Iridium-Catalyzed Asymmetric Hydrogenation of Unsaturated Carboxylic Acids

Chiral carboxylic acid moieties are widely found in pharmaceuticals, agrochemicals, flavors, fragrances, and health supplements. Although they can be synthesized straightforwardly by transition-metal-catalyzed enantioselective hydrogenation of unsaturated carboxylic acids, because the existing chira...

Full description

Saved in:
Bibliographic Details
Published inAccounts of chemical research Vol. 50; no. 4; pp. 988 - 1001
Main Authors Zhu, Shou-Fei, Zhou, Qi-Lin
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 18.04.2017
Online AccessGet full text

Cover

Loading…
Abstract Chiral carboxylic acid moieties are widely found in pharmaceuticals, agrochemicals, flavors, fragrances, and health supplements. Although they can be synthesized straightforwardly by transition-metal-catalyzed enantioselective hydrogenation of unsaturated carboxylic acids, because the existing chiral catalysts have various disadvantages, the development of new chiral catalysts with high activity and enantioselectivity is an important, long-standing challenge. Ruthenium complexes with chiral diphosphine ligands and rhodium complexes with chiral monodentate or bidentate phosphorus ligands have been the predominant catalysts for asymmetric hydrogenation of unsaturated acids. However, the efficiency of these catalysts is highly substrate-dependent, and most of the reported catalysts require a high loading, high hydrogen pressure, or long reaction time for satisfactory results. Our recent studies have revealed that chiral iridium complexes with chiral spiro-phosphine-oxazoline ligands and chiral spiro-phosphine-benzylamine ligands exhibit excellent activity and enantioselectivity in the hydrogenation of α,β-unsaturated carboxylic acids, including α,β-disubstituted acrylic acids, trisubstituted acrylic acids, α-substituted acrylic acids, and heterocyclic α,β-unsaturated acids. On the basis of an understanding of the role of the carboxy group in iridium-catalyzed asymmetric hydrogenation reactions, we developed a carboxy-group-directed strategy for asymmetric hydrogenation of olefins. Using this strategy, we hydrogenated several challenging olefin substrates, such as β,γ-unsaturated carboxylic acids, 1,1-diarylethenes, 1,1-dialkylethenes, and 1-alkyl styrenes in high yield and with excellent enantioselectivity. All these iridium-catalyzed asymmetric hydrogenation reactions feature high turnover numbers (up to 10000) and turnover frequencies (up to 6000 h–1), excellent enantioselectivities (greater than 95% ee with few exceptions), low hydrogen pressure (<12 atm), and operational simplicity. These features make chiral iridium catalysts superior or comparable to well-established chiral ruthenium and rhodium catalysts for asymmetric hydrogenation of unsaturated carboxylic acids. A number of chiral natural products and pharmaceuticals have been prepared by concise routes involving an iridium-catalyzed asymmetric hydrogenation of an unsaturated carboxylic acid as a key step. As part of a mechanistic study of iridium-catalyzed asymmetric hydrogenation of unsaturated acids, we isolated, for the first time, the migratory insertion intermediate in the iridium-catalyzed asymmetric hydrogenation of olefins, and this result strongly supports the involvement of an Ir­(III)/Ir­(V) catalytic cycle. The rigid, bulky scaffold of the chiral spiro-P,N-ligands of the catalysts not only prevents them from undergoing deactivating aggregation under the hydrogenation conditions but also is responsible for the efficient chiral induction. The carboxy group of the substrate acts as an anchor to ensure coordination of the substrate to the iridium center of the catalyst during the reaction and makes the hydrogenation proceed smoothly.
AbstractList Chiral carboxylic acid moieties are widely found in pharmaceuticals, agrochemicals, flavors, fragrances, and health supplements. Although they can be synthesized straightforwardly by transition-metal-catalyzed enantioselective hydrogenation of unsaturated carboxylic acids, because the existing chiral catalysts have various disadvantages, the development of new chiral catalysts with high activity and enantioselectivity is an important, long-standing challenge. Ruthenium complexes with chiral diphosphine ligands and rhodium complexes with chiral monodentate or bidentate phosphorus ligands have been the predominant catalysts for asymmetric hydrogenation of unsaturated acids. However, the efficiency of these catalysts is highly substrate-dependent, and most of the reported catalysts require a high loading, high hydrogen pressure, or long reaction time for satisfactory results. Our recent studies have revealed that chiral iridium complexes with chiral spiro-phosphine-oxazoline ligands and chiral spiro-phosphine-benzylamine ligands exhibit excellent activity and enantioselectivity in the hydrogenation of α,β-unsaturated carboxylic acids, including α,β-disubstituted acrylic acids, trisubstituted acrylic acids, α-substituted acrylic acids, and heterocyclic α,β-unsaturated acids. On the basis of an understanding of the role of the carboxy group in iridium-catalyzed asymmetric hydrogenation reactions, we developed a carboxy-group-directed strategy for asymmetric hydrogenation of olefins. Using this strategy, we hydrogenated several challenging olefin substrates, such as β,γ-unsaturated carboxylic acids, 1,1-diarylethenes, 1,1-dialkylethenes, and 1-alkyl styrenes in high yield and with excellent enantioselectivity. All these iridium-catalyzed asymmetric hydrogenation reactions feature high turnover numbers (up to 10000) and turnover frequencies (up to 6000 h ), excellent enantioselectivities (greater than 95% ee with few exceptions), low hydrogen pressure (<12 atm), and operational simplicity. These features make chiral iridium catalysts superior or comparable to well-established chiral ruthenium and rhodium catalysts for asymmetric hydrogenation of unsaturated carboxylic acids. A number of chiral natural products and pharmaceuticals have been prepared by concise routes involving an iridium-catalyzed asymmetric hydrogenation of an unsaturated carboxylic acid as a key step. As part of a mechanistic study of iridium-catalyzed asymmetric hydrogenation of unsaturated acids, we isolated, for the first time, the migratory insertion intermediate in the iridium-catalyzed asymmetric hydrogenation of olefins, and this result strongly supports the involvement of an Ir(III)/Ir(V) catalytic cycle. The rigid, bulky scaffold of the chiral spiro-P,N-ligands of the catalysts not only prevents them from undergoing deactivating aggregation under the hydrogenation conditions but also is responsible for the efficient chiral induction. The carboxy group of the substrate acts as an anchor to ensure coordination of the substrate to the iridium center of the catalyst during the reaction and makes the hydrogenation proceed smoothly.
Chiral carboxylic acid moieties are widely found in pharmaceuticals, agrochemicals, flavors, fragrances, and health supplements. Although they can be synthesized straightforwardly by transition-metal-catalyzed enantioselective hydrogenation of unsaturated carboxylic acids, because the existing chiral catalysts have various disadvantages, the development of new chiral catalysts with high activity and enantioselectivity is an important, long-standing challenge. Ruthenium complexes with chiral diphosphine ligands and rhodium complexes with chiral monodentate or bidentate phosphorus ligands have been the predominant catalysts for asymmetric hydrogenation of unsaturated acids. However, the efficiency of these catalysts is highly substrate-dependent, and most of the reported catalysts require a high loading, high hydrogen pressure, or long reaction time for satisfactory results. Our recent studies have revealed that chiral iridium complexes with chiral spiro-phosphine-oxazoline ligands and chiral spiro-phosphine-benzylamine ligands exhibit excellent activity and enantioselectivity in the hydrogenation of α,β-unsaturated carboxylic acids, including α,β-disubstituted acrylic acids, trisubstituted acrylic acids, α-substituted acrylic acids, and heterocyclic α,β-unsaturated acids. On the basis of an understanding of the role of the carboxy group in iridium-catalyzed asymmetric hydrogenation reactions, we developed a carboxy-group-directed strategy for asymmetric hydrogenation of olefins. Using this strategy, we hydrogenated several challenging olefin substrates, such as β,γ-unsaturated carboxylic acids, 1,1-diarylethenes, 1,1-dialkylethenes, and 1-alkyl styrenes in high yield and with excellent enantioselectivity. All these iridium-catalyzed asymmetric hydrogenation reactions feature high turnover numbers (up to 10000) and turnover frequencies (up to 6000 h–1), excellent enantioselectivities (greater than 95% ee with few exceptions), low hydrogen pressure (<12 atm), and operational simplicity. These features make chiral iridium catalysts superior or comparable to well-established chiral ruthenium and rhodium catalysts for asymmetric hydrogenation of unsaturated carboxylic acids. A number of chiral natural products and pharmaceuticals have been prepared by concise routes involving an iridium-catalyzed asymmetric hydrogenation of an unsaturated carboxylic acid as a key step. As part of a mechanistic study of iridium-catalyzed asymmetric hydrogenation of unsaturated acids, we isolated, for the first time, the migratory insertion intermediate in the iridium-catalyzed asymmetric hydrogenation of olefins, and this result strongly supports the involvement of an Ir­(III)/Ir­(V) catalytic cycle. The rigid, bulky scaffold of the chiral spiro-P,N-ligands of the catalysts not only prevents them from undergoing deactivating aggregation under the hydrogenation conditions but also is responsible for the efficient chiral induction. The carboxy group of the substrate acts as an anchor to ensure coordination of the substrate to the iridium center of the catalyst during the reaction and makes the hydrogenation proceed smoothly.
Chiral carboxylic acid moieties are widely found in pharmaceuticals, agrochemicals, flavors, fragrances, and health supplements. Although they can be synthesized straightforwardly by transition-metal-catalyzed enantioselective hydrogenation of unsaturated carboxylic acids, because the existing chiral catalysts have various disadvantages, the development of new chiral catalysts with high activity and enantioselectivity is an important, long-standing challenge. Ruthenium complexes with chiral diphosphine ligands and rhodium complexes with chiral monodentate or bidentate phosphorus ligands have been the predominant catalysts for asymmetric hydrogenation of unsaturated acids. However, the efficiency of these catalysts is highly substrate-dependent, and most of the reported catalysts require a high loading, high hydrogen pressure, or long reaction time for satisfactory results. Our recent studies have revealed that chiral iridium complexes with chiral spiro-phosphine-oxazoline ligands and chiral spiro-phosphine-benzylamine ligands exhibit excellent activity and enantioselectivity in the hydrogenation of α,β-unsaturated carboxylic acids, including α,β-disubstituted acrylic acids, trisubstituted acrylic acids, α-substituted acrylic acids, and heterocyclic α,β-unsaturated acids. On the basis of an understanding of the role of the carboxy group in iridium-catalyzed asymmetric hydrogenation reactions, we developed a carboxy-group-directed strategy for asymmetric hydrogenation of olefins. Using this strategy, we hydrogenated several challenging olefin substrates, such as β,γ-unsaturated carboxylic acids, 1,1-diarylethenes, 1,1-dialkylethenes, and 1-alkyl styrenes in high yield and with excellent enantioselectivity. All these iridium-catalyzed asymmetric hydrogenation reactions feature high turnover numbers (up to 10000) and turnover frequencies (up to 6000 h-1), excellent enantioselectivities (greater than 95% ee with few exceptions), low hydrogen pressure (<12 atm), and operational simplicity. These features make chiral iridium catalysts superior or comparable to well-established chiral ruthenium and rhodium catalysts for asymmetric hydrogenation of unsaturated carboxylic acids. A number of chiral natural products and pharmaceuticals have been prepared by concise routes involving an iridium-catalyzed asymmetric hydrogenation of an unsaturated carboxylic acid as a key step. As part of a mechanistic study of iridium-catalyzed asymmetric hydrogenation of unsaturated acids, we isolated, for the first time, the migratory insertion intermediate in the iridium-catalyzed asymmetric hydrogenation of olefins, and this result strongly supports the involvement of an Ir(III)/Ir(V) catalytic cycle. The rigid, bulky scaffold of the chiral spiro-P,N-ligands of the catalysts not only prevents them from undergoing deactivating aggregation under the hydrogenation conditions but also is responsible for the efficient chiral induction. The carboxy group of the substrate acts as an anchor to ensure coordination of the substrate to the iridium center of the catalyst during the reaction and makes the hydrogenation proceed smoothly.Chiral carboxylic acid moieties are widely found in pharmaceuticals, agrochemicals, flavors, fragrances, and health supplements. Although they can be synthesized straightforwardly by transition-metal-catalyzed enantioselective hydrogenation of unsaturated carboxylic acids, because the existing chiral catalysts have various disadvantages, the development of new chiral catalysts with high activity and enantioselectivity is an important, long-standing challenge. Ruthenium complexes with chiral diphosphine ligands and rhodium complexes with chiral monodentate or bidentate phosphorus ligands have been the predominant catalysts for asymmetric hydrogenation of unsaturated acids. However, the efficiency of these catalysts is highly substrate-dependent, and most of the reported catalysts require a high loading, high hydrogen pressure, or long reaction time for satisfactory results. Our recent studies have revealed that chiral iridium complexes with chiral spiro-phosphine-oxazoline ligands and chiral spiro-phosphine-benzylamine ligands exhibit excellent activity and enantioselectivity in the hydrogenation of α,β-unsaturated carboxylic acids, including α,β-disubstituted acrylic acids, trisubstituted acrylic acids, α-substituted acrylic acids, and heterocyclic α,β-unsaturated acids. On the basis of an understanding of the role of the carboxy group in iridium-catalyzed asymmetric hydrogenation reactions, we developed a carboxy-group-directed strategy for asymmetric hydrogenation of olefins. Using this strategy, we hydrogenated several challenging olefin substrates, such as β,γ-unsaturated carboxylic acids, 1,1-diarylethenes, 1,1-dialkylethenes, and 1-alkyl styrenes in high yield and with excellent enantioselectivity. All these iridium-catalyzed asymmetric hydrogenation reactions feature high turnover numbers (up to 10000) and turnover frequencies (up to 6000 h-1), excellent enantioselectivities (greater than 95% ee with few exceptions), low hydrogen pressure (<12 atm), and operational simplicity. These features make chiral iridium catalysts superior or comparable to well-established chiral ruthenium and rhodium catalysts for asymmetric hydrogenation of unsaturated carboxylic acids. A number of chiral natural products and pharmaceuticals have been prepared by concise routes involving an iridium-catalyzed asymmetric hydrogenation of an unsaturated carboxylic acid as a key step. As part of a mechanistic study of iridium-catalyzed asymmetric hydrogenation of unsaturated acids, we isolated, for the first time, the migratory insertion intermediate in the iridium-catalyzed asymmetric hydrogenation of olefins, and this result strongly supports the involvement of an Ir(III)/Ir(V) catalytic cycle. The rigid, bulky scaffold of the chiral spiro-P,N-ligands of the catalysts not only prevents them from undergoing deactivating aggregation under the hydrogenation conditions but also is responsible for the efficient chiral induction. The carboxy group of the substrate acts as an anchor to ensure coordination of the substrate to the iridium center of the catalyst during the reaction and makes the hydrogenation proceed smoothly.
Author Zhou, Qi-Lin
Zhu, Shou-Fei
AuthorAffiliation Collaborative Innovation Center of Chemical Science and Engineering
College of Chemistry, Nankai University
State Key Laboratory and Institute of Elemento-Organic Chemistry
AuthorAffiliation_xml – name: State Key Laboratory and Institute of Elemento-Organic Chemistry
– name: College of Chemistry, Nankai University
– name: Collaborative Innovation Center of Chemical Science and Engineering
Author_xml – sequence: 1
  givenname: Shou-Fei
  orcidid: 0000-0002-6055-3139
  surname: Zhu
  fullname: Zhu, Shou-Fei
  email: sfzhu@nankai.edu.cn
– sequence: 2
  givenname: Qi-Lin
  orcidid: 0000-0002-4700-3765
  surname: Zhou
  fullname: Zhou, Qi-Lin
  email: qlzhou@nankai.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28374998$$D View this record in MEDLINE/PubMed
BookMark eNqFkDtPwzAYRS1UBG3hHyDUkSXFdtzEYasqnkJiobP1-RFklMTFdiTCr8el7cIAXvw695PumaBR5zqD0AXBc4IpuQYV5qCU67sY5qXEaZVHaEwWFGeMV3yExumJpDOjp2gSwnu6UlaUJ-iU8rxkVcXH6OnRW237NltBhGb4Mnq2DEPbmuitmj0M2rs300G0rpu5erbuAsTeQ0zcCrx0n0OTuKWyOpyh4xqaYM73-xSt725fVw_Z88v942r5nAEjLGY0L6giUEq5MCXjFGpaVExKpTnoguBca0hVKpPjBZeMLQgrmaRFXtPKAPB8iq52czfeffQmRNHaoEzTQGdcHwThnJEix4wm9HKP9rI1Wmy8bcEP4tA_ATc7QHkXgje1UDb-tI0ebCMIFlvZIskWB9liLzuF2a_wYf4_MbyLbX_fXe-7ZOvvyDfH5pg4
CitedBy_id crossref_primary_10_1002_ajoc_202300241
crossref_primary_10_1038_s41467_020_17057_z
crossref_primary_10_1021_jacs_2c07023
crossref_primary_10_1002_anie_202106880
crossref_primary_10_1088_1361_6528_ab814d
crossref_primary_10_1021_acs_orglett_4c01808
crossref_primary_10_1021_acs_joc_0c00396
crossref_primary_10_1021_acs_joc_1c01571
crossref_primary_10_1021_acs_orglett_0c00915
crossref_primary_10_1002_cjoc_202401301
crossref_primary_10_1016_j_gresc_2020_08_001
crossref_primary_10_1021_acs_orglett_9b02512
crossref_primary_10_1039_D0QO00159G
crossref_primary_10_1002_anie_202403547
crossref_primary_10_1002_chem_202400978
crossref_primary_10_1021_acs_orglett_8b03463
crossref_primary_10_1039_C8CC10220A
crossref_primary_10_1039_D4QO00227J
crossref_primary_10_1002_anie_202212889
crossref_primary_10_1039_D1QO01310F
crossref_primary_10_1038_s41929_019_0375_7
crossref_primary_10_1039_D2GC03829C
crossref_primary_10_1021_jacs_3c11607
crossref_primary_10_1002_ange_202201099
crossref_primary_10_1002_anie_202016705
crossref_primary_10_1016_j_tet_2018_03_031
crossref_primary_10_1039_C7QO00525C
crossref_primary_10_1002_asia_201800341
crossref_primary_10_1016_j_cclet_2022_107956
crossref_primary_10_1021_acs_orglett_0c03517
crossref_primary_10_1039_D4QO01495B
crossref_primary_10_1039_D1OB02038B
crossref_primary_10_1007_s11426_023_1578_y
crossref_primary_10_1002_ange_202002289
crossref_primary_10_1021_acs_orglett_7b02972
crossref_primary_10_1002_cjoc_202400344
crossref_primary_10_1021_acscatal_0c02142
crossref_primary_10_3389_fchem_2021_696460
crossref_primary_10_1002_cctc_201801602
crossref_primary_10_1002_cjoc_201900308
crossref_primary_10_1002_adsc_202000636
crossref_primary_10_1021_jacs_2c08525
crossref_primary_10_1021_jacs_1c09573
crossref_primary_10_1038_s41467_024_49801_0
crossref_primary_10_1021_jacs_2c09266
crossref_primary_10_1002_advs_202400621
crossref_primary_10_1002_chem_202302371
crossref_primary_10_1039_C8CC00739J
crossref_primary_10_1016_j_lfs_2024_122904
crossref_primary_10_1021_jacs_3c12720
crossref_primary_10_1039_C9OB02536G
crossref_primary_10_1021_acs_orglett_0c03723
crossref_primary_10_1007_s11426_021_1049_9
crossref_primary_10_1016_j_gresc_2023_02_002
crossref_primary_10_1002_anie_201813233
crossref_primary_10_1021_acs_jpcc_3c07887
crossref_primary_10_1021_acs_joc_2c02899
crossref_primary_10_1002_ange_202108503
crossref_primary_10_1021_jacs_0c03097
crossref_primary_10_1039_C8SC05743E
crossref_primary_10_1021_acsomega_3c03804
crossref_primary_10_1021_acs_orglett_4c02277
crossref_primary_10_1039_D5NJ00253B
crossref_primary_10_1016_j_tetasy_2017_09_001
crossref_primary_10_1016_j_ccr_2021_214120
crossref_primary_10_1016_j_ccr_2020_213251
crossref_primary_10_1039_D4OB01515K
crossref_primary_10_1039_C9OB00770A
crossref_primary_10_1021_jacs_7b07188
crossref_primary_10_6023_cjoc202201037
crossref_primary_10_1002_ange_201804891
crossref_primary_10_1039_C8OB02265H
crossref_primary_10_1039_D3QO01196H
crossref_primary_10_1002_anie_202213600
crossref_primary_10_1002_asia_201800759
crossref_primary_10_1002_adsc_202300213
crossref_primary_10_1002_ange_201813233
crossref_primary_10_1039_C9RA02694K
crossref_primary_10_1039_D2CC01193J
crossref_primary_10_1002_anie_202003104
crossref_primary_10_1016_j_gresc_2022_09_006
crossref_primary_10_1002_ange_202212889
crossref_primary_10_1002_ange_201807639
crossref_primary_10_1016_j_tetlet_2018_04_052
crossref_primary_10_1021_acs_jafc_1c05553
crossref_primary_10_1021_acs_organomet_8b00774
crossref_primary_10_1039_D4QO00014E
crossref_primary_10_1002_ange_202016705
crossref_primary_10_1039_C7QO00665A
crossref_primary_10_1039_C9NR09333H
crossref_primary_10_1021_acscatal_2c02410
crossref_primary_10_1021_jacs_8b03642
crossref_primary_10_1021_acs_orglett_2c00852
crossref_primary_10_1002_tcr_202300133
crossref_primary_10_1021_jacs_3c12985
crossref_primary_10_1002_ange_202315872
crossref_primary_10_1021_acs_orglett_9b03365
crossref_primary_10_1021_acscatal_1c04983
crossref_primary_10_1002_chem_202303406
crossref_primary_10_1021_acs_orglett_8b02339
crossref_primary_10_1002_adsc_201800322
crossref_primary_10_1021_acs_orglett_8b02579
crossref_primary_10_1002_ange_202111778
crossref_primary_10_1039_C9RA10294A
crossref_primary_10_1039_D2QO01605B
crossref_primary_10_1002_ange_202003104
crossref_primary_10_1002_cjoc_202000741
crossref_primary_10_1016_j_ccr_2017_07_013
crossref_primary_10_1016_j_nanoso_2021_100667
crossref_primary_10_1039_C8DT04416C
crossref_primary_10_1002_cctc_202000662
crossref_primary_10_1016_j_gresc_2023_07_002
crossref_primary_10_1002_adsc_201900161
crossref_primary_10_1002_ange_202213600
crossref_primary_10_1021_acs_orglett_3c03536
crossref_primary_10_1002_slct_202404258
crossref_primary_10_1039_D2QO00910B
crossref_primary_10_1021_acs_chemrev_8b00404
crossref_primary_10_1002_anie_201807639
crossref_primary_10_1021_acs_joc_1c02916
crossref_primary_10_1039_D3QO01093G
crossref_primary_10_1021_jacs_1c04773
crossref_primary_10_1021_acs_orglett_1c04157
crossref_primary_10_1016_j_mcat_2023_113679
crossref_primary_10_1021_acs_orglett_7b02417
crossref_primary_10_1063_5_0067959
crossref_primary_10_1039_C8OB02231C
crossref_primary_10_1039_D0CC06311H
crossref_primary_10_1002_ange_202107267
crossref_primary_10_1021_acs_orglett_7b03341
crossref_primary_10_1002_anie_202108503
crossref_primary_10_1055_a_2000_8183
crossref_primary_10_1021_acs_orglett_5c00903
crossref_primary_10_1021_acs_orglett_1c03073
crossref_primary_10_1021_jacs_4c09794
crossref_primary_10_1002_adsc_202201030
crossref_primary_10_1002_ange_202403547
crossref_primary_10_1016_j_tet_2023_133793
crossref_primary_10_1002_anie_201804891
crossref_primary_10_1039_D1CC05576C
crossref_primary_10_1039_C9QO01367A
crossref_primary_10_1016_j_cclet_2021_02_001
crossref_primary_10_1002_cjoc_202000170
crossref_primary_10_1002_cjoc_201800088
crossref_primary_10_1039_C7SC04639A
crossref_primary_10_1039_D1SC05963G
crossref_primary_10_1021_acscatal_3c04187
crossref_primary_10_1021_acs_chemrev_0c00053
crossref_primary_10_1002_anie_202201099
crossref_primary_10_1002_adsc_202001350
crossref_primary_10_1002_anie_202111778
crossref_primary_10_1016_j_rechem_2023_100843
crossref_primary_10_1021_acs_orglett_7b02341
crossref_primary_10_1002_ange_202106880
crossref_primary_10_3987_COM_18_S_T_41
crossref_primary_10_1002_hlca_201900023
crossref_primary_10_1007_s11426_022_1337_3
crossref_primary_10_1002_anie_202107267
crossref_primary_10_1021_acs_orglett_8b02591
crossref_primary_10_1002_anie_202002289
crossref_primary_10_1039_D3QO02034G
crossref_primary_10_1016_j_poly_2021_115623
crossref_primary_10_1021_jacs_9b03328
crossref_primary_10_1016_j_apt_2021_04_031
crossref_primary_10_1002_ange_201914568
crossref_primary_10_3987_COM_22_14640
crossref_primary_10_1039_C9OB02733E
crossref_primary_10_1021_jacs_1c01880
crossref_primary_10_1002_anie_202315872
crossref_primary_10_1134_S1070363218110063
crossref_primary_10_1039_C8OB02100G
crossref_primary_10_1021_jacs_9b13876
crossref_primary_10_1039_C7QO00664K
crossref_primary_10_1038_s42004_022_00678_4
crossref_primary_10_1021_acs_joc_9b01418
crossref_primary_10_1039_D4QO00361F
crossref_primary_10_1002_anie_201914568
crossref_primary_10_1021_acs_orglett_4c03693
Cites_doi 10.1016/j.tetlet.2006.10.129
10.1002/anie.200500784
10.1021/om020805a
10.1002/anie.201302349
10.1073/pnas.0307774101
10.1021/ar50141a005
10.1021/ja9837497
10.1021/jo00390a043
10.1021/op4002164
10.1021/ja063444p
10.1002/chem.201500324
10.1002/anie.200462072
10.1002/anie.201302942
10.1021/ja000163n
10.1021/jacs.6b11655
10.1016/j.tet.2012.03.118
10.1021/cr400037u
10.1021/ar700113g
10.1002/anie.197204601
10.1039/C6SC01845A
10.6023/A14040314
10.1039/C6SC03764J
10.1021/ol401593a
10.1021/cr020049i
10.1002/anie.201301341
10.1002/anie.201309677
10.1002/anie.201309521
10.1021/ja909810k
10.1021/ja802399v
10.1002/anie.201204363
10.1039/c4ob00018h
10.1039/c1cs15093f
10.1021/ja00259a043
10.1002/9783527635207.ch4
10.1017/S0890037X00033935
10.1021/acs.orglett.6b00748
10.1016/j.tetlet.2013.01.003
10.1021/cs3007389
10.1002/chem.200700390
10.1002/anie.200604493
10.1002/anie.200604810
10.1039/B919902K
10.1021/ar300051u
10.1002/cjoc.201400361
10.1002/1521-3773(20000602)39:11<1981::AID-ANIE1981>3.0.CO;2-3
10.1002/anie.201208606
10.6023/A12060268
10.1002/anie.201107802
10.1002/adsc.200606065
10.1021/jo960426p
10.1021/ar700137z
10.1002/anie.201309515
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Copyright_xml – notice: Copyright © 2017 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acs.accounts.7b00007
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-4898
EndPage 1001
ExternalDocumentID 28374998
10_1021_acs_accounts_7b00007
c453627972
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
23M
53G
55A
5GY
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
RNS
ROL
TWZ
UI2
UPT
VF5
VG9
W1F
WH7
X
YZZ
---
-DZ
-~X
4.4
5ZA
6J9
6P2
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
AFXLT
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
ZCA
~02
NPM
7X8
ID FETCH-LOGICAL-a414t-2362c1a7bb5e7482af2694bbcd8ad6103dda0079e3058b4451474b263f29eaa83
IEDL.DBID ACS
ISSN 0001-4842
1520-4898
IngestDate Fri Jul 11 07:50:16 EDT 2025
Mon Jul 21 06:05:32 EDT 2025
Tue Jul 01 03:15:59 EDT 2025
Thu Apr 24 23:09:38 EDT 2025
Thu Aug 27 13:42:12 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a414t-2362c1a7bb5e7482af2694bbcd8ad6103dda0079e3058b4451474b263f29eaa83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6055-3139
0000-0002-4700-3765
PMID 28374998
PQID 1884163042
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_1884163042
pubmed_primary_28374998
crossref_citationtrail_10_1021_acs_accounts_7b00007
crossref_primary_10_1021_acs_accounts_7b00007
acs_journals_10_1021_acs_accounts_7b00007
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-04-18
PublicationDateYYYYMMDD 2017-04-18
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-18
  day: 18
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Accounts of chemical research
PublicationTitleAlternate Acc. Chem. Res
PublicationYear 2017
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref27/cit27
ref33/cit33a
ref16/cit16
ref23/cit23
ref8/cit8
ref31/cit31
ref33/cit33c
ref33/cit33b
ref33/cit33d
ref20/cit20
ref5/cit5b
Zhu S.-F. (ref14/cit14a) 2011
ref17/cit17
Mueller-Warrant G. W. (ref2/cit2) 1991; 5
ref5/cit5c
ref10/cit10
ref5/cit5a
ref19/cit19
ref21/cit21
ref3/cit3b
ref13/cit13
ref24/cit24
ref5/cit5f
ref5/cit5g
ref5/cit5d
ref5/cit5e
de Vries J. G. (ref4/cit4a) 2007
ref18/cit18
ref11/cit11
ref29/cit29
ref25/cit25b
ref25/cit25a
ref32/cit32
ref28/cit28
ref26/cit26
ref6/cit6d
ref6/cit6e
ref4/cit4b
ref6/cit6f
ref4/cit4c
ref6/cit6g
Hanessian S. (ref3/cit3a) 1983
ref12/cit12
ref14/cit14c
ref14/cit14b
ref15/cit15
ref30/cit30a
ref22/cit22
ref30/cit30c
ref30/cit30b
ref6/cit6a
ref1/cit1
ref6/cit6b
ref6/cit6c
ref7/cit7
References_xml – ident: ref10/cit10
  doi: 10.1016/j.tetlet.2006.10.129
– ident: ref6/cit6c
  doi: 10.1002/anie.200500784
– ident: ref12/cit12
  doi: 10.1021/om020805a
– ident: ref6/cit6f
  doi: 10.1002/anie.201302349
– ident: ref5/cit5e
  doi: 10.1073/pnas.0307774101
– ident: ref8/cit8
  doi: 10.1021/ar50141a005
– ident: ref5/cit5c
  doi: 10.1021/ja9837497
– ident: ref5/cit5a
  doi: 10.1021/jo00390a043
– ident: ref30/cit30c
  doi: 10.1021/op4002164
– ident: ref13/cit13
  doi: 10.1021/ja063444p
– ident: ref32/cit32
  doi: 10.1002/chem.201500324
– ident: ref5/cit5f
  doi: 10.1002/anie.200462072
– ident: ref25/cit25b
  doi: 10.1002/anie.201302942
– ident: ref5/cit5d
  doi: 10.1021/ja000163n
– ident: ref28/cit28
  doi: 10.1021/jacs.6b11655
– ident: ref18/cit18
  doi: 10.1016/j.tet.2012.03.118
– ident: ref9/cit9
  doi: 10.1021/cr400037u
– volume-title: Total Synthesis of Natural Products: The Chiron Approach
  year: 1983
  ident: ref3/cit3a
– ident: ref7/cit7
  doi: 10.1021/ar700113g
– ident: ref1/cit1
  doi: 10.1002/anie.197204601
– ident: ref6/cit6g
  doi: 10.1039/C6SC01845A
– ident: ref33/cit33b
  doi: 10.6023/A14040314
– ident: ref33/cit33d
  doi: 10.1039/C6SC03764J
– ident: ref22/cit22
  doi: 10.1021/ol401593a
– ident: ref4/cit4b
  doi: 10.1021/cr020049i
– ident: ref23/cit23
  doi: 10.1002/anie.201301341
– ident: ref27/cit27
  doi: 10.1002/anie.201309677
– ident: ref33/cit33c
  doi: 10.1002/anie.201309521
– ident: ref21/cit21
  doi: 10.1021/ja909810k
– ident: ref17/cit17
  doi: 10.1021/ja802399v
– ident: ref15/cit15
  doi: 10.1002/anie.201204363
– ident: ref26/cit26
  doi: 10.1039/c4ob00018h
– ident: ref3/cit3b
  doi: 10.1039/c1cs15093f
– ident: ref6/cit6a
  doi: 10.1021/ja00259a043
– start-page: 137
  volume-title: Privileged Chiral Ligands and Catalysts
  year: 2011
  ident: ref14/cit14a
  doi: 10.1002/9783527635207.ch4
– volume: 5
  start-page: 826
  year: 1991
  ident: ref2/cit2
  publication-title: Weed Technology
  doi: 10.1017/S0890037X00033935
– ident: ref5/cit5g
  doi: 10.1021/acs.orglett.6b00748
– volume-title: Handbook of Homogeneous Hydrogenation
  year: 2007
  ident: ref4/cit4a
– ident: ref31/cit31
  doi: 10.1016/j.tetlet.2013.01.003
– ident: ref16/cit16
  doi: 10.1021/cs3007389
– ident: ref11/cit11
  doi: 10.1002/chem.200700390
– ident: ref30/cit30a
– ident: ref6/cit6d
  doi: 10.1002/anie.200604493
– ident: ref6/cit6e
  doi: 10.1002/anie.200604810
– ident: ref33/cit33a
  doi: 10.1039/B919902K
– ident: ref14/cit14c
  doi: 10.1021/ar300051u
– ident: ref19/cit19
  doi: 10.1002/cjoc.201400361
– ident: ref6/cit6b
  doi: 10.1002/1521-3773(20000602)39:11<1981::AID-ANIE1981>3.0.CO;2-3
– ident: ref25/cit25a
  doi: 10.1002/anie.201208606
– ident: ref4/cit4c
  doi: 10.6023/A12060268
– ident: ref24/cit24
  doi: 10.1002/anie.201107802
– ident: ref20/cit20
  doi: 10.1002/adsc.200606065
– ident: ref5/cit5b
  doi: 10.1021/jo960426p
– ident: ref14/cit14b
  doi: 10.1021/ar700137z
– ident: ref29/cit29
  doi: 10.1002/anie.201309515
– ident: ref30/cit30b
SSID ssj0002467
Score 2.5933952
Snippet Chiral carboxylic acid moieties are widely found in pharmaceuticals, agrochemicals, flavors, fragrances, and health supplements. Although they can be...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 988
Title Iridium-Catalyzed Asymmetric Hydrogenation of Unsaturated Carboxylic Acids
URI http://dx.doi.org/10.1021/acs.accounts.7b00007
https://www.ncbi.nlm.nih.gov/pubmed/28374998
https://www.proquest.com/docview/1884163042
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDLDwfpSXgsTCkNI4buKOVURVKgEDVOoW-RWpok1Q0wztr-cujyJAVWGNbMs-n33f-XLfEXKLZDku2HnbiCa3GXW03aZIue9L7jabkctczB1-evZ6A9YftoZfjuLPCD517oVKYei8ckLa8IvY2ybZoh6cY4RCwevy5qXMKzgywUVmnNEqVW7FKGiQVPrdIK1Ambm16e6Rlypnp_jJ5L2RzWRDLX5TOP5xIftktwSeVqfQlAOyYeJDsh1U9d6OSP9xOtKjbGIH-KIzXxhtddL5ZIIlt5TVm-tpAsqWb6SVRNYgTpETFKCqtgIxlTDRMbTrqJFOj8mg-_AW9Oyy0oItmMNmNgUzphzhS9kyPuNURJjgKqXSXGgAWK7WAmbbNnA7cImcZsxnknpuRNtGCO6ekFqcxOaMWG1fsogjSZXmTEtwyPyWVk5EHcOkoLxO7kAQYXlS0jAPglMnxI-VdMJSOnXiVlsTqpKyHCtnjNf0spe9PgrKjjXtb6pdD0HkGDARsUkymBvHoCw--NTJaaEOyxGRNQi8RX7-j_VckB2KqACpIvklqc2mmbkCTDOT17kifwJ8q_I-
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb8IwDLbYdmCXvR_s2Um77FBG00DDEVVDwB6XjYlblTSphAZlonBgv352H0ybNCGuURI5jht_ievPALdEluOin7eNrAmbM0fbTUaU-54Sbq0Wudyl3OHnl0anz3uD-qAE9SIXBoVIcKYkDeL_sAs499QmswIKSdXLQnAbsIV4hJFht_zX5QHMeCOjysSbMhecFRlz_8xCfilMfvulf8Bm6nTau_C-FDf91-SjOp-pavj1h8lx7fXswU4OQ61WZjf7UDLxAZT9ovrbIfS606Eezse2T-87iy-jrVayGI-pAFdodRZ6OkHTS7fVmkRWP06IIRSBq7Z8OVUo7wj7tcKhTo6g33548zt2XnfBltzhM5uhUwsd6SlVNx4XTEaU7qpUqIXUCLdcrSVK2zR4VghFDGfc44o13Ig1jZTCPYbNeBKbU7CanuKRIMoqLbhWeD3z6jp0IuYYriQTFbhDRQT5d5MEaUicOQE1FtoJcu1UwC12KAhzAnOqozFaMcpejvrMCDxW9L8pNj9AlVP4RMZmMkfZBIVo6fmnAieZVSxnJA4hvDuKszXWcw3lztvzU_DUfXk8h21GeIFIJMUFbM6mc3OJaGemrlLb_gbTvfqf
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB58gHrx_ajPFbx42NrNpt30WFZLfRVBC8XLkmyyULRb6baH-uud2UdRoRS9hmSYTCaZSSbzDcAFgeW4aOdtIyvC5szRdp0R5L6nhFupRC53KXf4sV1rdfhdt9r9VuoLmUiQUpIG8WlXf-goRxhwrqhdZkUUkrKXheEWYZkid6TcDf95eggzXsvgMvG2zAVnRdbcDCpkm8Lkp22a4XCmhqe5Aa9TltP_Jm_l8UiVw89faI7_mtMmrOfuqNXI9GcLFky8Dat-UQVuB-5uhz3dG_dtn955Jp9GW41k0u9TIa7Qak30cIAqmC6vNYisTpwQUig6sNry5VAhz-_YrxH2dLILnebNi9-y8_oLtuQOH9kMjVvoSE-pqvG4YDKitFelQi2kRrfL1Voit3WDZ4ZQhHTGPa5YzY1Y3Ugp3D1YigexOQCr7ikeCYKu0oJrhdc0r6pDJ2KO4UoyUYJLFESQ758kSEPjzAmosZBOkEunBG6xSkGYA5lTPY33OaPs6aiPDMhjTv_zQgECFDmFUWRsBmPkTVColp6BSrCfacaUImEJ4R1SHP5hPmew8nTdDB5u2_dHsMbIbSAsSXEMS6Ph2Jyg0zNSp6l6fwHpIP0i
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iridium-Catalyzed+Asymmetric+Hydrogenation+of+Unsaturated+Carboxylic+Acids&rft.jtitle=Accounts+of+chemical+research&rft.au=Zhu%2C+Shou-Fei&rft.au=Zhou%2C+Qi-Lin&rft.date=2017-04-18&rft.pub=American+Chemical+Society&rft.issn=0001-4842&rft.eissn=1520-4898&rft.volume=50&rft.issue=4&rft.spage=988&rft.epage=1001&rft_id=info:doi/10.1021%2Facs.accounts.7b00007&rft.externalDocID=c453627972
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon