Growth of Half-Meter Long Carbon Nanotubes Based on Schulz–Flory Distribution
The Schulz–Flory distribution is a mathematical function that describes the relative ratios of polymers of different length after a polymerization process, based on their relative probabilities of occurrence. Carbon nanotubes (CNTs) are big carbon molecules which have a very high length-to-diameter...
Saved in:
Published in | ACS nano Vol. 7; no. 7; pp. 6156 - 6161 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
23.07.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 1936-0851 1936-086X 1936-086X |
DOI | 10.1021/nn401995z |
Cover
Loading…
Abstract | The Schulz–Flory distribution is a mathematical function that describes the relative ratios of polymers of different length after a polymerization process, based on their relative probabilities of occurrence. Carbon nanotubes (CNTs) are big carbon molecules which have a very high length-to-diameter ratio, somewhat similar to polymer molecules. Large amounts of ultralong CNTs have not been obtained although they are highly desired. Here, we report that the Schulz–Flory distribution can be applied to describe the relative ratios of CNTs of different lengths produced with a floating chemical vapor deposition process, based on catalyst activity/deactivation probability. With the optimized processing parameters, we successfully synthesized 550-mm-long CNTs, for which the catalyst deactivation probability of a single growth step was ultralow. Our finding bridges the Schulz–Flory distribution and the synthesis of one-dimensional nanomaterials for the first time, and sheds new light on the rational design of process toward controlled production of nanotubes/nanowires. |
---|---|
AbstractList | The Schulz–Flory distribution is a mathematical function that describes the relative ratios of polymers of different length after a polymerization process, based on their relative probabilities of occurrence. Carbon nanotubes (CNTs) are big carbon molecules which have a very high length-to-diameter ratio, somewhat similar to polymer molecules. Large amounts of ultralong CNTs have not been obtained although they are highly desired. Here, we report that the Schulz–Flory distribution can be applied to describe the relative ratios of CNTs of different lengths produced with a floating chemical vapor deposition process, based on catalyst activity/deactivation probability. With the optimized processing parameters, we successfully synthesized 550-mm-long CNTs, for which the catalyst deactivation probability of a single growth step was ultralow. Our finding bridges the Schulz–Flory distribution and the synthesis of one-dimensional nanomaterials for the first time, and sheds new light on the rational design of process toward controlled production of nanotubes/nanowires. The Schulz-Flory distribution is a mathematical function that describes the relative ratios of polymers of different length after a polymerization process, based on their relative probabilities of occurrence. Carbon nanotubes (CNTs) are big carbon molecules which have a very high length-to-diameter ratio, somewhat similar to polymer molecules. Large amounts of ultralong CNTs have not been obtained although they are highly desired. Here, we report that the Schulz-Flory distribution can be applied to describe the relative ratios of CNTs of different lengths produced with a floating chemical vapor deposition process, based on catalyst activity/deactivation probability. With the optimized processing parameters, we successfully synthesized 550-mm-long CNTs, for which the catalyst deactivation probability of a single growth step was ultralow. Our finding bridges the Schulz-Flory distribution and the synthesis of one-dimensional nanomaterials for the first time, and sheds new light on the rational design of process toward controlled production of nanotubes/nanowires.The Schulz-Flory distribution is a mathematical function that describes the relative ratios of polymers of different length after a polymerization process, based on their relative probabilities of occurrence. Carbon nanotubes (CNTs) are big carbon molecules which have a very high length-to-diameter ratio, somewhat similar to polymer molecules. Large amounts of ultralong CNTs have not been obtained although they are highly desired. Here, we report that the Schulz-Flory distribution can be applied to describe the relative ratios of CNTs of different lengths produced with a floating chemical vapor deposition process, based on catalyst activity/deactivation probability. With the optimized processing parameters, we successfully synthesized 550-mm-long CNTs, for which the catalyst deactivation probability of a single growth step was ultralow. Our finding bridges the Schulz-Flory distribution and the synthesis of one-dimensional nanomaterials for the first time, and sheds new light on the rational design of process toward controlled production of nanotubes/nanowires. |
Author | Zhang, Rufan Zhang, Yingying Qian, Weizhong Xie, Huanhuan Zhang, Qiang Wei, Fei |
AuthorAffiliation | Tsinghua University |
AuthorAffiliation_xml | – name: Tsinghua University |
Author_xml | – sequence: 1 givenname: Rufan surname: Zhang fullname: Zhang, Rufan – sequence: 2 givenname: Yingying surname: Zhang fullname: Zhang, Yingying email: yingyingzhang@tsinghua.edu.cn, wf-dce@tsinghua.edu.cn – sequence: 3 givenname: Qiang surname: Zhang fullname: Zhang, Qiang – sequence: 4 givenname: Huanhuan surname: Xie fullname: Xie, Huanhuan – sequence: 5 givenname: Weizhong surname: Qian fullname: Qian, Weizhong – sequence: 6 givenname: Fei surname: Wei fullname: Wei, Fei email: yingyingzhang@tsinghua.edu.cn, wf-dce@tsinghua.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23806050$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1KAzEUhYMo1qoLX0BmI-hibDKZzM9S6y9Uu1DBXcgkd-yUaaJJBmlXvoNv6JM4pT8LKbi6l8t3DtxzumhbGw0IHRF8TnBEelrHmOQ5m22hPZLTJMRZ8rq93hnpoK5zY4xZmqXJLupENMMJZngPDW-t-fSjwJTBnajL8AE82GBg9FvQF7YwOngU2vimABdcCgcqaE9PctTUs5-v75va2GlwVTlvq6LxldEHaKcUtYPD5dxHLzfXz_27cDC8ve9fDEIRk9iHlClVFEmOSQrAMsiVjGgky1LQLGEFSXGiVEaVECTGMbAcK1pKQkFGoCIBdB-dLnzfrflowHk-qZyEuhYaTOM4SZMIs5xS8j8ak4gwitO0RY-XaFNMQPF3W02EnfJVXi3QWwDSGucslFxWXswf91ZUNSeYzxvh60Zaxdkfxcp0E3uyYIV0fGwaq9sIN3C_q6-XtA |
CitedBy_id | crossref_primary_10_1002_smtd_202101333 crossref_primary_10_3390_pharmaceutics11060294 crossref_primary_10_1016_j_apacoust_2017_06_012 crossref_primary_10_1039_C8CE02166J crossref_primary_10_1038_s41598_021_83275_0 crossref_primary_10_1021_acs_chemrev_0c00395 crossref_primary_10_1002_smll_202102585 crossref_primary_10_1039_C4FD00063C crossref_primary_10_1016_j_nantod_2024_102248 crossref_primary_10_1021_acsomega_1c01822 crossref_primary_10_1016_j_jcis_2022_06_082 crossref_primary_10_1016_j_carbon_2019_11_061 crossref_primary_10_1002_smsc_202000039 crossref_primary_10_1002_pc_25631 crossref_primary_10_1002_adfm_202212665 crossref_primary_10_1021_acsaelm_1c00025 crossref_primary_10_1016_j_neuint_2021_105049 crossref_primary_10_1063_1_4893449 crossref_primary_10_1002_adfm_202109401 crossref_primary_10_1039_C6TA01717G crossref_primary_10_1021_acsanm_8b01824 crossref_primary_10_1016_j_jmps_2020_104032 crossref_primary_10_2139_ssrn_3955670 crossref_primary_10_1038_s41524_022_00726_6 crossref_primary_10_1016_j_physa_2019_124054 crossref_primary_10_1142_S0217984921503991 crossref_primary_10_1021_acsanm_9b00941 crossref_primary_10_1039_D2NR03121C crossref_primary_10_1016_j_carbon_2018_05_052 crossref_primary_10_1021_acs_jpcc_9b11090 crossref_primary_10_1021_acsnano_8b01630 crossref_primary_10_1039_D3RA01745A crossref_primary_10_1016_j_actaastro_2023_06_047 crossref_primary_10_1109_TCSI_2020_2980074 crossref_primary_10_1039_c3ra43922d crossref_primary_10_1016_j_carbon_2020_10_066 crossref_primary_10_1021_jacs_4c18769 crossref_primary_10_1002_smll_201703482 crossref_primary_10_1016_j_apsusc_2018_04_025 crossref_primary_10_1016_j_device_2025_100745 crossref_primary_10_1016_j_carbon_2024_118900 crossref_primary_10_1088_1361_6528_acc46c crossref_primary_10_1002_adma_202414643 crossref_primary_10_1007_s11224_020_01646_1 crossref_primary_10_1108_HFF_01_2024_0060 crossref_primary_10_1016_j_tws_2023_110724 crossref_primary_10_1039_C7NR07971K crossref_primary_10_1088_0953_2048_27_11_115006 crossref_primary_10_1002_admt_201800324 crossref_primary_10_1002_tcr_202100043 crossref_primary_10_1080_08927022_2020_1834103 crossref_primary_10_1007_s11051_020_05103_2 crossref_primary_10_1007_s12274_019_2560_z crossref_primary_10_1039_C4RA09957E crossref_primary_10_1103_PhysRevApplied_6_034014 crossref_primary_10_1002_celc_201900151 crossref_primary_10_3390_nano12193478 crossref_primary_10_1016_j_cplett_2015_02_036 crossref_primary_10_1039_D4NA00437J crossref_primary_10_1002_advs_202306355 crossref_primary_10_1126_sciadv_abd2358 crossref_primary_10_1039_D3CC03490A crossref_primary_10_1016_j_carbon_2022_08_022 crossref_primary_10_1002_smll_202205540 crossref_primary_10_1002_adma_202200956 crossref_primary_10_1021_acsnano_1c04972 crossref_primary_10_1016_S1872_5805_24_60878_4 crossref_primary_10_3390_chemosensors6040055 crossref_primary_10_1126_science_aay5220 crossref_primary_10_1016_j_jece_2018_09_055 crossref_primary_10_1016_j_scib_2020_09_025 crossref_primary_10_1007_s12274_016_1043_8 crossref_primary_10_1021_cr5006217 crossref_primary_10_1039_C9NA00209J crossref_primary_10_1021_acsanm_1c00248 crossref_primary_10_3390_fib10090075 crossref_primary_10_1007_s12274_024_6722_2 crossref_primary_10_1002_adma_202413777 crossref_primary_10_1021_acs_chemrev_8b00128 crossref_primary_10_1155_2021_5840645 crossref_primary_10_1021_acsnano_6b05941 crossref_primary_10_3390_mi16010053 crossref_primary_10_1002_adma_201705844 crossref_primary_10_1002_aelm_202400124 crossref_primary_10_1016_j_actaastro_2022_08_025 crossref_primary_10_1002_adfm_202404682 crossref_primary_10_1021_accountsmr_1c00120 crossref_primary_10_1016_j_matchar_2025_114855 crossref_primary_10_1021_acsnano_0c10300 crossref_primary_10_1038_s41598_023_31573_0 crossref_primary_10_1073_pnas_2107295118 crossref_primary_10_1002_aenm_202303614 crossref_primary_10_1016_j_compositesb_2020_108249 crossref_primary_10_1007_s12274_018_1991_2 crossref_primary_10_1021_acs_jpcc_1c02044 crossref_primary_10_1016_j_pnsc_2018_02_001 crossref_primary_10_1016_j_surfin_2024_105408 crossref_primary_10_1021_acsnano_0c08588 crossref_primary_10_1038_nnano_2016_132 crossref_primary_10_1142_S179398441642006X crossref_primary_10_1002_adhm_201500864 crossref_primary_10_1039_D0RE00060D crossref_primary_10_1016_j_mtnano_2021_100120 crossref_primary_10_1007_s41061_017_0102_2 crossref_primary_10_1016_j_cej_2014_10_056 crossref_primary_10_1016_j_conbuildmat_2018_12_141 crossref_primary_10_1063_1_5116109 crossref_primary_10_31857_S268695352260074X crossref_primary_10_1021_accountsmr_1c00111 crossref_primary_10_3390_molecules24061007 crossref_primary_10_3390_toxics10020050 crossref_primary_10_1002_smll_201902719 crossref_primary_10_1007_s40843_019_9581_4 crossref_primary_10_1016_j_carbon_2020_11_076 crossref_primary_10_1016_j_matpr_2021_12_358 crossref_primary_10_1016_j_actaastro_2023_04_008 crossref_primary_10_3390_aerospace9070376 crossref_primary_10_1038_s41565_018_0141_z crossref_primary_10_1007_s12274_024_6984_8 crossref_primary_10_1039_C7NR07671A crossref_primary_10_1063_5_0093261 crossref_primary_10_1016_j_carbon_2015_01_051 crossref_primary_10_1007_s11433_019_1457_2 crossref_primary_10_1016_j_carbon_2015_04_035 crossref_primary_10_1039_C6CC07360C crossref_primary_10_1002_adma_201900756 crossref_primary_10_1149_2162_8777_ac7c38 crossref_primary_10_3762_bjnano_15_85 crossref_primary_10_1149_2162_8777_ac8dbe crossref_primary_10_1557_mrs_2017_235 crossref_primary_10_1016_j_jcou_2022_101953 crossref_primary_10_1016_j_smaim_2021_07_006 crossref_primary_10_1002_smll_201700966 crossref_primary_10_1016_j_compositesa_2018_08_010 crossref_primary_10_3390_mi10080539 crossref_primary_10_1016_j_carbon_2023_118309 crossref_primary_10_1016_j_envres_2023_115250 crossref_primary_10_1142_S0217979223503125 crossref_primary_10_1039_C6CY00059B crossref_primary_10_1002_adma_201400431 crossref_primary_10_1007_s00894_018_3656_1 crossref_primary_10_1038_s41467_019_12519_5 crossref_primary_10_1039_C7RA02669B crossref_primary_10_1016_j_cej_2024_155508 crossref_primary_10_1002_aenm_201801312 crossref_primary_10_1002_wcms_1251 crossref_primary_10_1002_anie_201509982 crossref_primary_10_1016_j_jiec_2017_02_031 crossref_primary_10_1038_s41467_024_47999_7 crossref_primary_10_1088_1361_6404_aaac9c crossref_primary_10_1149_1945_7111_ab64bf crossref_primary_10_38126_JSPG220107 crossref_primary_10_1002_adma_201800805 crossref_primary_10_1016_j_carbon_2015_11_001 crossref_primary_10_1002_masy_202100387 crossref_primary_10_1016_j_carbon_2018_06_019 crossref_primary_10_1016_j_jcis_2016_11_073 crossref_primary_10_1103_PhysRevLett_130_207002 crossref_primary_10_1002_aelm_201900122 crossref_primary_10_1007_s12274_021_3986_7 crossref_primary_10_1007_s13204_017_0592_9 crossref_primary_10_1002_advs_202003078 crossref_primary_10_1186_s40538_016_0070_8 crossref_primary_10_1039_C9NR00117D crossref_primary_10_1134_S0023158422010086 crossref_primary_10_1109_TAP_2014_2343240 crossref_primary_10_1016_j_compstruct_2020_112580 crossref_primary_10_1016_j_matt_2023_11_013 crossref_primary_10_1002_adma_202402257 crossref_primary_10_1088_2632_959X_abdf2d crossref_primary_10_1002_jat_4499 crossref_primary_10_1016_j_carbon_2015_05_080 crossref_primary_10_1039_C8NR08738E crossref_primary_10_1039_D0CS00187B crossref_primary_10_1016_j_carbon_2017_10_074 crossref_primary_10_1038_s41565_018_0184_1 crossref_primary_10_1002_adfm_202306079 crossref_primary_10_1007_s40820_023_01211_5 crossref_primary_10_2147_IJN_S436867 crossref_primary_10_1007_s12274_020_2898_2 crossref_primary_10_1557_mrs_2017_240 crossref_primary_10_1080_15583724_2016_1169546 crossref_primary_10_1002_adma_202008432 crossref_primary_10_1002_adfm_202421980 crossref_primary_10_1007_s41918_018_0003_2 crossref_primary_10_1016_j_compscitech_2018_06_003 crossref_primary_10_1016_j_nantod_2021_101346 crossref_primary_10_1016_j_carbon_2015_07_037 crossref_primary_10_1016_j_lfs_2020_118059 crossref_primary_10_1016_j_solmat_2022_111631 crossref_primary_10_1016_j_mtnano_2022_100224 crossref_primary_10_1021_acs_nanolett_2c03858 crossref_primary_10_1039_C6NR01379A crossref_primary_10_1002_adma_201901408 crossref_primary_10_1039_C7CS00104E crossref_primary_10_1063_5_0030210 crossref_primary_10_1002_chir_23303 crossref_primary_10_1016_j_apsusc_2015_09_165 crossref_primary_10_1016_j_carbon_2024_118888 crossref_primary_10_1016_j_mtla_2022_101376 crossref_primary_10_1149_1945_7111_ab6bc4 crossref_primary_10_1007_s11426_018_9307_y crossref_primary_10_1002_anbr_202000092 crossref_primary_10_1016_j_optmat_2019_109295 crossref_primary_10_1016_j_cej_2024_153405 crossref_primary_10_1021_acs_nanolett_9b01888 crossref_primary_10_1038_s41578_023_00573_x crossref_primary_10_1002_adma_201803368 crossref_primary_10_1088_2053_1591_aac41a crossref_primary_10_1002_jssc_202201065 crossref_primary_10_3390_polym15061567 crossref_primary_10_1021_acs_energyfuels_2c02585 crossref_primary_10_1021_acs_accounts_6b00430 crossref_primary_10_1002_aenm_201600278 crossref_primary_10_1126_sciadv_add4627 crossref_primary_10_1016_j_matpr_2021_10_002 crossref_primary_10_1039_C5NR05547D crossref_primary_10_1039_C4FD90039A crossref_primary_10_1002_pat_6299 crossref_primary_10_1016_j_physe_2016_09_016 crossref_primary_10_1002_advs_202205025 crossref_primary_10_1016_j_ab_2024_115582 crossref_primary_10_1063_5_0060797 crossref_primary_10_1515_revce_2018_0021 crossref_primary_10_1039_D1TA07821F crossref_primary_10_1021_acs_nanolett_7b02967 crossref_primary_10_1021_cr5003563 crossref_primary_10_1088_1361_6641_aa89ce crossref_primary_10_1021_acscatal_6b03518 crossref_primary_10_1021_acs_chemmater_0c04692 crossref_primary_10_1134_S001250082360013X crossref_primary_10_1002_ange_201509982 crossref_primary_10_1002_adma_201800680 crossref_primary_10_1039_C4TC02317J crossref_primary_10_35848_1347_4065_ad95d0 crossref_primary_10_1139_cjc_2019_0244 crossref_primary_10_1080_02603594_2014_994610 crossref_primary_10_1126_sciadv_1601572 crossref_primary_10_1039_C4CC04434G crossref_primary_10_1039_C9TC04485J crossref_primary_10_1088_2515_7639_ab9317 crossref_primary_10_1021_acsnano_4c15449 |
Cites_doi | 10.1016/0165-2370(93)00772-F 10.1126/science.287.5453.637 10.1088/0957-4484/20/34/345604 10.1002/ange.200460356 10.1002/adma.201100344 10.1002/adma.200902746 10.1021/om049313j 10.1016/0165-2370(93)80062-5 10.1021/nl049691d 10.1021/nl803496s 10.1021/nl901260b 10.1038/nnano.2008.211 10.1021/nl070980m 10.1021/ja054454d 10.1038/nmat1865 10.1021/jp0711500 10.1021/ja01301a016 10.1073/pnas.0811946106 10.3390/ma3042725 10.1021/cm903866z 10.1021/om049168+ 10.1038/nmat1216 10.1021/jp901640d 10.1021/nl901380u 10.1002/adma.200904366 10.1021/jp103731p 10.1021/jp0012404 10.1016/S0094-5765(00)00111-9 10.1126/science.1182977 |
ContentType | Journal Article |
Copyright | Copyright © 2013 American Chemical Society |
Copyright_xml | – notice: Copyright © 2013 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1021/nn401995z |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | MEDLINE - Academic MEDLINE Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 6161 |
ExternalDocumentID | 23806050 10_1021_nn401995z i68451988 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 23M 4.4 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ LG6 P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 5VS 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV AHGAQ BAANH CITATION CUPRZ GGK CGR CUY CVF ECM EIF NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-a414t-35ddbb69017ee58e9dc232cffa3865b1706dd83daa1404e590d3fc13ec2ed2ae3 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Fri Jul 11 05:50:28 EDT 2025 Fri Jul 11 09:36:14 EDT 2025 Mon Jul 21 05:49:59 EDT 2025 Tue Jul 01 01:33:33 EDT 2025 Thu Apr 24 23:00:01 EDT 2025 Thu Aug 27 13:41:56 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | catalyst activity ultralong carbon nanotubes chemical vapor deposition Schulz−Flory distribution |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a414t-35ddbb69017ee58e9dc232cffa3865b1706dd83daa1404e590d3fc13ec2ed2ae3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 23806050 |
PQID | 1412153077 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1762059331 proquest_miscellaneous_1412153077 pubmed_primary_23806050 crossref_citationtrail_10_1021_nn401995z crossref_primary_10_1021_nn401995z acs_journals_10_1021_nn401995z |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-07-23 |
PublicationDateYYYYMMDD | 2013-07-23 |
PublicationDate_xml | – month: 07 year: 2013 text: 2013-07-23 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2013 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Hong B. H. (ref20/cit20) 2005; 127 Li Y. (ref29/cit29) 2010; 22 McGuinness D. S. (ref4/cit4) 2005; 24 Peng B. (ref10/cit10) 2008; 3 Liu H. P. (ref23/cit23) 2009; 20 Ding L. (ref31/cit31) 2009; 9 Wang X. S. (ref13/cit13) 2009; 9 Morin S. A. (ref28/cit28) 2010; 328 Zheng L. X. (ref22/cit22) 2009; 113 Zheng L. (ref19/cit19) 2004; 3 Aravind R. (ref6/cit6) 1994; 28 Liu Y. (ref15/cit15) 2009 Yakobson B. I. (ref25/cit25) 2009; 106 Flory P. J. (ref2/cit2) 1953; 1 Yao Y. (ref18/cit18) 2007; 6 Marchand M. (ref26/cit26) 2009; 9 Bianchini C. (ref3/cit3) 2004; 23 Jin Z. (ref16/cit16) 2007; 7 Zhang X. (ref5/cit5) 2005; 5 Peng B. H. (ref14/cit14) 2010; 114 Wen Q. (ref17/cit17) 2010; 22 Edwards B. C. (ref11/cit11) 2000; 47 Yu M. F. (ref9/cit9) 2000; 287 Huang S. M. (ref24/cit24) 2004; 4 Ismach A. (ref32/cit32) 2004; 116 Zhang R. (ref8/cit8) 2011; 23 Gupta S. K. (ref7/cit7) 1993; 26 Su M. (ref30/cit30) 2000; 104 Flory P. J. (ref1/cit1) 1936; 58 Wijeratne S. S. (ref27/cit27) 2010; 3 Wen Q. (ref12/cit12) 2010; 22 Reina A. (ref21/cit21) 2007; 111 ACS Nano. 2014 Mar 25;8(3):3097 |
References_xml | – volume: 28 start-page: 255 year: 1994 ident: ref6/cit6 publication-title: J. Anal. Appl. Pyrol. doi: 10.1016/0165-2370(93)00772-F – volume: 287 start-page: 637 year: 2000 ident: ref9/cit9 publication-title: Science doi: 10.1126/science.287.5453.637 – volume: 20 start-page: 345604 year: 2009 ident: ref23/cit23 publication-title: Nanotechnology doi: 10.1088/0957-4484/20/34/345604 – volume: 116 start-page: 6266 year: 2004 ident: ref32/cit32 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.200460356 – volume: 23 start-page: 3387 year: 2011 ident: ref8/cit8 publication-title: Adv. Mater. doi: 10.1002/adma.201100344 – volume: 22 start-page: 1867 year: 2010 ident: ref12/cit12 publication-title: Adv. Mater. doi: 10.1002/adma.200902746 – volume: 23 start-page: 6087 year: 2004 ident: ref3/cit3 publication-title: Organometallics doi: 10.1021/om049313j – volume: 26 start-page: 131 year: 1993 ident: ref7/cit7 publication-title: J. Anal. Appl. Pyrol. doi: 10.1016/0165-2370(93)80062-5 – volume: 4 start-page: 1025 year: 2004 ident: ref24/cit24 publication-title: Nano Lett. doi: 10.1021/nl049691d – volume: 9 start-page: 800 year: 2009 ident: ref31/cit31 publication-title: Nano Lett. doi: 10.1021/nl803496s – volume: 5 start-page: 725 year: 2005 ident: ref5/cit5 publication-title: Acta Polym. Sin. – volume: 9 start-page: 3137 year: 2009 ident: ref13/cit13 publication-title: Nano Lett. doi: 10.1021/nl901260b – volume: 3 start-page: 626 year: 2008 ident: ref10/cit10 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2008.211 – volume: 7 start-page: 2073 year: 2007 ident: ref16/cit16 publication-title: Nano Lett. doi: 10.1021/nl070980m – volume: 127 start-page: 15336 year: 2005 ident: ref20/cit20 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja054454d – volume: 6 start-page: 283 year: 2007 ident: ref18/cit18 publication-title: Nat. Mater. doi: 10.1038/nmat1865 – volume: 111 start-page: 7292 year: 2007 ident: ref21/cit21 publication-title: J. Phys. Chem. C doi: 10.1021/jp0711500 – start-page: 20 year: 2009 ident: ref15/cit15 publication-title: Nanotechnology – volume: 58 start-page: 1877 year: 1936 ident: ref1/cit1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01301a016 – volume: 106 start-page: 2506 year: 2009 ident: ref25/cit25 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0811946106 – volume: 3 start-page: 2725 year: 2010 ident: ref27/cit27 publication-title: Materials doi: 10.3390/ma3042725 – volume: 22 start-page: 1294 year: 2010 ident: ref17/cit17 publication-title: Chem. Mater. doi: 10.1021/cm903866z – volume: 24 start-page: 552 year: 2005 ident: ref4/cit4 publication-title: Organometallics doi: 10.1021/om049168+ – volume: 1 volume-title: Principles of Polymer Chemistry year: 1953 ident: ref2/cit2 – volume: 3 start-page: 673 year: 2004 ident: ref19/cit19 publication-title: Nat. Mater. doi: 10.1038/nmat1216 – volume: 113 start-page: 10896 year: 2009 ident: ref22/cit22 publication-title: J. Phys. Chem. C doi: 10.1021/jp901640d – volume: 9 start-page: 2961 year: 2009 ident: ref26/cit26 publication-title: Nano Lett. doi: 10.1021/nl901380u – volume: 22 start-page: 1508 year: 2010 ident: ref29/cit29 publication-title: Adv. Mater. doi: 10.1002/adma.200904366 – volume: 114 start-page: 12960 year: 2010 ident: ref14/cit14 publication-title: J. Phys. Chem. C doi: 10.1021/jp103731p – volume: 104 start-page: 6505 year: 2000 ident: ref30/cit30 publication-title: J. Phys. Chem. B doi: 10.1021/jp0012404 – volume: 47 start-page: 735 year: 2000 ident: ref11/cit11 publication-title: Acta Astron. doi: 10.1016/S0094-5765(00)00111-9 – volume: 328 start-page: 476 year: 2010 ident: ref28/cit28 publication-title: Science doi: 10.1126/science.1182977 – reference: - ACS Nano. 2014 Mar 25;8(3):3097 |
SSID | ssj0057876 |
Score | 2.5482218 |
Snippet | The Schulz–Flory distribution is a mathematical function that describes the relative ratios of polymers of different length after a polymerization process,... The Schulz-Flory distribution is a mathematical function that describes the relative ratios of polymers of different length after a polymerization process,... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6156 |
SubjectTerms | Carbon Carbon nanotubes Catalysts Computer Simulation Crystallization - methods Deactivation Functions (mathematics) Macromolecular Substances - chemistry Materials Testing Mathematical analysis Models, Chemical Models, Statistical Molecular Conformation Nanomaterials Nanotubes, Carbon - chemistry Nanotubes, Carbon - ultrastructure Nanowires Particle Size Polymers Surface Properties |
Title | Growth of Half-Meter Long Carbon Nanotubes Based on Schulz–Flory Distribution |
URI | http://dx.doi.org/10.1021/nn401995z https://www.ncbi.nlm.nih.gov/pubmed/23806050 https://www.proquest.com/docview/1412153077 https://www.proquest.com/docview/1762059331 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTsMwEB2xXODAvpRNZjlwMcRxnCZHKJQKsRwAiVvkxDaVqBJEkwM98Q_8IV_CuEkqENs1msjb2PNGY78HsMecMPCECCiPA596jIVUCuFTaZmgHWmaUtmHwpdXfufOO78X92Ow-0sF32WHaYopQBiKwThMuj7Ca4t_Wjf1cWs9zi9Lx5gaI36o6YM-_2pDT9L_Gnp-wZPDuNKehZP6dU55neTxoMjjg2Twnazxry7PwUyFK8lR6QjzMKbTBZj-xDa4CNdnmHLnXZIZ0pE9Qy_tTRhykaUPpCWf4ywleNRmeRHrPjnG4KYIfrpJukVv8P761sbE_oWcWJ7dSiJrCe7ap7etDq30FKj0mJdTLpSKY6tA1dRaBDpUCeKpxBhphT9jS6SjVMCVlJZzR4vQUdwkjOvE1cqVmi_DRJqlehVIYHDiPY7ZoO96gVQ27AvDMNKFoWLMNGALJzyq9kM_Gpa6XRaNZqYB-_VaREnFRm5FMXo_me6MTJ9KCo6fjLbrBY1wg9iqh0x1VmDTniXQwKOs-YcNDsNqG3LWgJXSG0ZNIaZxMOdz1v4b0jpMuUOtjCZ1-QZM5M-F3kTEksdbQ4_9ACuJ5F0 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwELUKPQAHaIHClpYaxIGLIY7jbHKk2y5b2IUDIHGLnNguEqsEkeTAnvgP_Yf8EmaS7PIhPnqNJrFjjz1vNPZ7hGxxJww8KQMm4sBnHuchU1L6TCETtKNsW2m8KDw48ntn3sG5PG9ocvAuDHQihy_lVRH_gV2A76YpZAJhKEdT5COAEBeP7-11Tsa7LjqeX1eQIUMGGDFmEXr8KkagJH8agV6BlVV46S7UOkVVx6pTJZc7ZRHvJKNnnI3_1_NPZL5BmXSvdovP5INJF8ncI-7BJXK8Dwl4cUEzS3tqaNkAz8XQfpb-pR11HWcphY03K8rY5PQnhDpN4dFJclEOR3e3_7qQ5t_QX8i62whmLZOz7u_TTo816gpMedwrmJBaxzHqUbWNkYEJdQLoKrFWoQxojLQ6WgdCK4UMPEaGjhY24cIkrtGuMuILmU6z1KwSGlgYf09Abui7XqA0ggBpOcS9MNSc2xZZh4GJmtWRR1Xh2-XRZGRaZHs8JVHScJOjRMbwJdPNielVTcjxktHGeF4jWC5YA1GpyUpo2kM6DdjY2m_YwG-g0qHgLbJSO8WkKUA4DmSAztf3fukHmemdDvpR_8_R4RqZdSsVjTZzxTcyXVyX5jtgmSJer5z4HjT07L4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4VKlVwgNIHLE-36qEXQxzH2eQIS5el5VGJInGLnNguEqsEkeTAnvgP_Yf9JcxksytaQcs1msSOPfZ8n8b-BuCT8OIoUCriMo1CHggRc61UyDUpQXvadbWhi8LHJ-HgPPh6oS5aokh3YbATJX6pbJL4tKqvjWsVBsROniMbiGM1moGXlK6jI3y7vbPJzkvOF46zyMiSEUpMlIQevkpRKCv_jEJPQMsmxPQX4XTaueZkydV2XaXb2egv3cbn9_41LLRok-2O3WMJXtj8Dcw_0CB8C6cHSMSrS1Y4NtBDx4_pfAw7KvKfrKdv0iJnuAEXVZ3aku1hyDMMH51ll_Vw9PvuVx_p_i3bJ_XdtnDWOzjvf_nRG_C2ygLXgQgqLpUxaUp1qbrWqsjGJkOUlTmnqRxoSvI6xkTSaE1KPFbFnpEuE9JmvjW-tvI9zOZFbleARQ7nIJDIEUM_iLQhMKCcwPgXx0YI14FNHJykXSVl0iTAfZFMR6YDnyfTkmStRjmVyhg-Zvpxano9FuZ4zOjDZG4TXDaUC9G5LWpsOiBZDdzguv-wwd-giodSdGB57BjTphDpeMgEvdX__dIWvPq-30-ODk--rcGc3xTT6HJfrsNsdVPbDYQ0VbrZ-PE9_lfvQQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Growth+of+Half-Meter+Long+Carbon+Nanotubes+Based+on+Schulz%E2%80%93Flory+Distribution&rft.jtitle=ACS+nano&rft.au=Zhang%2C+Rufan&rft.au=Zhang%2C+Yingying&rft.au=Zhang%2C+Qiang&rft.au=Xie%2C+Huanhuan&rft.date=2013-07-23&rft.pub=American+Chemical+Society&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=7&rft.issue=7&rft.spage=6156&rft.epage=6161&rft_id=info:doi/10.1021%2Fnn401995z&rft.externalDocID=i68451988 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |