activities, and showed that these chiral heterocycles have potent anticancer activities and promising catalytic activities in asymmetric catalysis. These results help elucidate the potential applications of indole-based chiral heterocycles in drug development and chiral catalysts. The organocatalytic asymmetric synthesis of indole-based chiral heterocycles has undoubtedly become and will continue to be a hot topic in the field of asymmetric catalysis and synthesis. Our efforts, summarized in this Account, will not only open a window for the future development of innovative strategies toward organocatalytic asymmetric synthesis of indole-based chiral heterocycles but also inspire chemists worldwide to confront the remaining challenges in this field and prompt further advances.
AbstractList Conspectus Indole-based chiral heterocycles constitute a class of important heterocyclic compounds that are found in numerous pharmaceuticals, functional materials, and chiral catalysts or ligands. Catalytic asymmetric synthesis, for which the 2001 Nobel Prize in Chemistry was awarded, has been demonstrated to be the most efficient method for accessing chiral compounds. Therefore, the catalytic asymmetric synthesis of indole-based chiral heterocycles has attracted great interest from the scientific community. However, the strategies toward this goal are rather limited, and great challenges remain in this field, such as metal contamination in the products, the limited number of platform molecules with versatile reactivity, and the limited number of catalytic asymmetric reactions that offer high step economy, atom economy, and excellent enantiocontrol. Therefore, novel strategies for the catalytic asymmetric synthesis of indole-based chiral heterocycles are urgently needed. To achieve this goal, our group has developed a series of unique strategies, such as designing and developing versatile platform molecules and their corresponding organocatalytic asymmetric reactions to access indole-based chiral heterocycles. In this Account, we describe our efforts to address the remaining challenges in this research field. Namely, we have designed and developed vinylindoles, indolylmethanols, arylindoles and indole derivatives as versatile platform molecules for the construction of indole-based chiral heterocyclic scaffolds with structural diversity and complexity. Based on the reactivities of these platform molecules, we have designed and accomplished a series of organocatalytic asymmetric cycloaddition, cyclization, addition and dearomatization reactions with a high step economy, atom economy and excellent enantiocontrol. Using these strategies, a wide range of indole-based chiral heterocycles, including five-membered to seven-membered heterocycles, axially chiral heterocycles and tetrasubstituted heterocycles, have been synthesized with high efficiency and excellent enantioselectivity. In addition, we have investigated the properties of some indole-based chiral heterocycles, including their bioactivities and catalytic activities, and showed that these chiral heterocycles have potent anticancer activities and promising catalytic activities in asymmetric catalysis. These results help elucidate the potential applications of indole-based chiral heterocycles in drug development and chiral catalysts. The organocatalytic asymmetric synthesis of indole-based chiral heterocycles has undoubtedly become and will continue to be a hot topic in the field of asymmetric catalysis and synthesis. Our efforts, summarized in this Account, will not only open a window for the future development of innovative strategies toward organocatalytic asymmetric synthesis of indole-based chiral heterocycles but also inspire chemists worldwide to confront the remaining challenges in this field and prompt further advances.
Indole-based chiral heterocycles constitute a class of important heterocyclic compounds that are found in numerous pharmaceuticals, functional materials, and chiral catalysts or ligands. Catalytic asymmetric synthesis, for which the 2001 Nobel Prize in Chemistry was awarded, has been demonstrated to be the most efficient method for accessing chiral compounds. Therefore, the catalytic asymmetric synthesis of indole-based chiral heterocycles has attracted great interest from the scientific community. However, the strategies toward this goal are rather limited, and great challenges remain in this field, such as metal contamination in the products, the limited number of platform molecules with versatile reactivity, and the limited number of catalytic asymmetric reactions that offer high step economy, atom economy, and excellent enantiocontrol. Therefore, novel strategies for the catalytic asymmetric synthesis of indole-based chiral heterocycles are urgently needed. To achieve this goal, our group has developed a series of unique strategies, such as designing and developing versatile platform molecules and their corresponding organocatalytic asymmetric reactions to access indole-based chiral heterocycles. In this Account, we describe our efforts to address the remaining challenges in this research field. Namely, we have designed and developed vinylindoles, indolylmethanols, arylindoles and indole derivatives as versatile platform molecules for the construction of indole-based chiral heterocyclic scaffolds with structural diversity and complexity. Based on the reactivities of these platform molecules, we have designed and accomplished a series of organocatalytic asymmetric cycloaddition, cyclization, addition and dearomatization reactions with a high step economy, atom economy and excellent enantiocontrol. Using these strategies, a wide range of indole-based chiral heterocycles, including five-membered to seven-membered heterocycles, axially chiral heterocycles and tetrasubstituted heterocycles, have been synthesized with high efficiency and excellent enantioselectivity. In addition, we have investigated the properties of some indole-based chiral heterocycles, including their bioactivities and catalytic activities, and showed that these chiral heterocycles have potent anticancer activities and promising catalytic activities in asymmetric catalysis. These results help elucidate the potential applications of indole-based chiral heterocycles in drug development and chiral catalysts. The organocatalytic asymmetric synthesis of indole-based chiral heterocycles has undoubtedly become and will continue to be a hot topic in the field of asymmetric catalysis and synthesis. Our efforts, summarized in this Account, will not only open a window for the future development of innovative strategies toward organocatalytic asymmetric synthesis of indole-based chiral heterocycles but also inspire chemists worldwide to confront the remaining challenges in this field and prompt further advances.Indole-based chiral heterocycles constitute a class of important heterocyclic compounds that are found in numerous pharmaceuticals, functional materials, and chiral catalysts or ligands. Catalytic asymmetric synthesis, for which the 2001 Nobel Prize in Chemistry was awarded, has been demonstrated to be the most efficient method for accessing chiral compounds. Therefore, the catalytic asymmetric synthesis of indole-based chiral heterocycles has attracted great interest from the scientific community. However, the strategies toward this goal are rather limited, and great challenges remain in this field, such as metal contamination in the products, the limited number of platform molecules with versatile reactivity, and the limited number of catalytic asymmetric reactions that offer high step economy, atom economy, and excellent enantiocontrol. Therefore, novel strategies for the catalytic asymmetric synthesis of indole-based chiral heterocycles are urgently needed. To achieve this goal, our group has developed a series of unique strategies, such as designing and developing versatile platform molecules and their corresponding organocatalytic asymmetric reactions to access indole-based chiral heterocycles. In this Account, we describe our efforts to address the remaining challenges in this research field. Namely, we have designed and developed vinylindoles, indolylmethanols, arylindoles and indole derivatives as versatile platform molecules for the construction of indole-based chiral heterocyclic scaffolds with structural diversity and complexity. Based on the reactivities of these platform molecules, we have designed and accomplished a series of organocatalytic asymmetric cycloaddition, cyclization, addition and dearomatization reactions with a high step economy, atom economy and excellent enantiocontrol. Using these strategies, a wide range of indole-based chiral heterocycles, including five-membered to seven-membered heterocycles, axially chiral heterocycles and tetrasubstituted heterocycles, have been synthesized with high efficiency and excellent enantioselectivity. In addition, we have investigated the properties of some indole-based chiral heterocycles, including their bioactivities and catalytic activities, and showed that these chiral heterocycles have potent anticancer activities and promising catalytic activities in asymmetric catalysis. These results help elucidate the potential applications of indole-based chiral heterocycles in drug development and chiral catalysts. The organocatalytic asymmetric synthesis of indole-based chiral heterocycles has undoubtedly become and will continue to be a hot topic in the field of asymmetric catalysis and synthesis. Our efforts, summarized in this Account, will not only open a window for the future development of innovative strategies toward organocatalytic asymmetric synthesis of indole-based chiral heterocycles but also inspire chemists worldwide to confront the remaining challenges in this field and prompt further advances.
Indole-based chiral heterocycles constitute a class of important heterocyclic compounds that are found in numerous pharmaceuticals, functional materials, and chiral catalysts or ligands. Catalytic asymmetric synthesis, for which the 2001 Nobel Prize in Chemistry was awarded, has been demonstrated to be the most efficient method for accessing chiral compounds. Therefore, the catalytic asymmetric synthesis of indole-based chiral heterocycles has attracted great interest from the scientific community. However, the strategies toward this goal are rather limited, and great challenges remain in this field, such as metal contamination in the products, the limited number of platform molecules with versatile reactivity, and the limited number of catalytic asymmetric reactions that offer high step economy, atom economy, and excellent enantiocontrol. Therefore, novel strategies for the catalytic asymmetric synthesis of indole-based chiral heterocycles are urgently needed. To achieve this goal, our group has developed a series of unique strategies, such as designing and developing versatile platform molecules and their corresponding organocatalytic asymmetric reactions to access indole-based chiral heterocycles. In this Account, we describe our efforts to address the remaining challenges in this research field. Namely, we have designed and developed vinylindoles, indolylmethanols, arylindoles and indole derivatives as versatile platform molecules for the construction of indole-based chiral heterocyclic scaffolds with structural diversity and complexity. Based on the reactivities of these platform molecules, we have designed and accomplished a series of organocatalytic asymmetric cycloaddition, cyclization, addition and dearomatization reactions with a high step economy, atom economy and excellent enantiocontrol. Using these strategies, a wide range of indole-based chiral heterocycles, including five-membered to seven-membered heterocycles, axially chiral heterocycles and tetrasubstituted heterocycles, have been synthesized with high efficiency and excellent enantioselectivity. In addition, we have investigated the properties of some indole-based chiral heterocycles, including their bioactivities and catalytic activities, and showed that these chiral heterocycles have potent anticancer activities and promising catalytic activities in asymmetric catalysis. These results help elucidate the potential applications of indole-based chiral heterocycles in drug development and chiral catalysts. The organocatalytic asymmetric synthesis of indole-based chiral heterocycles has undoubtedly become and will continue to be a hot topic in the field of asymmetric catalysis and synthesis. Our efforts, summarized in this Account, will not only open a window for the future development of innovative strategies toward organocatalytic asymmetric synthesis of indole-based chiral heterocycles but also inspire chemists worldwide to confront the remaining challenges in this field and prompt further advances.
Author Jiang, Fei
Shi, Feng
Zhang, Yu-Chen
AuthorAffiliation School of Chemistry and Materials Science
AuthorAffiliation_xml – name: School of Chemistry and Materials Science
Author_xml – sequence: 1
  givenname: Yu-Chen
  surname: Zhang
  fullname: Zhang, Yu-Chen
– sequence: 2
  givenname: Fei
  surname: Jiang
  fullname: Jiang, Fei
– sequence: 3
  givenname: Feng
  orcidid: 0000-0003-3922-0708
  surname: Shi
  fullname: Shi, Feng
  email: fshi@jsnu.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31820922$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFP3DAQhS1EVRbaf4BQjhyare3YIeYGq7YgIa1U2rM1cSasUWKD7Rzy7_Fqdy8c4ORn-32jmXmn5Nh5h4ScM7pklLOfYOISjPGTS3GpWkqlUEdkwSSnpWhUc0wWlFKWteAn5DTG53zlor76Sk4q1nCqOF-QcR2ewHkDCYY5WVPcxHkcMYUsH2eXNhhtLHxf3LvOD1jeQsSuWG1sgKG4w4TBm9kMGK-LxxQg4ZPF-KP4i2CS9S5LcF2xnlLIL5tv5EsPQ8Tv-_OM_P_969_qrnxY_7lf3TyUIJhIpWDMdEyoXlBGc6tMGFQ1GNUq1YHsGyNZiy1SbCrZCKxRqopK2V0x2TCoqzNyuav7EvzrhDHp0UaDwwAO_RQ1r7hQTNUVz9aLvXVqR-z0S7AjhFkfVpQN1zuDCT7GgL02NsF2uDyvHTSjepuHznnoQx56n0eGxTv4UP8TjO6w7e-zn4LL2_oYeQOL96Rw
CitedBy_id crossref_primary_10_1039_D1QO01864G
crossref_primary_10_1002_anie_202316739
crossref_primary_10_1021_acs_joc_0c01528
crossref_primary_10_1039_D3OB01312J
crossref_primary_10_1039_D4CC03420A
crossref_primary_10_1002_cjoc_202000304
crossref_primary_10_6023_cjoc202104046
crossref_primary_10_1055_a_2382_0292
crossref_primary_10_1039_D1CC03653J
crossref_primary_10_1002_adsc_202401348
crossref_primary_10_1002_anie_202311053
crossref_primary_10_1021_acsenergylett_1c02489
crossref_primary_10_1021_acs_joc_3c02338
crossref_primary_10_1039_D1CC00590A
crossref_primary_10_2139_ssrn_4145115
crossref_primary_10_1016_j_tet_2020_131436
crossref_primary_10_1016_j_tet_2020_131678
crossref_primary_10_1039_D2OB00395C
crossref_primary_10_1021_acs_nanolett_1c04669
crossref_primary_10_1039_D3OB00212H
crossref_primary_10_1039_D0QO01597K
crossref_primary_10_1002_ajoc_202100462
crossref_primary_10_1002_ejoc_202000693
crossref_primary_10_1039_D3SC00610G
crossref_primary_10_1021_acs_orglett_2c03543
crossref_primary_10_1021_acs_joc_2c02816
crossref_primary_10_1002_adsc_202200918
crossref_primary_10_1039_D4QO01557F
crossref_primary_10_1002_cctc_202200099
crossref_primary_10_1002_cjoc_202300505
crossref_primary_10_1002_adsc_202000343
crossref_primary_10_1021_acs_joc_2c00878
crossref_primary_10_1039_C9CC09939E
crossref_primary_10_1039_D4OB00897A
crossref_primary_10_1002_ange_202205159
crossref_primary_10_1002_anie_202300481
crossref_primary_10_1016_j_tet_2021_131950
crossref_primary_10_1021_acs_orglett_0c03452
crossref_primary_10_1002_slct_202002765
crossref_primary_10_1002_anie_202405222
crossref_primary_10_1039_D0QO00038H
crossref_primary_10_1002_adsc_202400274
crossref_primary_10_1002_ange_202300481
crossref_primary_10_1002_anie_202210456
crossref_primary_10_1039_D4QO00248B
crossref_primary_10_1002_anie_202201436
crossref_primary_10_1007_s11426_020_9832_9
crossref_primary_10_1002_adsc_202200611
crossref_primary_10_1055_a_1986_7969
crossref_primary_10_1002_ajoc_202200399
crossref_primary_10_1021_acs_joc_0c00119
crossref_primary_10_1002_ange_202300419
crossref_primary_10_1021_acs_orglett_3c04070
crossref_primary_10_1039_D1SC07134C
crossref_primary_10_3390_sym14030435
crossref_primary_10_1038_s41467_022_29557_1
crossref_primary_10_1039_D1CC02570H
crossref_primary_10_1039_D3SC02800C
crossref_primary_10_1002_ange_202011267
crossref_primary_10_1021_acs_orglett_2c01559
crossref_primary_10_1021_acs_orglett_3c01905
crossref_primary_10_1021_acs_orglett_2c02642
crossref_primary_10_1002_chem_202001397
crossref_primary_10_1039_D2RA04498F
crossref_primary_10_1016_j_isci_2022_105669
crossref_primary_10_3762_bjoc_17_114
crossref_primary_10_1002_cjoc_202100221
crossref_primary_10_3390_molecules26216751
crossref_primary_10_1021_acs_oprd_9b00511
crossref_primary_10_1002_ajoc_202100408
crossref_primary_10_1002_adsc_202200835
crossref_primary_10_1039_D1OB02281D
crossref_primary_10_1038_s41467_021_25165_7
crossref_primary_10_1039_D0CC02380A
crossref_primary_10_1002_adsc_202300241
crossref_primary_10_1016_j_mcat_2021_111549
crossref_primary_10_1021_acs_joc_1c02164
crossref_primary_10_1002_anie_202208174
crossref_primary_10_1002_adsc_202300246
crossref_primary_10_1002_asia_202300526
crossref_primary_10_1039_D0QO01124J
crossref_primary_10_6023_cjoc202404006
crossref_primary_10_1039_D2OB02179J
crossref_primary_10_1002_cctc_202000810
crossref_primary_10_1039_D1OB01517F
crossref_primary_10_1039_D2OB00604A
crossref_primary_10_1021_acscatal_2c05570
crossref_primary_10_1021_acs_orglett_3c04162
crossref_primary_10_1002_adsc_202101168
crossref_primary_10_1002_chem_202100700
crossref_primary_10_1002_ejoc_202100090
crossref_primary_10_1021_acscatal_4c04455
crossref_primary_10_3390_molecules29020484
crossref_primary_10_1055_a_1514_1049
crossref_primary_10_1021_jacs_0c00208
crossref_primary_10_6023_cjoc202405040
crossref_primary_10_1002_anie_202318876
crossref_primary_10_1007_s11426_023_1927_3
crossref_primary_10_1002_anie_202316454
crossref_primary_10_1021_acs_joc_0c01123
crossref_primary_10_1002_adsc_202400307
crossref_primary_10_1002_ejoc_202200878
crossref_primary_10_1039_D0QO00990C
crossref_primary_10_6023_cjoc202211022
crossref_primary_10_1002_ejoc_202300802
crossref_primary_10_1021_acs_joc_1c00484
crossref_primary_10_3390_molecules25184124
crossref_primary_10_1039_D4OB01936A
crossref_primary_10_1021_acs_joc_3c01990
crossref_primary_10_1177_1934578X20953289
crossref_primary_10_1039_D0QO01643H
crossref_primary_10_1002_asia_202000681
crossref_primary_10_3390_molecules25235595
crossref_primary_10_1002_anie_202205720
crossref_primary_10_1002_adsc_202400533
crossref_primary_10_1002_anie_202400143
crossref_primary_10_1039_D0QO00699H
crossref_primary_10_1021_jacs_1c03923
crossref_primary_10_1002_ange_202208174
crossref_primary_10_1002_anie_202300419
crossref_primary_10_1039_D0QO00772B
crossref_primary_10_1021_acs_joc_2c02624
crossref_primary_10_1039_D0QO00348D
crossref_primary_10_1002_cjoc_202000131
crossref_primary_10_1021_acs_joc_1c01105
crossref_primary_10_1039_D4NJ00088A
crossref_primary_10_1021_jacs_2c01852
crossref_primary_10_1039_D2SC00636G
crossref_primary_10_1039_D0OB00048E
crossref_primary_10_1039_D0OB02489A
crossref_primary_10_1002_slct_202104245
crossref_primary_10_1039_D3NJ04907H
crossref_primary_10_2174_2213337207999200713145440
crossref_primary_10_1039_D0OB01049A
crossref_primary_10_1039_D1OB02504J
crossref_primary_10_1055_a_2085_5256
crossref_primary_10_1021_acs_joc_3c02866
crossref_primary_10_1039_D0CC07116A
crossref_primary_10_1002_anie_202212101
crossref_primary_10_1002_cctc_202100539
crossref_primary_10_1021_acs_joc_2c01204
crossref_primary_10_1002_anie_202313091
crossref_primary_10_1002_ejoc_202300901
crossref_primary_10_6023_cjoc202210037
crossref_primary_10_1039_D2QO00996J
crossref_primary_10_1021_acs_joc_2c00598
crossref_primary_10_1016_j_ejmech_2024_116898
crossref_primary_10_6023_A23100472
crossref_primary_10_1007_s11030_020_10087_1
crossref_primary_10_1039_D1OB00453K
crossref_primary_10_1021_acs_orglett_0c03611
crossref_primary_10_1021_acs_orglett_2c00686
crossref_primary_10_1039_D4QO01671H
crossref_primary_10_1021_acs_orglett_0c02769
crossref_primary_10_1039_D1QO00623A
crossref_primary_10_1021_acs_orglett_0c01558
crossref_primary_10_1021_acs_joc_4c00552
crossref_primary_10_1002_ange_202405222
crossref_primary_10_6023_cjoc202210026
crossref_primary_10_1039_D0OB01038C
crossref_primary_10_1002_ange_202306864
crossref_primary_10_1055_a_1781_6538
crossref_primary_10_1055_a_2081_9249
crossref_primary_10_1038_s41467_023_40978_4
crossref_primary_10_1021_acs_joc_2c02641
crossref_primary_10_13005_ojc_400519
crossref_primary_10_1021_acscatal_2c06175
crossref_primary_10_1007_s11030_022_10531_4
crossref_primary_10_1021_acs_joc_0c02252
crossref_primary_10_1021_acs_joc_4c01772
crossref_primary_10_1039_D1SC01171E
crossref_primary_10_1002_anie_202317104
crossref_primary_10_1002_jhet_4781
crossref_primary_10_1021_acs_orglett_0c03827
crossref_primary_10_1016_j_matpr_2021_05_160
crossref_primary_10_1055_a_1965_2928
crossref_primary_10_1002_anie_202421060
crossref_primary_10_1002_cjoc_202000104
crossref_primary_10_1126_sciadv_ado4489
crossref_primary_10_1021_acscatal_3c06032
crossref_primary_10_1039_D2OB00960A
crossref_primary_10_1002_ange_202210456
crossref_primary_10_1021_acsami_4c02003
crossref_primary_10_1021_acs_joc_3c00462
crossref_primary_10_1021_acs_orglett_3c03933
crossref_primary_10_1016_j_tet_2021_132297
crossref_primary_10_1021_acs_joc_2c02310
crossref_primary_10_6023_cjoc202500004
crossref_primary_10_1002_ejoc_202401405
crossref_primary_10_1002_advs_202403125
crossref_primary_10_1002_adsc_202400855
crossref_primary_10_1002_adsc_202400852
crossref_primary_10_1016_j_fmre_2022_01_002
crossref_primary_10_1002_adsc_202301286
crossref_primary_10_1021_acs_orglett_1c01600
crossref_primary_10_1021_acs_jpcc_3c03053
crossref_primary_10_1039_D1OB01313K
crossref_primary_10_1021_acscatal_4c06131
crossref_primary_10_1021_acs_joc_2c02303
crossref_primary_10_1039_D2QO00840H
crossref_primary_10_1039_D0OB01105C
crossref_primary_10_1002_adsc_202001486
crossref_primary_10_1002_slct_202201408
crossref_primary_10_1021_acs_orglett_3c01503
crossref_primary_10_6023_cjoc202103027
crossref_primary_10_1016_j_cclet_2021_02_001
crossref_primary_10_1021_acs_joc_9b03025
crossref_primary_10_1002_ange_202422951
crossref_primary_10_1021_acs_joc_0c00175
crossref_primary_10_1021_acs_orglett_1c01518
crossref_primary_10_1002_ange_202311053
crossref_primary_10_1039_D1OB02318G
crossref_primary_10_1021_acs_joc_2c00275
crossref_primary_10_1002_cjoc_202000446
crossref_primary_10_1021_jacs_2c01985
crossref_primary_10_1039_D1NJ05170A
crossref_primary_10_1016_j_tchem_2022_100007
crossref_primary_10_1021_acs_orglett_1c02834
crossref_primary_10_1002_cjoc_202200503
crossref_primary_10_1002_ange_202316739
crossref_primary_10_1021_acscatal_1c05067
crossref_primary_10_1002_cssc_202301604
crossref_primary_10_1038_s41557_024_01468_2
crossref_primary_10_1007_s11426_025_2577_7
crossref_primary_10_1021_acs_chemrev_0c01306
crossref_primary_10_1039_D3CC04542K
crossref_primary_10_1002_ange_202212846
crossref_primary_10_1039_D3SC02474A
crossref_primary_10_1002_chir_23455
crossref_primary_10_1039_D4NJ05018E
crossref_primary_10_1021_acs_joc_1c01618
crossref_primary_10_1021_acs_orglett_2c00812
crossref_primary_10_1002_ajoc_202300120
crossref_primary_10_1002_anie_202218871
crossref_primary_10_1002_ejoc_202100502
crossref_primary_10_1021_acs_orglett_1c01494
crossref_primary_10_1002_anie_202312930
crossref_primary_10_1055_a_1729_9572
crossref_primary_10_1039_D3NJ01991H
crossref_primary_10_1039_D1QO00394A
crossref_primary_10_1021_acs_joc_2c01026
crossref_primary_10_1007_s11426_022_1471_2
crossref_primary_10_1080_00397911_2021_1874016
crossref_primary_10_1002_ange_202008437
crossref_primary_10_1002_ange_202006137
crossref_primary_10_1016_j_tet_2022_132893
crossref_primary_10_1021_acs_orglett_1c00156
crossref_primary_10_1021_acs_accounts_2c00465
crossref_primary_10_1021_acs_joc_0c01076
crossref_primary_10_1021_acs_orglett_5c00420
crossref_primary_10_1039_D1QO00912E
crossref_primary_10_1016_j_mcat_2022_112648
crossref_primary_10_1039_D0CC00693A
crossref_primary_10_1002_ange_202313091
crossref_primary_10_1016_j_cclet_2022_108097
crossref_primary_10_1007_s11426_022_1363_y
crossref_primary_10_1016_j_tet_2024_134026
crossref_primary_10_1039_D4QO01905A
crossref_primary_10_1039_D2OB02180C
crossref_primary_10_1039_D2NJ05987H
crossref_primary_10_1021_acs_joc_2c01376
crossref_primary_10_1002_anie_202410581
crossref_primary_10_1002_ange_202205720
crossref_primary_10_1002_ejoc_202201466
crossref_primary_10_1039_D2NJ01571D
crossref_primary_10_1016_j_gresc_2021_11_003
crossref_primary_10_1021_acs_joc_4c00269
crossref_primary_10_1039_D1OB00010A
crossref_primary_10_1002_aoc_5997
crossref_primary_10_1002_slct_202100722
crossref_primary_10_1039_D0QO01160F
crossref_primary_10_6023_A24030094
crossref_primary_10_1055_a_1529_7739
crossref_primary_10_1002_chem_202101267
crossref_primary_10_1039_D1OB02217B
crossref_primary_10_1002_chem_202402416
crossref_primary_10_1039_D2QO00685E
crossref_primary_10_1021_acs_orglett_4c02151
crossref_primary_10_1021_acsomega_4c02409
crossref_primary_10_1002_cctc_202300343
crossref_primary_10_1039_D0QO01196G
crossref_primary_10_1016_j_tet_2021_132112
crossref_primary_10_1039_D4OB01365D
crossref_primary_10_1038_s41467_023_41299_2
crossref_primary_10_1021_jacs_3c04498
crossref_primary_10_1039_D2NJ03349F
crossref_primary_10_1002_ajoc_202300231
crossref_primary_10_1002_ange_202317104
crossref_primary_10_1039_D4QO01396D
crossref_primary_10_1039_D5NJ00294J
crossref_primary_10_1002_anie_202400441
crossref_primary_10_1039_D1NJ02836G
crossref_primary_10_1016_j_gresc_2024_01_002
crossref_primary_10_1021_acs_orglett_2c01818
crossref_primary_10_1021_acs_orglett_4c02167
crossref_primary_10_1039_D2OB00773H
crossref_primary_10_1055_a_1967_1073
crossref_primary_10_1039_D3OB02011H
crossref_primary_10_1039_D4OB01552E
crossref_primary_10_1002_cctc_202401143
crossref_primary_10_1002_jhet_4147
crossref_primary_10_1039_D0OB00393J
crossref_primary_10_1055_a_1833_8979
crossref_primary_10_1039_D0CY00008F
crossref_primary_10_1021_jacs_1c05079
crossref_primary_10_1002_ejoc_202201128
crossref_primary_10_1021_acs_joc_4c02101
crossref_primary_10_1021_acs_orglett_1c00489
crossref_primary_10_1021_prechem_4c00008
crossref_primary_10_1002_ange_202112226
crossref_primary_10_1039_D2QO00675H
crossref_primary_10_1039_D3QO01877F
crossref_primary_10_1021_jacs_2c02216
crossref_primary_10_1002_ange_202410581
crossref_primary_10_1007_s40242_024_4128_z
crossref_primary_10_1016_j_chemolab_2021_104384
crossref_primary_10_1021_acs_orglett_1c00354
crossref_primary_10_1021_acs_joc_4c01021
crossref_primary_10_6023_cjoc202200046
crossref_primary_10_1021_acs_joc_3c01609
crossref_primary_10_1038_s42004_023_00910_9
crossref_primary_10_1021_acs_joc_2c01179
crossref_primary_10_1080_10406638_2020_1768566
crossref_primary_10_1039_D3QO02085A
crossref_primary_10_3389_fchem_2022_1110240
crossref_primary_10_1002_ange_202212101
crossref_primary_10_1039_D3CC02654J
crossref_primary_10_1038_s44160_022_00072_x
crossref_primary_10_1021_acs_orglett_3c03406
crossref_primary_10_1039_D0OB01230K
crossref_primary_10_1039_D3NJ05076A
crossref_primary_10_1002_advs_202402429
crossref_primary_10_1055_s_0042_1751351
crossref_primary_10_1039_D2OB01206E
crossref_primary_10_1039_D4OB00488D
crossref_primary_10_1055_a_2395_5804
crossref_primary_10_1021_acs_orglett_3c03525
crossref_primary_10_1039_D0OB02388D
crossref_primary_10_1002_anie_202012932
crossref_primary_10_1002_ange_202305450
crossref_primary_10_3390_molecules28186488
crossref_primary_10_1002_anie_202006137
crossref_primary_10_1038_s44160_023_00417_0
crossref_primary_10_1002_tcr_202200225
crossref_primary_10_1002_anie_202008437
crossref_primary_10_1002_slct_202303643
crossref_primary_10_1007_s11426_024_2472_2
crossref_primary_10_1021_acsomega_1c00515
crossref_primary_10_1002_anie_202116829
crossref_primary_10_1002_anie_202112226
crossref_primary_10_1039_D1OB02443D
crossref_primary_10_1021_acscatal_4c00519
crossref_primary_10_1021_jacs_2c08090
crossref_primary_10_1039_D0QO00888E
crossref_primary_10_1126_sciadv_adk1704
crossref_primary_10_1039_D3QO01734F
crossref_primary_10_1055_a_2013_9885
crossref_primary_10_1039_D0CC01210F
crossref_primary_10_1055_a_2513_1926
crossref_primary_10_1038_s41557_021_00778_z
crossref_primary_10_1055_a_2295_5417
crossref_primary_10_1039_D4NJ00306C
crossref_primary_10_1002_anie_202305450
crossref_primary_10_1021_acs_joc_4c03100
crossref_primary_10_1002_adsc_202100516
crossref_primary_10_1002_ange_202012932
crossref_primary_10_1002_ange_202316454
crossref_primary_10_1021_acs_orglett_5c00441
crossref_primary_10_1039_D1OB02432A
crossref_primary_10_1002_slct_202304866
crossref_primary_10_1039_D4OB01127A
crossref_primary_10_1038_s41467_023_39968_3
crossref_primary_10_1002_ange_202201436
crossref_primary_10_6023_cjoc202112023
crossref_primary_10_1002_ange_202318876
crossref_primary_10_1021_acs_orglett_1c03402
crossref_primary_10_1002_ange_202116829
crossref_primary_10_1002_chem_202402843
crossref_primary_10_1039_D2OB00466F
crossref_primary_10_1039_D3QO01529G
crossref_primary_10_1021_acs_joc_2c02166
crossref_primary_10_1142_S225123732440001X
crossref_primary_10_1039_D4QO00515E
crossref_primary_10_1002_anie_202011267
crossref_primary_10_1002_chem_202303165
crossref_primary_10_1039_D3QO00577A
crossref_primary_10_1055_s_0040_1706682
crossref_primary_10_1002_ejoc_202201166
crossref_primary_10_1002_adsc_202101338
crossref_primary_10_1002_anie_202205159
crossref_primary_10_1021_acs_orglett_2c03003
crossref_primary_10_1021_acscatal_1c03459
crossref_primary_10_1016_j_checat_2022_10_011
crossref_primary_10_1039_D1NJ02257A
crossref_primary_10_1021_acs_orglett_4c01003
crossref_primary_10_1039_D2QO00275B
crossref_primary_10_1246_cl_220129
crossref_primary_10_1039_D0CC03201H
crossref_primary_10_1039_D2QO00021K
crossref_primary_10_1021_acscatal_2c04504
crossref_primary_10_1039_D0OB01614D
crossref_primary_10_1002_ejoc_202100232
crossref_primary_10_1002_ejoc_202401287
crossref_primary_10_1021_acs_orglett_1c03389
crossref_primary_10_1039_D1QO00269D
crossref_primary_10_1039_D3QO01558K
crossref_primary_10_1021_acs_orglett_4c02345
crossref_primary_10_1039_D2OB00440B
crossref_primary_10_1039_D3RA07466H
crossref_primary_10_1021_acs_orglett_3c03445
crossref_primary_10_1039_D3QO00551H
crossref_primary_10_1021_acs_joc_0c00930
crossref_primary_10_1002_ajoc_202100724
crossref_primary_10_1021_acscatal_2c02556
crossref_primary_10_1039_D3OB01451G
crossref_primary_10_1002_ange_202400441
crossref_primary_10_1021_acsomega_2c06637
crossref_primary_10_1039_D0GC00130A
crossref_primary_10_1039_D4RA03231D
crossref_primary_10_1039_D1QO00220A
crossref_primary_10_1016_j_cclet_2024_110539
crossref_primary_10_1002_cjoc_202400033
crossref_primary_10_1002_ange_202218871
crossref_primary_10_1002_cjoc_202100214
crossref_primary_10_1021_acs_orglett_3c03438
crossref_primary_10_1021_acs_joc_4c01080
crossref_primary_10_4236_ijoc_2022_123011
crossref_primary_10_1016_j_bmc_2021_116597
crossref_primary_10_1002_anie_202306864
crossref_primary_10_1021_acscatal_3c01680
crossref_primary_10_1002_adsc_202100039
crossref_primary_10_1002_ejoc_202100331
crossref_primary_10_1002_adsc_202000613
crossref_primary_10_1002_adsc_202100275
crossref_primary_10_1039_D0OB00318B
crossref_primary_10_1021_acs_orglett_4c04862
crossref_primary_10_6023_A23040192
crossref_primary_10_1016_j_tet_2020_131498
crossref_primary_10_1016_j_tetlet_2022_153791
crossref_primary_10_1021_acs_joc_2c03056
crossref_primary_10_1039_D4QO00753K
crossref_primary_10_1002_ejoc_202100022
crossref_primary_10_1021_acs_orglett_1c03596
crossref_primary_10_1039_D1CC02785A
crossref_primary_10_1002_ange_202400143
crossref_primary_10_1021_acssuschemeng_4c03189
crossref_primary_10_1055_a_2503_3181
crossref_primary_10_1039_D4GC03113J
crossref_primary_10_1002_anie_202212846
crossref_primary_10_1021_acs_orglett_4c01166
crossref_primary_10_1002_cctc_202001750
crossref_primary_10_1002_slct_202300204
crossref_primary_10_1039_D4QO00401A
crossref_primary_10_1021_acscatal_1c02450
crossref_primary_10_1021_acs_orglett_2c01037
crossref_primary_10_1021_acs_orglett_2c03578
crossref_primary_10_1039_D0OB02189J
crossref_primary_10_1002_anie_202422951
crossref_primary_10_1021_acs_orglett_1c02012
crossref_primary_10_3390_catal12101209
crossref_primary_10_1021_acs_orglett_1c03224
crossref_primary_10_1021_acs_orglett_2c03691
crossref_primary_10_3390_molecules29061251
crossref_primary_10_1016_j_cclet_2020_04_010
crossref_primary_10_1016_j_gresc_2024_05_006
crossref_primary_10_1021_acs_orglett_0c02071
crossref_primary_10_1016_j_xcrp_2022_101005
crossref_primary_10_1021_jacs_4c12063
crossref_primary_10_1016_j_cclet_2023_108145
crossref_primary_10_1021_acsomega_2c07767
crossref_primary_10_1055_a_2017_4738
crossref_primary_10_1002_ejoc_202300787
crossref_primary_10_1002_adsc_202401296
crossref_primary_10_6023_cjoc202401010
crossref_primary_10_1002_chem_202401008
crossref_primary_10_1021_acs_orglett_1c04350
crossref_primary_10_1021_acscatal_4c00001
crossref_primary_10_3390_molecules27249008
crossref_primary_10_1021_acs_orglett_4c04410
crossref_primary_10_1039_D4QO00657G
crossref_primary_10_1021_acscatal_3c03304
crossref_primary_10_1021_acs_orglett_0c02166
crossref_primary_10_1002_ange_202312930
crossref_primary_10_1021_acs_orglett_1c04217
crossref_primary_10_6023_cjoc202203018
crossref_primary_10_1002_asia_202200256
crossref_primary_10_1021_acscatal_3c03422
crossref_primary_10_6023_cjoc202203019
crossref_primary_10_1016_j_checat_2025_101329
crossref_primary_10_1039_D2OB01692C
crossref_primary_10_1021_jacs_1c07741
crossref_primary_10_1039_D3NJ00013C
crossref_primary_10_26599_POM_2023_9140048
crossref_primary_10_1002_ange_202421060
crossref_primary_10_1039_D1CC05865G
crossref_primary_10_1002_adsc_202401160
Cites_doi 10.1039/C7OB00413C
10.1021/acs.accounts.8b00473
10.1021/jo500644v
10.1002/chem.201402485
10.1002/adsc.201800829
10.1002/adsc.201501175
10.1021/acscatal.7b01855
10.1039/C4CC07246D
10.1021/ol102933q
10.1002/anie.201811177
10.1039/C1CS15147A
10.1002/ajoc.201402093
10.1002/chem.201603049
10.1021/acs.orglett.8b03833
10.1002/chem.201000243
10.1039/C2CS35380F
10.1002/chem.201304187
10.1002/adsc.201701521
10.1039/C4CC02056A
10.1021/ar500167f
10.1039/C6OB01282E
10.1002/chem.201405245
10.1002/anie.201106275
10.1021/acs.joc.5b02476
10.1039/cs9932200025
10.1002/anie.201901955
10.1002/adsc.201800150
10.1039/C5CS00012B
10.1021/acs.accounts.6b00604
10.1002/ejoc.201800078
10.1039/C5CS00356C
10.1002/chem.201601020
10.1002/adsc.201600508
10.1021/acs.accounts.7b00602
10.1021/cs401172r
10.1038/nchem.2866
10.1002/anie.201500215
10.1021/acs.orglett.7b00351
10.1002/adsc.201600931
10.1021/acs.orglett.8b02361
10.1002/cctc.201500093
10.1039/C7CC06547G
10.1039/C6QO00446F
10.1021/jacs.8b00641
10.1002/ejoc.201700120
10.1002/anie.201107079
10.1021/acscatal.9b01350
10.1002/anie.200703668
10.1002/anie.201908279
10.1002/anie.201608150
10.6023/cjoc201904030
10.1021/cr5001496
10.1002/anie.201408551
10.1021/acs.chemrev.5b00041
10.1002/chem.200901369
10.1021/ol901892s
10.1039/C8QO00014J
10.1002/adsc.201500901
10.6023/cjoc201510024
10.1039/C8QO00565F
10.1055/s-0029-1218801
10.1021/acs.joc.6b01367
10.1021/cr900211p
10.1016/j.ejmech.2019.111691
10.1002/cjoc.201800368
10.1021/acscatal.7b02279
10.1126/science.1188403
10.1055/s-0035-1560356
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acs.accounts.9b00549
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-4898
EndPage 446
ExternalDocumentID 31820922
10_1021_acs_accounts_9b00549
d078963695
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
23M
53G
55A
5GY
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DZ
EBS
ED
ED~
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
RNS
ROL
TWZ
UI2
UPT
VF5
VG9
W1F
WH7
X
YZZ
---
-DZ
-~X
4.4
5ZA
6J9
6P2
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
AFXLT
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
ZCA
~02
NPM
YIN
7X8
ID FETCH-LOGICAL-a414t-411cd149f401018214ce96ac9b99da5f8c51bebe0e83584e6e593055d71581a63
IEDL.DBID ACS
ISSN 0001-4842
1520-4898
IngestDate Thu Jul 10 18:03:22 EDT 2025
Wed Feb 19 02:30:01 EST 2025
Thu Apr 24 22:58:21 EDT 2025
Tue Jul 01 03:16:04 EDT 2025
Thu Aug 27 22:10:51 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a414t-411cd149f401018214ce96ac9b99da5f8c51bebe0e83584e6e593055d71581a63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3922-0708
PMID 31820922
PQID 2324919632
PQPubID 23479
PageCount 22
ParticipantIDs proquest_miscellaneous_2324919632
pubmed_primary_31820922
crossref_citationtrail_10_1021_acs_accounts_9b00549
crossref_primary_10_1021_acs_accounts_9b00549
acs_journals_10_1021_acs_accounts_9b00549
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-18
PublicationDateYYYYMMDD 2020-02-18
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-18
  day: 18
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Accounts of chemical research
PublicationTitleAlternate Acc. Chem. Res
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref27/cit27
ref16/cit16
ref23/cit23
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref43/cit43a
ref20/cit20
ref48/cit48
ref43/cit43b
ref5/cit5b
ref17/cit17
ref5/cit5c
ref10/cit10
ref5/cit5a
ref35/cit35
ref36/cit36a
ref36/cit36b
ref19/cit19
ref21/cit21
ref7/cit7d
ref3/cit3b
ref42/cit42
ref11/cit11b
ref46/cit46
ref3/cit3a
ref11/cit11a
ref49/cit49
ref13/cit13
ref7/cit7c
ref7/cit7b
ref7/cit7a
ref24/cit24
ref6/cit6
ref25/cit25
ref29/cit29
ref8/cit8a
ref8/cit8c
ref8/cit8b
ref32/cit32
ref14/cit14
ref39/cit39a
ref39/cit39b
ref28/cit28
ref26/cit26
ref18/cit18b
ref4/cit4a
ref4/cit4b
ref4/cit4c
ref18/cit18a
ref38/cit38b
ref38/cit38c
ref12/cit12
ref15/cit15
ref38/cit38a
ref41/cit41
ref22/cit22
ref40/cit40b
ref40/cit40c
ref33/cit33
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref40/cit40a
References_xml – ident: ref2/cit2
  doi: 10.1039/C7OB00413C
– ident: ref5/cit5c
  doi: 10.1021/acs.accounts.8b00473
– ident: ref25/cit25
  doi: 10.1021/jo500644v
– ident: ref29/cit29
  doi: 10.1002/chem.201402485
– ident: ref14/cit14
  doi: 10.1002/adsc.201800829
– ident: ref27/cit27
  doi: 10.1002/adsc.201501175
– ident: ref40/cit40b
  doi: 10.1021/acscatal.7b01855
– ident: ref9/cit9
  doi: 10.1039/C4CC07246D
– ident: ref4/cit4a
  doi: 10.1021/ol102933q
– ident: ref41/cit41
  doi: 10.1002/anie.201811177
– ident: ref6/cit6
  doi: 10.1039/C1CS15147A
– ident: ref18/cit18a
  doi: 10.1002/ajoc.201402093
– ident: ref34/cit34
  doi: 10.1002/chem.201603049
– ident: ref17/cit17
  doi: 10.1021/acs.orglett.8b03833
– ident: ref40/cit40a
  doi: 10.1002/chem.201000243
– ident: ref5/cit5a
  doi: 10.1039/C2CS35380F
– ident: ref28/cit28
  doi: 10.1002/chem.201304187
– ident: ref36/cit36a
  doi: 10.1002/adsc.201701521
– ident: ref24/cit24
  doi: 10.1039/C4CC02056A
– ident: ref43/cit43a
  doi: 10.1021/ar500167f
– ident: ref30/cit30
  doi: 10.1039/C6OB01282E
– ident: ref10/cit10
  doi: 10.1002/chem.201405245
– ident: ref23/cit23
  doi: 10.1002/anie.201106275
– ident: ref13/cit13
  doi: 10.1021/acs.joc.5b02476
– ident: ref1/cit1
  doi: 10.1039/cs9932200025
– ident: ref35/cit35
  doi: 10.1002/anie.201901955
– ident: ref37/cit37
  doi: 10.1002/adsc.201800150
– ident: ref38/cit38b
  doi: 10.1039/C5CS00012B
– ident: ref5/cit5b
  doi: 10.1021/acs.accounts.6b00604
– ident: ref39/cit39a
  doi: 10.1002/ejoc.201800078
– ident: ref43/cit43b
  doi: 10.1039/C5CS00356C
– ident: ref16/cit16
  doi: 10.1002/chem.201601020
– ident: ref49/cit49
  doi: 10.1002/adsc.201600508
– ident: ref38/cit38c
  doi: 10.1021/acs.accounts.7b00602
– ident: ref7/cit7a
  doi: 10.1021/cs401172r
– ident: ref40/cit40c
  doi: 10.1038/nchem.2866
– ident: ref12/cit12
  doi: 10.1002/anie.201500215
– ident: ref32/cit32
  doi: 10.1021/acs.orglett.7b00351
– ident: ref33/cit33
  doi: 10.1002/adsc.201600931
– ident: ref7/cit7d
  doi: 10.1021/acs.orglett.8b02361
– ident: ref26/cit26
  doi: 10.1002/cctc.201500093
– ident: ref46/cit46
  doi: 10.1039/C7CC06547G
– ident: ref15/cit15
  doi: 10.1039/C6QO00446F
– ident: ref4/cit4b
  doi: 10.1021/jacs.8b00641
– ident: ref7/cit7b
  doi: 10.1002/ejoc.201700120
– ident: ref22/cit22
  doi: 10.1002/anie.201107079
– ident: ref4/cit4c
  doi: 10.1021/acscatal.9b01350
– ident: ref19/cit19
  doi: 10.1002/anie.200703668
– ident: ref42/cit42
  doi: 10.1002/anie.201908279
– ident: ref31/cit31
  doi: 10.1002/anie.201608150
– ident: ref39/cit39b
  doi: 10.6023/cjoc201904030
– ident: ref8/cit8b
  doi: 10.1021/cr5001496
– ident: ref44/cit44
  doi: 10.1002/anie.201408551
– ident: ref8/cit8c
  doi: 10.1021/acs.chemrev.5b00041
– ident: ref21/cit21
  doi: 10.1002/chem.200901369
– ident: ref20/cit20
  doi: 10.1021/ol901892s
– ident: ref36/cit36b
  doi: 10.1039/C8QO00014J
– ident: ref47/cit47
  doi: 10.1002/adsc.201500901
– ident: ref18/cit18b
  doi: 10.6023/cjoc201510024
– ident: ref48/cit48
  doi: 10.1039/C8QO00565F
– ident: ref8/cit8a
  doi: 10.1055/s-0029-1218801
– ident: ref11/cit11b
  doi: 10.1021/acs.joc.6b01367
– ident: ref3/cit3a
  doi: 10.1021/cr900211p
– ident: ref3/cit3b
  doi: 10.1016/j.ejmech.2019.111691
– ident: ref7/cit7c
  doi: 10.1002/cjoc.201800368
– ident: ref45/cit45
  doi: 10.1021/acscatal.7b02279
– ident: ref38/cit38a
  doi: 10.1126/science.1188403
– ident: ref11/cit11a
  doi: 10.1055/s-0035-1560356
SSID ssj0002467
Score 2.7040918
Snippet Conspectus Indole-based chiral heterocycles constitute a class of important heterocyclic compounds that are found in numerous pharmaceuticals, functional...
Indole-based chiral heterocycles constitute a class of important heterocyclic compounds that are found in numerous pharmaceuticals, functional materials, and...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 425
Title Organocatalytic Asymmetric Synthesis of Indole-Based Chiral Heterocycles: Strategies, Reactions, and Outreach
URI http://dx.doi.org/10.1021/acs.accounts.9b00549
https://www.ncbi.nlm.nih.gov/pubmed/31820922
https://www.proquest.com/docview/2324919632
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fTxQxEG4UH_QFARVOlNTEFxP3vHbbpfXtuEgOEiERSXjbdNvZQOB2Db17OP96ZvbHGTUEfdts2knazna-2Zn5hrH3YF3wRYZuiVPooChTJm4UXGJBOE2Vmd5TNfLXk2x6ro4v9MUvR_HPCL4Un5yPKLrpnBCHDYOfso_ZE5mZfXK2xpOz1c0rVdZyZKKLrIySfancPVLIIPn4u0G6B2U21ubwOTvta3baJJPr4WJeDP3Pvykc_3EhG2y9A5583GrKJnsE1RZ7Oun7vb1gs6Yss27-5yxxEB_H5WxGDbc8P1tWCBTjVeR1yY8qYoFKDtD-BT65vLpFsVPKqqn9knLsPvOe8hbiR_4N2tIJfHRV4KcLSm33ly_Z-eGX75Np0jVjSPAQ1TxRQviA7lSpiJXOSKE82Mx5W1gbnC6N16JAjRgBYjqjIANtiU0s7AtthMvSV2ytqivYYRx0CBniSJMqUBKMG0kI2oMvSqPSUg_YB9yrvPuYYt7EyaXI6WW_gXm3gQOW9qeX-47VnJpr3DwwK1nN-tGyejww_l2vGDmeCsVUXAX1IuYESC3dYnLAtluNWUlMiRzfSvn6P9azy55J8uip5Yx5w9bmtwt4i7BnXuw1un4HE10BAQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcigX3o_laSQ4IJFl7TjBRuKwLFS79IFEW6m34NiOWsEmqN4VCv-Hv8LvYiaPRSBVFYdK3CIrHtmesWfGnvkG4InXxtk8RbfESHRQpCoiM3Im0p6bhDIzraVs5J3ddHog3x8mh2vwo8-FwUEEpBSaR_zf6AL8BbWZtoBCGDZAflJ3sZRbvv6Gnlp4PXuLbH0qxOa7_ck06ooJRDgIuYgk59ahO1BIQlVTgkvrdWqszrV2JimUTXiOMxp5tEmU9KlPNKFhuZc8UdykMdK9ABfR_hHk440ne6sDX8i0heZEz1wqKfoMvVNGTXrQhj_14CnGbaPkNq_Az9XyNLEtn4fLRT603_9Cjvzv1-8qXO7MbDZu98U1WPPlddiY9NXtbsC8SUKtmturGn9i41DP51RezLK9ukSzOBwHVhVsVhLmVfQGtb1jk6PjEyQ7pRiiytYUUfiK9QC_PjxnH32bKIKfpnTsw5IC-e3RTTg4l9negvWyKv0dYD5xLkWrWcXSS-GVGQnvEuttXigZF8kAniFvsu7oCFkTFSB4Ro09w7KOYQOIe6HJbIfhTqVEvpzRK1r1-tpimJzx_-NeHjPkCr0gmdJXy5CR-a3pzBYDuN0K6opiTKUAtBB3_2E-j2Bjur-znW3PdrfuwSVBdxlUbEfdh_XFydI_QINvkT9sthuDT-ctn78AOPJhkw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIkEvlFfpUh5GggMSWTaOE2wkDsuW1S6Fgmgr9ZY6tqNWsElV7wqFf8Rf4Vcxk8dKIFUVhx64RVY8sj1jz4w98w3AU6e0NVmCbokW6KAImQd6YHWgXKhjysw0hrKRP-4mkwPx_jA-XIGfXS4MDsIjJV8_4tOuPrV5izAQvqR23RRR8P0azE-oNp5yx1Xf0Vvzb6bbyNpnnI_f7Y8mQVtQIMCBiHkgwtBYdAlyQchqkofCOJVoozKlrI5zaeIww1kNHNolUrjExYoQseyrMJahTiKkewWu0ksh-XnD0d7y0OciaeA50TsXUvAuS--cUZMuNP5PXXiOgVsruvE6_FouUR3f8rW_mGd98-Mv9Mj_Yg1vwo3W3GbDZn_cghVX3Ibro67K3R2Y1cmoZX2LVeFPbOir2YzKjBm2VxVoHvsTz8qcTQvCvgreota3bHR8coZkJxRLVJqKIgtfsw7o1_kX7ItrEkbwUxeWfVpQQL85vgsHlzLbDVgtysJtAnOxtQlazzISTnAn9YA7GxtnslyKKI978Bx5k7ZHiE_r6AAeptTYMSxtGdaDqBOc1LRY7lRS5NsFvYJlr9MGy-SC_590MpkiV-glSReuXPiUzHBFZzfvwb1GWJcUIyoJoDi__w_zeQzXPm-P0w_T3Z0tWON0pUE1d-QDWJ2fLdxDtPvm2aN6xzE4umzx_A3OmmQW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Organocatalytic+Asymmetric+Synthesis+of+Indole-Based+Chiral+Heterocycles%3A+Strategies%2C+Reactions%2C+and+Outreach&rft.jtitle=Accounts+of+chemical+research&rft.au=Zhang%2C+Yu-Chen&rft.au=Jiang%2C+Fei&rft.au=Shi%2C+Feng&rft.date=2020-02-18&rft.pub=American+Chemical+Society&rft.issn=0001-4842&rft.eissn=1520-4898&rft.volume=53&rft.issue=2&rft.spage=425&rft.epage=446&rft_id=info:doi/10.1021%2Facs.accounts.9b00549&rft.externalDocID=d078963695
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon