Lipid-AuNPs@PDA Nanohybrid for MRI/CT Imaging and Photothermal Therapy of Hepatocellular Carcinoma

Multifunctional theranostic nanoparticles represent an emerging agent with the potential to offer extremely sensitive diagnosis and targeted cancer therapy. Herein, we report the synthesis and characterization of a multifunctional theranostic agent (referred to as LA-LAPNHs) for targeted magnetic re...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 6; no. 16; pp. 14266 - 14277
Main Authors Zeng, Yongyi, Zhang, Da, Wu, Ming, Liu, Ying, Zhang, Xiang, Li, Ling, Li, Zheng, Han, Xiao, Wei, Xueyong, Liu, Xiaolong
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 27.08.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Multifunctional theranostic nanoparticles represent an emerging agent with the potential to offer extremely sensitive diagnosis and targeted cancer therapy. Herein, we report the synthesis and characterization of a multifunctional theranostic agent (referred to as LA-LAPNHs) for targeted magnetic resonance imaging/computed X-ray tomography (MRI/CT) dual-mode imaging and photothermal therapy of hepatocellular carcinoma. The LA-LAPNHs were characterized as having a core–shell structure with the gold nanoparticles (AuNPs)@polydopamine (PDA) as the inner core, the indocyanine green (ICG), which is electrostatically absorbed onto the surface of PDA, as the photothermal therapeutic agent, and the lipids modified with gadolinium–1,4,7,10-tetraacetic acid and lactobionic acid (LA), which is self-assembled on the outer surface as the shell. The LA-LAPNHs could be selectively internalized into the hepatocellular cell line (HepG2 cells) but not into HeLa cells due to the specific recognition ability of LA to asialoglycoprotein receptor. Additionally, the dual-mode imaging ability of the LA-LAPNH aqueous solution was confirmed by enhanced MR and CT imaging showing a shorter T 1 relaxation time and a higher Hounsfield unit value, respectively. In addition, the LA-LAPNHs showed significant photothermal cytotoxicity against liver cancer cells with near-infrared irradiation due to their strong absorbance in the region between 700 and 850 nm. In summary, this study demonstrates that LA-LAPNHs may be a promising candidate for targeted MR/CT dual-mode imaging and photothermal therapy of hepatocellular carcinoma.
AbstractList Multifunctional theranostic nanoparticles represent an emerging agent with the potential to offer extremely sensitive diagnosis and targeted cancer therapy. Herein, we report the synthesis and characterization of a multifunctional theranostic agent (referred to as LA-LAPNHs) for targeted magnetic resonance imaging/computed X-ray tomography (MRI/CT) dual-mode imaging and photothermal therapy of hepatocellular carcinoma. The LA-LAPNHs were characterized as having a core–shell structure with the gold nanoparticles (AuNPs)@polydopamine (PDA) as the inner core, the indocyanine green (ICG), which is electrostatically absorbed onto the surface of PDA, as the photothermal therapeutic agent, and the lipids modified with gadolinium–1,4,7,10-tetraacetic acid and lactobionic acid (LA), which is self-assembled on the outer surface as the shell. The LA-LAPNHs could be selectively internalized into the hepatocellular cell line (HepG2 cells) but not into HeLa cells due to the specific recognition ability of LA to asialoglycoprotein receptor. Additionally, the dual-mode imaging ability of the LA-LAPNH aqueous solution was confirmed by enhanced MR and CT imaging showing a shorter T 1 relaxation time and a higher Hounsfield unit value, respectively. In addition, the LA-LAPNHs showed significant photothermal cytotoxicity against liver cancer cells with near-infrared irradiation due to their strong absorbance in the region between 700 and 850 nm. In summary, this study demonstrates that LA-LAPNHs may be a promising candidate for targeted MR/CT dual-mode imaging and photothermal therapy of hepatocellular carcinoma.
Multifunctional theranostic nanoparticles represent an emerging agent with the potential to offer extremely sensitive diagnosis and targeted cancer therapy. Herein, we report the synthesis and characterization of a multifunctional theranostic agent (referred to as LA-LAPNHs) for targeted magnetic resonance imaging/computed X-ray tomography (MRI/CT) dual-mode imaging and photothermal therapy of hepatocellular carcinoma. The LA-LAPNHs were characterized as having a core–shell structure with the gold nanoparticles (AuNPs)@polydopamine (PDA) as the inner core, the indocyanine green (ICG), which is electrostatically absorbed onto the surface of PDA, as the photothermal therapeutic agent, and the lipids modified with gadolinium–1,4,7,10-tetraacetic acid and lactobionic acid (LA), which is self-assembled on the outer surface as the shell. The LA-LAPNHs could be selectively internalized into the hepatocellular cell line (HepG2 cells) but not into HeLa cells due to the specific recognition ability of LA to asialoglycoprotein receptor. Additionally, the dual-mode imaging ability of the LA-LAPNH aqueous solution was confirmed by enhanced MR and CT imaging showing a shorter T₁ relaxation time and a higher Hounsfield unit value, respectively. In addition, the LA-LAPNHs showed significant photothermal cytotoxicity against liver cancer cells with near-infrared irradiation due to their strong absorbance in the region between 700 and 850 nm. In summary, this study demonstrates that LA-LAPNHs may be a promising candidate for targeted MR/CT dual-mode imaging and photothermal therapy of hepatocellular carcinoma.
Multifunctional theranostic nanoparticles represent an emerging agent with the potential to offer extremely sensitive diagnosis and targeted cancer therapy. Herein, we report the synthesis and characterization of a multifunctional theranostic agent (referred to as LA-LAPNHs) for targeted magnetic resonance imaging/computed X-ray tomography (MRI/CT) dual-mode imaging and photothermal therapy of hepatocellular carcinoma. The LA-LAPNHs were characterized as having a core-shell structure with the gold nanoparticles (AuNPs)@polydopamine (PDA) as the inner core, the indocyanine green (ICG), which is electrostatically absorbed onto the surface of PDA, as the photothermal therapeutic agent, and the lipids modified with gadolinium-1,4,7,10-tetraacetic acid and lactobionic acid (LA), which is self-assembled on the outer surface as the shell. The LA-LAPNHs could be selectively internalized into the hepatocellular cell line (HepG2 cells) but not into HeLa cells due to the specific recognition ability of LA to asialoglycoprotein receptor. Additionally, the dual-mode imaging ability of the LA-LAPNH aqueous solution was confirmed by enhanced MR and CT imaging showing a shorter T1 relaxation time and a higher Hounsfield unit value, respectively. In addition, the LA-LAPNHs showed significant photothermal cytotoxicity against liver cancer cells with near-infrared irradiation due to their strong absorbance in the region between 700 and 850 nm. In summary, this study demonstrates that LA-LAPNHs may be a promising candidate for targeted MR/CT dual-mode imaging and photothermal therapy of hepatocellular carcinoma.
Multifunctional theranostic nanoparticles represent an emerging agent with the potential to offer extremely sensitive diagnosis and targeted cancer therapy. Herein, we report the synthesis and characterization of a multifunctional theranostic agent (referred to as LA-LAPNHs) for targeted magnetic resonance imaging/computed X-ray tomography (MRI/CT) dual-mode imaging and photothermal therapy of hepatocellular carcinoma. The LA-LAPNHs were characterized as having a core-shell structure with the gold nanoparticles (AuNPs)@polydopamine (PDA) as the inner core, the indocyanine green (ICG), which is electrostatically absorbed onto the surface of PDA, as the photothermal therapeutic agent, and the lipids modified with gadolinium-1,4,7,10-tetraacetic acid and lactobionic acid (LA), which is self-assembled on the outer surface as the shell. The LA-LAPNHs could be selectively internalized into the hepatocellular cell line (HepG2 cells) but not into HeLa cells due to the specific recognition ability of LA to asialoglycoprotein receptor. Additionally, the dual-mode imaging ability of the LA-LAPNH aqueous solution was confirmed by enhanced MR and CT imaging showing a shorter T1 relaxation time and a higher Hounsfield unit value, respectively. In addition, the LA-LAPNHs showed significant photothermal cytotoxicity against liver cancer cells with near-infrared irradiation due to their strong absorbance in the region between 700 and 850 nm. In summary, this study demonstrates that LA-LAPNHs may be a promising candidate for targeted MR/CT dual-mode imaging and photothermal therapy of hepatocellular carcinoma.Multifunctional theranostic nanoparticles represent an emerging agent with the potential to offer extremely sensitive diagnosis and targeted cancer therapy. Herein, we report the synthesis and characterization of a multifunctional theranostic agent (referred to as LA-LAPNHs) for targeted magnetic resonance imaging/computed X-ray tomography (MRI/CT) dual-mode imaging and photothermal therapy of hepatocellular carcinoma. The LA-LAPNHs were characterized as having a core-shell structure with the gold nanoparticles (AuNPs)@polydopamine (PDA) as the inner core, the indocyanine green (ICG), which is electrostatically absorbed onto the surface of PDA, as the photothermal therapeutic agent, and the lipids modified with gadolinium-1,4,7,10-tetraacetic acid and lactobionic acid (LA), which is self-assembled on the outer surface as the shell. The LA-LAPNHs could be selectively internalized into the hepatocellular cell line (HepG2 cells) but not into HeLa cells due to the specific recognition ability of LA to asialoglycoprotein receptor. Additionally, the dual-mode imaging ability of the LA-LAPNH aqueous solution was confirmed by enhanced MR and CT imaging showing a shorter T1 relaxation time and a higher Hounsfield unit value, respectively. In addition, the LA-LAPNHs showed significant photothermal cytotoxicity against liver cancer cells with near-infrared irradiation due to their strong absorbance in the region between 700 and 850 nm. In summary, this study demonstrates that LA-LAPNHs may be a promising candidate for targeted MR/CT dual-mode imaging and photothermal therapy of hepatocellular carcinoma.
Author Li, Zheng
Liu, Ying
Li, Ling
Zeng, Yongyi
Zhang, Da
Liu, Xiaolong
Han, Xiao
Wu, Ming
Wei, Xueyong
Zhang, Xiang
AuthorAffiliation Biotechnology Research Institute
Mengchao Hepatobiliary Hospital of Fujian Medical University
Fujian Medical University
State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering
The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province
Liver Disease Center
Xi’an Jiaotong University
Chinese Academy of Agricultural Sciences
The First Affiliated Hospital of Fujian Medical University
The Liver Center of Fujian Province
AuthorAffiliation_xml – name: Xi’an Jiaotong University
– name: Chinese Academy of Agricultural Sciences
– name: The First Affiliated Hospital of Fujian Medical University
– name: Mengchao Hepatobiliary Hospital of Fujian Medical University
– name: Fujian Medical University
– name: State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering
– name: Biotechnology Research Institute
– name: The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province
– name: Liver Disease Center
– name: The Liver Center of Fujian Province
Author_xml – sequence: 1
  givenname: Yongyi
  surname: Zeng
  fullname: Zeng, Yongyi
  organization: Fujian Medical University
– sequence: 2
  givenname: Da
  surname: Zhang
  fullname: Zhang, Da
  organization: Fujian Medical University
– sequence: 3
  givenname: Ming
  surname: Wu
  fullname: Wu, Ming
  organization: Fujian Medical University
– sequence: 4
  givenname: Ying
  surname: Liu
  fullname: Liu, Ying
  organization: Xi’an Jiaotong University
– sequence: 5
  givenname: Xiang
  surname: Zhang
  fullname: Zhang, Xiang
  organization: The First Affiliated Hospital of Fujian Medical University
– sequence: 6
  givenname: Ling
  surname: Li
  fullname: Li, Ling
  organization: Fujian Medical University
– sequence: 7
  givenname: Zheng
  surname: Li
  fullname: Li, Zheng
  organization: Xi’an Jiaotong University
– sequence: 8
  givenname: Xiao
  surname: Han
  fullname: Han, Xiao
  organization: Chinese Academy of Agricultural Sciences
– sequence: 9
  givenname: Xueyong
  surname: Wei
  fullname: Wei, Xueyong
  organization: Xi’an Jiaotong University
– sequence: 10
  givenname: Xiaolong
  surname: Liu
  fullname: Liu, Xiaolong
  email: xiaoloong.liu@gmail.com
  organization: Fujian Medical University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25090604$$D View this record in MEDLINE/PubMed
BookMark eNqF0Utr4zAQAGBRWvrcQ_9A0aWwPbjR05JvDdk-AtluKNmzGdtyo2JLrmQf8u_rkDaHpbCnGYZvhmHmDB067wxCl5TcUsLoBFpJuNQ8HqBTmgmRaCbZ4T4X4gSdxfhGSMoZkcfohEmSkZSIU1QsbGerZDo8L-Pd8tcUP4Pz600RbIVrH_Dvl_lktsLzFl6te8XgKrxc-973axNaaPBqjNBtsK_xk-mg96VpmqGBgGcQSut8CxfoqIYmmh-f8Rz9fbhfzZ6SxZ_H-Wy6SEBQ0SesoBXXSmdpQVlmeKmq1LAqzSgYVRutZMm0KmuZchAyVbXiUpBtmQrNq5qfo5-7uV3w74OJfd7auF0HnPFDzBkhhEmVKv1fSqXUkmZcs5FefdKhaE2Vd8G2EDb51wlHcLMDZfAxBlPvCSX59j35_j2jnfxjS9tDb73rA9jm247rXQeUMX_zQ3DjCb9xH_tLmwM
CitedBy_id crossref_primary_10_1039_C6TB00773B
crossref_primary_10_1007_s00604_018_2873_8
crossref_primary_10_1039_C5NR04828A
crossref_primary_10_2217_nnm_15_30
crossref_primary_10_1016_j_ijpharm_2016_03_019
crossref_primary_10_3390_bios12050342
crossref_primary_10_1016_j_jconrel_2018_10_009
crossref_primary_10_1016_j_colsurfb_2018_02_014
crossref_primary_10_1155_2019_6457968
crossref_primary_10_1016_j_jconrel_2018_08_030
crossref_primary_10_1039_C8SC02408A
crossref_primary_10_1007_s11095_018_2480_8
crossref_primary_10_1039_C7TB00382J
crossref_primary_10_1039_C9BM00242A
crossref_primary_10_1002_chem_201904757
crossref_primary_10_1515_corrrev_2023_0055
crossref_primary_10_1016_j_colsurfb_2022_112432
crossref_primary_10_1039_C8NJ00454D
crossref_primary_10_1016_j_cej_2020_125882
crossref_primary_10_1016_j_apmt_2018_07_006
crossref_primary_10_1021_acsanm_9b00791
crossref_primary_10_1038_s41598_017_05395_w
crossref_primary_10_1021_acsami_5b01027
crossref_primary_10_1016_j_biomaterials_2015_11_021
crossref_primary_10_1021_acs_langmuir_8b01669
crossref_primary_10_1039_C5TB01827G
crossref_primary_10_1080_1061186X_2021_1999963
crossref_primary_10_1021_acs_nanolett_6b00599
crossref_primary_10_1038_s41598_017_16016_x
crossref_primary_10_3390_nano13030501
crossref_primary_10_1007_s12274_022_5356_2
crossref_primary_10_3390_nano6040076
crossref_primary_10_1016_j_cej_2016_05_102
crossref_primary_10_1021_acs_iecr_2c00285
crossref_primary_10_1021_acsnano_5b06259
crossref_primary_10_1016_j_colsurfb_2017_05_080
crossref_primary_10_1021_acsami_5b06265
crossref_primary_10_1039_C9TB02766A
crossref_primary_10_1016_j_ultsonch_2017_03_019
crossref_primary_10_2217_nnm_2019_0395
crossref_primary_10_1007_s13205_024_04086_4
crossref_primary_10_1002_adfm_201601478
crossref_primary_10_1016_j_biomaterials_2015_11_037
crossref_primary_10_1016_j_ccr_2020_213540
crossref_primary_10_1016_j_ijpharm_2018_01_034
crossref_primary_10_1039_D1NJ03137F
crossref_primary_10_1016_j_biomaterials_2016_08_022
crossref_primary_10_1039_C7BM00187H
crossref_primary_10_3390_pharmaceutics14051074
crossref_primary_10_1039_C8NR00838H
crossref_primary_10_1021_acs_analchem_6b01804
crossref_primary_10_1039_C7TB01362K
crossref_primary_10_1016_j_jddst_2024_106443
crossref_primary_10_1021_acs_nanolett_9b00171
crossref_primary_10_1021_acsabm_4c00723
crossref_primary_10_1021_acsami_7b03087
crossref_primary_10_1016_j_nanoso_2024_101342
crossref_primary_10_1021_acsami_6b16705
crossref_primary_10_1016_j_jmst_2020_04_060
crossref_primary_10_1080_21691401_2018_1457536
crossref_primary_10_3390_cryst9120612
crossref_primary_10_1021_acsnano_6b07990
crossref_primary_10_1002_tcr_201700051
crossref_primary_10_1007_s40242_020_9078_5
crossref_primary_10_3389_fchem_2018_00127
crossref_primary_10_1021_acsnano_6b06267
crossref_primary_10_1016_j_colsurfb_2016_02_022
crossref_primary_10_1016_j_jiec_2020_12_002
crossref_primary_10_3390_ma13020279
crossref_primary_10_1016_j_ceramint_2022_11_337
crossref_primary_10_1016_j_cej_2015_08_133
crossref_primary_10_1016_j_jconrel_2022_08_008
crossref_primary_10_1016_j_ijpharm_2022_121716
crossref_primary_10_1016_j_biomaterials_2016_08_040
crossref_primary_10_1021_acsami_8b08419
crossref_primary_10_1021_acs_analchem_0c03652
crossref_primary_10_1039_D1NA00059D
crossref_primary_10_2147_IJN_S244541
crossref_primary_10_1039_C6RA07782J
crossref_primary_10_1039_C7NR03564K
crossref_primary_10_3390_ma13071730
crossref_primary_10_1039_D1BM01324F
crossref_primary_10_1142_S1793984415400036
crossref_primary_10_1039_C5RA24785C
crossref_primary_10_1007_s12668_023_01097_y
crossref_primary_10_1016_j_mtnano_2022_100187
crossref_primary_10_1038_s41598_023_30526_x
crossref_primary_10_1039_C7RA04994C
crossref_primary_10_1002_med_21642
crossref_primary_10_1016_j_jconrel_2019_07_036
crossref_primary_10_1016_j_drudis_2015_05_009
crossref_primary_10_1039_C9NJ00561G
crossref_primary_10_1039_C6RA18261E
crossref_primary_10_3390_pharmaceutics17020176
crossref_primary_10_1039_C6TB00291A
crossref_primary_10_3390_bios13110977
crossref_primary_10_1039_C7DT02095C
crossref_primary_10_1016_j_jconrel_2015_09_016
crossref_primary_10_1039_D0CC00196A
crossref_primary_10_1016_j_cej_2019_122172
crossref_primary_10_1002_adfm_201906623
crossref_primary_10_1039_C9NR06375G
crossref_primary_10_3390_ijms242316719
crossref_primary_10_1016_j_colsurfb_2021_112247
crossref_primary_10_1016_j_micromeso_2021_111431
crossref_primary_10_1021_acs_chemmater_6b05406
crossref_primary_10_1021_acsabm_0c01525
crossref_primary_10_1155_2018_5837276
crossref_primary_10_1039_C6NR07656D
crossref_primary_10_1021_acs_jpcb_7b00500
crossref_primary_10_1007_s12672_025_01977_7
crossref_primary_10_1016_j_jcis_2021_08_155
crossref_primary_10_1016_j_envres_2023_116870
crossref_primary_10_1021_acsami_5b08087
crossref_primary_10_2174_2405461507666220304204152
crossref_primary_10_1002_ppsc_201600113
crossref_primary_10_1002_slct_201802542
crossref_primary_10_1021_acsami_7b08392
crossref_primary_10_1007_s10853_019_03774_4
crossref_primary_10_1088_0957_4484_26_11_115102
crossref_primary_10_1021_acsapm_0c00629
crossref_primary_10_1016_j_msec_2019_01_032
crossref_primary_10_1002_chem_201901820
crossref_primary_10_1016_j_cis_2018_01_001
crossref_primary_10_1016_j_vibspec_2022_103371
crossref_primary_10_1002_ppsc_201800010
crossref_primary_10_1039_D0BM00625D
crossref_primary_10_1039_C7NR02848B
crossref_primary_10_1007_s12668_020_00733_1
crossref_primary_10_3390_nano11082107
crossref_primary_10_1016_j_ejpb_2018_05_013
crossref_primary_10_3390_nano9121731
crossref_primary_10_1021_acsnano_8b02235
crossref_primary_10_1016_j_ijbiomac_2020_01_071
crossref_primary_10_1021_acsami_6b05907
Cites_doi 10.1053/j.gastro.2004.09.011
10.1021/am201311c
10.1016/j.carbpol.2006.10.013
10.1021/am500761x
10.1016/j.biomaterials.2012.04.044
10.1016/j.biomaterials.2012.11.007
10.1039/C4TB00516C
10.1016/j.jphotobiol.2004.01.002
10.1021/nn500722y
10.1016/j.stam.2005.03.007
10.1016/j.actbio.2011.07.024
10.1002/adma.201204683
10.1002/mabi.201100061
10.1002/adfm.200902347
10.1067/msy.2000.104746
10.1021/ja078176p
10.1211/jpp.60.8.0005
10.2214/ajr.152.1.41
10.1016/j.jconrel.2013.03.020
10.1002/jso.21943
10.1021/am400721s
10.1016/j.jconrel.2013.10.038
10.1016/j.biomaterials.2010.04.066
10.1002/lt.20034
10.1016/S1011-1344(98)00216-4
10.1016/j.addr.2010.07.004
10.1021/ja4080562
10.1021/am402585y
10.1016/j.biomaterials.2014.02.018
10.1152/jappl.1976.40.4.575
10.3181/00379727-143-37433
10.1021/ja3016582
10.1021/am302439g
10.1016/j.biomaterials.2013.02.063
10.1021/am302956h
10.2214/AJR.12.9798
10.1186/1479-5876-6-80
10.1021/cm101036a
10.1021/nn404117j
10.1021/bc200151q
10.1102/1470-7330.2008.9019
10.1039/c0cc00596g
10.1016/j.nano.2013.05.012
10.1021/cr400407a
10.1007/s12072-009-9145-y
10.1021/nn405809c
10.1039/c2nr31715j
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1021/am503583s
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 14277
ExternalDocumentID 25090604
10_1021_am503583s
b805920128
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
23M
4.4
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
LG6
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
---
.K2
5VS
5ZA
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a414t-2b1d387896b129e3c7d6e2d691ae7fe875c287cf563a4567f73540875c1483df3
IEDL.DBID ACS
ISSN 1944-8244
1944-8252
IngestDate Fri Jul 11 08:23:44 EDT 2025
Thu Jul 10 19:18:27 EDT 2025
Thu Jan 02 22:17:09 EST 2025
Tue Jul 01 04:12:24 EDT 2025
Thu Apr 24 23:03:36 EDT 2025
Thu Aug 27 13:41:55 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords polydopamine
lactobionic acid
targeted photothermal therapy
dual-mode imaging
AuNPs
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a414t-2b1d387896b129e3c7d6e2d691ae7fe875c287cf563a4567f73540875c1483df3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25090604
PQID 1558519382
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2000257678
proquest_miscellaneous_1558519382
pubmed_primary_25090604
crossref_primary_10_1021_am503583s
crossref_citationtrail_10_1021_am503583s
acs_journals_10_1021_am503583s
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-08-27
PublicationDateYYYYMMDD 2014-08-27
PublicationDate_xml – month: 08
  year: 2014
  text: 2014-08-27
  day: 27
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2014
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Holzer W. (ref30/cit30) 1998; 47
Tripp M. R. (ref32/cit32) 1973; 143
Liu Y. (ref45/cit45) 2014; 114
Liu X. (ref46/cit46) 2013; 7
Alric C. (ref18/cit18) 2008; 130
Bosch F. X. (ref1/cit1) 2004; 127
Salem N. (ref11/cit11) 2009; 53
Schaafsma B. E. (ref29/cit29) 2011; 104
Landsman M. L. (ref31/cit31) 1976; 40
Zheng C. (ref33/cit33) 2012; 33
Hallouard F. (ref14/cit14) 2010; 31
Narayanan S. (ref19/cit19) 2011; 4
Hainfeld J. F. (ref37/cit37) 2008; 60
Wang X. (ref21/cit21) 2013; 5
She W. C. (ref52/cit52) 2013; 34
Liu Y. L. (ref53/cit53) 2013; 25
Lee N. (ref23/cit23) 2012; 134
Mi P. (ref56/cit56) 2014; 174
Cheung E. N. M. (ref22/cit22) 2010; 22
Llovet J. M. (ref6/cit6) 2004; 10
Ryu J. (ref44/cit44) 2010; 20
Huang P. (ref26/cit26) 2013; 34
Liu Q. (ref49/cit49) 2013; 135
Lin L. S. (ref47/cit47) 2014; 8
Sugunan A. (ref38/cit38) 2005; 6
Li Y. (ref8/cit8) 2011; 7
Zheng C. (ref54/cit54) 2012; 33
Wang W. (ref42/cit42) 2013; 5
Ohulchanskyy T. Y. (ref25/cit25) 2013; 9
Lai Q. (ref5/cit5) 2013; 60
Robinson P. (ref7/cit7) 2008; 8
Wang Z. (ref39/cit39) 2007; 69
Park J. (ref48/cit48) 2014; 8
Abdel-Wahab M. (ref3/cit3) 2012; 60
Imamura H. (ref4/cit4) 2000; 127
Cheng M. F. (ref12/cit12) 2007; 54
Tsai W. B. (ref40/cit40) 2011; 7
Taouli B. (ref9/cit9) 2013; 201
Kelkar S. S. (ref17/cit17) 2011; 22
Sarin H. (ref20/cit20) 2008; 6
Tang Y. H. (ref2/cit2) 2013; 60
Guo M. (ref27/cit27) 2013; 35
Saxena V. (ref55/cit55) 2004; 74
McCarthy J. R. (ref16/cit16) 2010; 62
ref28/cit28
Liu Q. (ref51/cit51) 2011; 11
Sato T. (ref10/cit10) 2009; 3
Liu R. (ref43/cit43) 2013; 5
Zhang M. (ref36/cit36) 2013; 168
Liu H. (ref35/cit35) 2014; 6
Saxena V. (ref34/cit34) 2004; 74
Kim H. W. (ref41/cit41) 2013; 5
Huang Y. (ref24/cit24) 2012; 4
Kattapuram T. M. (ref15/cit15) 2001; 21
Yu B. (ref50/cit50) 2010; 46
Kelly J. (ref13/cit13) 1989; 152
References_xml – volume: 127
  start-page: 5
  year: 2004
  ident: ref1/cit1
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2004.09.011
– volume: 4
  start-page: 251
  year: 2011
  ident: ref19/cit19
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am201311c
– volume: 69
  start-page: 311
  year: 2007
  ident: ref39/cit39
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2006.10.013
– volume: 6
  start-page: 6944
  year: 2014
  ident: ref35/cit35
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am500761x
– volume: 33
  start-page: 5603
  year: 2012
  ident: ref33/cit33
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.04.044
– volume: 34
  start-page: 1613
  year: 2013
  ident: ref52/cit52
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.11.007
– ident: ref28/cit28
  doi: 10.1039/C4TB00516C
– volume: 74
  start-page: 29
  year: 2004
  ident: ref55/cit55
  publication-title: J. Photochem. Photobiol., B
  doi: 10.1016/j.jphotobiol.2004.01.002
– volume: 8
  start-page: 3876
  year: 2014
  ident: ref47/cit47
  publication-title: ACS Nano
  doi: 10.1021/nn500722y
– volume: 6
  start-page: 335
  year: 2005
  ident: ref38/cit38
  publication-title: Sci. Technol. Adv. Mater.
  doi: 10.1016/j.stam.2005.03.007
– volume: 7
  start-page: 4187
  year: 2011
  ident: ref40/cit40
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2011.07.024
– volume: 25
  start-page: 1353
  year: 2013
  ident: ref53/cit53
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201204683
– volume: 11
  start-page: 1227
  year: 2011
  ident: ref51/cit51
  publication-title: Macromol. Biosci.
  doi: 10.1002/mabi.201100061
– volume: 60
  start-page: 2019
  year: 2013
  ident: ref2/cit2
  publication-title: Hepato-Gastroenterology
– volume: 20
  start-page: 2132
  year: 2010
  ident: ref44/cit44
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200902347
– volume: 127
  start-page: 528
  year: 2000
  ident: ref4/cit4
  publication-title: Surgery
  doi: 10.1067/msy.2000.104746
– volume: 74
  start-page: 29
  year: 2004
  ident: ref34/cit34
  publication-title: J. Photochem. Photobiol., B
  doi: 10.1016/j.jphotobiol.2004.01.002
– volume: 130
  start-page: 5908
  year: 2008
  ident: ref18/cit18
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja078176p
– volume: 60
  start-page: 977
  year: 2008
  ident: ref37/cit37
  publication-title: J. Pharm. Pharmacol.
  doi: 10.1211/jpp.60.8.0005
– volume: 152
  start-page: 41
  year: 1989
  ident: ref13/cit13
  publication-title: Am. J. Roentgenol.
  doi: 10.2214/ajr.152.1.41
– volume: 168
  start-page: 251
  year: 2013
  ident: ref36/cit36
  publication-title: J. Controlled Release
  doi: 10.1016/j.jconrel.2013.03.020
– volume: 104
  start-page: 323
  year: 2011
  ident: ref29/cit29
  publication-title: J. Surg. Oncol.
  doi: 10.1002/jso.21943
– volume: 5
  start-page: 4966
  year: 2013
  ident: ref21/cit21
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am400721s
– volume: 174
  start-page: 63
  year: 2014
  ident: ref56/cit56
  publication-title: J. Controlled Release
  doi: 10.1016/j.jconrel.2013.10.038
– volume: 60
  start-page: 2039
  year: 2013
  ident: ref5/cit5
  publication-title: Hepato-Gastroenterology
– volume: 31
  start-page: 6249
  year: 2010
  ident: ref14/cit14
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.04.066
– volume: 10
  start-page: 115
  year: 2004
  ident: ref6/cit6
  publication-title: Liver Transpl.
  doi: 10.1002/lt.20034
– volume: 47
  start-page: 155
  year: 1998
  ident: ref30/cit30
  publication-title: J. Photochem. Photobiol., B
  doi: 10.1016/S1011-1344(98)00216-4
– volume: 62
  start-page: 1023
  year: 2010
  ident: ref16/cit16
  publication-title: Adv. Drug Delivery Rev.
  doi: 10.1016/j.addr.2010.07.004
– volume: 135
  start-page: 17679
  year: 2013
  ident: ref49/cit49
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4080562
– volume: 5
  start-page: 9167
  year: 2013
  ident: ref43/cit43
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am402585y
– volume: 35
  start-page: 4656
  year: 2013
  ident: ref27/cit27
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.02.018
– volume: 40
  start-page: 575
  year: 1976
  ident: ref31/cit31
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1976.40.4.575
– volume: 33
  start-page: 5603
  year: 2012
  ident: ref54/cit54
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.04.044
– volume: 143
  start-page: 879
  year: 1973
  ident: ref32/cit32
  publication-title: Proc. Soc. Exp. Biol. Med.
  doi: 10.3181/00379727-143-37433
– volume: 134
  start-page: 10309
  year: 2012
  ident: ref23/cit23
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3016582
– volume: 5
  start-page: 233
  year: 2013
  ident: ref41/cit41
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am302439g
– volume: 34
  start-page: 4643
  year: 2013
  ident: ref26/cit26
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.02.063
– volume: 5
  start-page: 2062
  year: 2013
  ident: ref42/cit42
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am302956h
– volume: 21
  start-page: 190
  year: 2001
  ident: ref15/cit15
  publication-title: Curr. Clin. Top. Infect. Dis.
– volume: 60
  start-page: 1847
  year: 2012
  ident: ref3/cit3
  publication-title: Hepato-Gastroenterology
– volume: 201
  start-page: 795
  year: 2013
  ident: ref9/cit9
  publication-title: Am. J. Roentgenol.
  doi: 10.2214/AJR.12.9798
– volume: 6
  start-page: 80
  year: 2008
  ident: ref20/cit20
  publication-title: J. Transl. Med.
  doi: 10.1186/1479-5876-6-80
– volume: 53
  start-page: 144
  year: 2009
  ident: ref11/cit11
  publication-title: Q. J. Nucl. Med. Mol. Imaging
– volume: 22
  start-page: 4728
  year: 2010
  ident: ref22/cit22
  publication-title: Chem. Mater.
  doi: 10.1021/cm101036a
– volume: 7
  start-page: 9384
  issue: 10
  year: 2013
  ident: ref46/cit46
  publication-title: ACS Nano
  doi: 10.1021/nn404117j
– volume: 22
  start-page: 1879
  year: 2011
  ident: ref17/cit17
  publication-title: Bioconjugate Chem.
  doi: 10.1021/bc200151q
– volume: 8
  start-page: 128
  year: 2008
  ident: ref7/cit7
  publication-title: Cancer Imaging
  doi: 10.1102/1470-7330.2008.9019
– volume: 46
  start-page: 5900
  year: 2010
  ident: ref50/cit50
  publication-title: Chem. Commun.
  doi: 10.1039/c0cc00596g
– volume: 9
  start-page: 1192
  year: 2013
  ident: ref25/cit25
  publication-title: Nanomedicine
  doi: 10.1016/j.nano.2013.05.012
– volume: 7
  start-page: 4593
  year: 2011
  ident: ref8/cit8
  publication-title: Int. J. Nanomed.
– volume: 114
  start-page: 5057
  year: 2014
  ident: ref45/cit45
  publication-title: Chem. Rev.
  doi: 10.1021/cr400407a
– volume: 3
  start-page: 544
  year: 2009
  ident: ref10/cit10
  publication-title: Hepatol. Int.
  doi: 10.1007/s12072-009-9145-y
– volume: 8
  start-page: 3347
  year: 2014
  ident: ref48/cit48
  publication-title: ACS Nano
  doi: 10.1021/nn405809c
– volume: 54
  start-page: 342
  year: 2007
  ident: ref12/cit12
  publication-title: Neoplasma
– volume: 4
  start-page: 6135
  year: 2012
  ident: ref24/cit24
  publication-title: Nanoscale
  doi: 10.1039/c2nr31715j
SSID ssj0063205
Score 2.5034456
Snippet Multifunctional theranostic nanoparticles represent an emerging agent with the potential to offer extremely sensitive diagnosis and targeted cancer therapy....
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 14266
SubjectTerms absorbance
aqueous solutions
Carcinoma, Hepatocellular - diagnosis
Carcinoma, Hepatocellular - therapy
Cell Death - drug effects
Cell Death - radiation effects
Cell Line
cytotoxicity
Diagnostic Imaging - methods
Gadolinium - chemistry
Gold - chemistry
HeLa Cells
Hep G2 Cells
hepatoma
human cell lines
Humans
image analysis
Indocyanine Green - chemistry
Indoles - chemistry
irradiation
lipids
Lipids - chemistry
Liver Neoplasms - diagnosis
Liver Neoplasms - therapy
magnetic resonance imaging
Magnetic Resonance Imaging - methods
Metal Nanoparticles - chemistry
nanogold
nanoparticles
neoplasm cells
Phototherapy - methods
Polymers - chemistry
therapeutics
tomography
Tomography, X-Ray Computed - methods
X-radiation
Title Lipid-AuNPs@PDA Nanohybrid for MRI/CT Imaging and Photothermal Therapy of Hepatocellular Carcinoma
URI http://dx.doi.org/10.1021/am503583s
https://www.ncbi.nlm.nih.gov/pubmed/25090604
https://www.proquest.com/docview/1558519382
https://www.proquest.com/docview/2000257678
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1NT9tAEB1RemkP0JYWAi3alh56WYh37fX61igUhUqgqA0SN2u_LCSIjYhzgF_PjB1HVCXt1Rp77f3wezO78wbga9DGJ7HTXFsteWxV4FZ6wYvYBWt8hhBMAf2zczW6iH9eJpdrcLBiB19ER2aa9GWi5ewFvBQKFy_xn-Hv7nerpGjOKaIzHnONYNXJBz29laDHzf6EnhV8ssGVk0047rJz2uMk14fz2h66h7_FGv_1ym9gY8Er2aCdCG9hLZTv4PUTtcEtsFSn2vPB_Hw8-z4-HjD8s1ZX95SyxZC6srNfp0fDCTudNoWLmCk9G19VdZOiNcVnT1oBAlYVbIQgVlcU9KdTrGxIBYnKamrew8XJj8lwxBclFriJo7jmwkZe6lRnyiLwB-lSr4LwKotMSIuAzoxDl8oViZIGqVZapBQnosvoRklfyA-wXlZl2AHWJyUzJI_eaeQ0sm9cQs5nUNIGrW3Wg30cg3yxRGZ5s_stonzZWT341g1P7hYC5VQn4-Y50y9L09tWleM5o8_dGOe4ZqhPTBmqOTad0GZoJrVYbUMpTOSMpboH2-0EWTaFtDEj0aHd_33SHrxCghVTDFqkH2G9vpuHT0hiarvfTOJHarHorQ
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELZ4HIBDoS2PbQt1EYdeDJs4D-fGagHttuxqBYvELfIrQoJNEMke2l_fGSe7BQSCazSxHXuc-cbj-YaQAyukCQMtmFCCs0BFlilufJYF2ippEjDBeKA_GEa9q-DXdXjd0ORgLgwMooSWShfE_88u4B3JSdjmoeDlIlkGEOKjNne6l7O_bsR9d10RfPKACbBZMxahx6-iBdLlUwv0Cqx05uVsva5T5AbmbpXcHk4rdaj_PuNsfN_IN8iHBmXSTq0WH8mCzT-RtUfcg5-JwqrVhnWmw1F5PDrpUPjPFjd_MIGLApClg4v-UXdM-xNXxojK3NDRTVG5hK0JtD2u6QhokdEemLSqwBAA3mmlXSxPlBcTuUmuzk7H3R5rCi4wGXhBxXzlGS5ikUQKYIDlOjaR9U2UeNLGmQXXRoODpbMw4hKAV5zFeGqEj8Gp4ibjW2QpL3K7Q2gbec0AShotAOHwttQhuqI24soKoZIW2YO5SpsNU6YuFu576XyyWuTnbJVS3dCVY9WMu5dE9-ei9zVHx0tCP2ZLncIOwjmRuS2m0HWIodGEC_91GUxoQtcsFi2yXevJvCsAkQlSEH1565O-k5XeeHCenveHv7-SVYBeAZ5O-_E3slQ9TO0uwJtK7Tm9_gcYhfEO
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB6VVKrooS20lNA2LFUPXBZirx_rW6PQKOGRRiVI3Kx9WUgQG2HnUH59ZxwnohWoXK3x7np31vPNzs43AN-cVDYMjORSS8EDHTmuhfV5FhinlU3QBNOB_tk4Gl4Ex5fhZeMoUi4MDqLElso6iE-7-tZmDcOAd6hmYVeEUpRr8JLCdaTRvf758s8bCb--soh-ecAl2q0lk9DDV8kKmfJvK_QEtKxNzOAt_FwNrr5Zcn0wr_SBuf-Ht_H5o38Hbxq0yXoL9diAFy7fhNcPOAjfg6bq1Zb35uNJ-X1y1GP4vy2uflMiF0NAy85-jQ77Uzaa1eWMmMotm1wVVZ24NcO2pwtaAlZkbIimrSooFEB3W1mfyhTlxUx9gIvBj2l_yJvCC1wFXlBxX3tWyFgmkUY44ISJbeR8GyWecnHm0MUx6GiZLIyEQgAWZzGdHtFjdK6EzcQWtPIid9vAusRvhpDSGolIR3SVCckldZHQTkqdtKGD85U2G6dM65i476WryWrD_nKlUtPQllP1jJvHRL-uRG8XXB2PCe0tlzvFnURzonJXzLHrkEKkiZD-0zKU2EQuWizb8HGhK6uuEEwmREW0879P2oVXk6NBejoan3yCdURgAR1S-_FnaFV3c_cFUU6lO7Vq_wEZZvOR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lipid-AuNPs%40PDA+Nanohybrid+for+MRI%2FCT+Imaging+and+Photothermal+Therapy+of+Hepatocellular+Carcinoma&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Zeng%2C+Yongyi&rft.au=Zhang%2C+Da&rft.au=Wu%2C+Ming&rft.au=Liu%2C+Ying&rft.date=2014-08-27&rft.issn=1944-8252&rft.volume=6&rft.issue=16+p.14266-14277&rft.spage=14266&rft.epage=14277&rft_id=info:doi/10.1021%2Fam503583s&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon