Ultrathin Two-Dimensional Inorganic Materials: New Opportunities for Solid State Nanochemistry
The ultimate goal of solid state chemistry is to gain a clear correlation between atomic, defect, and electronic structure and intrinsic properties of solid state materials. Solid materials can generally be classified as amorphous, quasicrystalline, and crystalline based on their atomic arrangement,...
Saved in:
Published in | Accounts of chemical research Vol. 48; no. 1; pp. 3 - 12 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
20.01.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The ultimate goal of solid state chemistry is to gain a clear correlation between atomic, defect, and electronic structure and intrinsic properties of solid state materials. Solid materials can generally be classified as amorphous, quasicrystalline, and crystalline based on their atomic arrangement, in which crystalline materials can be further divided into single crystals, microcrystals, and nanocrystals. Conventional solid state chemistry mainly focuses on studying single crystals and microcrystals, while recently nanocrystals have become a hot research topic in the field of solid state chemistry. As more and more nanocrystalline materials have been artificially fabricated, the solid state chemistry for studying those nanosolids has become a new subdiscipline: solid state nanochemistry. However, solid state nanochemistry, usually called “nanochemistry” for short, primarily studies the microstructures and macroscopic properties of a nanomaterial’s aggregation states. Due to abundant microstructures in the aggregation states, it is only possible to build a simple but imprecise correlation between the microscopic morphology and the macroscopic properties of the nanostructures. Notably, atomically thin two-dimensional inorganic materials provide an ideal platform to establish clear structure–property relationships in the field of solid state nanochemistry, thanks to their homogeneous dispersion without the assistance of a capping ligand. In addition, their atomic structures including coordination number, bond length, and disorder degree of the examined atoms can be clearly disclosed by X-ray absorption fine structure spectroscopy. Also, their more exposed interior atoms would inevitably induce the formation of various defects, which would have a non-negligible effect on their physicochemical properties. Based on the obtained atomic and defect structural characteristics, density-functional calculations are performed to study their electronic structures. Then, after the properties of the individual ultrathin two-dimensional materials or their assembled highly oriented thin film-based nanodevices are measured, the explicit relationship between atomic, defect, and electronic structure and intrinsic properties could be established. In this Account, we focus on our recent advances in the field of solid state nanochemistry, including atomic structure characterization of ultrathin two-dimensional inorganic materials by X-ray absorption fine structure spectroscopy, characterization of their different types of structural defects by positron annihilation spectra and electron spin resonance, and investigation of their electronic structure by density-functional calculations. In addition, we summarize the close correlation between atomic, defect, and electronic structure variations and the optoelectronic, electrical, magnetic, and thermal properties of ultrathin two-dimensional materials. Finally, we also propose the major challenges and opportunities that face solid state nanochemistry. We believe that all the past achievements in ultrathin two-dimensional materials could bring new opportunities for solid state nanochemistry. |
---|---|
AbstractList | CONSPECTUS: The ultimate goal of solid state chemistry is to gain a clear correlation between atomic, defect, and electronic structure and intrinsic properties of solid state materials. Solid materials can generally be classified as amorphous, quasicrystalline, and crystalline based on their atomic arrangement, in which crystalline materials can be further divided into single crystals, microcrystals, and nanocrystals. Conventional solid state chemistry mainly focuses on studying single crystals and microcrystals, while recently nanocrystals have become a hot research topic in the field of solid state chemistry. As more and more nanocrystalline materials have been artificially fabricated, the solid state chemistry for studying those nanosolids has become a new subdiscipline: solid state nanochemistry. However, solid state nanochemistry, usually called "nanochemistry" for short, primarily studies the microstructures and macroscopic properties of a nanomaterial's aggregation states. Due to abundant microstructures in the aggregation states, it is only possible to build a simple but imprecise correlation between the microscopic morphology and the macroscopic properties of the nanostructures. Notably, atomically thin two-dimensional inorganic materials provide an ideal platform to establish clear structure-property relationships in the field of solid state nanochemistry, thanks to their homogeneous dispersion without the assistance of a capping ligand. In addition, their atomic structures including coordination number, bond length, and disorder degree of the examined atoms can be clearly disclosed by X-ray absorption fine structure spectroscopy. Also, their more exposed interior atoms would inevitably induce the formation of various defects, which would have a non-negligible effect on their physicochemical properties. Based on the obtained atomic and defect structural characteristics, density-functional calculations are performed to study their electronic structures. Then, after the properties of the individual ultrathin two-dimensional materials or their assembled highly oriented thin film-based nanodevices are measured, the explicit relationship between atomic, defect, and electronic structure and intrinsic properties could be established. In this Account, we focus on our recent advances in the field of solid state nanochemistry, including atomic structure characterization of ultrathin two-dimensional inorganic materials by X-ray absorption fine structure spectroscopy, characterization of their different types of structural defects by positron annihilation spectra and electron spin resonance, and investigation of their electronic structure by density-functional calculations. In addition, we summarize the close correlation between atomic, defect, and electronic structure variations and the optoelectronic, electrical, magnetic, and thermal properties of ultrathin two-dimensional materials. Finally, we also propose the major challenges and opportunities that face solid state nanochemistry. We believe that all the past achievements in ultrathin two-dimensional materials could bring new opportunities for solid state nanochemistry. The ultimate goal of solid state chemistry is to gain a clear correlation between atomic, defect, and electronic structure and intrinsic properties of solid state materials. Solid materials can generally be classified as amorphous, quasicrystalline, and crystalline based on their atomic arrangement, in which crystalline materials can be further divided into single crystals, microcrystals, and nanocrystals. Conventional solid state chemistry mainly focuses on studying single crystals and microcrystals, while recently nanocrystals have become a hot research topic in the field of solid state chemistry. As more and more nanocrystalline materials have been artificially fabricated, the solid state chemistry for studying those nanosolids has become a new subdiscipline: solid state nanochemistry. However, solid state nanochemistry, usually called “nanochemistry” for short, primarily studies the microstructures and macroscopic properties of a nanomaterial’s aggregation states. Due to abundant microstructures in the aggregation states, it is only possible to build a simple but imprecise correlation between the microscopic morphology and the macroscopic properties of the nanostructures. Notably, atomically thin two-dimensional inorganic materials provide an ideal platform to establish clear structure–property relationships in the field of solid state nanochemistry, thanks to their homogeneous dispersion without the assistance of a capping ligand. In addition, their atomic structures including coordination number, bond length, and disorder degree of the examined atoms can be clearly disclosed by X-ray absorption fine structure spectroscopy. Also, their more exposed interior atoms would inevitably induce the formation of various defects, which would have a non-negligible effect on their physicochemical properties. Based on the obtained atomic and defect structural characteristics, density-functional calculations are performed to study their electronic structures. Then, after the properties of the individual ultrathin two-dimensional materials or their assembled highly oriented thin film-based nanodevices are measured, the explicit relationship between atomic, defect, and electronic structure and intrinsic properties could be established. In this Account, we focus on our recent advances in the field of solid state nanochemistry, including atomic structure characterization of ultrathin two-dimensional inorganic materials by X-ray absorption fine structure spectroscopy, characterization of their different types of structural defects by positron annihilation spectra and electron spin resonance, and investigation of their electronic structure by density-functional calculations. In addition, we summarize the close correlation between atomic, defect, and electronic structure variations and the optoelectronic, electrical, magnetic, and thermal properties of ultrathin two-dimensional materials. Finally, we also propose the major challenges and opportunities that face solid state nanochemistry. We believe that all the past achievements in ultrathin two-dimensional materials could bring new opportunities for solid state nanochemistry. CONSPECTUS: The ultimate goal of solid state chemistry is to gain a clear correlation between atomic, defect, and electronic structure and intrinsic properties of solid state materials. Solid materials can generally be classified as amorphous, quasicrystalline, and crystalline based on their atomic arrangement, in which crystalline materials can be further divided into single crystals, microcrystals, and nanocrystals. Conventional solid state chemistry mainly focuses on studying single crystals and microcrystals, while recently nanocrystals have become a hot research topic in the field of solid state chemistry. As more and more nanocrystalline materials have been artificially fabricated, the solid state chemistry for studying those nanosolids has become a new subdiscipline: solid state nanochemistry. However, solid state nanochemistry, usually called "nanochemistry" for short, primarily studies the microstructures and macroscopic properties of a nanomaterial's aggregation states. Due to abundant microstructures in the aggregation states, it is only possible to build a simple but imprecise correlation between the microscopic morphology and the macroscopic properties of the nanostructures. Notably, atomically thin two-dimensional inorganic materials provide an ideal platform to establish clear structure-property relationships in the field of solid state nanochemistry, thanks to their homogeneous dispersion without the assistance of a capping ligand. In addition, their atomic structures including coordination number, bond length, and disorder degree of the examined atoms can be clearly disclosed by X-ray absorption fine structure spectroscopy. Also, their more exposed interior atoms would inevitably induce the formation of various defects, which would have a non-negligible effect on their physicochemical properties. Based on the obtained atomic and defect structural characteristics, density-functional calculations are performed to study their electronic structures. Then, after the properties of the individual ultrathin two-dimensional materials or their assembled highly oriented thin film-based nanodevices are measured, the explicit relationship between atomic, defect, and electronic structure and intrinsic properties could be established. In this Account, we focus on our recent advances in the field of solid state nanochemistry, including atomic structure characterization of ultrathin two-dimensional inorganic materials by X-ray absorption fine structure spectroscopy, characterization of their different types of structural defects by positron annihilation spectra and electron spin resonance, and investigation of their electronic structure by density-functional calculations. In addition, we summarize the close correlation between atomic, defect, and electronic structure variations and the optoelectronic, electrical, magnetic, and thermal properties of ultrathin two-dimensional materials. Finally, we also propose the major challenges and opportunities that face solid state nanochemistry. We believe that all the past achievements in ultrathin two-dimensional materials could bring new opportunities for solid state nanochemistry.CONSPECTUS: The ultimate goal of solid state chemistry is to gain a clear correlation between atomic, defect, and electronic structure and intrinsic properties of solid state materials. Solid materials can generally be classified as amorphous, quasicrystalline, and crystalline based on their atomic arrangement, in which crystalline materials can be further divided into single crystals, microcrystals, and nanocrystals. Conventional solid state chemistry mainly focuses on studying single crystals and microcrystals, while recently nanocrystals have become a hot research topic in the field of solid state chemistry. As more and more nanocrystalline materials have been artificially fabricated, the solid state chemistry for studying those nanosolids has become a new subdiscipline: solid state nanochemistry. However, solid state nanochemistry, usually called "nanochemistry" for short, primarily studies the microstructures and macroscopic properties of a nanomaterial's aggregation states. Due to abundant microstructures in the aggregation states, it is only possible to build a simple but imprecise correlation between the microscopic morphology and the macroscopic properties of the nanostructures. Notably, atomically thin two-dimensional inorganic materials provide an ideal platform to establish clear structure-property relationships in the field of solid state nanochemistry, thanks to their homogeneous dispersion without the assistance of a capping ligand. In addition, their atomic structures including coordination number, bond length, and disorder degree of the examined atoms can be clearly disclosed by X-ray absorption fine structure spectroscopy. Also, their more exposed interior atoms would inevitably induce the formation of various defects, which would have a non-negligible effect on their physicochemical properties. Based on the obtained atomic and defect structural characteristics, density-functional calculations are performed to study their electronic structures. Then, after the properties of the individual ultrathin two-dimensional materials or their assembled highly oriented thin film-based nanodevices are measured, the explicit relationship between atomic, defect, and electronic structure and intrinsic properties could be established. In this Account, we focus on our recent advances in the field of solid state nanochemistry, including atomic structure characterization of ultrathin two-dimensional inorganic materials by X-ray absorption fine structure spectroscopy, characterization of their different types of structural defects by positron annihilation spectra and electron spin resonance, and investigation of their electronic structure by density-functional calculations. In addition, we summarize the close correlation between atomic, defect, and electronic structure variations and the optoelectronic, electrical, magnetic, and thermal properties of ultrathin two-dimensional materials. Finally, we also propose the major challenges and opportunities that face solid state nanochemistry. We believe that all the past achievements in ultrathin two-dimensional materials could bring new opportunities for solid state nanochemistry. |
Author | Xiao, Chong Gao, Shan Lei, Fengcai Xie, Yi Sun, Yongfu |
AuthorAffiliation | University of Science and Technology of China Hefei National Laboratory for Physical Sciences at the Microscale Collaborative Innovation Center of Chemistry for Energy Materials |
AuthorAffiliation_xml | – name: University of Science and Technology of China – name: Hefei National Laboratory for Physical Sciences at the Microscale – name: Collaborative Innovation Center of Chemistry for Energy Materials |
Author_xml | – sequence: 1 givenname: Yongfu surname: Sun fullname: Sun, Yongfu – sequence: 2 givenname: Shan surname: Gao fullname: Gao, Shan – sequence: 3 givenname: Fengcai surname: Lei fullname: Lei, Fengcai – sequence: 4 givenname: Chong surname: Xiao fullname: Xiao, Chong – sequence: 5 givenname: Yi surname: Xie fullname: Xie, Yi email: yxie@ustc.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25489751$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0ctOAjEUBuDGaBTQhS9gujHRxUjbaZnizuCNBGEBbJ10Oh0pGVpsOyG8vTUgC2Piqpd8pyc9fxscG2sUAJcY3WFEcFc4hhDu0Y8j0MKMoITyPj8GLRRv456SM9D2fhmPhPayU3BGWBQZwy3wPq-DE2GhDZxtbPKoV8p4bY2o4dBY9yGMlvBNBOW0qP09HKsNnKzX1oXG6KCVh5V1cGprXcJpiA6OhbFyoVbaB7c9BydVrFMX-7UD5s9Ps8FrMpq8DAcPo0RQTEOSiqLoIVQUjCvZr0jBGOFpRVPJmcIc9csMI4n6SJRFmaEs5VKyTDAu45-UVGkH3OzeXTv72Sgf8thfqroWRtnG5zjLUMpSTtH_tMcIJbEni_RqT5tipcp87fRKuG3-M74IbndAOuu9U9WBYJR_R5Mfoom2-8tKHQcWZx0D0PWfFde7CiF9vrSNi6n4P9wX7uub7A |
CitedBy_id | crossref_primary_10_1016_j_ceramint_2020_03_171 crossref_primary_10_1002_chem_201604065 crossref_primary_10_3390_photochem2020020 crossref_primary_10_1016_j_apcatb_2019_118020 crossref_primary_10_1016_j_commatsci_2018_11_047 crossref_primary_10_1149_2_0871712jes crossref_primary_10_1016_j_electacta_2015_09_139 crossref_primary_10_1002_ange_202013594 crossref_primary_10_1088_2053_1583_ab1169 crossref_primary_10_1038_s41563_019_0415_3 crossref_primary_10_1016_j_apcatb_2017_08_049 crossref_primary_10_1016_j_nanoen_2017_08_004 crossref_primary_10_1007_s12274_017_1806_x crossref_primary_10_3390_en15176351 crossref_primary_10_1002_smll_202411363 crossref_primary_10_1002_cnma_201800553 crossref_primary_10_1016_j_jcis_2016_12_050 crossref_primary_10_1002_asia_202200990 crossref_primary_10_1002_aenm_201900486 crossref_primary_10_1039_D0NH00262C crossref_primary_10_1039_D3TB01973J crossref_primary_10_1007_s12633_023_02664_4 crossref_primary_10_1021_acs_jpcc_0c08143 crossref_primary_10_1021_acsestengg_1c00489 crossref_primary_10_1088_1361_648X_ad512f crossref_primary_10_1016_j_cjche_2020_01_004 crossref_primary_10_1557_s43578_021_00208_3 crossref_primary_10_1016_j_matre_2021_100020 crossref_primary_10_1021_acs_est_1c07811 crossref_primary_10_7567_1347_4065_ab1b57 crossref_primary_10_1002_smtd_202400203 crossref_primary_10_1039_C7RA01683B crossref_primary_10_1016_j_ccr_2022_215008 crossref_primary_10_1039_C8TA03812K crossref_primary_10_1002_adma_201706347 crossref_primary_10_1021_acs_chemrev_6b00558 crossref_primary_10_1038_ncomms8873 crossref_primary_10_1021_acs_nanolett_7b01433 crossref_primary_10_1039_D1SC02772G crossref_primary_10_1002_adma_201503730 crossref_primary_10_1039_C6RA15624J crossref_primary_10_1039_C7RA10684J crossref_primary_10_1007_s10854_021_05727_7 crossref_primary_10_1016_j_jtice_2021_02_003 crossref_primary_10_1039_C9MH01494B crossref_primary_10_1039_C6CE00502K crossref_primary_10_1007_s12274_016_1315_3 crossref_primary_10_1002_solr_202000037 crossref_primary_10_1016_j_nantod_2016_10_004 crossref_primary_10_1021_acsnano_7b07974 crossref_primary_10_1039_C8CS00067K crossref_primary_10_1016_j_jcis_2020_02_065 crossref_primary_10_1039_C5TA02388B crossref_primary_10_3866_PKU_WHXB202309047 crossref_primary_10_1007_s12274_024_6885_x crossref_primary_10_1016_j_cej_2016_05_009 crossref_primary_10_1039_C7RA11205J crossref_primary_10_1016_j_combustflame_2018_06_006 crossref_primary_10_1016_j_jscs_2023_101611 crossref_primary_10_1039_C9TA06887B crossref_primary_10_1038_nchem_2473 crossref_primary_10_1039_C5EE01895A crossref_primary_10_1039_C8CS00607E crossref_primary_10_1016_j_ceramint_2017_05_082 crossref_primary_10_1002_adom_201800058 crossref_primary_10_1021_acssuschemeng_2c03166 crossref_primary_10_1021_acs_jpcc_6b03562 crossref_primary_10_1002_aenm_201700779 crossref_primary_10_1016_j_jcat_2023_115284 crossref_primary_10_1007_s12274_019_2559_5 crossref_primary_10_1021_acs_jpclett_1c00318 crossref_primary_10_1039_C7TA00003K crossref_primary_10_1016_j_apcatb_2024_123716 crossref_primary_10_1002_chin_201513296 crossref_primary_10_1039_C9RA05385A crossref_primary_10_1360_nso_20220028 crossref_primary_10_1002_advs_201902359 crossref_primary_10_1039_D4TA01556H crossref_primary_10_1002_anie_202013594 crossref_primary_10_1016_j_cej_2018_12_008 crossref_primary_10_1039_C9CY00946A crossref_primary_10_1039_D4QO02362E crossref_primary_10_1002_adfm_201606269 crossref_primary_10_1016_j_jcis_2022_10_151 crossref_primary_10_1016_j_jiec_2018_03_023 crossref_primary_10_1016_j_commatsci_2022_111523 crossref_primary_10_1038_nature16455 crossref_primary_10_3390_ma14010207 crossref_primary_10_1039_C7TA02689G crossref_primary_10_1002_jctb_5779 crossref_primary_10_1002_anie_202212338 crossref_primary_10_1016_j_nanoen_2017_09_008 crossref_primary_10_2174_2210298101999201008142619 crossref_primary_10_1016_j_apcatb_2023_123444 crossref_primary_10_1002_aenm_201600671 crossref_primary_10_1007_s12274_021_3605_7 crossref_primary_10_1016_j_jwpe_2024_105941 crossref_primary_10_1002_aenm_201600436 crossref_primary_10_1002_slct_202003267 crossref_primary_10_1016_j_molliq_2018_07_036 crossref_primary_10_3390_chemengineering3010007 crossref_primary_10_1016_j_talanta_2022_123736 crossref_primary_10_1016_S1872_2067_17_62997_8 crossref_primary_10_1016_j_chempr_2018_02_006 crossref_primary_10_1016_j_cej_2024_154207 crossref_primary_10_1016_j_apsusc_2016_02_209 crossref_primary_10_1021_acsami_7b02754 crossref_primary_10_1002_ange_202212338 crossref_primary_10_1016_j_apcatb_2017_10_014 crossref_primary_10_1016_j_nanoen_2019_103991 crossref_primary_10_1557_jmr_2016_234 crossref_primary_10_1021_acs_jpclett_8b03596 crossref_primary_10_1039_C6TA09297G crossref_primary_10_1016_j_jssc_2019_04_026 crossref_primary_10_1111_jace_18033 crossref_primary_10_1016_j_chempr_2018_02_012 crossref_primary_10_1039_C8TA09358J crossref_primary_10_1002_aenm_201703585 crossref_primary_10_1007_s12274_016_1249_9 crossref_primary_10_1016_j_apcatb_2018_12_038 crossref_primary_10_1039_C7CS00418D crossref_primary_10_1080_10408436_2019_1582003 crossref_primary_10_1002_smll_201803706 crossref_primary_10_1002_smtd_201700156 crossref_primary_10_1016_S1872_2067_20_63708_1 crossref_primary_10_1002_adma_201604253 crossref_primary_10_1002_ange_202010246 crossref_primary_10_1002_ange_202013196 crossref_primary_10_1039_C7NR09620H crossref_primary_10_1016_j_scitotenv_2018_05_258 crossref_primary_10_1016_j_cej_2018_12_038 crossref_primary_10_1002_adma_201704548 crossref_primary_10_1016_j_mssp_2018_03_039 crossref_primary_10_1002_cssc_201901794 crossref_primary_10_1039_C9FD00110G crossref_primary_10_1016_j_mattod_2018_01_034 crossref_primary_10_1021_acsnano_7b08691 crossref_primary_10_20964_2019_12_72 crossref_primary_10_1021_acsami_7b04395 crossref_primary_10_1039_C6NR00546B crossref_primary_10_1039_C6CC03630A crossref_primary_10_1016_j_jechem_2023_06_024 crossref_primary_10_1016_j_cjche_2018_02_027 crossref_primary_10_1016_j_apcatb_2019_05_003 crossref_primary_10_1002_cnma_202100051 crossref_primary_10_1016_j_nanoen_2017_03_030 crossref_primary_10_2139_ssrn_3979465 crossref_primary_10_1002_aenm_201600437 crossref_primary_10_1021_acs_chemrev_7b00689 crossref_primary_10_1016_j_apcatb_2019_118085 crossref_primary_10_1016_j_electacta_2019_135146 crossref_primary_10_1039_D0TA10549J crossref_primary_10_1002_admi_201601014 crossref_primary_10_1016_j_matre_2023_100181 crossref_primary_10_1007_s00604_018_3005_1 crossref_primary_10_1021_acs_chemmater_5b04476 crossref_primary_10_1016_j_cej_2021_130067 crossref_primary_10_1002_solr_202000442 crossref_primary_10_1039_C6MH00571C crossref_primary_10_1039_D0TA05539E crossref_primary_10_1016_j_cej_2021_134434 crossref_primary_10_1016_j_mseb_2015_12_003 crossref_primary_10_1016_j_apsusc_2017_05_058 crossref_primary_10_1039_C7BM00769H crossref_primary_10_1016_j_apcatb_2015_10_036 crossref_primary_10_1039_C8TC05711G crossref_primary_10_1002_er_7335 crossref_primary_10_1039_C6SC03350D crossref_primary_10_1002_advs_202102376 crossref_primary_10_1039_C8QI01196F crossref_primary_10_1002_adts_201800180 crossref_primary_10_1021_acs_chemmater_7b01291 crossref_primary_10_1049_mnl_2017_0886 crossref_primary_10_1002_ejic_202100367 crossref_primary_10_1021_acs_nanolett_6b04339 crossref_primary_10_1016_j_nanoen_2020_104689 crossref_primary_10_1021_acsanm_1c02832 crossref_primary_10_1039_D1RA05045A crossref_primary_10_1021_acssuschemeng_8b04182 crossref_primary_10_1002_asia_201800637 crossref_primary_10_1016_j_apcatb_2018_08_071 crossref_primary_10_1002_aenm_201501974 crossref_primary_10_1002_adma_201602748 crossref_primary_10_1021_acs_inorgchem_2c02440 crossref_primary_10_1016_j_carbon_2016_08_008 crossref_primary_10_1039_C5NR06121K crossref_primary_10_1142_S2424913021430049 crossref_primary_10_1016_j_ensm_2019_03_021 crossref_primary_10_1016_j_jallcom_2016_09_326 crossref_primary_10_1016_j_ensm_2018_05_026 crossref_primary_10_1039_C5TA08688D crossref_primary_10_1039_C8SC00605A crossref_primary_10_1039_C8TC03489C crossref_primary_10_1111_jace_16382 crossref_primary_10_1007_s40843_016_0114_1 crossref_primary_10_1002_aenm_201701114 crossref_primary_10_1021_acsenergylett_7b01343 crossref_primary_10_1016_j_nanoen_2016_09_015 crossref_primary_10_1002_ange_201501788 crossref_primary_10_1002_smtd_201900055 crossref_primary_10_1021_acsomega_7b00513 crossref_primary_10_1002_ange_201505245 crossref_primary_10_1016_j_apcatb_2015_07_035 crossref_primary_10_1007_s11467_023_1258_6 crossref_primary_10_1021_acsami_9b21157 crossref_primary_10_1002_anie_202010246 crossref_primary_10_1021_acs_chemrev_8b00400 crossref_primary_10_1039_C5NJ01698C crossref_primary_10_1039_C5RA09063F crossref_primary_10_1016_j_ijhydene_2022_06_306 crossref_primary_10_1002_anie_202013196 crossref_primary_10_1016_j_cclet_2023_109117 crossref_primary_10_1002_adma_201703828 crossref_primary_10_1039_D0CC05449F crossref_primary_10_3390_inorganics13020047 crossref_primary_10_1039_C8NR04277B crossref_primary_10_1002_advs_202101498 crossref_primary_10_1002_ajoc_202200457 crossref_primary_10_1016_j_compscitech_2019_107868 crossref_primary_10_1002_anie_201501788 crossref_primary_10_1016_j_apcatb_2021_120979 crossref_primary_10_1016_j_mssp_2022_106876 crossref_primary_10_1021_jacs_7b07818 crossref_primary_10_1002_ange_201811632 crossref_primary_10_1021_acs_jpclett_1c01393 crossref_primary_10_1016_j_ccr_2024_216058 crossref_primary_10_1038_ncomms14503 crossref_primary_10_1002_smll_201603369 crossref_primary_10_1002_advs_201500424 crossref_primary_10_1016_j_ceramint_2021_02_101 crossref_primary_10_1021_acs_inorgchem_0c03771 crossref_primary_10_1002_smll_201703323 crossref_primary_10_1039_C6QI00435K crossref_primary_10_1007_s11426_018_9294_9 crossref_primary_10_1016_S1872_2067_18_63140_7 crossref_primary_10_1007_s10854_024_12615_3 crossref_primary_10_1016_j_cej_2023_147219 crossref_primary_10_1016_j_snb_2015_10_100 crossref_primary_10_1039_D4RA00118D crossref_primary_10_1016_j_nanoen_2017_07_030 crossref_primary_10_1002_aenm_201600025 crossref_primary_10_1002_anie_201811632 crossref_primary_10_1039_C6NR06444B crossref_primary_10_1039_C6SC00432F crossref_primary_10_1016_j_enchem_2019_100013 crossref_primary_10_1021_jacs_5b10212 crossref_primary_10_1021_jacs_6b01606 crossref_primary_10_1039_C8TA07687A crossref_primary_10_1016_j_nanoen_2017_06_005 crossref_primary_10_1186_s12951_024_02319_5 crossref_primary_10_1002_adfm_201910534 crossref_primary_10_1039_C8TC03812K crossref_primary_10_1016_j_rinp_2024_107953 crossref_primary_10_1016_j_ijhydene_2022_03_106 crossref_primary_10_1021_acsnano_9b06943 crossref_primary_10_1002_anie_201505245 crossref_primary_10_1016_j_apcatb_2021_121046 crossref_primary_10_1039_C6CS00343E |
Cites_doi | 10.1021/ja402956f 10.1038/nmat3207 10.1039/c2nr32201c 10.1021/nl300901a 10.1021/nl8009044 10.1103/PhysRevLett.102.195505 10.1039/C3QI00050H 10.1021/cm401895x 10.1002/anie.201302891 10.1021/ja308249k 10.1038/nnano.2010.279 10.1021/ja308936b 10.1021/ja808433d 10.1016/j.ssc.2012.04.034 10.1002/anie.201204208 10.1038/ncomms2066 10.1002/anie.201305530 10.1021/ja501866r 10.1007/978-1-4615-5801-9 10.1039/C3SC53303D 10.1002/anie.201204675 10.1007/s12274-010-0022-8 10.1002/adma.201304964 10.1021/ar4002312 10.1002/aenm.201300611 10.1016/S1381-1169(00)00362-9 10.1039/c2cs35387c 10.1103/PhysRevB.65.125407 10.1002/anie.201106004 10.1021/ja400041f 10.1002/anie.201304337 10.1021/ja3046603 10.1002/smll.201303548 10.1021/nl301702r 10.1002/anie.201300285 10.1021/ja3102049 10.1039/c1nr10179j 10.1021/ja207176c 10.1039/C3CS60231A 10.1038/ncomms3899 |
ContentType | Journal Article |
Copyright | Copyright © 2014 American Chemical Society |
Copyright_xml | – notice: Copyright © 2014 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1021/ar500164g |
DatabaseName | CrossRef PubMed MEDLINE - Academic Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | PubMed Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-4898 |
EndPage | 12 |
ExternalDocumentID | 25489751 10_1021_ar500164g a225669343 |
Genre | Journal Article |
GroupedDBID | - .K2 02 23M 4.4 53G 55A 5GY 5VS 7~N 85S AABXI ABFLS ABMVS ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 P2P RNS ROL TWZ UI2 UPT VF5 VG9 W1F WH7 X YZZ --- -DZ -~X 5ZA 6J9 6P2 AAYXX ABBLG ABJNI ABLBI ABQRX ACGFO ADHLV AFXLT AGXLV AHGAQ CITATION CUPRZ GGK IH2 XSW ZCA ~02 NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-a414t-3abb600bb58ec9f2b55283f43c85e1809d710c090adbd70738cc57a58c000ece3 |
IEDL.DBID | ACS |
ISSN | 0001-4842 1520-4898 |
IngestDate | Fri Jul 11 11:14:28 EDT 2025 Fri Jul 11 02:49:51 EDT 2025 Thu Apr 03 07:00:41 EDT 2025 Tue Jul 01 04:04:09 EDT 2025 Thu Apr 24 22:55:16 EDT 2025 Thu Aug 27 13:42:39 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a414t-3abb600bb58ec9f2b55283f43c85e1809d710c090adbd70738cc57a58c000ece3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 25489751 |
PQID | 1652428095 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1770353840 proquest_miscellaneous_1652428095 pubmed_primary_25489751 crossref_primary_10_1021_ar500164g crossref_citationtrail_10_1021_ar500164g acs_journals_10_1021_ar500164g |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-01-20 |
PublicationDateYYYYMMDD | 2015-01-20 |
PublicationDate_xml | – month: 01 year: 2015 text: 2015-01-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Accounts of chemical research |
PublicationTitleAlternate | Acc. Chem. Res |
PublicationYear | 2015 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Ropp R. C. (ref2/cit2) 2003 ref3/cit3 Zeng Z. Y. (ref5/cit5) 2012; 51 Zhang X. D. (ref36/cit36) 2013; 135 West A. R. (ref1/cit1) 1999 ref29/cit29 Shahil K. M. F. (ref41/cit41) 2012; 152 Sun Y. F. (ref21/cit21) 2010; 3 Yao T. (ref34/cit34) 2013; 52 Datta S. S. (ref38/cit38) 2009; 9 Sun Y. F. (ref12/cit12) 2013; 52 Sun Y. F. (ref13/cit13) 2012; 51 Xu K. (ref39/cit39) 2013; 52 Zhang X. D. (ref44/cit44) 2013; 52 Sun Y. F. (ref9/cit9) 2012; 3 Sun Y. F. (ref10/cit10) 2013; 4 Lin C. W. (ref37/cit37) 2013; 135 D’Arienzo M. (ref28/cit28) 2013; 25 Radisavljevic B. (ref15/cit15) 2011; 6 Sun Y. F. (ref14/cit14) 2014; 1 Zhang X. D. (ref35/cit35) 2012; 134 Zeng Z. Y. (ref17/cit17) 2011; 50 Lei F. C. (ref31/cit31) 2014; 136 Jin C. H. (ref33/cit33) 2009; 102 Sun Y. F. (ref11/cit11) 2012; 134 Huang X. (ref6/cit6) 2014; 26 Lynch J. (ref23/cit23) 2001 Chen S. (ref42/cit42) 2012; 11 Gordon R. A. (ref24/cit24) 2002; 65 Chen P. Z. (ref40/cit40) 2014; 5 Sun Y. F. (ref20/cit20) 2011; 3 Sun Y. F. (ref18/cit18) 2014; 4 Guan M. L. (ref27/cit27) 2013; 135 Fang H. (ref16/cit16) 2012; 12 Feng J. (ref19/cit19) 2011; 133 Liu X. G. (ref25/cit25) 2009; 131 Huang X. (ref8/cit8) 2013; 42 Nakamura I. (ref30/cit30) 2000; 161 Li H. (ref7/cit7) 2014; 47 ref4/cit4 Xiao C. (ref26/cit26) 2012; 134 Sun Y. F. (ref22/cit22) 2014; 43 Lin Y. (ref43/cit43) 2012; 4 Eckmann A. (ref32/cit32) 2012; 12 |
References_xml | – volume: 135 start-page: 10411 year: 2013 ident: ref27/cit27 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja402956f – volume: 11 start-page: 203 year: 2012 ident: ref42/cit42 publication-title: Nat. Mater. doi: 10.1038/nmat3207 – volume: 4 start-page: 6908 year: 2012 ident: ref43/cit43 publication-title: Nanoscale doi: 10.1039/c2nr32201c – volume: 12 start-page: 3925 year: 2012 ident: ref32/cit32 publication-title: Nano Lett. doi: 10.1021/nl300901a – volume: 9 start-page: 7 year: 2009 ident: ref38/cit38 publication-title: Nano Lett. doi: 10.1021/nl8009044 – volume-title: Physico-chemical Analysis of Industrial Catalysts year: 2001 ident: ref23/cit23 – volume: 102 start-page: 195505 year: 2009 ident: ref33/cit33 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.195505 – volume: 1 start-page: 58 year: 2014 ident: ref14/cit14 publication-title: Inorg. Chem. Front. doi: 10.1039/C3QI00050H – volume: 25 start-page: 3675 year: 2013 ident: ref28/cit28 publication-title: Chem. Mater. doi: 10.1021/cm401895x – volume-title: Solid State Chemistry year: 2003 ident: ref2/cit2 – volume: 52 start-page: 7554 year: 2013 ident: ref34/cit34 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201302891 – volume: 135 start-page: 18 year: 2013 ident: ref36/cit36 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja308249k – ident: ref4/cit4 – volume: 6 start-page: 147 year: 2011 ident: ref15/cit15 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.279 – volume: 134 start-page: 18460 year: 2012 ident: ref26/cit26 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja308936b – volume: 131 start-page: 3140 year: 2009 ident: ref25/cit25 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja808433d – volume: 152 start-page: 1331 year: 2012 ident: ref41/cit41 publication-title: Solid State Commun. doi: 10.1016/j.ssc.2012.04.034 – volume: 51 start-page: 9052 year: 2012 ident: ref5/cit5 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201204208 – volume: 3 start-page: 1057 year: 2012 ident: ref9/cit9 publication-title: Nat. Commun. doi: 10.1038/ncomms2066 – volume: 52 start-page: 10569 year: 2013 ident: ref12/cit12 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201305530 – volume: 136 start-page: 6826 year: 2014 ident: ref31/cit31 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja501866r – ident: ref3/cit3 doi: 10.1007/978-1-4615-5801-9 – volume: 5 start-page: 2251 year: 2014 ident: ref40/cit40 publication-title: Chem. Sci. doi: 10.1039/C3SC53303D – volume: 51 start-page: 8727 year: 2012 ident: ref13/cit13 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201204675 – volume: 3 start-page: 620 year: 2010 ident: ref21/cit21 publication-title: Nano Res. doi: 10.1007/s12274-010-0022-8 – volume: 26 start-page: 2185 year: 2014 ident: ref6/cit6 publication-title: Adv. Mater. doi: 10.1002/adma.201304964 – volume: 47 start-page: 1067 year: 2014 ident: ref7/cit7 publication-title: Acc. Chem. Res. doi: 10.1021/ar4002312 – volume: 4 start-page: 1300611 year: 2014 ident: ref18/cit18 publication-title: Adv. Energy. Mater. doi: 10.1002/aenm.201300611 – volume: 161 start-page: 205 year: 2000 ident: ref30/cit30 publication-title: J. Mol. Catal. A: Chem. doi: 10.1016/S1381-1169(00)00362-9 – volume-title: Basic Solid State Chemistry year: 1999 ident: ref1/cit1 – volume: 42 start-page: 1934 year: 2013 ident: ref8/cit8 publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs35387c – volume: 65 start-page: 125407 year: 2002 ident: ref24/cit24 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.65.125407 – volume: 50 start-page: 11093 year: 2011 ident: ref17/cit17 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201106004 – volume: 135 start-page: 5144 year: 2013 ident: ref37/cit37 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja400041f – volume: 52 start-page: 10477 year: 2013 ident: ref39/cit39 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201304337 – volume: 134 start-page: 11908 year: 2012 ident: ref35/cit35 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3046603 – ident: ref29/cit29 doi: 10.1002/smll.201303548 – volume: 12 start-page: 3788 year: 2012 ident: ref16/cit16 publication-title: Nano Lett. doi: 10.1021/nl301702r – volume: 52 start-page: 4361 year: 2013 ident: ref44/cit44 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201300285 – volume: 134 start-page: 20294 year: 2012 ident: ref11/cit11 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3102049 – volume: 3 start-page: 2609 year: 2011 ident: ref20/cit20 publication-title: Nanoscale doi: 10.1039/c1nr10179j – volume: 133 start-page: 17832 year: 2011 ident: ref19/cit19 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja207176c – volume: 43 start-page: 530 year: 2014 ident: ref22/cit22 publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60231A – volume: 4 start-page: 2899 year: 2013 ident: ref10/cit10 publication-title: Nat. Commun. doi: 10.1038/ncomms3899 |
SSID | ssj0002467 |
Score | 2.5773067 |
Snippet | The ultimate goal of solid state chemistry is to gain a clear correlation between atomic, defect, and electronic structure and intrinsic properties of solid... CONSPECTUS: The ultimate goal of solid state chemistry is to gain a clear correlation between atomic, defect, and electronic structure and intrinsic properties... Conspectus The ultimate goal of solid state chemistry is to gain a clear correlation between atomic, defect, and electronic structure and intrinsic properties... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3 |
SubjectTerms | Atomic structure Correlation Crystal defects Electronic structure Inorganic materials Nanostructure Solid state Two dimensional |
Title | Ultrathin Two-Dimensional Inorganic Materials: New Opportunities for Solid State Nanochemistry |
URI | http://dx.doi.org/10.1021/ar500164g https://www.ncbi.nlm.nih.gov/pubmed/25489751 https://www.proquest.com/docview/1652428095 https://www.proquest.com/docview/1770353840 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT8MwDLZgHODC-zFeCo8Dl8KSJW3KDW0gQAIOMIkTVZKmgJg6tHVC4tfjNOsE4nWs5CqN7dqfFeczwD7PMsGyMAyooVigcJYFMhRxgE8ijWjGm6bstrgOzzv88l7cT8DeLyf4jB6pvih5oB4nYYqFMnIV1knrdhxuGQ89MSbWxVxyVtEHfX7VpR4z-Jp6fsGTZV45m4N2dTvHt5O8HA4LfWjev5M1_vXJ8zA7wpXkxDvCAkzYfBGmW9U4tyV46HQdEe3Tc07u3npB27H6e0YOcpH72U6GXKnCe-QxwehHbl4dOh_mJesqQXhLbnvd55SUCJVgYHbjtvwCy9A5O71rnQej4QqB4pQXQVNpjWBHayGtiTOmhaN5cbaRwjpSL7RUwzTihkp1GmEgkMaISAlpUNPW2OYK1PJebteApBJRpY2VtinlNqaKp5GlIbNR7DqyeB22UfvJ6OcYJOW5N6PJWE11OKgMk5gRNbmbkNH9SXR3LPrq-Th-EtqprJugEtwRiMptb4hLhwIxCe5O_CETYRTEPMAbdVj1rjFeCstpGUeCrv-3pQ2YQWjl-iIxDm1CregP7RbCl0Jvl-77ASIj6AQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVYDnBhX8pSDOLAJRCndhZuqIAKtHBoK3Eish0HKqq0alMh8fWM7bQsYjtGmsTOzGTmjTx5g9AhTVPmpb7vEEmgQKFe6oQ-ixy4YklAUlqRptvi1q-16fU9uy9ocvS_MLCJITxpaA7x39kFyAkfMEMH9TiNZgGEeLrQOqs2J1HXo77lx4TymIbUG7MIfbxVZyA5_JyBfoCVJr1cLto5RWZjpqvk-XiUi2P5-oWz8X87X0ILBcrEZ9YtltGUylbQXHU83G0VPbS7mpb2qZPh1kvPOdcc_5afA19ldtKTxA2eW_88xRAL8V1fY_VRZjhYMYBd3Ox1Owk2eBVDmNbDt-wCa6h9edGq1pxi1ILDKaG5U-FCAPQRgoVKRqknmCZ90ZYKmdIUX2A3V7qRyxORBBAWQilZwFkoQeFKqso6msl6mdpEOAkBY6qIC5UQqiLCaRIo4nsqiHR_Fi2hMmgpLj6VYWxOwT0ST9RUQkdj-8SyICrX8zK634keTET7lp3jO6H9sZFjUII-EOGZ6o1gafAjKL8AZf4iE0BMhKxA3RLasB4yWQqK6zAKGNn665X20Fyt1ajH9avbm200D6BLd0xChNpBM_lgpHYB2OSibDz6DZZx8GU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZT8MwDLY4JOCF-xhnQDzwUli6pAdv02Bi3BJM4okqSVNATN3EOiHx63HSrgLE9VjJbRLbcT4r7meAXZYk3E08z6GKYoLC3MQJPB46-MRjnyaspmy1xaV30mand_yuSBTNvzA4iT5-qW8v8c2u7sVJwTBAD8QLt5RQD6Mwbq7rTLJVb9yUkddlXs6RiSkyC5g7ZBL6-Ko5hVT_8yn0A7S0R0xzBq7KydnKkuf9QSb31dsX3sb_z34Wpgu0Seq5e8zBiE7nYbIxbPK2APftjqGnfXxKye1r1zkyXP85TwdppXnHJ0UuRJb76SHBmEiuegazD1LLxUoQ9JKbbucpJha3EgzXpglXPsAitJvHt40Tp2i54AhGWebUhJQIgaTkgVZh4kpuyF-MxQKuDdUX2q-qqmFVxDL2MTwESnFf8ECh0rXStSUYS7upXgESB4g1dSikjinTIRUs9jX1XO2Hpk6LVWATNRUVW6Yf2dtwl0almiqwN7RRpArCctM3o_Od6E4p2stZOr4T2h4aOkIlmIsRkeruAIf2OCIVXB3_RcbH2IinA6tWYDn3knIoTLKD0Od09a8lbcHE9VEzOm9dnq3BFGIvUziJgWodxrKXgd5AfJPJTevU73zI8ug |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrathin+Two-Dimensional+Inorganic+Materials%3A+New+Opportunities+for+Solid+State+Nanochemistry&rft.jtitle=Accounts+of+chemical+research&rft.au=Sun%2C+Yongfu&rft.au=Gao%2C+Shan&rft.au=Lei%2C+Fengcai&rft.au=Xiao%2C+Chong&rft.date=2015-01-20&rft.issn=0001-4842&rft.eissn=1520-4898&rft.volume=48&rft.issue=1&rft.spage=3&rft.epage=12&rft_id=info:doi/10.1021%2Far500164g&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_ar500164g |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon |