Lipid-AuNPs@PDA Nanohybrid for MRI/CT Imaging and Photothermal Therapy of Hepatocellular Carcinoma
Multifunctional theranostic nanoparticles represent an emerging agent with the potential to offer extremely sensitive diagnosis and targeted cancer therapy. Herein, we report the synthesis and characterization of a multifunctional theranostic agent (referred to as LA-LAPNHs) for targeted magnetic re...
Saved in:
Published in | ACS applied materials & interfaces Vol. 6; no. 16; pp. 14266 - 14277 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
27.08.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Multifunctional theranostic nanoparticles represent an emerging agent with the potential to offer extremely sensitive diagnosis and targeted cancer therapy. Herein, we report the synthesis and characterization of a multifunctional theranostic agent (referred to as LA-LAPNHs) for targeted magnetic resonance imaging/computed X-ray tomography (MRI/CT) dual-mode imaging and photothermal therapy of hepatocellular carcinoma. The LA-LAPNHs were characterized as having a core–shell structure with the gold nanoparticles (AuNPs)@polydopamine (PDA) as the inner core, the indocyanine green (ICG), which is electrostatically absorbed onto the surface of PDA, as the photothermal therapeutic agent, and the lipids modified with gadolinium–1,4,7,10-tetraacetic acid and lactobionic acid (LA), which is self-assembled on the outer surface as the shell. The LA-LAPNHs could be selectively internalized into the hepatocellular cell line (HepG2 cells) but not into HeLa cells due to the specific recognition ability of LA to asialoglycoprotein receptor. Additionally, the dual-mode imaging ability of the LA-LAPNH aqueous solution was confirmed by enhanced MR and CT imaging showing a shorter T 1 relaxation time and a higher Hounsfield unit value, respectively. In addition, the LA-LAPNHs showed significant photothermal cytotoxicity against liver cancer cells with near-infrared irradiation due to their strong absorbance in the region between 700 and 850 nm. In summary, this study demonstrates that LA-LAPNHs may be a promising candidate for targeted MR/CT dual-mode imaging and photothermal therapy of hepatocellular carcinoma. |
---|---|
AbstractList | Multifunctional theranostic nanoparticles represent an emerging agent with the potential to offer extremely sensitive diagnosis and targeted cancer therapy. Herein, we report the synthesis and characterization of a multifunctional theranostic agent (referred to as LA-LAPNHs) for targeted magnetic resonance imaging/computed X-ray tomography (MRI/CT) dual-mode imaging and photothermal therapy of hepatocellular carcinoma. The LA-LAPNHs were characterized as having a core–shell structure with the gold nanoparticles (AuNPs)@polydopamine (PDA) as the inner core, the indocyanine green (ICG), which is electrostatically absorbed onto the surface of PDA, as the photothermal therapeutic agent, and the lipids modified with gadolinium–1,4,7,10-tetraacetic acid and lactobionic acid (LA), which is self-assembled on the outer surface as the shell. The LA-LAPNHs could be selectively internalized into the hepatocellular cell line (HepG2 cells) but not into HeLa cells due to the specific recognition ability of LA to asialoglycoprotein receptor. Additionally, the dual-mode imaging ability of the LA-LAPNH aqueous solution was confirmed by enhanced MR and CT imaging showing a shorter T 1 relaxation time and a higher Hounsfield unit value, respectively. In addition, the LA-LAPNHs showed significant photothermal cytotoxicity against liver cancer cells with near-infrared irradiation due to their strong absorbance in the region between 700 and 850 nm. In summary, this study demonstrates that LA-LAPNHs may be a promising candidate for targeted MR/CT dual-mode imaging and photothermal therapy of hepatocellular carcinoma. Multifunctional theranostic nanoparticles represent an emerging agent with the potential to offer extremely sensitive diagnosis and targeted cancer therapy. Herein, we report the synthesis and characterization of a multifunctional theranostic agent (referred to as LA-LAPNHs) for targeted magnetic resonance imaging/computed X-ray tomography (MRI/CT) dual-mode imaging and photothermal therapy of hepatocellular carcinoma. The LA-LAPNHs were characterized as having a core–shell structure with the gold nanoparticles (AuNPs)@polydopamine (PDA) as the inner core, the indocyanine green (ICG), which is electrostatically absorbed onto the surface of PDA, as the photothermal therapeutic agent, and the lipids modified with gadolinium–1,4,7,10-tetraacetic acid and lactobionic acid (LA), which is self-assembled on the outer surface as the shell. The LA-LAPNHs could be selectively internalized into the hepatocellular cell line (HepG2 cells) but not into HeLa cells due to the specific recognition ability of LA to asialoglycoprotein receptor. Additionally, the dual-mode imaging ability of the LA-LAPNH aqueous solution was confirmed by enhanced MR and CT imaging showing a shorter T₁ relaxation time and a higher Hounsfield unit value, respectively. In addition, the LA-LAPNHs showed significant photothermal cytotoxicity against liver cancer cells with near-infrared irradiation due to their strong absorbance in the region between 700 and 850 nm. In summary, this study demonstrates that LA-LAPNHs may be a promising candidate for targeted MR/CT dual-mode imaging and photothermal therapy of hepatocellular carcinoma. Multifunctional theranostic nanoparticles represent an emerging agent with the potential to offer extremely sensitive diagnosis and targeted cancer therapy. Herein, we report the synthesis and characterization of a multifunctional theranostic agent (referred to as LA-LAPNHs) for targeted magnetic resonance imaging/computed X-ray tomography (MRI/CT) dual-mode imaging and photothermal therapy of hepatocellular carcinoma. The LA-LAPNHs were characterized as having a core-shell structure with the gold nanoparticles (AuNPs)@polydopamine (PDA) as the inner core, the indocyanine green (ICG), which is electrostatically absorbed onto the surface of PDA, as the photothermal therapeutic agent, and the lipids modified with gadolinium-1,4,7,10-tetraacetic acid and lactobionic acid (LA), which is self-assembled on the outer surface as the shell. The LA-LAPNHs could be selectively internalized into the hepatocellular cell line (HepG2 cells) but not into HeLa cells due to the specific recognition ability of LA to asialoglycoprotein receptor. Additionally, the dual-mode imaging ability of the LA-LAPNH aqueous solution was confirmed by enhanced MR and CT imaging showing a shorter T1 relaxation time and a higher Hounsfield unit value, respectively. In addition, the LA-LAPNHs showed significant photothermal cytotoxicity against liver cancer cells with near-infrared irradiation due to their strong absorbance in the region between 700 and 850 nm. In summary, this study demonstrates that LA-LAPNHs may be a promising candidate for targeted MR/CT dual-mode imaging and photothermal therapy of hepatocellular carcinoma. Multifunctional theranostic nanoparticles represent an emerging agent with the potential to offer extremely sensitive diagnosis and targeted cancer therapy. Herein, we report the synthesis and characterization of a multifunctional theranostic agent (referred to as LA-LAPNHs) for targeted magnetic resonance imaging/computed X-ray tomography (MRI/CT) dual-mode imaging and photothermal therapy of hepatocellular carcinoma. The LA-LAPNHs were characterized as having a core-shell structure with the gold nanoparticles (AuNPs)@polydopamine (PDA) as the inner core, the indocyanine green (ICG), which is electrostatically absorbed onto the surface of PDA, as the photothermal therapeutic agent, and the lipids modified with gadolinium-1,4,7,10-tetraacetic acid and lactobionic acid (LA), which is self-assembled on the outer surface as the shell. The LA-LAPNHs could be selectively internalized into the hepatocellular cell line (HepG2 cells) but not into HeLa cells due to the specific recognition ability of LA to asialoglycoprotein receptor. Additionally, the dual-mode imaging ability of the LA-LAPNH aqueous solution was confirmed by enhanced MR and CT imaging showing a shorter T1 relaxation time and a higher Hounsfield unit value, respectively. In addition, the LA-LAPNHs showed significant photothermal cytotoxicity against liver cancer cells with near-infrared irradiation due to their strong absorbance in the region between 700 and 850 nm. In summary, this study demonstrates that LA-LAPNHs may be a promising candidate for targeted MR/CT dual-mode imaging and photothermal therapy of hepatocellular carcinoma.Multifunctional theranostic nanoparticles represent an emerging agent with the potential to offer extremely sensitive diagnosis and targeted cancer therapy. Herein, we report the synthesis and characterization of a multifunctional theranostic agent (referred to as LA-LAPNHs) for targeted magnetic resonance imaging/computed X-ray tomography (MRI/CT) dual-mode imaging and photothermal therapy of hepatocellular carcinoma. The LA-LAPNHs were characterized as having a core-shell structure with the gold nanoparticles (AuNPs)@polydopamine (PDA) as the inner core, the indocyanine green (ICG), which is electrostatically absorbed onto the surface of PDA, as the photothermal therapeutic agent, and the lipids modified with gadolinium-1,4,7,10-tetraacetic acid and lactobionic acid (LA), which is self-assembled on the outer surface as the shell. The LA-LAPNHs could be selectively internalized into the hepatocellular cell line (HepG2 cells) but not into HeLa cells due to the specific recognition ability of LA to asialoglycoprotein receptor. Additionally, the dual-mode imaging ability of the LA-LAPNH aqueous solution was confirmed by enhanced MR and CT imaging showing a shorter T1 relaxation time and a higher Hounsfield unit value, respectively. In addition, the LA-LAPNHs showed significant photothermal cytotoxicity against liver cancer cells with near-infrared irradiation due to their strong absorbance in the region between 700 and 850 nm. In summary, this study demonstrates that LA-LAPNHs may be a promising candidate for targeted MR/CT dual-mode imaging and photothermal therapy of hepatocellular carcinoma. |
Author | Li, Zheng Liu, Ying Li, Ling Zeng, Yongyi Zhang, Da Liu, Xiaolong Han, Xiao Wu, Ming Wei, Xueyong Zhang, Xiang |
AuthorAffiliation | Biotechnology Research Institute Mengchao Hepatobiliary Hospital of Fujian Medical University Fujian Medical University State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province Liver Disease Center Xi’an Jiaotong University Chinese Academy of Agricultural Sciences The First Affiliated Hospital of Fujian Medical University The Liver Center of Fujian Province |
AuthorAffiliation_xml | – name: Xi’an Jiaotong University – name: Chinese Academy of Agricultural Sciences – name: The First Affiliated Hospital of Fujian Medical University – name: Mengchao Hepatobiliary Hospital of Fujian Medical University – name: Fujian Medical University – name: State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering – name: Biotechnology Research Institute – name: The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province – name: Liver Disease Center – name: The Liver Center of Fujian Province |
Author_xml | – sequence: 1 givenname: Yongyi surname: Zeng fullname: Zeng, Yongyi organization: Fujian Medical University – sequence: 2 givenname: Da surname: Zhang fullname: Zhang, Da organization: Fujian Medical University – sequence: 3 givenname: Ming surname: Wu fullname: Wu, Ming organization: Fujian Medical University – sequence: 4 givenname: Ying surname: Liu fullname: Liu, Ying organization: Xi’an Jiaotong University – sequence: 5 givenname: Xiang surname: Zhang fullname: Zhang, Xiang organization: The First Affiliated Hospital of Fujian Medical University – sequence: 6 givenname: Ling surname: Li fullname: Li, Ling organization: Fujian Medical University – sequence: 7 givenname: Zheng surname: Li fullname: Li, Zheng organization: Xi’an Jiaotong University – sequence: 8 givenname: Xiao surname: Han fullname: Han, Xiao organization: Chinese Academy of Agricultural Sciences – sequence: 9 givenname: Xueyong surname: Wei fullname: Wei, Xueyong organization: Xi’an Jiaotong University – sequence: 10 givenname: Xiaolong surname: Liu fullname: Liu, Xiaolong email: xiaoloong.liu@gmail.com organization: Fujian Medical University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25090604$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0Utr4zAQAGBRWvrcQ_9A0aWwPbjR05JvDdk-AtluKNmzGdtyo2JLrmQf8u_rkDaHpbCnGYZvhmHmDB067wxCl5TcUsLoBFpJuNQ8HqBTmgmRaCbZ4T4X4gSdxfhGSMoZkcfohEmSkZSIU1QsbGerZDo8L-Pd8tcUP4Pz600RbIVrH_Dvl_lktsLzFl6te8XgKrxc-973axNaaPBqjNBtsK_xk-mg96VpmqGBgGcQSut8CxfoqIYmmh-f8Rz9fbhfzZ6SxZ_H-Wy6SEBQ0SesoBXXSmdpQVlmeKmq1LAqzSgYVRutZMm0KmuZchAyVbXiUpBtmQrNq5qfo5-7uV3w74OJfd7auF0HnPFDzBkhhEmVKv1fSqXUkmZcs5FefdKhaE2Vd8G2EDb51wlHcLMDZfAxBlPvCSX59j35_j2jnfxjS9tDb73rA9jm247rXQeUMX_zQ3DjCb9xH_tLmwM |
CitedBy_id | crossref_primary_10_1039_C6TB00773B crossref_primary_10_1007_s00604_018_2873_8 crossref_primary_10_1039_C5NR04828A crossref_primary_10_2217_nnm_15_30 crossref_primary_10_1016_j_ijpharm_2016_03_019 crossref_primary_10_3390_bios12050342 crossref_primary_10_1016_j_jconrel_2018_10_009 crossref_primary_10_1016_j_colsurfb_2018_02_014 crossref_primary_10_1155_2019_6457968 crossref_primary_10_1016_j_jconrel_2018_08_030 crossref_primary_10_1039_C8SC02408A crossref_primary_10_1007_s11095_018_2480_8 crossref_primary_10_1039_C7TB00382J crossref_primary_10_1039_C9BM00242A crossref_primary_10_1002_chem_201904757 crossref_primary_10_1515_corrrev_2023_0055 crossref_primary_10_1016_j_colsurfb_2022_112432 crossref_primary_10_1039_C8NJ00454D crossref_primary_10_1016_j_cej_2020_125882 crossref_primary_10_1016_j_apmt_2018_07_006 crossref_primary_10_1021_acsanm_9b00791 crossref_primary_10_1038_s41598_017_05395_w crossref_primary_10_1021_acsami_5b01027 crossref_primary_10_1016_j_biomaterials_2015_11_021 crossref_primary_10_1021_acs_langmuir_8b01669 crossref_primary_10_1039_C5TB01827G crossref_primary_10_1080_1061186X_2021_1999963 crossref_primary_10_1021_acs_nanolett_6b00599 crossref_primary_10_1038_s41598_017_16016_x crossref_primary_10_3390_nano13030501 crossref_primary_10_1007_s12274_022_5356_2 crossref_primary_10_3390_nano6040076 crossref_primary_10_1016_j_cej_2016_05_102 crossref_primary_10_1021_acs_iecr_2c00285 crossref_primary_10_1021_acsnano_5b06259 crossref_primary_10_1016_j_colsurfb_2017_05_080 crossref_primary_10_1021_acsami_5b06265 crossref_primary_10_1039_C9TB02766A crossref_primary_10_1016_j_ultsonch_2017_03_019 crossref_primary_10_2217_nnm_2019_0395 crossref_primary_10_1007_s13205_024_04086_4 crossref_primary_10_1002_adfm_201601478 crossref_primary_10_1016_j_biomaterials_2015_11_037 crossref_primary_10_1016_j_ccr_2020_213540 crossref_primary_10_1016_j_ijpharm_2018_01_034 crossref_primary_10_1039_D1NJ03137F crossref_primary_10_1016_j_biomaterials_2016_08_022 crossref_primary_10_1039_C7BM00187H crossref_primary_10_3390_pharmaceutics14051074 crossref_primary_10_1039_C8NR00838H crossref_primary_10_1021_acs_analchem_6b01804 crossref_primary_10_1039_C7TB01362K crossref_primary_10_1016_j_jddst_2024_106443 crossref_primary_10_1021_acs_nanolett_9b00171 crossref_primary_10_1021_acsabm_4c00723 crossref_primary_10_1021_acsami_7b03087 crossref_primary_10_1016_j_nanoso_2024_101342 crossref_primary_10_1021_acsami_6b16705 crossref_primary_10_1016_j_jmst_2020_04_060 crossref_primary_10_1080_21691401_2018_1457536 crossref_primary_10_3390_cryst9120612 crossref_primary_10_1021_acsnano_6b07990 crossref_primary_10_1002_tcr_201700051 crossref_primary_10_1007_s40242_020_9078_5 crossref_primary_10_3389_fchem_2018_00127 crossref_primary_10_1021_acsnano_6b06267 crossref_primary_10_1016_j_colsurfb_2016_02_022 crossref_primary_10_1016_j_jiec_2020_12_002 crossref_primary_10_3390_ma13020279 crossref_primary_10_1016_j_ceramint_2022_11_337 crossref_primary_10_1016_j_cej_2015_08_133 crossref_primary_10_1016_j_jconrel_2022_08_008 crossref_primary_10_1016_j_ijpharm_2022_121716 crossref_primary_10_1016_j_biomaterials_2016_08_040 crossref_primary_10_1021_acsami_8b08419 crossref_primary_10_1021_acs_analchem_0c03652 crossref_primary_10_1039_D1NA00059D crossref_primary_10_2147_IJN_S244541 crossref_primary_10_1039_C6RA07782J crossref_primary_10_1039_C7NR03564K crossref_primary_10_3390_ma13071730 crossref_primary_10_1039_D1BM01324F crossref_primary_10_1142_S1793984415400036 crossref_primary_10_1039_C5RA24785C crossref_primary_10_1007_s12668_023_01097_y crossref_primary_10_1016_j_mtnano_2022_100187 crossref_primary_10_1038_s41598_023_30526_x crossref_primary_10_1039_C7RA04994C crossref_primary_10_1002_med_21642 crossref_primary_10_1016_j_jconrel_2019_07_036 crossref_primary_10_1016_j_drudis_2015_05_009 crossref_primary_10_1039_C9NJ00561G crossref_primary_10_1039_C6RA18261E crossref_primary_10_3390_pharmaceutics17020176 crossref_primary_10_1039_C6TB00291A crossref_primary_10_3390_bios13110977 crossref_primary_10_1039_C7DT02095C crossref_primary_10_1016_j_jconrel_2015_09_016 crossref_primary_10_1039_D0CC00196A crossref_primary_10_1016_j_cej_2019_122172 crossref_primary_10_1002_adfm_201906623 crossref_primary_10_1039_C9NR06375G crossref_primary_10_3390_ijms242316719 crossref_primary_10_1016_j_colsurfb_2021_112247 crossref_primary_10_1016_j_micromeso_2021_111431 crossref_primary_10_1021_acs_chemmater_6b05406 crossref_primary_10_1021_acsabm_0c01525 crossref_primary_10_1155_2018_5837276 crossref_primary_10_1039_C6NR07656D crossref_primary_10_1021_acs_jpcb_7b00500 crossref_primary_10_1007_s12672_025_01977_7 crossref_primary_10_1016_j_jcis_2021_08_155 crossref_primary_10_1016_j_envres_2023_116870 crossref_primary_10_1021_acsami_5b08087 crossref_primary_10_2174_2405461507666220304204152 crossref_primary_10_1002_ppsc_201600113 crossref_primary_10_1002_slct_201802542 crossref_primary_10_1021_acsami_7b08392 crossref_primary_10_1007_s10853_019_03774_4 crossref_primary_10_1088_0957_4484_26_11_115102 crossref_primary_10_1021_acsapm_0c00629 crossref_primary_10_1016_j_msec_2019_01_032 crossref_primary_10_1002_chem_201901820 crossref_primary_10_1016_j_cis_2018_01_001 crossref_primary_10_1016_j_vibspec_2022_103371 crossref_primary_10_1002_ppsc_201800010 crossref_primary_10_1039_D0BM00625D crossref_primary_10_1039_C7NR02848B crossref_primary_10_1007_s12668_020_00733_1 crossref_primary_10_3390_nano11082107 crossref_primary_10_1016_j_ejpb_2018_05_013 crossref_primary_10_3390_nano9121731 crossref_primary_10_1021_acsnano_8b02235 crossref_primary_10_1016_j_ijbiomac_2020_01_071 crossref_primary_10_1021_acsami_6b05907 |
Cites_doi | 10.1053/j.gastro.2004.09.011 10.1021/am201311c 10.1016/j.carbpol.2006.10.013 10.1021/am500761x 10.1016/j.biomaterials.2012.04.044 10.1016/j.biomaterials.2012.11.007 10.1039/C4TB00516C 10.1016/j.jphotobiol.2004.01.002 10.1021/nn500722y 10.1016/j.stam.2005.03.007 10.1016/j.actbio.2011.07.024 10.1002/adma.201204683 10.1002/mabi.201100061 10.1002/adfm.200902347 10.1067/msy.2000.104746 10.1021/ja078176p 10.1211/jpp.60.8.0005 10.2214/ajr.152.1.41 10.1016/j.jconrel.2013.03.020 10.1002/jso.21943 10.1021/am400721s 10.1016/j.jconrel.2013.10.038 10.1016/j.biomaterials.2010.04.066 10.1002/lt.20034 10.1016/S1011-1344(98)00216-4 10.1016/j.addr.2010.07.004 10.1021/ja4080562 10.1021/am402585y 10.1016/j.biomaterials.2014.02.018 10.1152/jappl.1976.40.4.575 10.3181/00379727-143-37433 10.1021/ja3016582 10.1021/am302439g 10.1016/j.biomaterials.2013.02.063 10.1021/am302956h 10.2214/AJR.12.9798 10.1186/1479-5876-6-80 10.1021/cm101036a 10.1021/nn404117j 10.1021/bc200151q 10.1102/1470-7330.2008.9019 10.1039/c0cc00596g 10.1016/j.nano.2013.05.012 10.1021/cr400407a 10.1007/s12072-009-9145-y 10.1021/nn405809c 10.1039/c2nr31715j |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1021/am503583s |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 14277 |
ExternalDocumentID | 25090604 10_1021_am503583s b805920128 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 23M 4.4 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ LG6 P2P RNS ROL UI2 VF5 VG9 W1F XKZ --- .K2 5VS 5ZA 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ BAANH CITATION CUPRZ GGK CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a414t-2b1d387896b129e3c7d6e2d691ae7fe875c287cf563a4567f73540875c1483df3 |
IEDL.DBID | ACS |
ISSN | 1944-8244 1944-8252 |
IngestDate | Fri Jul 11 08:23:44 EDT 2025 Thu Jul 10 19:18:27 EDT 2025 Thu Jan 02 22:17:09 EST 2025 Tue Jul 01 04:12:24 EDT 2025 Thu Apr 24 23:03:36 EDT 2025 Thu Aug 27 13:41:55 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Keywords | polydopamine lactobionic acid targeted photothermal therapy dual-mode imaging AuNPs |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a414t-2b1d387896b129e3c7d6e2d691ae7fe875c287cf563a4567f73540875c1483df3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 25090604 |
PQID | 1558519382 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2000257678 proquest_miscellaneous_1558519382 pubmed_primary_25090604 crossref_primary_10_1021_am503583s crossref_citationtrail_10_1021_am503583s acs_journals_10_1021_am503583s |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-08-27 |
PublicationDateYYYYMMDD | 2014-08-27 |
PublicationDate_xml | – month: 08 year: 2014 text: 2014-08-27 day: 27 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
PublicationYear | 2014 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Holzer W. (ref30/cit30) 1998; 47 Tripp M. R. (ref32/cit32) 1973; 143 Liu Y. (ref45/cit45) 2014; 114 Liu X. (ref46/cit46) 2013; 7 Alric C. (ref18/cit18) 2008; 130 Bosch F. X. (ref1/cit1) 2004; 127 Salem N. (ref11/cit11) 2009; 53 Schaafsma B. E. (ref29/cit29) 2011; 104 Landsman M. L. (ref31/cit31) 1976; 40 Zheng C. (ref33/cit33) 2012; 33 Hallouard F. (ref14/cit14) 2010; 31 Narayanan S. (ref19/cit19) 2011; 4 Hainfeld J. F. (ref37/cit37) 2008; 60 Wang X. (ref21/cit21) 2013; 5 She W. C. (ref52/cit52) 2013; 34 Liu Y. L. (ref53/cit53) 2013; 25 Lee N. (ref23/cit23) 2012; 134 Mi P. (ref56/cit56) 2014; 174 Cheung E. N. M. (ref22/cit22) 2010; 22 Llovet J. M. (ref6/cit6) 2004; 10 Ryu J. (ref44/cit44) 2010; 20 Huang P. (ref26/cit26) 2013; 34 Liu Q. (ref49/cit49) 2013; 135 Lin L. S. (ref47/cit47) 2014; 8 Sugunan A. (ref38/cit38) 2005; 6 Li Y. (ref8/cit8) 2011; 7 Zheng C. (ref54/cit54) 2012; 33 Wang W. (ref42/cit42) 2013; 5 Ohulchanskyy T. Y. (ref25/cit25) 2013; 9 Lai Q. (ref5/cit5) 2013; 60 Robinson P. (ref7/cit7) 2008; 8 Wang Z. (ref39/cit39) 2007; 69 Park J. (ref48/cit48) 2014; 8 Abdel-Wahab M. (ref3/cit3) 2012; 60 Imamura H. (ref4/cit4) 2000; 127 Cheng M. F. (ref12/cit12) 2007; 54 Tsai W. B. (ref40/cit40) 2011; 7 Taouli B. (ref9/cit9) 2013; 201 Kelkar S. S. (ref17/cit17) 2011; 22 Sarin H. (ref20/cit20) 2008; 6 Tang Y. H. (ref2/cit2) 2013; 60 Guo M. (ref27/cit27) 2013; 35 Saxena V. (ref55/cit55) 2004; 74 McCarthy J. R. (ref16/cit16) 2010; 62 ref28/cit28 Liu Q. (ref51/cit51) 2011; 11 Sato T. (ref10/cit10) 2009; 3 Liu R. (ref43/cit43) 2013; 5 Zhang M. (ref36/cit36) 2013; 168 Liu H. (ref35/cit35) 2014; 6 Saxena V. (ref34/cit34) 2004; 74 Kim H. W. (ref41/cit41) 2013; 5 Huang Y. (ref24/cit24) 2012; 4 Kattapuram T. M. (ref15/cit15) 2001; 21 Yu B. (ref50/cit50) 2010; 46 Kelly J. (ref13/cit13) 1989; 152 |
References_xml | – volume: 127 start-page: 5 year: 2004 ident: ref1/cit1 publication-title: Gastroenterology doi: 10.1053/j.gastro.2004.09.011 – volume: 4 start-page: 251 year: 2011 ident: ref19/cit19 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am201311c – volume: 69 start-page: 311 year: 2007 ident: ref39/cit39 publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2006.10.013 – volume: 6 start-page: 6944 year: 2014 ident: ref35/cit35 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am500761x – volume: 33 start-page: 5603 year: 2012 ident: ref33/cit33 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.04.044 – volume: 34 start-page: 1613 year: 2013 ident: ref52/cit52 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.11.007 – ident: ref28/cit28 doi: 10.1039/C4TB00516C – volume: 74 start-page: 29 year: 2004 ident: ref55/cit55 publication-title: J. Photochem. Photobiol., B doi: 10.1016/j.jphotobiol.2004.01.002 – volume: 8 start-page: 3876 year: 2014 ident: ref47/cit47 publication-title: ACS Nano doi: 10.1021/nn500722y – volume: 6 start-page: 335 year: 2005 ident: ref38/cit38 publication-title: Sci. Technol. Adv. Mater. doi: 10.1016/j.stam.2005.03.007 – volume: 7 start-page: 4187 year: 2011 ident: ref40/cit40 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2011.07.024 – volume: 25 start-page: 1353 year: 2013 ident: ref53/cit53 publication-title: Adv. Mater. doi: 10.1002/adma.201204683 – volume: 11 start-page: 1227 year: 2011 ident: ref51/cit51 publication-title: Macromol. Biosci. doi: 10.1002/mabi.201100061 – volume: 60 start-page: 2019 year: 2013 ident: ref2/cit2 publication-title: Hepato-Gastroenterology – volume: 20 start-page: 2132 year: 2010 ident: ref44/cit44 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200902347 – volume: 127 start-page: 528 year: 2000 ident: ref4/cit4 publication-title: Surgery doi: 10.1067/msy.2000.104746 – volume: 74 start-page: 29 year: 2004 ident: ref34/cit34 publication-title: J. Photochem. Photobiol., B doi: 10.1016/j.jphotobiol.2004.01.002 – volume: 130 start-page: 5908 year: 2008 ident: ref18/cit18 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja078176p – volume: 60 start-page: 977 year: 2008 ident: ref37/cit37 publication-title: J. Pharm. Pharmacol. doi: 10.1211/jpp.60.8.0005 – volume: 152 start-page: 41 year: 1989 ident: ref13/cit13 publication-title: Am. J. Roentgenol. doi: 10.2214/ajr.152.1.41 – volume: 168 start-page: 251 year: 2013 ident: ref36/cit36 publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2013.03.020 – volume: 104 start-page: 323 year: 2011 ident: ref29/cit29 publication-title: J. Surg. Oncol. doi: 10.1002/jso.21943 – volume: 5 start-page: 4966 year: 2013 ident: ref21/cit21 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am400721s – volume: 174 start-page: 63 year: 2014 ident: ref56/cit56 publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2013.10.038 – volume: 60 start-page: 2039 year: 2013 ident: ref5/cit5 publication-title: Hepato-Gastroenterology – volume: 31 start-page: 6249 year: 2010 ident: ref14/cit14 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.04.066 – volume: 10 start-page: 115 year: 2004 ident: ref6/cit6 publication-title: Liver Transpl. doi: 10.1002/lt.20034 – volume: 47 start-page: 155 year: 1998 ident: ref30/cit30 publication-title: J. Photochem. Photobiol., B doi: 10.1016/S1011-1344(98)00216-4 – volume: 62 start-page: 1023 year: 2010 ident: ref16/cit16 publication-title: Adv. Drug Delivery Rev. doi: 10.1016/j.addr.2010.07.004 – volume: 135 start-page: 17679 year: 2013 ident: ref49/cit49 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4080562 – volume: 5 start-page: 9167 year: 2013 ident: ref43/cit43 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am402585y – volume: 35 start-page: 4656 year: 2013 ident: ref27/cit27 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.02.018 – volume: 40 start-page: 575 year: 1976 ident: ref31/cit31 publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1976.40.4.575 – volume: 33 start-page: 5603 year: 2012 ident: ref54/cit54 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.04.044 – volume: 143 start-page: 879 year: 1973 ident: ref32/cit32 publication-title: Proc. Soc. Exp. Biol. Med. doi: 10.3181/00379727-143-37433 – volume: 134 start-page: 10309 year: 2012 ident: ref23/cit23 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3016582 – volume: 5 start-page: 233 year: 2013 ident: ref41/cit41 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am302439g – volume: 34 start-page: 4643 year: 2013 ident: ref26/cit26 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.02.063 – volume: 5 start-page: 2062 year: 2013 ident: ref42/cit42 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am302956h – volume: 21 start-page: 190 year: 2001 ident: ref15/cit15 publication-title: Curr. Clin. Top. Infect. Dis. – volume: 60 start-page: 1847 year: 2012 ident: ref3/cit3 publication-title: Hepato-Gastroenterology – volume: 201 start-page: 795 year: 2013 ident: ref9/cit9 publication-title: Am. J. Roentgenol. doi: 10.2214/AJR.12.9798 – volume: 6 start-page: 80 year: 2008 ident: ref20/cit20 publication-title: J. Transl. Med. doi: 10.1186/1479-5876-6-80 – volume: 53 start-page: 144 year: 2009 ident: ref11/cit11 publication-title: Q. J. Nucl. Med. Mol. Imaging – volume: 22 start-page: 4728 year: 2010 ident: ref22/cit22 publication-title: Chem. Mater. doi: 10.1021/cm101036a – volume: 7 start-page: 9384 issue: 10 year: 2013 ident: ref46/cit46 publication-title: ACS Nano doi: 10.1021/nn404117j – volume: 22 start-page: 1879 year: 2011 ident: ref17/cit17 publication-title: Bioconjugate Chem. doi: 10.1021/bc200151q – volume: 8 start-page: 128 year: 2008 ident: ref7/cit7 publication-title: Cancer Imaging doi: 10.1102/1470-7330.2008.9019 – volume: 46 start-page: 5900 year: 2010 ident: ref50/cit50 publication-title: Chem. Commun. doi: 10.1039/c0cc00596g – volume: 9 start-page: 1192 year: 2013 ident: ref25/cit25 publication-title: Nanomedicine doi: 10.1016/j.nano.2013.05.012 – volume: 7 start-page: 4593 year: 2011 ident: ref8/cit8 publication-title: Int. J. Nanomed. – volume: 114 start-page: 5057 year: 2014 ident: ref45/cit45 publication-title: Chem. Rev. doi: 10.1021/cr400407a – volume: 3 start-page: 544 year: 2009 ident: ref10/cit10 publication-title: Hepatol. Int. doi: 10.1007/s12072-009-9145-y – volume: 8 start-page: 3347 year: 2014 ident: ref48/cit48 publication-title: ACS Nano doi: 10.1021/nn405809c – volume: 54 start-page: 342 year: 2007 ident: ref12/cit12 publication-title: Neoplasma – volume: 4 start-page: 6135 year: 2012 ident: ref24/cit24 publication-title: Nanoscale doi: 10.1039/c2nr31715j |
SSID | ssj0063205 |
Score | 2.5034456 |
Snippet | Multifunctional theranostic nanoparticles represent an emerging agent with the potential to offer extremely sensitive diagnosis and targeted cancer therapy.... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 14266 |
SubjectTerms | absorbance aqueous solutions Carcinoma, Hepatocellular - diagnosis Carcinoma, Hepatocellular - therapy Cell Death - drug effects Cell Death - radiation effects Cell Line cytotoxicity Diagnostic Imaging - methods Gadolinium - chemistry Gold - chemistry HeLa Cells Hep G2 Cells hepatoma human cell lines Humans image analysis Indocyanine Green - chemistry Indoles - chemistry irradiation lipids Lipids - chemistry Liver Neoplasms - diagnosis Liver Neoplasms - therapy magnetic resonance imaging Magnetic Resonance Imaging - methods Metal Nanoparticles - chemistry nanogold nanoparticles neoplasm cells Phototherapy - methods Polymers - chemistry therapeutics tomography Tomography, X-Ray Computed - methods X-radiation |
Title | Lipid-AuNPs@PDA Nanohybrid for MRI/CT Imaging and Photothermal Therapy of Hepatocellular Carcinoma |
URI | http://dx.doi.org/10.1021/am503583s https://www.ncbi.nlm.nih.gov/pubmed/25090604 https://www.proquest.com/docview/1558519382 https://www.proquest.com/docview/2000257678 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1NT9tAEB1RemkP0JYWAi3alh56WYh37fX61igUhUqgqA0SN2u_LCSIjYhzgF_PjB1HVCXt1Rp77f3wezO78wbga9DGJ7HTXFsteWxV4FZ6wYvYBWt8hhBMAf2zczW6iH9eJpdrcLBiB19ER2aa9GWi5ewFvBQKFy_xn-Hv7nerpGjOKaIzHnONYNXJBz29laDHzf6EnhV8ssGVk0047rJz2uMk14fz2h66h7_FGv_1ym9gY8Er2aCdCG9hLZTv4PUTtcEtsFSn2vPB_Hw8-z4-HjD8s1ZX95SyxZC6srNfp0fDCTudNoWLmCk9G19VdZOiNcVnT1oBAlYVbIQgVlcU9KdTrGxIBYnKamrew8XJj8lwxBclFriJo7jmwkZe6lRnyiLwB-lSr4LwKotMSIuAzoxDl8oViZIGqVZapBQnosvoRklfyA-wXlZl2AHWJyUzJI_eaeQ0sm9cQs5nUNIGrW3Wg30cg3yxRGZ5s_stonzZWT341g1P7hYC5VQn4-Y50y9L09tWleM5o8_dGOe4ZqhPTBmqOTad0GZoJrVYbUMpTOSMpboH2-0EWTaFtDEj0aHd_33SHrxCghVTDFqkH2G9vpuHT0hiarvfTOJHarHorQ |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELZ4HIBDoS2PbQt1EYdeDJs4D-fGagHttuxqBYvELfIrQoJNEMke2l_fGSe7BQSCazSxHXuc-cbj-YaQAyukCQMtmFCCs0BFlilufJYF2ippEjDBeKA_GEa9q-DXdXjd0ORgLgwMooSWShfE_88u4B3JSdjmoeDlIlkGEOKjNne6l7O_bsR9d10RfPKACbBZMxahx6-iBdLlUwv0Cqx05uVsva5T5AbmbpXcHk4rdaj_PuNsfN_IN8iHBmXSTq0WH8mCzT-RtUfcg5-JwqrVhnWmw1F5PDrpUPjPFjd_MIGLApClg4v-UXdM-xNXxojK3NDRTVG5hK0JtD2u6QhokdEemLSqwBAA3mmlXSxPlBcTuUmuzk7H3R5rCi4wGXhBxXzlGS5ikUQKYIDlOjaR9U2UeNLGmQXXRoODpbMw4hKAV5zFeGqEj8Gp4ibjW2QpL3K7Q2gbec0AShotAOHwttQhuqI24soKoZIW2YO5SpsNU6YuFu576XyyWuTnbJVS3dCVY9WMu5dE9-ei9zVHx0tCP2ZLncIOwjmRuS2m0HWIodGEC_91GUxoQtcsFi2yXevJvCsAkQlSEH1565O-k5XeeHCenveHv7-SVYBeAZ5O-_E3slQ9TO0uwJtK7Tm9_gcYhfEO |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB6VVKrooS20lNA2LFUPXBZirx_rW6PQKOGRRiVI3Kx9WUgQG2HnUH59ZxwnohWoXK3x7np31vPNzs43AN-cVDYMjORSS8EDHTmuhfV5FhinlU3QBNOB_tk4Gl4Ex5fhZeMoUi4MDqLElso6iE-7-tZmDcOAd6hmYVeEUpRr8JLCdaTRvf758s8bCb--soh-ecAl2q0lk9DDV8kKmfJvK_QEtKxNzOAt_FwNrr5Zcn0wr_SBuf-Ht_H5o38Hbxq0yXoL9diAFy7fhNcPOAjfg6bq1Zb35uNJ-X1y1GP4vy2uflMiF0NAy85-jQ77Uzaa1eWMmMotm1wVVZ24NcO2pwtaAlZkbIimrSooFEB3W1mfyhTlxUx9gIvBj2l_yJvCC1wFXlBxX3tWyFgmkUY44ISJbeR8GyWecnHm0MUx6GiZLIyEQgAWZzGdHtFjdK6EzcQWtPIid9vAusRvhpDSGolIR3SVCckldZHQTkqdtKGD85U2G6dM65i476WryWrD_nKlUtPQllP1jJvHRL-uRG8XXB2PCe0tlzvFnURzonJXzLHrkEKkiZD-0zKU2EQuWizb8HGhK6uuEEwmREW0879P2oVXk6NBejoan3yCdURgAR1S-_FnaFV3c_cFUU6lO7Vq_wEZZvOR |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lipid-AuNPs%40PDA+Nanohybrid+for+MRI%2FCT+Imaging+and+Photothermal+Therapy+of+Hepatocellular+Carcinoma&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Zeng%2C+Yongyi&rft.au=Zhang%2C+Da&rft.au=Wu%2C+Ming&rft.au=Liu%2C+Ying&rft.date=2014-08-27&rft.issn=1944-8252&rft.volume=6&rft.issue=16+p.14266-14277&rft.spage=14266&rft.epage=14277&rft_id=info:doi/10.1021%2Fam503583s&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |