Growth of Half-Meter Long Carbon Nanotubes Based on Schulz–Flory Distribution

The Schulz–Flory distribution is a mathematical function that describes the relative ratios of polymers of different length after a polymerization process, based on their relative probabilities of occurrence. Carbon nanotubes (CNTs) are big carbon molecules which have a very high length-to-diameter...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 7; no. 7; pp. 6156 - 6161
Main Authors Zhang, Rufan, Zhang, Yingying, Zhang, Qiang, Xie, Huanhuan, Qian, Weizhong, Wei, Fei
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 23.07.2013
Subjects
Online AccessGet full text
ISSN1936-0851
1936-086X
1936-086X
DOI10.1021/nn401995z

Cover

Loading…
Abstract The Schulz–Flory distribution is a mathematical function that describes the relative ratios of polymers of different length after a polymerization process, based on their relative probabilities of occurrence. Carbon nanotubes (CNTs) are big carbon molecules which have a very high length-to-diameter ratio, somewhat similar to polymer molecules. Large amounts of ultralong CNTs have not been obtained although they are highly desired. Here, we report that the Schulz–Flory distribution can be applied to describe the relative ratios of CNTs of different lengths produced with a floating chemical vapor deposition process, based on catalyst activity/deactivation probability. With the optimized processing parameters, we successfully synthesized 550-mm-long CNTs, for which the catalyst deactivation probability of a single growth step was ultralow. Our finding bridges the Schulz–Flory distribution and the synthesis of one-dimensional nanomaterials for the first time, and sheds new light on the rational design of process toward controlled production of nanotubes/nanowires.
AbstractList The Schulz–Flory distribution is a mathematical function that describes the relative ratios of polymers of different length after a polymerization process, based on their relative probabilities of occurrence. Carbon nanotubes (CNTs) are big carbon molecules which have a very high length-to-diameter ratio, somewhat similar to polymer molecules. Large amounts of ultralong CNTs have not been obtained although they are highly desired. Here, we report that the Schulz–Flory distribution can be applied to describe the relative ratios of CNTs of different lengths produced with a floating chemical vapor deposition process, based on catalyst activity/deactivation probability. With the optimized processing parameters, we successfully synthesized 550-mm-long CNTs, for which the catalyst deactivation probability of a single growth step was ultralow. Our finding bridges the Schulz–Flory distribution and the synthesis of one-dimensional nanomaterials for the first time, and sheds new light on the rational design of process toward controlled production of nanotubes/nanowires.
The Schulz-Flory distribution is a mathematical function that describes the relative ratios of polymers of different length after a polymerization process, based on their relative probabilities of occurrence. Carbon nanotubes (CNTs) are big carbon molecules which have a very high length-to-diameter ratio, somewhat similar to polymer molecules. Large amounts of ultralong CNTs have not been obtained although they are highly desired. Here, we report that the Schulz-Flory distribution can be applied to describe the relative ratios of CNTs of different lengths produced with a floating chemical vapor deposition process, based on catalyst activity/deactivation probability. With the optimized processing parameters, we successfully synthesized 550-mm-long CNTs, for which the catalyst deactivation probability of a single growth step was ultralow. Our finding bridges the Schulz-Flory distribution and the synthesis of one-dimensional nanomaterials for the first time, and sheds new light on the rational design of process toward controlled production of nanotubes/nanowires.The Schulz-Flory distribution is a mathematical function that describes the relative ratios of polymers of different length after a polymerization process, based on their relative probabilities of occurrence. Carbon nanotubes (CNTs) are big carbon molecules which have a very high length-to-diameter ratio, somewhat similar to polymer molecules. Large amounts of ultralong CNTs have not been obtained although they are highly desired. Here, we report that the Schulz-Flory distribution can be applied to describe the relative ratios of CNTs of different lengths produced with a floating chemical vapor deposition process, based on catalyst activity/deactivation probability. With the optimized processing parameters, we successfully synthesized 550-mm-long CNTs, for which the catalyst deactivation probability of a single growth step was ultralow. Our finding bridges the Schulz-Flory distribution and the synthesis of one-dimensional nanomaterials for the first time, and sheds new light on the rational design of process toward controlled production of nanotubes/nanowires.
Author Zhang, Rufan
Zhang, Yingying
Qian, Weizhong
Xie, Huanhuan
Zhang, Qiang
Wei, Fei
AuthorAffiliation Tsinghua University
AuthorAffiliation_xml – name: Tsinghua University
Author_xml – sequence: 1
  givenname: Rufan
  surname: Zhang
  fullname: Zhang, Rufan
– sequence: 2
  givenname: Yingying
  surname: Zhang
  fullname: Zhang, Yingying
  email: yingyingzhang@tsinghua.edu.cn, wf-dce@tsinghua.edu.cn
– sequence: 3
  givenname: Qiang
  surname: Zhang
  fullname: Zhang, Qiang
– sequence: 4
  givenname: Huanhuan
  surname: Xie
  fullname: Xie, Huanhuan
– sequence: 5
  givenname: Weizhong
  surname: Qian
  fullname: Qian, Weizhong
– sequence: 6
  givenname: Fei
  surname: Wei
  fullname: Wei, Fei
  email: yingyingzhang@tsinghua.edu.cn, wf-dce@tsinghua.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23806050$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1KAzEUhYMo1qoLX0BmI-hibDKZzM9S6y9Uu1DBXcgkd-yUaaJJBmlXvoNv6JM4pT8LKbi6l8t3DtxzumhbGw0IHRF8TnBEelrHmOQ5m22hPZLTJMRZ8rq93hnpoK5zY4xZmqXJLupENMMJZngPDW-t-fSjwJTBnajL8AE82GBg9FvQF7YwOngU2vimABdcCgcqaE9PctTUs5-v75va2GlwVTlvq6LxldEHaKcUtYPD5dxHLzfXz_27cDC8ve9fDEIRk9iHlClVFEmOSQrAMsiVjGgky1LQLGEFSXGiVEaVECTGMbAcK1pKQkFGoCIBdB-dLnzfrflowHk-qZyEuhYaTOM4SZMIs5xS8j8ak4gwitO0RY-XaFNMQPF3W02EnfJVXi3QWwDSGucslFxWXswf91ZUNSeYzxvh60Zaxdkfxcp0E3uyYIV0fGwaq9sIN3C_q6-XtA
CitedBy_id crossref_primary_10_1002_smtd_202101333
crossref_primary_10_3390_pharmaceutics11060294
crossref_primary_10_1016_j_apacoust_2017_06_012
crossref_primary_10_1039_C8CE02166J
crossref_primary_10_1038_s41598_021_83275_0
crossref_primary_10_1021_acs_chemrev_0c00395
crossref_primary_10_1002_smll_202102585
crossref_primary_10_1039_C4FD00063C
crossref_primary_10_1016_j_nantod_2024_102248
crossref_primary_10_1021_acsomega_1c01822
crossref_primary_10_1016_j_jcis_2022_06_082
crossref_primary_10_1016_j_carbon_2019_11_061
crossref_primary_10_1002_smsc_202000039
crossref_primary_10_1002_pc_25631
crossref_primary_10_1002_adfm_202212665
crossref_primary_10_1021_acsaelm_1c00025
crossref_primary_10_1016_j_neuint_2021_105049
crossref_primary_10_1063_1_4893449
crossref_primary_10_1002_adfm_202109401
crossref_primary_10_1039_C6TA01717G
crossref_primary_10_1021_acsanm_8b01824
crossref_primary_10_1016_j_jmps_2020_104032
crossref_primary_10_2139_ssrn_3955670
crossref_primary_10_1038_s41524_022_00726_6
crossref_primary_10_1016_j_physa_2019_124054
crossref_primary_10_1142_S0217984921503991
crossref_primary_10_1021_acsanm_9b00941
crossref_primary_10_1039_D2NR03121C
crossref_primary_10_1016_j_carbon_2018_05_052
crossref_primary_10_1021_acs_jpcc_9b11090
crossref_primary_10_1021_acsnano_8b01630
crossref_primary_10_1039_D3RA01745A
crossref_primary_10_1016_j_actaastro_2023_06_047
crossref_primary_10_1109_TCSI_2020_2980074
crossref_primary_10_1039_c3ra43922d
crossref_primary_10_1016_j_carbon_2020_10_066
crossref_primary_10_1021_jacs_4c18769
crossref_primary_10_1002_smll_201703482
crossref_primary_10_1016_j_apsusc_2018_04_025
crossref_primary_10_1016_j_device_2025_100745
crossref_primary_10_1016_j_carbon_2024_118900
crossref_primary_10_1088_1361_6528_acc46c
crossref_primary_10_1002_adma_202414643
crossref_primary_10_1007_s11224_020_01646_1
crossref_primary_10_1108_HFF_01_2024_0060
crossref_primary_10_1016_j_tws_2023_110724
crossref_primary_10_1039_C7NR07971K
crossref_primary_10_1088_0953_2048_27_11_115006
crossref_primary_10_1002_admt_201800324
crossref_primary_10_1002_tcr_202100043
crossref_primary_10_1080_08927022_2020_1834103
crossref_primary_10_1007_s11051_020_05103_2
crossref_primary_10_1007_s12274_019_2560_z
crossref_primary_10_1039_C4RA09957E
crossref_primary_10_1103_PhysRevApplied_6_034014
crossref_primary_10_1002_celc_201900151
crossref_primary_10_3390_nano12193478
crossref_primary_10_1016_j_cplett_2015_02_036
crossref_primary_10_1039_D4NA00437J
crossref_primary_10_1002_advs_202306355
crossref_primary_10_1126_sciadv_abd2358
crossref_primary_10_1039_D3CC03490A
crossref_primary_10_1016_j_carbon_2022_08_022
crossref_primary_10_1002_smll_202205540
crossref_primary_10_1002_adma_202200956
crossref_primary_10_1021_acsnano_1c04972
crossref_primary_10_1016_S1872_5805_24_60878_4
crossref_primary_10_3390_chemosensors6040055
crossref_primary_10_1126_science_aay5220
crossref_primary_10_1016_j_jece_2018_09_055
crossref_primary_10_1016_j_scib_2020_09_025
crossref_primary_10_1007_s12274_016_1043_8
crossref_primary_10_1021_cr5006217
crossref_primary_10_1039_C9NA00209J
crossref_primary_10_1021_acsanm_1c00248
crossref_primary_10_3390_fib10090075
crossref_primary_10_1007_s12274_024_6722_2
crossref_primary_10_1002_adma_202413777
crossref_primary_10_1021_acs_chemrev_8b00128
crossref_primary_10_1155_2021_5840645
crossref_primary_10_1021_acsnano_6b05941
crossref_primary_10_3390_mi16010053
crossref_primary_10_1002_adma_201705844
crossref_primary_10_1002_aelm_202400124
crossref_primary_10_1016_j_actaastro_2022_08_025
crossref_primary_10_1002_adfm_202404682
crossref_primary_10_1021_accountsmr_1c00120
crossref_primary_10_1016_j_matchar_2025_114855
crossref_primary_10_1021_acsnano_0c10300
crossref_primary_10_1038_s41598_023_31573_0
crossref_primary_10_1073_pnas_2107295118
crossref_primary_10_1002_aenm_202303614
crossref_primary_10_1016_j_compositesb_2020_108249
crossref_primary_10_1007_s12274_018_1991_2
crossref_primary_10_1021_acs_jpcc_1c02044
crossref_primary_10_1016_j_pnsc_2018_02_001
crossref_primary_10_1016_j_surfin_2024_105408
crossref_primary_10_1021_acsnano_0c08588
crossref_primary_10_1038_nnano_2016_132
crossref_primary_10_1142_S179398441642006X
crossref_primary_10_1002_adhm_201500864
crossref_primary_10_1039_D0RE00060D
crossref_primary_10_1016_j_mtnano_2021_100120
crossref_primary_10_1007_s41061_017_0102_2
crossref_primary_10_1016_j_cej_2014_10_056
crossref_primary_10_1016_j_conbuildmat_2018_12_141
crossref_primary_10_1063_1_5116109
crossref_primary_10_31857_S268695352260074X
crossref_primary_10_1021_accountsmr_1c00111
crossref_primary_10_3390_molecules24061007
crossref_primary_10_3390_toxics10020050
crossref_primary_10_1002_smll_201902719
crossref_primary_10_1007_s40843_019_9581_4
crossref_primary_10_1016_j_carbon_2020_11_076
crossref_primary_10_1016_j_matpr_2021_12_358
crossref_primary_10_1016_j_actaastro_2023_04_008
crossref_primary_10_3390_aerospace9070376
crossref_primary_10_1038_s41565_018_0141_z
crossref_primary_10_1007_s12274_024_6984_8
crossref_primary_10_1039_C7NR07671A
crossref_primary_10_1063_5_0093261
crossref_primary_10_1016_j_carbon_2015_01_051
crossref_primary_10_1007_s11433_019_1457_2
crossref_primary_10_1016_j_carbon_2015_04_035
crossref_primary_10_1039_C6CC07360C
crossref_primary_10_1002_adma_201900756
crossref_primary_10_1149_2162_8777_ac7c38
crossref_primary_10_3762_bjnano_15_85
crossref_primary_10_1149_2162_8777_ac8dbe
crossref_primary_10_1557_mrs_2017_235
crossref_primary_10_1016_j_jcou_2022_101953
crossref_primary_10_1016_j_smaim_2021_07_006
crossref_primary_10_1002_smll_201700966
crossref_primary_10_1016_j_compositesa_2018_08_010
crossref_primary_10_3390_mi10080539
crossref_primary_10_1016_j_carbon_2023_118309
crossref_primary_10_1016_j_envres_2023_115250
crossref_primary_10_1142_S0217979223503125
crossref_primary_10_1039_C6CY00059B
crossref_primary_10_1002_adma_201400431
crossref_primary_10_1007_s00894_018_3656_1
crossref_primary_10_1038_s41467_019_12519_5
crossref_primary_10_1039_C7RA02669B
crossref_primary_10_1016_j_cej_2024_155508
crossref_primary_10_1002_aenm_201801312
crossref_primary_10_1002_wcms_1251
crossref_primary_10_1002_anie_201509982
crossref_primary_10_1016_j_jiec_2017_02_031
crossref_primary_10_1038_s41467_024_47999_7
crossref_primary_10_1088_1361_6404_aaac9c
crossref_primary_10_1149_1945_7111_ab64bf
crossref_primary_10_38126_JSPG220107
crossref_primary_10_1002_adma_201800805
crossref_primary_10_1016_j_carbon_2015_11_001
crossref_primary_10_1002_masy_202100387
crossref_primary_10_1016_j_carbon_2018_06_019
crossref_primary_10_1016_j_jcis_2016_11_073
crossref_primary_10_1103_PhysRevLett_130_207002
crossref_primary_10_1002_aelm_201900122
crossref_primary_10_1007_s12274_021_3986_7
crossref_primary_10_1007_s13204_017_0592_9
crossref_primary_10_1002_advs_202003078
crossref_primary_10_1186_s40538_016_0070_8
crossref_primary_10_1039_C9NR00117D
crossref_primary_10_1134_S0023158422010086
crossref_primary_10_1109_TAP_2014_2343240
crossref_primary_10_1016_j_compstruct_2020_112580
crossref_primary_10_1016_j_matt_2023_11_013
crossref_primary_10_1002_adma_202402257
crossref_primary_10_1088_2632_959X_abdf2d
crossref_primary_10_1002_jat_4499
crossref_primary_10_1016_j_carbon_2015_05_080
crossref_primary_10_1039_C8NR08738E
crossref_primary_10_1039_D0CS00187B
crossref_primary_10_1016_j_carbon_2017_10_074
crossref_primary_10_1038_s41565_018_0184_1
crossref_primary_10_1002_adfm_202306079
crossref_primary_10_1007_s40820_023_01211_5
crossref_primary_10_2147_IJN_S436867
crossref_primary_10_1007_s12274_020_2898_2
crossref_primary_10_1557_mrs_2017_240
crossref_primary_10_1080_15583724_2016_1169546
crossref_primary_10_1002_adma_202008432
crossref_primary_10_1002_adfm_202421980
crossref_primary_10_1007_s41918_018_0003_2
crossref_primary_10_1016_j_compscitech_2018_06_003
crossref_primary_10_1016_j_nantod_2021_101346
crossref_primary_10_1016_j_carbon_2015_07_037
crossref_primary_10_1016_j_lfs_2020_118059
crossref_primary_10_1016_j_solmat_2022_111631
crossref_primary_10_1016_j_mtnano_2022_100224
crossref_primary_10_1021_acs_nanolett_2c03858
crossref_primary_10_1039_C6NR01379A
crossref_primary_10_1002_adma_201901408
crossref_primary_10_1039_C7CS00104E
crossref_primary_10_1063_5_0030210
crossref_primary_10_1002_chir_23303
crossref_primary_10_1016_j_apsusc_2015_09_165
crossref_primary_10_1016_j_carbon_2024_118888
crossref_primary_10_1016_j_mtla_2022_101376
crossref_primary_10_1149_1945_7111_ab6bc4
crossref_primary_10_1007_s11426_018_9307_y
crossref_primary_10_1002_anbr_202000092
crossref_primary_10_1016_j_optmat_2019_109295
crossref_primary_10_1016_j_cej_2024_153405
crossref_primary_10_1021_acs_nanolett_9b01888
crossref_primary_10_1038_s41578_023_00573_x
crossref_primary_10_1002_adma_201803368
crossref_primary_10_1088_2053_1591_aac41a
crossref_primary_10_1002_jssc_202201065
crossref_primary_10_3390_polym15061567
crossref_primary_10_1021_acs_energyfuels_2c02585
crossref_primary_10_1021_acs_accounts_6b00430
crossref_primary_10_1002_aenm_201600278
crossref_primary_10_1126_sciadv_add4627
crossref_primary_10_1016_j_matpr_2021_10_002
crossref_primary_10_1039_C5NR05547D
crossref_primary_10_1039_C4FD90039A
crossref_primary_10_1002_pat_6299
crossref_primary_10_1016_j_physe_2016_09_016
crossref_primary_10_1002_advs_202205025
crossref_primary_10_1016_j_ab_2024_115582
crossref_primary_10_1063_5_0060797
crossref_primary_10_1515_revce_2018_0021
crossref_primary_10_1039_D1TA07821F
crossref_primary_10_1021_acs_nanolett_7b02967
crossref_primary_10_1021_cr5003563
crossref_primary_10_1088_1361_6641_aa89ce
crossref_primary_10_1021_acscatal_6b03518
crossref_primary_10_1021_acs_chemmater_0c04692
crossref_primary_10_1134_S001250082360013X
crossref_primary_10_1002_ange_201509982
crossref_primary_10_1002_adma_201800680
crossref_primary_10_1039_C4TC02317J
crossref_primary_10_35848_1347_4065_ad95d0
crossref_primary_10_1139_cjc_2019_0244
crossref_primary_10_1080_02603594_2014_994610
crossref_primary_10_1126_sciadv_1601572
crossref_primary_10_1039_C4CC04434G
crossref_primary_10_1039_C9TC04485J
crossref_primary_10_1088_2515_7639_ab9317
crossref_primary_10_1021_acsnano_4c15449
Cites_doi 10.1016/0165-2370(93)00772-F
10.1126/science.287.5453.637
10.1088/0957-4484/20/34/345604
10.1002/ange.200460356
10.1002/adma.201100344
10.1002/adma.200902746
10.1021/om049313j
10.1016/0165-2370(93)80062-5
10.1021/nl049691d
10.1021/nl803496s
10.1021/nl901260b
10.1038/nnano.2008.211
10.1021/nl070980m
10.1021/ja054454d
10.1038/nmat1865
10.1021/jp0711500
10.1021/ja01301a016
10.1073/pnas.0811946106
10.3390/ma3042725
10.1021/cm903866z
10.1021/om049168+
10.1038/nmat1216
10.1021/jp901640d
10.1021/nl901380u
10.1002/adma.200904366
10.1021/jp103731p
10.1021/jp0012404
10.1016/S0094-5765(00)00111-9
10.1126/science.1182977
ContentType Journal Article
Copyright Copyright © 2013 American Chemical Society
Copyright_xml – notice: Copyright © 2013 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1021/nn401995z
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 6161
ExternalDocumentID 23806050
10_1021_nn401995z
i68451988
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
23M
4.4
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
LG6
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
5VS
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-a414t-35ddbb69017ee58e9dc232cffa3865b1706dd83daa1404e590d3fc13ec2ed2ae3
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Fri Jul 11 05:50:28 EDT 2025
Fri Jul 11 09:36:14 EDT 2025
Mon Jul 21 05:49:59 EDT 2025
Tue Jul 01 01:33:33 EDT 2025
Thu Apr 24 23:00:01 EDT 2025
Thu Aug 27 13:41:56 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords catalyst activity
ultralong
carbon nanotubes
chemical vapor deposition
Schulz−Flory distribution
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a414t-35ddbb69017ee58e9dc232cffa3865b1706dd83daa1404e590d3fc13ec2ed2ae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 23806050
PQID 1412153077
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_1762059331
proquest_miscellaneous_1412153077
pubmed_primary_23806050
crossref_citationtrail_10_1021_nn401995z
crossref_primary_10_1021_nn401995z
acs_journals_10_1021_nn401995z
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-07-23
PublicationDateYYYYMMDD 2013-07-23
PublicationDate_xml – month: 07
  year: 2013
  text: 2013-07-23
  day: 23
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2013
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Hong B. H. (ref20/cit20) 2005; 127
Li Y. (ref29/cit29) 2010; 22
McGuinness D. S. (ref4/cit4) 2005; 24
Peng B. (ref10/cit10) 2008; 3
Liu H. P. (ref23/cit23) 2009; 20
Ding L. (ref31/cit31) 2009; 9
Wang X. S. (ref13/cit13) 2009; 9
Morin S. A. (ref28/cit28) 2010; 328
Zheng L. X. (ref22/cit22) 2009; 113
Zheng L. (ref19/cit19) 2004; 3
Aravind R. (ref6/cit6) 1994; 28
Liu Y. (ref15/cit15) 2009
Yakobson B. I. (ref25/cit25) 2009; 106
Flory P. J. (ref2/cit2) 1953; 1
Yao Y. (ref18/cit18) 2007; 6
Marchand M. (ref26/cit26) 2009; 9
Bianchini C. (ref3/cit3) 2004; 23
Jin Z. (ref16/cit16) 2007; 7
Zhang X. (ref5/cit5) 2005; 5
Peng B. H. (ref14/cit14) 2010; 114
Wen Q. (ref17/cit17) 2010; 22
Edwards B. C. (ref11/cit11) 2000; 47
Yu M. F. (ref9/cit9) 2000; 287
Huang S. M. (ref24/cit24) 2004; 4
Ismach A. (ref32/cit32) 2004; 116
Zhang R. (ref8/cit8) 2011; 23
Gupta S. K. (ref7/cit7) 1993; 26
Su M. (ref30/cit30) 2000; 104
Flory P. J. (ref1/cit1) 1936; 58
Wijeratne S. S. (ref27/cit27) 2010; 3
Wen Q. (ref12/cit12) 2010; 22
Reina A. (ref21/cit21) 2007; 111
ACS Nano. 2014 Mar 25;8(3):3097
References_xml – volume: 28
  start-page: 255
  year: 1994
  ident: ref6/cit6
  publication-title: J. Anal. Appl. Pyrol.
  doi: 10.1016/0165-2370(93)00772-F
– volume: 287
  start-page: 637
  year: 2000
  ident: ref9/cit9
  publication-title: Science
  doi: 10.1126/science.287.5453.637
– volume: 20
  start-page: 345604
  year: 2009
  ident: ref23/cit23
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/20/34/345604
– volume: 116
  start-page: 6266
  year: 2004
  ident: ref32/cit32
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.200460356
– volume: 23
  start-page: 3387
  year: 2011
  ident: ref8/cit8
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201100344
– volume: 22
  start-page: 1867
  year: 2010
  ident: ref12/cit12
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200902746
– volume: 23
  start-page: 6087
  year: 2004
  ident: ref3/cit3
  publication-title: Organometallics
  doi: 10.1021/om049313j
– volume: 26
  start-page: 131
  year: 1993
  ident: ref7/cit7
  publication-title: J. Anal. Appl. Pyrol.
  doi: 10.1016/0165-2370(93)80062-5
– volume: 4
  start-page: 1025
  year: 2004
  ident: ref24/cit24
  publication-title: Nano Lett.
  doi: 10.1021/nl049691d
– volume: 9
  start-page: 800
  year: 2009
  ident: ref31/cit31
  publication-title: Nano Lett.
  doi: 10.1021/nl803496s
– volume: 5
  start-page: 725
  year: 2005
  ident: ref5/cit5
  publication-title: Acta Polym. Sin.
– volume: 9
  start-page: 3137
  year: 2009
  ident: ref13/cit13
  publication-title: Nano Lett.
  doi: 10.1021/nl901260b
– volume: 3
  start-page: 626
  year: 2008
  ident: ref10/cit10
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2008.211
– volume: 7
  start-page: 2073
  year: 2007
  ident: ref16/cit16
  publication-title: Nano Lett.
  doi: 10.1021/nl070980m
– volume: 127
  start-page: 15336
  year: 2005
  ident: ref20/cit20
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja054454d
– volume: 6
  start-page: 283
  year: 2007
  ident: ref18/cit18
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1865
– volume: 111
  start-page: 7292
  year: 2007
  ident: ref21/cit21
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp0711500
– start-page: 20
  year: 2009
  ident: ref15/cit15
  publication-title: Nanotechnology
– volume: 58
  start-page: 1877
  year: 1936
  ident: ref1/cit1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01301a016
– volume: 106
  start-page: 2506
  year: 2009
  ident: ref25/cit25
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0811946106
– volume: 3
  start-page: 2725
  year: 2010
  ident: ref27/cit27
  publication-title: Materials
  doi: 10.3390/ma3042725
– volume: 22
  start-page: 1294
  year: 2010
  ident: ref17/cit17
  publication-title: Chem. Mater.
  doi: 10.1021/cm903866z
– volume: 24
  start-page: 552
  year: 2005
  ident: ref4/cit4
  publication-title: Organometallics
  doi: 10.1021/om049168+
– volume: 1
  volume-title: Principles of Polymer Chemistry
  year: 1953
  ident: ref2/cit2
– volume: 3
  start-page: 673
  year: 2004
  ident: ref19/cit19
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1216
– volume: 113
  start-page: 10896
  year: 2009
  ident: ref22/cit22
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp901640d
– volume: 9
  start-page: 2961
  year: 2009
  ident: ref26/cit26
  publication-title: Nano Lett.
  doi: 10.1021/nl901380u
– volume: 22
  start-page: 1508
  year: 2010
  ident: ref29/cit29
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200904366
– volume: 114
  start-page: 12960
  year: 2010
  ident: ref14/cit14
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp103731p
– volume: 104
  start-page: 6505
  year: 2000
  ident: ref30/cit30
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0012404
– volume: 47
  start-page: 735
  year: 2000
  ident: ref11/cit11
  publication-title: Acta Astron.
  doi: 10.1016/S0094-5765(00)00111-9
– volume: 328
  start-page: 476
  year: 2010
  ident: ref28/cit28
  publication-title: Science
  doi: 10.1126/science.1182977
– reference: - ACS Nano. 2014 Mar 25;8(3):3097
SSID ssj0057876
Score 2.5482218
Snippet The Schulz–Flory distribution is a mathematical function that describes the relative ratios of polymers of different length after a polymerization process,...
The Schulz-Flory distribution is a mathematical function that describes the relative ratios of polymers of different length after a polymerization process,...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6156
SubjectTerms Carbon
Carbon nanotubes
Catalysts
Computer Simulation
Crystallization - methods
Deactivation
Functions (mathematics)
Macromolecular Substances - chemistry
Materials Testing
Mathematical analysis
Models, Chemical
Models, Statistical
Molecular Conformation
Nanomaterials
Nanotubes, Carbon - chemistry
Nanotubes, Carbon - ultrastructure
Nanowires
Particle Size
Polymers
Surface Properties
Title Growth of Half-Meter Long Carbon Nanotubes Based on Schulz–Flory Distribution
URI http://dx.doi.org/10.1021/nn401995z
https://www.ncbi.nlm.nih.gov/pubmed/23806050
https://www.proquest.com/docview/1412153077
https://www.proquest.com/docview/1762059331
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTsMwEB2xXODAvpRNZjlwMcRxnCZHKJQKsRwAiVvkxDaVqBJEkwM98Q_8IV_CuEkqENs1msjb2PNGY78HsMecMPCECCiPA596jIVUCuFTaZmgHWmaUtmHwpdXfufOO78X92Ow-0sF32WHaYopQBiKwThMuj7Ca4t_Wjf1cWs9zi9Lx5gaI36o6YM-_2pDT9L_Gnp-wZPDuNKehZP6dU55neTxoMjjg2Twnazxry7PwUyFK8lR6QjzMKbTBZj-xDa4CNdnmHLnXZIZ0pE9Qy_tTRhykaUPpCWf4ywleNRmeRHrPjnG4KYIfrpJukVv8P761sbE_oWcWJ7dSiJrCe7ap7etDq30FKj0mJdTLpSKY6tA1dRaBDpUCeKpxBhphT9jS6SjVMCVlJZzR4vQUdwkjOvE1cqVmi_DRJqlehVIYHDiPY7ZoO96gVQ27AvDMNKFoWLMNGALJzyq9kM_Gpa6XRaNZqYB-_VaREnFRm5FMXo_me6MTJ9KCo6fjLbrBY1wg9iqh0x1VmDTniXQwKOs-YcNDsNqG3LWgJXSG0ZNIaZxMOdz1v4b0jpMuUOtjCZ1-QZM5M-F3kTEksdbQ4_9ACuJ5F0
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwELUKPQAHaIHClpYaxIGLIY7jbHKk2y5b2IUDIHGLnNguEqsEkeTAnvgP_Yf8EmaS7PIhPnqNJrFjjz1vNPZ7hGxxJww8KQMm4sBnHuchU1L6TCETtKNsW2m8KDw48ntn3sG5PG9ocvAuDHQihy_lVRH_gV2A76YpZAJhKEdT5COAEBeP7-11Tsa7LjqeX1eQIUMGGDFmEXr8KkagJH8agV6BlVV46S7UOkVVx6pTJZc7ZRHvJKNnnI3_1_NPZL5BmXSvdovP5INJF8ncI-7BJXK8Dwl4cUEzS3tqaNkAz8XQfpb-pR11HWcphY03K8rY5PQnhDpN4dFJclEOR3e3_7qQ5t_QX8i62whmLZOz7u_TTo816gpMedwrmJBaxzHqUbWNkYEJdQLoKrFWoQxojLQ6WgdCK4UMPEaGjhY24cIkrtGuMuILmU6z1KwSGlgYf09Abui7XqA0ggBpOcS9MNSc2xZZh4GJmtWRR1Xh2-XRZGRaZHs8JVHScJOjRMbwJdPNielVTcjxktHGeF4jWC5YA1GpyUpo2kM6DdjY2m_YwG-g0qHgLbJSO8WkKUA4DmSAztf3fukHmemdDvpR_8_R4RqZdSsVjTZzxTcyXVyX5jtgmSJer5z4HjT07L4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4VKlVwgNIHLE-36qEXQxzH2eQIS5el5VGJInGLnNguEqsEkeTAnvgP_Yf9JcxksytaQcs1msSOPfZ8n8b-BuCT8OIoUCriMo1CHggRc61UyDUpQXvadbWhi8LHJ-HgPPh6oS5aokh3YbATJX6pbJL4tKqvjWsVBsROniMbiGM1moGXlK6jI3y7vbPJzkvOF46zyMiSEUpMlIQevkpRKCv_jEJPQMsmxPQX4XTaueZkydV2XaXb2egv3cbn9_41LLRok-2O3WMJXtj8Dcw_0CB8C6cHSMSrS1Y4NtBDx4_pfAw7KvKfrKdv0iJnuAEXVZ3aku1hyDMMH51ll_Vw9PvuVx_p_i3bJ_XdtnDWOzjvf_nRG_C2ygLXgQgqLpUxaUp1qbrWqsjGJkOUlTmnqRxoSvI6xkTSaE1KPFbFnpEuE9JmvjW-tvI9zOZFbleARQ7nIJDIEUM_iLQhMKCcwPgXx0YI14FNHJykXSVl0iTAfZFMR6YDnyfTkmStRjmVyhg-Zvpxano9FuZ4zOjDZG4TXDaUC9G5LWpsOiBZDdzguv-wwd-giodSdGB57BjTphDpeMgEvdX__dIWvPq-30-ODk--rcGc3xTT6HJfrsNsdVPbDYQ0VbrZ-PE9_lfvQQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Growth+of+Half-Meter+Long+Carbon+Nanotubes+Based+on+Schulz%E2%80%93Flory+Distribution&rft.jtitle=ACS+nano&rft.au=Zhang%2C+Rufan&rft.au=Zhang%2C+Yingying&rft.au=Zhang%2C+Qiang&rft.au=Xie%2C+Huanhuan&rft.date=2013-07-23&rft.pub=American+Chemical+Society&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=7&rft.issue=7&rft.spage=6156&rft.epage=6161&rft_id=info:doi/10.1021%2Fnn401995z&rft.externalDocID=i68451988
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon