Ultrathin Two-Dimensional Inorganic Materials: New Opportunities for Solid State Nanochemistry

The ultimate goal of solid state chemistry is to gain a clear correlation between atomic, defect, and electronic structure and intrinsic properties of solid state materials. Solid materials can generally be classified as amorphous, quasicrystalline, and crystalline based on their atomic arrangement,...

Full description

Saved in:
Bibliographic Details
Published inAccounts of chemical research Vol. 48; no. 1; pp. 3 - 12
Main Authors Sun, Yongfu, Gao, Shan, Lei, Fengcai, Xiao, Chong, Xie, Yi
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 20.01.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The ultimate goal of solid state chemistry is to gain a clear correlation between atomic, defect, and electronic structure and intrinsic properties of solid state materials. Solid materials can generally be classified as amorphous, quasicrystalline, and crystalline based on their atomic arrangement, in which crystalline materials can be further divided into single crystals, microcrystals, and nanocrystals. Conventional solid state chemistry mainly focuses on studying single crystals and microcrystals, while recently nanocrystals have become a hot research topic in the field of solid state chemistry. As more and more nanocrystalline materials have been artificially fabricated, the solid state chemistry for studying those nanosolids has become a new subdiscipline: solid state nanochemistry. However, solid state nanochemistry, usually called “nanochemistry” for short, primarily studies the microstructures and macroscopic properties of a nanomaterial’s aggregation states. Due to abundant microstructures in the aggregation states, it is only possible to build a simple but imprecise correlation between the microscopic morphology and the macroscopic properties of the nanostructures. Notably, atomically thin two-dimensional inorganic materials provide an ideal platform to establish clear structure–property relationships in the field of solid state nanochemistry, thanks to their homogeneous dispersion without the assistance of a capping ligand. In addition, their atomic structures including coordination number, bond length, and disorder degree of the examined atoms can be clearly disclosed by X-ray absorption fine structure spectroscopy. Also, their more exposed interior atoms would inevitably induce the formation of various defects, which would have a non-negligible effect on their physicochemical properties. Based on the obtained atomic and defect structural characteristics, density-functional calculations are performed to study their electronic structures. Then, after the properties of the individual ultrathin two-dimensional materials or their assembled highly oriented thin film-based nanodevices are measured, the explicit relationship between atomic, defect, and electronic structure and intrinsic properties could be established. In this Account, we focus on our recent advances in the field of solid state nanochemistry, including atomic structure characterization of ultrathin two-dimensional inorganic materials by X-ray absorption fine structure spectroscopy, characterization of their different types of structural defects by positron annihilation spectra and electron spin resonance, and investigation of their electronic structure by density-functional calculations. In addition, we summarize the close correlation between atomic, defect, and electronic structure variations and the optoelectronic, electrical, magnetic, and thermal properties of ultrathin two-dimensional materials. Finally, we also propose the major challenges and opportunities that face solid state nanochemistry. We believe that all the past achievements in ultrathin two-dimensional materials could bring new opportunities for solid state nanochemistry.
AbstractList CONSPECTUS: The ultimate goal of solid state chemistry is to gain a clear correlation between atomic, defect, and electronic structure and intrinsic properties of solid state materials. Solid materials can generally be classified as amorphous, quasicrystalline, and crystalline based on their atomic arrangement, in which crystalline materials can be further divided into single crystals, microcrystals, and nanocrystals. Conventional solid state chemistry mainly focuses on studying single crystals and microcrystals, while recently nanocrystals have become a hot research topic in the field of solid state chemistry. As more and more nanocrystalline materials have been artificially fabricated, the solid state chemistry for studying those nanosolids has become a new subdiscipline: solid state nanochemistry. However, solid state nanochemistry, usually called "nanochemistry" for short, primarily studies the microstructures and macroscopic properties of a nanomaterial's aggregation states. Due to abundant microstructures in the aggregation states, it is only possible to build a simple but imprecise correlation between the microscopic morphology and the macroscopic properties of the nanostructures. Notably, atomically thin two-dimensional inorganic materials provide an ideal platform to establish clear structure-property relationships in the field of solid state nanochemistry, thanks to their homogeneous dispersion without the assistance of a capping ligand. In addition, their atomic structures including coordination number, bond length, and disorder degree of the examined atoms can be clearly disclosed by X-ray absorption fine structure spectroscopy. Also, their more exposed interior atoms would inevitably induce the formation of various defects, which would have a non-negligible effect on their physicochemical properties. Based on the obtained atomic and defect structural characteristics, density-functional calculations are performed to study their electronic structures. Then, after the properties of the individual ultrathin two-dimensional materials or their assembled highly oriented thin film-based nanodevices are measured, the explicit relationship between atomic, defect, and electronic structure and intrinsic properties could be established. In this Account, we focus on our recent advances in the field of solid state nanochemistry, including atomic structure characterization of ultrathin two-dimensional inorganic materials by X-ray absorption fine structure spectroscopy, characterization of their different types of structural defects by positron annihilation spectra and electron spin resonance, and investigation of their electronic structure by density-functional calculations. In addition, we summarize the close correlation between atomic, defect, and electronic structure variations and the optoelectronic, electrical, magnetic, and thermal properties of ultrathin two-dimensional materials. Finally, we also propose the major challenges and opportunities that face solid state nanochemistry. We believe that all the past achievements in ultrathin two-dimensional materials could bring new opportunities for solid state nanochemistry.
The ultimate goal of solid state chemistry is to gain a clear correlation between atomic, defect, and electronic structure and intrinsic properties of solid state materials. Solid materials can generally be classified as amorphous, quasicrystalline, and crystalline based on their atomic arrangement, in which crystalline materials can be further divided into single crystals, microcrystals, and nanocrystals. Conventional solid state chemistry mainly focuses on studying single crystals and microcrystals, while recently nanocrystals have become a hot research topic in the field of solid state chemistry. As more and more nanocrystalline materials have been artificially fabricated, the solid state chemistry for studying those nanosolids has become a new subdiscipline: solid state nanochemistry. However, solid state nanochemistry, usually called “nanochemistry” for short, primarily studies the microstructures and macroscopic properties of a nanomaterial’s aggregation states. Due to abundant microstructures in the aggregation states, it is only possible to build a simple but imprecise correlation between the microscopic morphology and the macroscopic properties of the nanostructures. Notably, atomically thin two-dimensional inorganic materials provide an ideal platform to establish clear structure–property relationships in the field of solid state nanochemistry, thanks to their homogeneous dispersion without the assistance of a capping ligand. In addition, their atomic structures including coordination number, bond length, and disorder degree of the examined atoms can be clearly disclosed by X-ray absorption fine structure spectroscopy. Also, their more exposed interior atoms would inevitably induce the formation of various defects, which would have a non-negligible effect on their physicochemical properties. Based on the obtained atomic and defect structural characteristics, density-functional calculations are performed to study their electronic structures. Then, after the properties of the individual ultrathin two-dimensional materials or their assembled highly oriented thin film-based nanodevices are measured, the explicit relationship between atomic, defect, and electronic structure and intrinsic properties could be established. In this Account, we focus on our recent advances in the field of solid state nanochemistry, including atomic structure characterization of ultrathin two-dimensional inorganic materials by X-ray absorption fine structure spectroscopy, characterization of their different types of structural defects by positron annihilation spectra and electron spin resonance, and investigation of their electronic structure by density-functional calculations. In addition, we summarize the close correlation between atomic, defect, and electronic structure variations and the optoelectronic, electrical, magnetic, and thermal properties of ultrathin two-dimensional materials. Finally, we also propose the major challenges and opportunities that face solid state nanochemistry. We believe that all the past achievements in ultrathin two-dimensional materials could bring new opportunities for solid state nanochemistry.
CONSPECTUS: The ultimate goal of solid state chemistry is to gain a clear correlation between atomic, defect, and electronic structure and intrinsic properties of solid state materials. Solid materials can generally be classified as amorphous, quasicrystalline, and crystalline based on their atomic arrangement, in which crystalline materials can be further divided into single crystals, microcrystals, and nanocrystals. Conventional solid state chemistry mainly focuses on studying single crystals and microcrystals, while recently nanocrystals have become a hot research topic in the field of solid state chemistry. As more and more nanocrystalline materials have been artificially fabricated, the solid state chemistry for studying those nanosolids has become a new subdiscipline: solid state nanochemistry. However, solid state nanochemistry, usually called "nanochemistry" for short, primarily studies the microstructures and macroscopic properties of a nanomaterial's aggregation states. Due to abundant microstructures in the aggregation states, it is only possible to build a simple but imprecise correlation between the microscopic morphology and the macroscopic properties of the nanostructures. Notably, atomically thin two-dimensional inorganic materials provide an ideal platform to establish clear structure-property relationships in the field of solid state nanochemistry, thanks to their homogeneous dispersion without the assistance of a capping ligand. In addition, their atomic structures including coordination number, bond length, and disorder degree of the examined atoms can be clearly disclosed by X-ray absorption fine structure spectroscopy. Also, their more exposed interior atoms would inevitably induce the formation of various defects, which would have a non-negligible effect on their physicochemical properties. Based on the obtained atomic and defect structural characteristics, density-functional calculations are performed to study their electronic structures. Then, after the properties of the individual ultrathin two-dimensional materials or their assembled highly oriented thin film-based nanodevices are measured, the explicit relationship between atomic, defect, and electronic structure and intrinsic properties could be established. In this Account, we focus on our recent advances in the field of solid state nanochemistry, including atomic structure characterization of ultrathin two-dimensional inorganic materials by X-ray absorption fine structure spectroscopy, characterization of their different types of structural defects by positron annihilation spectra and electron spin resonance, and investigation of their electronic structure by density-functional calculations. In addition, we summarize the close correlation between atomic, defect, and electronic structure variations and the optoelectronic, electrical, magnetic, and thermal properties of ultrathin two-dimensional materials. Finally, we also propose the major challenges and opportunities that face solid state nanochemistry. We believe that all the past achievements in ultrathin two-dimensional materials could bring new opportunities for solid state nanochemistry.CONSPECTUS: The ultimate goal of solid state chemistry is to gain a clear correlation between atomic, defect, and electronic structure and intrinsic properties of solid state materials. Solid materials can generally be classified as amorphous, quasicrystalline, and crystalline based on their atomic arrangement, in which crystalline materials can be further divided into single crystals, microcrystals, and nanocrystals. Conventional solid state chemistry mainly focuses on studying single crystals and microcrystals, while recently nanocrystals have become a hot research topic in the field of solid state chemistry. As more and more nanocrystalline materials have been artificially fabricated, the solid state chemistry for studying those nanosolids has become a new subdiscipline: solid state nanochemistry. However, solid state nanochemistry, usually called "nanochemistry" for short, primarily studies the microstructures and macroscopic properties of a nanomaterial's aggregation states. Due to abundant microstructures in the aggregation states, it is only possible to build a simple but imprecise correlation between the microscopic morphology and the macroscopic properties of the nanostructures. Notably, atomically thin two-dimensional inorganic materials provide an ideal platform to establish clear structure-property relationships in the field of solid state nanochemistry, thanks to their homogeneous dispersion without the assistance of a capping ligand. In addition, their atomic structures including coordination number, bond length, and disorder degree of the examined atoms can be clearly disclosed by X-ray absorption fine structure spectroscopy. Also, their more exposed interior atoms would inevitably induce the formation of various defects, which would have a non-negligible effect on their physicochemical properties. Based on the obtained atomic and defect structural characteristics, density-functional calculations are performed to study their electronic structures. Then, after the properties of the individual ultrathin two-dimensional materials or their assembled highly oriented thin film-based nanodevices are measured, the explicit relationship between atomic, defect, and electronic structure and intrinsic properties could be established. In this Account, we focus on our recent advances in the field of solid state nanochemistry, including atomic structure characterization of ultrathin two-dimensional inorganic materials by X-ray absorption fine structure spectroscopy, characterization of their different types of structural defects by positron annihilation spectra and electron spin resonance, and investigation of their electronic structure by density-functional calculations. In addition, we summarize the close correlation between atomic, defect, and electronic structure variations and the optoelectronic, electrical, magnetic, and thermal properties of ultrathin two-dimensional materials. Finally, we also propose the major challenges and opportunities that face solid state nanochemistry. We believe that all the past achievements in ultrathin two-dimensional materials could bring new opportunities for solid state nanochemistry.
Author Xiao, Chong
Gao, Shan
Lei, Fengcai
Xie, Yi
Sun, Yongfu
AuthorAffiliation University of Science and Technology of China
Hefei National Laboratory for Physical Sciences at the Microscale
Collaborative Innovation Center of Chemistry for Energy Materials
AuthorAffiliation_xml – name: University of Science and Technology of China
– name: Hefei National Laboratory for Physical Sciences at the Microscale
– name: Collaborative Innovation Center of Chemistry for Energy Materials
Author_xml – sequence: 1
  givenname: Yongfu
  surname: Sun
  fullname: Sun, Yongfu
– sequence: 2
  givenname: Shan
  surname: Gao
  fullname: Gao, Shan
– sequence: 3
  givenname: Fengcai
  surname: Lei
  fullname: Lei, Fengcai
– sequence: 4
  givenname: Chong
  surname: Xiao
  fullname: Xiao, Chong
– sequence: 5
  givenname: Yi
  surname: Xie
  fullname: Xie, Yi
  email: yxie@ustc.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25489751$$D View this record in MEDLINE/PubMed
BookMark eNqF0ctOAjEUBuDGaBTQhS9gujHRxUjbaZnizuCNBGEBbJ10Oh0pGVpsOyG8vTUgC2Piqpd8pyc9fxscG2sUAJcY3WFEcFc4hhDu0Y8j0MKMoITyPj8GLRRv456SM9D2fhmPhPayU3BGWBQZwy3wPq-DE2GhDZxtbPKoV8p4bY2o4dBY9yGMlvBNBOW0qP09HKsNnKzX1oXG6KCVh5V1cGprXcJpiA6OhbFyoVbaB7c9BydVrFMX-7UD5s9Ps8FrMpq8DAcPo0RQTEOSiqLoIVQUjCvZr0jBGOFpRVPJmcIc9csMI4n6SJRFmaEs5VKyTDAu45-UVGkH3OzeXTv72Sgf8thfqroWRtnG5zjLUMpSTtH_tMcIJbEni_RqT5tipcp87fRKuG3-M74IbndAOuu9U9WBYJR_R5Mfoom2-8tKHQcWZx0D0PWfFde7CiF9vrSNi6n4P9wX7uub7A
CitedBy_id crossref_primary_10_1016_j_ceramint_2020_03_171
crossref_primary_10_1002_chem_201604065
crossref_primary_10_3390_photochem2020020
crossref_primary_10_1016_j_apcatb_2019_118020
crossref_primary_10_1016_j_commatsci_2018_11_047
crossref_primary_10_1149_2_0871712jes
crossref_primary_10_1016_j_electacta_2015_09_139
crossref_primary_10_1002_ange_202013594
crossref_primary_10_1088_2053_1583_ab1169
crossref_primary_10_1038_s41563_019_0415_3
crossref_primary_10_1016_j_apcatb_2017_08_049
crossref_primary_10_1016_j_nanoen_2017_08_004
crossref_primary_10_1007_s12274_017_1806_x
crossref_primary_10_3390_en15176351
crossref_primary_10_1002_smll_202411363
crossref_primary_10_1002_cnma_201800553
crossref_primary_10_1016_j_jcis_2016_12_050
crossref_primary_10_1002_asia_202200990
crossref_primary_10_1002_aenm_201900486
crossref_primary_10_1039_D0NH00262C
crossref_primary_10_1039_D3TB01973J
crossref_primary_10_1007_s12633_023_02664_4
crossref_primary_10_1021_acs_jpcc_0c08143
crossref_primary_10_1021_acsestengg_1c00489
crossref_primary_10_1088_1361_648X_ad512f
crossref_primary_10_1016_j_cjche_2020_01_004
crossref_primary_10_1557_s43578_021_00208_3
crossref_primary_10_1016_j_matre_2021_100020
crossref_primary_10_1021_acs_est_1c07811
crossref_primary_10_7567_1347_4065_ab1b57
crossref_primary_10_1002_smtd_202400203
crossref_primary_10_1039_C7RA01683B
crossref_primary_10_1016_j_ccr_2022_215008
crossref_primary_10_1039_C8TA03812K
crossref_primary_10_1002_adma_201706347
crossref_primary_10_1021_acs_chemrev_6b00558
crossref_primary_10_1038_ncomms8873
crossref_primary_10_1021_acs_nanolett_7b01433
crossref_primary_10_1039_D1SC02772G
crossref_primary_10_1002_adma_201503730
crossref_primary_10_1039_C6RA15624J
crossref_primary_10_1039_C7RA10684J
crossref_primary_10_1007_s10854_021_05727_7
crossref_primary_10_1016_j_jtice_2021_02_003
crossref_primary_10_1039_C9MH01494B
crossref_primary_10_1039_C6CE00502K
crossref_primary_10_1007_s12274_016_1315_3
crossref_primary_10_1002_solr_202000037
crossref_primary_10_1016_j_nantod_2016_10_004
crossref_primary_10_1021_acsnano_7b07974
crossref_primary_10_1039_C8CS00067K
crossref_primary_10_1016_j_jcis_2020_02_065
crossref_primary_10_1039_C5TA02388B
crossref_primary_10_3866_PKU_WHXB202309047
crossref_primary_10_1007_s12274_024_6885_x
crossref_primary_10_1016_j_cej_2016_05_009
crossref_primary_10_1039_C7RA11205J
crossref_primary_10_1016_j_combustflame_2018_06_006
crossref_primary_10_1016_j_jscs_2023_101611
crossref_primary_10_1039_C9TA06887B
crossref_primary_10_1038_nchem_2473
crossref_primary_10_1039_C5EE01895A
crossref_primary_10_1039_C8CS00607E
crossref_primary_10_1016_j_ceramint_2017_05_082
crossref_primary_10_1002_adom_201800058
crossref_primary_10_1021_acssuschemeng_2c03166
crossref_primary_10_1021_acs_jpcc_6b03562
crossref_primary_10_1002_aenm_201700779
crossref_primary_10_1016_j_jcat_2023_115284
crossref_primary_10_1007_s12274_019_2559_5
crossref_primary_10_1021_acs_jpclett_1c00318
crossref_primary_10_1039_C7TA00003K
crossref_primary_10_1016_j_apcatb_2024_123716
crossref_primary_10_1002_chin_201513296
crossref_primary_10_1039_C9RA05385A
crossref_primary_10_1360_nso_20220028
crossref_primary_10_1002_advs_201902359
crossref_primary_10_1039_D4TA01556H
crossref_primary_10_1002_anie_202013594
crossref_primary_10_1016_j_cej_2018_12_008
crossref_primary_10_1039_C9CY00946A
crossref_primary_10_1039_D4QO02362E
crossref_primary_10_1002_adfm_201606269
crossref_primary_10_1016_j_jcis_2022_10_151
crossref_primary_10_1016_j_jiec_2018_03_023
crossref_primary_10_1016_j_commatsci_2022_111523
crossref_primary_10_1038_nature16455
crossref_primary_10_3390_ma14010207
crossref_primary_10_1039_C7TA02689G
crossref_primary_10_1002_jctb_5779
crossref_primary_10_1002_anie_202212338
crossref_primary_10_1016_j_nanoen_2017_09_008
crossref_primary_10_2174_2210298101999201008142619
crossref_primary_10_1016_j_apcatb_2023_123444
crossref_primary_10_1002_aenm_201600671
crossref_primary_10_1007_s12274_021_3605_7
crossref_primary_10_1016_j_jwpe_2024_105941
crossref_primary_10_1002_aenm_201600436
crossref_primary_10_1002_slct_202003267
crossref_primary_10_1016_j_molliq_2018_07_036
crossref_primary_10_3390_chemengineering3010007
crossref_primary_10_1016_j_talanta_2022_123736
crossref_primary_10_1016_S1872_2067_17_62997_8
crossref_primary_10_1016_j_chempr_2018_02_006
crossref_primary_10_1016_j_cej_2024_154207
crossref_primary_10_1016_j_apsusc_2016_02_209
crossref_primary_10_1021_acsami_7b02754
crossref_primary_10_1002_ange_202212338
crossref_primary_10_1016_j_apcatb_2017_10_014
crossref_primary_10_1016_j_nanoen_2019_103991
crossref_primary_10_1557_jmr_2016_234
crossref_primary_10_1021_acs_jpclett_8b03596
crossref_primary_10_1039_C6TA09297G
crossref_primary_10_1016_j_jssc_2019_04_026
crossref_primary_10_1111_jace_18033
crossref_primary_10_1016_j_chempr_2018_02_012
crossref_primary_10_1039_C8TA09358J
crossref_primary_10_1002_aenm_201703585
crossref_primary_10_1007_s12274_016_1249_9
crossref_primary_10_1016_j_apcatb_2018_12_038
crossref_primary_10_1039_C7CS00418D
crossref_primary_10_1080_10408436_2019_1582003
crossref_primary_10_1002_smll_201803706
crossref_primary_10_1002_smtd_201700156
crossref_primary_10_1016_S1872_2067_20_63708_1
crossref_primary_10_1002_adma_201604253
crossref_primary_10_1002_ange_202010246
crossref_primary_10_1002_ange_202013196
crossref_primary_10_1039_C7NR09620H
crossref_primary_10_1016_j_scitotenv_2018_05_258
crossref_primary_10_1016_j_cej_2018_12_038
crossref_primary_10_1002_adma_201704548
crossref_primary_10_1016_j_mssp_2018_03_039
crossref_primary_10_1002_cssc_201901794
crossref_primary_10_1039_C9FD00110G
crossref_primary_10_1016_j_mattod_2018_01_034
crossref_primary_10_1021_acsnano_7b08691
crossref_primary_10_20964_2019_12_72
crossref_primary_10_1021_acsami_7b04395
crossref_primary_10_1039_C6NR00546B
crossref_primary_10_1039_C6CC03630A
crossref_primary_10_1016_j_jechem_2023_06_024
crossref_primary_10_1016_j_cjche_2018_02_027
crossref_primary_10_1016_j_apcatb_2019_05_003
crossref_primary_10_1002_cnma_202100051
crossref_primary_10_1016_j_nanoen_2017_03_030
crossref_primary_10_2139_ssrn_3979465
crossref_primary_10_1002_aenm_201600437
crossref_primary_10_1021_acs_chemrev_7b00689
crossref_primary_10_1016_j_apcatb_2019_118085
crossref_primary_10_1016_j_electacta_2019_135146
crossref_primary_10_1039_D0TA10549J
crossref_primary_10_1002_admi_201601014
crossref_primary_10_1016_j_matre_2023_100181
crossref_primary_10_1007_s00604_018_3005_1
crossref_primary_10_1021_acs_chemmater_5b04476
crossref_primary_10_1016_j_cej_2021_130067
crossref_primary_10_1002_solr_202000442
crossref_primary_10_1039_C6MH00571C
crossref_primary_10_1039_D0TA05539E
crossref_primary_10_1016_j_cej_2021_134434
crossref_primary_10_1016_j_mseb_2015_12_003
crossref_primary_10_1016_j_apsusc_2017_05_058
crossref_primary_10_1039_C7BM00769H
crossref_primary_10_1016_j_apcatb_2015_10_036
crossref_primary_10_1039_C8TC05711G
crossref_primary_10_1002_er_7335
crossref_primary_10_1039_C6SC03350D
crossref_primary_10_1002_advs_202102376
crossref_primary_10_1039_C8QI01196F
crossref_primary_10_1002_adts_201800180
crossref_primary_10_1021_acs_chemmater_7b01291
crossref_primary_10_1049_mnl_2017_0886
crossref_primary_10_1002_ejic_202100367
crossref_primary_10_1021_acs_nanolett_6b04339
crossref_primary_10_1016_j_nanoen_2020_104689
crossref_primary_10_1021_acsanm_1c02832
crossref_primary_10_1039_D1RA05045A
crossref_primary_10_1021_acssuschemeng_8b04182
crossref_primary_10_1002_asia_201800637
crossref_primary_10_1016_j_apcatb_2018_08_071
crossref_primary_10_1002_aenm_201501974
crossref_primary_10_1002_adma_201602748
crossref_primary_10_1021_acs_inorgchem_2c02440
crossref_primary_10_1016_j_carbon_2016_08_008
crossref_primary_10_1039_C5NR06121K
crossref_primary_10_1142_S2424913021430049
crossref_primary_10_1016_j_ensm_2019_03_021
crossref_primary_10_1016_j_jallcom_2016_09_326
crossref_primary_10_1016_j_ensm_2018_05_026
crossref_primary_10_1039_C5TA08688D
crossref_primary_10_1039_C8SC00605A
crossref_primary_10_1039_C8TC03489C
crossref_primary_10_1111_jace_16382
crossref_primary_10_1007_s40843_016_0114_1
crossref_primary_10_1002_aenm_201701114
crossref_primary_10_1021_acsenergylett_7b01343
crossref_primary_10_1016_j_nanoen_2016_09_015
crossref_primary_10_1002_ange_201501788
crossref_primary_10_1002_smtd_201900055
crossref_primary_10_1021_acsomega_7b00513
crossref_primary_10_1002_ange_201505245
crossref_primary_10_1016_j_apcatb_2015_07_035
crossref_primary_10_1007_s11467_023_1258_6
crossref_primary_10_1021_acsami_9b21157
crossref_primary_10_1002_anie_202010246
crossref_primary_10_1021_acs_chemrev_8b00400
crossref_primary_10_1039_C5NJ01698C
crossref_primary_10_1039_C5RA09063F
crossref_primary_10_1016_j_ijhydene_2022_06_306
crossref_primary_10_1002_anie_202013196
crossref_primary_10_1016_j_cclet_2023_109117
crossref_primary_10_1002_adma_201703828
crossref_primary_10_1039_D0CC05449F
crossref_primary_10_3390_inorganics13020047
crossref_primary_10_1039_C8NR04277B
crossref_primary_10_1002_advs_202101498
crossref_primary_10_1002_ajoc_202200457
crossref_primary_10_1016_j_compscitech_2019_107868
crossref_primary_10_1002_anie_201501788
crossref_primary_10_1016_j_apcatb_2021_120979
crossref_primary_10_1016_j_mssp_2022_106876
crossref_primary_10_1021_jacs_7b07818
crossref_primary_10_1002_ange_201811632
crossref_primary_10_1021_acs_jpclett_1c01393
crossref_primary_10_1016_j_ccr_2024_216058
crossref_primary_10_1038_ncomms14503
crossref_primary_10_1002_smll_201603369
crossref_primary_10_1002_advs_201500424
crossref_primary_10_1016_j_ceramint_2021_02_101
crossref_primary_10_1021_acs_inorgchem_0c03771
crossref_primary_10_1002_smll_201703323
crossref_primary_10_1039_C6QI00435K
crossref_primary_10_1007_s11426_018_9294_9
crossref_primary_10_1016_S1872_2067_18_63140_7
crossref_primary_10_1007_s10854_024_12615_3
crossref_primary_10_1016_j_cej_2023_147219
crossref_primary_10_1016_j_snb_2015_10_100
crossref_primary_10_1039_D4RA00118D
crossref_primary_10_1016_j_nanoen_2017_07_030
crossref_primary_10_1002_aenm_201600025
crossref_primary_10_1002_anie_201811632
crossref_primary_10_1039_C6NR06444B
crossref_primary_10_1039_C6SC00432F
crossref_primary_10_1016_j_enchem_2019_100013
crossref_primary_10_1021_jacs_5b10212
crossref_primary_10_1021_jacs_6b01606
crossref_primary_10_1039_C8TA07687A
crossref_primary_10_1016_j_nanoen_2017_06_005
crossref_primary_10_1186_s12951_024_02319_5
crossref_primary_10_1002_adfm_201910534
crossref_primary_10_1039_C8TC03812K
crossref_primary_10_1016_j_rinp_2024_107953
crossref_primary_10_1016_j_ijhydene_2022_03_106
crossref_primary_10_1021_acsnano_9b06943
crossref_primary_10_1002_anie_201505245
crossref_primary_10_1016_j_apcatb_2021_121046
crossref_primary_10_1039_C6CS00343E
Cites_doi 10.1021/ja402956f
10.1038/nmat3207
10.1039/c2nr32201c
10.1021/nl300901a
10.1021/nl8009044
10.1103/PhysRevLett.102.195505
10.1039/C3QI00050H
10.1021/cm401895x
10.1002/anie.201302891
10.1021/ja308249k
10.1038/nnano.2010.279
10.1021/ja308936b
10.1021/ja808433d
10.1016/j.ssc.2012.04.034
10.1002/anie.201204208
10.1038/ncomms2066
10.1002/anie.201305530
10.1021/ja501866r
10.1007/978-1-4615-5801-9
10.1039/C3SC53303D
10.1002/anie.201204675
10.1007/s12274-010-0022-8
10.1002/adma.201304964
10.1021/ar4002312
10.1002/aenm.201300611
10.1016/S1381-1169(00)00362-9
10.1039/c2cs35387c
10.1103/PhysRevB.65.125407
10.1002/anie.201106004
10.1021/ja400041f
10.1002/anie.201304337
10.1021/ja3046603
10.1002/smll.201303548
10.1021/nl301702r
10.1002/anie.201300285
10.1021/ja3102049
10.1039/c1nr10179j
10.1021/ja207176c
10.1039/C3CS60231A
10.1038/ncomms3899
ContentType Journal Article
Copyright Copyright © 2014 American Chemical Society
Copyright_xml – notice: Copyright © 2014 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1021/ar500164g
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList PubMed

Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-4898
EndPage 12
ExternalDocumentID 25489751
10_1021_ar500164g
a225669343
Genre Journal Article
GroupedDBID -
.K2
02
23M
4.4
53G
55A
5GY
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
RNS
ROL
TWZ
UI2
UPT
VF5
VG9
W1F
WH7
X
YZZ
---
-DZ
-~X
5ZA
6J9
6P2
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
AFXLT
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
ZCA
~02
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-a414t-3abb600bb58ec9f2b55283f43c85e1809d710c090adbd70738cc57a58c000ece3
IEDL.DBID ACS
ISSN 0001-4842
1520-4898
IngestDate Fri Jul 11 11:14:28 EDT 2025
Fri Jul 11 02:49:51 EDT 2025
Thu Apr 03 07:00:41 EDT 2025
Tue Jul 01 04:04:09 EDT 2025
Thu Apr 24 22:55:16 EDT 2025
Thu Aug 27 13:42:39 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a414t-3abb600bb58ec9f2b55283f43c85e1809d710c090adbd70738cc57a58c000ece3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25489751
PQID 1652428095
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_1770353840
proquest_miscellaneous_1652428095
pubmed_primary_25489751
crossref_primary_10_1021_ar500164g
crossref_citationtrail_10_1021_ar500164g
acs_journals_10_1021_ar500164g
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-01-20
PublicationDateYYYYMMDD 2015-01-20
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-20
  day: 20
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Accounts of chemical research
PublicationTitleAlternate Acc. Chem. Res
PublicationYear 2015
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Ropp R. C. (ref2/cit2) 2003
ref3/cit3
Zeng Z. Y. (ref5/cit5) 2012; 51
Zhang X. D. (ref36/cit36) 2013; 135
West A. R. (ref1/cit1) 1999
ref29/cit29
Shahil K. M. F. (ref41/cit41) 2012; 152
Sun Y. F. (ref21/cit21) 2010; 3
Yao T. (ref34/cit34) 2013; 52
Datta S. S. (ref38/cit38) 2009; 9
Sun Y. F. (ref12/cit12) 2013; 52
Sun Y. F. (ref13/cit13) 2012; 51
Xu K. (ref39/cit39) 2013; 52
Zhang X. D. (ref44/cit44) 2013; 52
Sun Y. F. (ref9/cit9) 2012; 3
Sun Y. F. (ref10/cit10) 2013; 4
Lin C. W. (ref37/cit37) 2013; 135
D’Arienzo M. (ref28/cit28) 2013; 25
Radisavljevic B. (ref15/cit15) 2011; 6
Sun Y. F. (ref14/cit14) 2014; 1
Zhang X. D. (ref35/cit35) 2012; 134
Zeng Z. Y. (ref17/cit17) 2011; 50
Lei F. C. (ref31/cit31) 2014; 136
Jin C. H. (ref33/cit33) 2009; 102
Sun Y. F. (ref11/cit11) 2012; 134
Huang X. (ref6/cit6) 2014; 26
Lynch J. (ref23/cit23) 2001
Chen S. (ref42/cit42) 2012; 11
Gordon R. A. (ref24/cit24) 2002; 65
Chen P. Z. (ref40/cit40) 2014; 5
Sun Y. F. (ref20/cit20) 2011; 3
Sun Y. F. (ref18/cit18) 2014; 4
Guan M. L. (ref27/cit27) 2013; 135
Fang H. (ref16/cit16) 2012; 12
Feng J. (ref19/cit19) 2011; 133
Liu X. G. (ref25/cit25) 2009; 131
Huang X. (ref8/cit8) 2013; 42
Nakamura I. (ref30/cit30) 2000; 161
Li H. (ref7/cit7) 2014; 47
ref4/cit4
Xiao C. (ref26/cit26) 2012; 134
Sun Y. F. (ref22/cit22) 2014; 43
Lin Y. (ref43/cit43) 2012; 4
Eckmann A. (ref32/cit32) 2012; 12
References_xml – volume: 135
  start-page: 10411
  year: 2013
  ident: ref27/cit27
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja402956f
– volume: 11
  start-page: 203
  year: 2012
  ident: ref42/cit42
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3207
– volume: 4
  start-page: 6908
  year: 2012
  ident: ref43/cit43
  publication-title: Nanoscale
  doi: 10.1039/c2nr32201c
– volume: 12
  start-page: 3925
  year: 2012
  ident: ref32/cit32
  publication-title: Nano Lett.
  doi: 10.1021/nl300901a
– volume: 9
  start-page: 7
  year: 2009
  ident: ref38/cit38
  publication-title: Nano Lett.
  doi: 10.1021/nl8009044
– volume-title: Physico-chemical Analysis of Industrial Catalysts
  year: 2001
  ident: ref23/cit23
– volume: 102
  start-page: 195505
  year: 2009
  ident: ref33/cit33
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.195505
– volume: 1
  start-page: 58
  year: 2014
  ident: ref14/cit14
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C3QI00050H
– volume: 25
  start-page: 3675
  year: 2013
  ident: ref28/cit28
  publication-title: Chem. Mater.
  doi: 10.1021/cm401895x
– volume-title: Solid State Chemistry
  year: 2003
  ident: ref2/cit2
– volume: 52
  start-page: 7554
  year: 2013
  ident: ref34/cit34
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201302891
– volume: 135
  start-page: 18
  year: 2013
  ident: ref36/cit36
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja308249k
– ident: ref4/cit4
– volume: 6
  start-page: 147
  year: 2011
  ident: ref15/cit15
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.279
– volume: 134
  start-page: 18460
  year: 2012
  ident: ref26/cit26
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja308936b
– volume: 131
  start-page: 3140
  year: 2009
  ident: ref25/cit25
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja808433d
– volume: 152
  start-page: 1331
  year: 2012
  ident: ref41/cit41
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2012.04.034
– volume: 51
  start-page: 9052
  year: 2012
  ident: ref5/cit5
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201204208
– volume: 3
  start-page: 1057
  year: 2012
  ident: ref9/cit9
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2066
– volume: 52
  start-page: 10569
  year: 2013
  ident: ref12/cit12
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201305530
– volume: 136
  start-page: 6826
  year: 2014
  ident: ref31/cit31
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja501866r
– ident: ref3/cit3
  doi: 10.1007/978-1-4615-5801-9
– volume: 5
  start-page: 2251
  year: 2014
  ident: ref40/cit40
  publication-title: Chem. Sci.
  doi: 10.1039/C3SC53303D
– volume: 51
  start-page: 8727
  year: 2012
  ident: ref13/cit13
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201204675
– volume: 3
  start-page: 620
  year: 2010
  ident: ref21/cit21
  publication-title: Nano Res.
  doi: 10.1007/s12274-010-0022-8
– volume: 26
  start-page: 2185
  year: 2014
  ident: ref6/cit6
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201304964
– volume: 47
  start-page: 1067
  year: 2014
  ident: ref7/cit7
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar4002312
– volume: 4
  start-page: 1300611
  year: 2014
  ident: ref18/cit18
  publication-title: Adv. Energy. Mater.
  doi: 10.1002/aenm.201300611
– volume: 161
  start-page: 205
  year: 2000
  ident: ref30/cit30
  publication-title: J. Mol. Catal. A: Chem.
  doi: 10.1016/S1381-1169(00)00362-9
– volume-title: Basic Solid State Chemistry
  year: 1999
  ident: ref1/cit1
– volume: 42
  start-page: 1934
  year: 2013
  ident: ref8/cit8
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c2cs35387c
– volume: 65
  start-page: 125407
  year: 2002
  ident: ref24/cit24
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.65.125407
– volume: 50
  start-page: 11093
  year: 2011
  ident: ref17/cit17
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201106004
– volume: 135
  start-page: 5144
  year: 2013
  ident: ref37/cit37
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja400041f
– volume: 52
  start-page: 10477
  year: 2013
  ident: ref39/cit39
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201304337
– volume: 134
  start-page: 11908
  year: 2012
  ident: ref35/cit35
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3046603
– ident: ref29/cit29
  doi: 10.1002/smll.201303548
– volume: 12
  start-page: 3788
  year: 2012
  ident: ref16/cit16
  publication-title: Nano Lett.
  doi: 10.1021/nl301702r
– volume: 52
  start-page: 4361
  year: 2013
  ident: ref44/cit44
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201300285
– volume: 134
  start-page: 20294
  year: 2012
  ident: ref11/cit11
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3102049
– volume: 3
  start-page: 2609
  year: 2011
  ident: ref20/cit20
  publication-title: Nanoscale
  doi: 10.1039/c1nr10179j
– volume: 133
  start-page: 17832
  year: 2011
  ident: ref19/cit19
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja207176c
– volume: 43
  start-page: 530
  year: 2014
  ident: ref22/cit22
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60231A
– volume: 4
  start-page: 2899
  year: 2013
  ident: ref10/cit10
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3899
SSID ssj0002467
Score 2.5773067
Snippet The ultimate goal of solid state chemistry is to gain a clear correlation between atomic, defect, and electronic structure and intrinsic properties of solid...
CONSPECTUS: The ultimate goal of solid state chemistry is to gain a clear correlation between atomic, defect, and electronic structure and intrinsic properties...
Conspectus The ultimate goal of solid state chemistry is to gain a clear correlation between atomic, defect, and electronic structure and intrinsic properties...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3
SubjectTerms Atomic structure
Correlation
Crystal defects
Electronic structure
Inorganic materials
Nanostructure
Solid state
Two dimensional
Title Ultrathin Two-Dimensional Inorganic Materials: New Opportunities for Solid State Nanochemistry
URI http://dx.doi.org/10.1021/ar500164g
https://www.ncbi.nlm.nih.gov/pubmed/25489751
https://www.proquest.com/docview/1652428095
https://www.proquest.com/docview/1770353840
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT8MwDLZgHODC-zFeCo8Dl8KSJW3KDW0gQAIOMIkTVZKmgJg6tHVC4tfjNOsE4nWs5CqN7dqfFeczwD7PMsGyMAyooVigcJYFMhRxgE8ijWjGm6bstrgOzzv88l7cT8DeLyf4jB6pvih5oB4nYYqFMnIV1knrdhxuGQ89MSbWxVxyVtEHfX7VpR4z-Jp6fsGTZV45m4N2dTvHt5O8HA4LfWjev5M1_vXJ8zA7wpXkxDvCAkzYfBGmW9U4tyV46HQdEe3Tc07u3npB27H6e0YOcpH72U6GXKnCe-QxwehHbl4dOh_mJesqQXhLbnvd55SUCJVgYHbjtvwCy9A5O71rnQej4QqB4pQXQVNpjWBHayGtiTOmhaN5cbaRwjpSL7RUwzTihkp1GmEgkMaISAlpUNPW2OYK1PJebteApBJRpY2VtinlNqaKp5GlIbNR7DqyeB22UfvJ6OcYJOW5N6PJWE11OKgMk5gRNbmbkNH9SXR3LPrq-Th-EtqprJugEtwRiMptb4hLhwIxCe5O_CETYRTEPMAbdVj1rjFeCstpGUeCrv-3pQ2YQWjl-iIxDm1CregP7RbCl0Jvl-77ASIj6AQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVYDnBhX8pSDOLAJRCndhZuqIAKtHBoK3Eish0HKqq0alMh8fWM7bQsYjtGmsTOzGTmjTx5g9AhTVPmpb7vEEmgQKFe6oQ-ixy4YklAUlqRptvi1q-16fU9uy9ocvS_MLCJITxpaA7x39kFyAkfMEMH9TiNZgGEeLrQOqs2J1HXo77lx4TymIbUG7MIfbxVZyA5_JyBfoCVJr1cLto5RWZjpqvk-XiUi2P5-oWz8X87X0ILBcrEZ9YtltGUylbQXHU83G0VPbS7mpb2qZPh1kvPOdcc_5afA19ldtKTxA2eW_88xRAL8V1fY_VRZjhYMYBd3Ox1Owk2eBVDmNbDt-wCa6h9edGq1pxi1ILDKaG5U-FCAPQRgoVKRqknmCZ90ZYKmdIUX2A3V7qRyxORBBAWQilZwFkoQeFKqso6msl6mdpEOAkBY6qIC5UQqiLCaRIo4nsqiHR_Fi2hMmgpLj6VYWxOwT0ST9RUQkdj-8SyICrX8zK634keTET7lp3jO6H9sZFjUII-EOGZ6o1gafAjKL8AZf4iE0BMhKxA3RLasB4yWQqK6zAKGNn665X20Fyt1ajH9avbm200D6BLd0xChNpBM_lgpHYB2OSibDz6DZZx8GU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZT8MwDLY4JOCF-xhnQDzwUli6pAdv02Bi3BJM4okqSVNATN3EOiHx63HSrgLE9VjJbRLbcT4r7meAXZYk3E08z6GKYoLC3MQJPB46-MRjnyaspmy1xaV30mand_yuSBTNvzA4iT5-qW8v8c2u7sVJwTBAD8QLt5RQD6Mwbq7rTLJVb9yUkddlXs6RiSkyC5g7ZBL6-Ko5hVT_8yn0A7S0R0xzBq7KydnKkuf9QSb31dsX3sb_z34Wpgu0Seq5e8zBiE7nYbIxbPK2APftjqGnfXxKye1r1zkyXP85TwdppXnHJ0UuRJb76SHBmEiuegazD1LLxUoQ9JKbbucpJha3EgzXpglXPsAitJvHt40Tp2i54AhGWebUhJQIgaTkgVZh4kpuyF-MxQKuDdUX2q-qqmFVxDL2MTwESnFf8ECh0rXStSUYS7upXgESB4g1dSikjinTIRUs9jX1XO2Hpk6LVWATNRUVW6Yf2dtwl0almiqwN7RRpArCctM3o_Od6E4p2stZOr4T2h4aOkIlmIsRkeruAIf2OCIVXB3_RcbH2IinA6tWYDn3knIoTLKD0Od09a8lbcHE9VEzOm9dnq3BFGIvUziJgWodxrKXgd5AfJPJTevU73zI8ug
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrathin+Two-Dimensional+Inorganic+Materials%3A+New+Opportunities+for+Solid+State+Nanochemistry&rft.jtitle=Accounts+of+chemical+research&rft.au=Sun%2C+Yongfu&rft.au=Gao%2C+Shan&rft.au=Lei%2C+Fengcai&rft.au=Xiao%2C+Chong&rft.date=2015-01-20&rft.issn=0001-4842&rft.eissn=1520-4898&rft.volume=48&rft.issue=1&rft.spage=3&rft.epage=12&rft_id=info:doi/10.1021%2Far500164g&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_ar500164g
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon