Iridium-Catalyzed Asymmetric Hydrogenation of Unsaturated Carboxylic Acids
Chiral carboxylic acid moieties are widely found in pharmaceuticals, agrochemicals, flavors, fragrances, and health supplements. Although they can be synthesized straightforwardly by transition-metal-catalyzed enantioselective hydrogenation of unsaturated carboxylic acids, because the existing chira...
Saved in:
Published in | Accounts of chemical research Vol. 50; no. 4; pp. 988 - 1001 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
18.04.2017
|
Online Access | Get full text |
Cover
Loading…
Abstract | Chiral carboxylic acid moieties are widely found in pharmaceuticals, agrochemicals, flavors, fragrances, and health supplements. Although they can be synthesized straightforwardly by transition-metal-catalyzed enantioselective hydrogenation of unsaturated carboxylic acids, because the existing chiral catalysts have various disadvantages, the development of new chiral catalysts with high activity and enantioselectivity is an important, long-standing challenge. Ruthenium complexes with chiral diphosphine ligands and rhodium complexes with chiral monodentate or bidentate phosphorus ligands have been the predominant catalysts for asymmetric hydrogenation of unsaturated acids. However, the efficiency of these catalysts is highly substrate-dependent, and most of the reported catalysts require a high loading, high hydrogen pressure, or long reaction time for satisfactory results. Our recent studies have revealed that chiral iridium complexes with chiral spiro-phosphine-oxazoline ligands and chiral spiro-phosphine-benzylamine ligands exhibit excellent activity and enantioselectivity in the hydrogenation of α,β-unsaturated carboxylic acids, including α,β-disubstituted acrylic acids, trisubstituted acrylic acids, α-substituted acrylic acids, and heterocyclic α,β-unsaturated acids. On the basis of an understanding of the role of the carboxy group in iridium-catalyzed asymmetric hydrogenation reactions, we developed a carboxy-group-directed strategy for asymmetric hydrogenation of olefins. Using this strategy, we hydrogenated several challenging olefin substrates, such as β,γ-unsaturated carboxylic acids, 1,1-diarylethenes, 1,1-dialkylethenes, and 1-alkyl styrenes in high yield and with excellent enantioselectivity. All these iridium-catalyzed asymmetric hydrogenation reactions feature high turnover numbers (up to 10000) and turnover frequencies (up to 6000 h–1), excellent enantioselectivities (greater than 95% ee with few exceptions), low hydrogen pressure (<12 atm), and operational simplicity. These features make chiral iridium catalysts superior or comparable to well-established chiral ruthenium and rhodium catalysts for asymmetric hydrogenation of unsaturated carboxylic acids. A number of chiral natural products and pharmaceuticals have been prepared by concise routes involving an iridium-catalyzed asymmetric hydrogenation of an unsaturated carboxylic acid as a key step. As part of a mechanistic study of iridium-catalyzed asymmetric hydrogenation of unsaturated acids, we isolated, for the first time, the migratory insertion intermediate in the iridium-catalyzed asymmetric hydrogenation of olefins, and this result strongly supports the involvement of an Ir(III)/Ir(V) catalytic cycle. The rigid, bulky scaffold of the chiral spiro-P,N-ligands of the catalysts not only prevents them from undergoing deactivating aggregation under the hydrogenation conditions but also is responsible for the efficient chiral induction. The carboxy group of the substrate acts as an anchor to ensure coordination of the substrate to the iridium center of the catalyst during the reaction and makes the hydrogenation proceed smoothly. |
---|---|
AbstractList | Chiral carboxylic acid moieties are widely found in pharmaceuticals, agrochemicals, flavors, fragrances, and health supplements. Although they can be synthesized straightforwardly by transition-metal-catalyzed enantioselective hydrogenation of unsaturated carboxylic acids, because the existing chiral catalysts have various disadvantages, the development of new chiral catalysts with high activity and enantioselectivity is an important, long-standing challenge. Ruthenium complexes with chiral diphosphine ligands and rhodium complexes with chiral monodentate or bidentate phosphorus ligands have been the predominant catalysts for asymmetric hydrogenation of unsaturated acids. However, the efficiency of these catalysts is highly substrate-dependent, and most of the reported catalysts require a high loading, high hydrogen pressure, or long reaction time for satisfactory results. Our recent studies have revealed that chiral iridium complexes with chiral spiro-phosphine-oxazoline ligands and chiral spiro-phosphine-benzylamine ligands exhibit excellent activity and enantioselectivity in the hydrogenation of α,β-unsaturated carboxylic acids, including α,β-disubstituted acrylic acids, trisubstituted acrylic acids, α-substituted acrylic acids, and heterocyclic α,β-unsaturated acids. On the basis of an understanding of the role of the carboxy group in iridium-catalyzed asymmetric hydrogenation reactions, we developed a carboxy-group-directed strategy for asymmetric hydrogenation of olefins. Using this strategy, we hydrogenated several challenging olefin substrates, such as β,γ-unsaturated carboxylic acids, 1,1-diarylethenes, 1,1-dialkylethenes, and 1-alkyl styrenes in high yield and with excellent enantioselectivity. All these iridium-catalyzed asymmetric hydrogenation reactions feature high turnover numbers (up to 10000) and turnover frequencies (up to 6000 h
), excellent enantioselectivities (greater than 95% ee with few exceptions), low hydrogen pressure (<12 atm), and operational simplicity. These features make chiral iridium catalysts superior or comparable to well-established chiral ruthenium and rhodium catalysts for asymmetric hydrogenation of unsaturated carboxylic acids. A number of chiral natural products and pharmaceuticals have been prepared by concise routes involving an iridium-catalyzed asymmetric hydrogenation of an unsaturated carboxylic acid as a key step. As part of a mechanistic study of iridium-catalyzed asymmetric hydrogenation of unsaturated acids, we isolated, for the first time, the migratory insertion intermediate in the iridium-catalyzed asymmetric hydrogenation of olefins, and this result strongly supports the involvement of an Ir(III)/Ir(V) catalytic cycle. The rigid, bulky scaffold of the chiral spiro-P,N-ligands of the catalysts not only prevents them from undergoing deactivating aggregation under the hydrogenation conditions but also is responsible for the efficient chiral induction. The carboxy group of the substrate acts as an anchor to ensure coordination of the substrate to the iridium center of the catalyst during the reaction and makes the hydrogenation proceed smoothly. Chiral carboxylic acid moieties are widely found in pharmaceuticals, agrochemicals, flavors, fragrances, and health supplements. Although they can be synthesized straightforwardly by transition-metal-catalyzed enantioselective hydrogenation of unsaturated carboxylic acids, because the existing chiral catalysts have various disadvantages, the development of new chiral catalysts with high activity and enantioselectivity is an important, long-standing challenge. Ruthenium complexes with chiral diphosphine ligands and rhodium complexes with chiral monodentate or bidentate phosphorus ligands have been the predominant catalysts for asymmetric hydrogenation of unsaturated acids. However, the efficiency of these catalysts is highly substrate-dependent, and most of the reported catalysts require a high loading, high hydrogen pressure, or long reaction time for satisfactory results. Our recent studies have revealed that chiral iridium complexes with chiral spiro-phosphine-oxazoline ligands and chiral spiro-phosphine-benzylamine ligands exhibit excellent activity and enantioselectivity in the hydrogenation of α,β-unsaturated carboxylic acids, including α,β-disubstituted acrylic acids, trisubstituted acrylic acids, α-substituted acrylic acids, and heterocyclic α,β-unsaturated acids. On the basis of an understanding of the role of the carboxy group in iridium-catalyzed asymmetric hydrogenation reactions, we developed a carboxy-group-directed strategy for asymmetric hydrogenation of olefins. Using this strategy, we hydrogenated several challenging olefin substrates, such as β,γ-unsaturated carboxylic acids, 1,1-diarylethenes, 1,1-dialkylethenes, and 1-alkyl styrenes in high yield and with excellent enantioselectivity. All these iridium-catalyzed asymmetric hydrogenation reactions feature high turnover numbers (up to 10000) and turnover frequencies (up to 6000 h–1), excellent enantioselectivities (greater than 95% ee with few exceptions), low hydrogen pressure (<12 atm), and operational simplicity. These features make chiral iridium catalysts superior or comparable to well-established chiral ruthenium and rhodium catalysts for asymmetric hydrogenation of unsaturated carboxylic acids. A number of chiral natural products and pharmaceuticals have been prepared by concise routes involving an iridium-catalyzed asymmetric hydrogenation of an unsaturated carboxylic acid as a key step. As part of a mechanistic study of iridium-catalyzed asymmetric hydrogenation of unsaturated acids, we isolated, for the first time, the migratory insertion intermediate in the iridium-catalyzed asymmetric hydrogenation of olefins, and this result strongly supports the involvement of an Ir(III)/Ir(V) catalytic cycle. The rigid, bulky scaffold of the chiral spiro-P,N-ligands of the catalysts not only prevents them from undergoing deactivating aggregation under the hydrogenation conditions but also is responsible for the efficient chiral induction. The carboxy group of the substrate acts as an anchor to ensure coordination of the substrate to the iridium center of the catalyst during the reaction and makes the hydrogenation proceed smoothly. Chiral carboxylic acid moieties are widely found in pharmaceuticals, agrochemicals, flavors, fragrances, and health supplements. Although they can be synthesized straightforwardly by transition-metal-catalyzed enantioselective hydrogenation of unsaturated carboxylic acids, because the existing chiral catalysts have various disadvantages, the development of new chiral catalysts with high activity and enantioselectivity is an important, long-standing challenge. Ruthenium complexes with chiral diphosphine ligands and rhodium complexes with chiral monodentate or bidentate phosphorus ligands have been the predominant catalysts for asymmetric hydrogenation of unsaturated acids. However, the efficiency of these catalysts is highly substrate-dependent, and most of the reported catalysts require a high loading, high hydrogen pressure, or long reaction time for satisfactory results. Our recent studies have revealed that chiral iridium complexes with chiral spiro-phosphine-oxazoline ligands and chiral spiro-phosphine-benzylamine ligands exhibit excellent activity and enantioselectivity in the hydrogenation of α,β-unsaturated carboxylic acids, including α,β-disubstituted acrylic acids, trisubstituted acrylic acids, α-substituted acrylic acids, and heterocyclic α,β-unsaturated acids. On the basis of an understanding of the role of the carboxy group in iridium-catalyzed asymmetric hydrogenation reactions, we developed a carboxy-group-directed strategy for asymmetric hydrogenation of olefins. Using this strategy, we hydrogenated several challenging olefin substrates, such as β,γ-unsaturated carboxylic acids, 1,1-diarylethenes, 1,1-dialkylethenes, and 1-alkyl styrenes in high yield and with excellent enantioselectivity. All these iridium-catalyzed asymmetric hydrogenation reactions feature high turnover numbers (up to 10000) and turnover frequencies (up to 6000 h-1), excellent enantioselectivities (greater than 95% ee with few exceptions), low hydrogen pressure (<12 atm), and operational simplicity. These features make chiral iridium catalysts superior or comparable to well-established chiral ruthenium and rhodium catalysts for asymmetric hydrogenation of unsaturated carboxylic acids. A number of chiral natural products and pharmaceuticals have been prepared by concise routes involving an iridium-catalyzed asymmetric hydrogenation of an unsaturated carboxylic acid as a key step. As part of a mechanistic study of iridium-catalyzed asymmetric hydrogenation of unsaturated acids, we isolated, for the first time, the migratory insertion intermediate in the iridium-catalyzed asymmetric hydrogenation of olefins, and this result strongly supports the involvement of an Ir(III)/Ir(V) catalytic cycle. The rigid, bulky scaffold of the chiral spiro-P,N-ligands of the catalysts not only prevents them from undergoing deactivating aggregation under the hydrogenation conditions but also is responsible for the efficient chiral induction. The carboxy group of the substrate acts as an anchor to ensure coordination of the substrate to the iridium center of the catalyst during the reaction and makes the hydrogenation proceed smoothly.Chiral carboxylic acid moieties are widely found in pharmaceuticals, agrochemicals, flavors, fragrances, and health supplements. Although they can be synthesized straightforwardly by transition-metal-catalyzed enantioselective hydrogenation of unsaturated carboxylic acids, because the existing chiral catalysts have various disadvantages, the development of new chiral catalysts with high activity and enantioselectivity is an important, long-standing challenge. Ruthenium complexes with chiral diphosphine ligands and rhodium complexes with chiral monodentate or bidentate phosphorus ligands have been the predominant catalysts for asymmetric hydrogenation of unsaturated acids. However, the efficiency of these catalysts is highly substrate-dependent, and most of the reported catalysts require a high loading, high hydrogen pressure, or long reaction time for satisfactory results. Our recent studies have revealed that chiral iridium complexes with chiral spiro-phosphine-oxazoline ligands and chiral spiro-phosphine-benzylamine ligands exhibit excellent activity and enantioselectivity in the hydrogenation of α,β-unsaturated carboxylic acids, including α,β-disubstituted acrylic acids, trisubstituted acrylic acids, α-substituted acrylic acids, and heterocyclic α,β-unsaturated acids. On the basis of an understanding of the role of the carboxy group in iridium-catalyzed asymmetric hydrogenation reactions, we developed a carboxy-group-directed strategy for asymmetric hydrogenation of olefins. Using this strategy, we hydrogenated several challenging olefin substrates, such as β,γ-unsaturated carboxylic acids, 1,1-diarylethenes, 1,1-dialkylethenes, and 1-alkyl styrenes in high yield and with excellent enantioselectivity. All these iridium-catalyzed asymmetric hydrogenation reactions feature high turnover numbers (up to 10000) and turnover frequencies (up to 6000 h-1), excellent enantioselectivities (greater than 95% ee with few exceptions), low hydrogen pressure (<12 atm), and operational simplicity. These features make chiral iridium catalysts superior or comparable to well-established chiral ruthenium and rhodium catalysts for asymmetric hydrogenation of unsaturated carboxylic acids. A number of chiral natural products and pharmaceuticals have been prepared by concise routes involving an iridium-catalyzed asymmetric hydrogenation of an unsaturated carboxylic acid as a key step. As part of a mechanistic study of iridium-catalyzed asymmetric hydrogenation of unsaturated acids, we isolated, for the first time, the migratory insertion intermediate in the iridium-catalyzed asymmetric hydrogenation of olefins, and this result strongly supports the involvement of an Ir(III)/Ir(V) catalytic cycle. The rigid, bulky scaffold of the chiral spiro-P,N-ligands of the catalysts not only prevents them from undergoing deactivating aggregation under the hydrogenation conditions but also is responsible for the efficient chiral induction. The carboxy group of the substrate acts as an anchor to ensure coordination of the substrate to the iridium center of the catalyst during the reaction and makes the hydrogenation proceed smoothly. |
Author | Zhou, Qi-Lin Zhu, Shou-Fei |
AuthorAffiliation | Collaborative Innovation Center of Chemical Science and Engineering College of Chemistry, Nankai University State Key Laboratory and Institute of Elemento-Organic Chemistry |
AuthorAffiliation_xml | – name: State Key Laboratory and Institute of Elemento-Organic Chemistry – name: College of Chemistry, Nankai University – name: Collaborative Innovation Center of Chemical Science and Engineering |
Author_xml | – sequence: 1 givenname: Shou-Fei orcidid: 0000-0002-6055-3139 surname: Zhu fullname: Zhu, Shou-Fei email: sfzhu@nankai.edu.cn – sequence: 2 givenname: Qi-Lin orcidid: 0000-0002-4700-3765 surname: Zhou fullname: Zhou, Qi-Lin email: qlzhou@nankai.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28374998$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkDtPwzAYRS1UBG3hHyDUkSXFdtzEYasqnkJiobP1-RFklMTFdiTCr8el7cIAXvw695PumaBR5zqD0AXBc4IpuQYV5qCU67sY5qXEaZVHaEwWFGeMV3yExumJpDOjp2gSwnu6UlaUJ-iU8rxkVcXH6OnRW237NltBhGb4Mnq2DEPbmuitmj0M2rs300G0rpu5erbuAsTeQ0zcCrx0n0OTuKWyOpyh4xqaYM73-xSt725fVw_Z88v942r5nAEjLGY0L6giUEq5MCXjFGpaVExKpTnoguBca0hVKpPjBZeMLQgrmaRFXtPKAPB8iq52czfeffQmRNHaoEzTQGdcHwThnJEix4wm9HKP9rI1Wmy8bcEP4tA_ATc7QHkXgje1UDb-tI0ebCMIFlvZIskWB9liLzuF2a_wYf4_MbyLbX_fXe-7ZOvvyDfH5pg4 |
CitedBy_id | crossref_primary_10_1002_ajoc_202300241 crossref_primary_10_1038_s41467_020_17057_z crossref_primary_10_1021_jacs_2c07023 crossref_primary_10_1002_anie_202106880 crossref_primary_10_1088_1361_6528_ab814d crossref_primary_10_1021_acs_orglett_4c01808 crossref_primary_10_1021_acs_joc_0c00396 crossref_primary_10_1021_acs_joc_1c01571 crossref_primary_10_1021_acs_orglett_0c00915 crossref_primary_10_1002_cjoc_202401301 crossref_primary_10_1016_j_gresc_2020_08_001 crossref_primary_10_1021_acs_orglett_9b02512 crossref_primary_10_1039_D0QO00159G crossref_primary_10_1002_anie_202403547 crossref_primary_10_1002_chem_202400978 crossref_primary_10_1021_acs_orglett_8b03463 crossref_primary_10_1039_C8CC10220A crossref_primary_10_1039_D4QO00227J crossref_primary_10_1002_anie_202212889 crossref_primary_10_1039_D1QO01310F crossref_primary_10_1038_s41929_019_0375_7 crossref_primary_10_1039_D2GC03829C crossref_primary_10_1021_jacs_3c11607 crossref_primary_10_1002_ange_202201099 crossref_primary_10_1002_anie_202016705 crossref_primary_10_1016_j_tet_2018_03_031 crossref_primary_10_1039_C7QO00525C crossref_primary_10_1002_asia_201800341 crossref_primary_10_1016_j_cclet_2022_107956 crossref_primary_10_1021_acs_orglett_0c03517 crossref_primary_10_1039_D4QO01495B crossref_primary_10_1039_D1OB02038B crossref_primary_10_1007_s11426_023_1578_y crossref_primary_10_1002_ange_202002289 crossref_primary_10_1021_acs_orglett_7b02972 crossref_primary_10_1002_cjoc_202400344 crossref_primary_10_1021_acscatal_0c02142 crossref_primary_10_3389_fchem_2021_696460 crossref_primary_10_1002_cctc_201801602 crossref_primary_10_1002_cjoc_201900308 crossref_primary_10_1002_adsc_202000636 crossref_primary_10_1021_jacs_2c08525 crossref_primary_10_1021_jacs_1c09573 crossref_primary_10_1038_s41467_024_49801_0 crossref_primary_10_1021_jacs_2c09266 crossref_primary_10_1002_advs_202400621 crossref_primary_10_1002_chem_202302371 crossref_primary_10_1039_C8CC00739J crossref_primary_10_1016_j_lfs_2024_122904 crossref_primary_10_1021_jacs_3c12720 crossref_primary_10_1039_C9OB02536G crossref_primary_10_1021_acs_orglett_0c03723 crossref_primary_10_1007_s11426_021_1049_9 crossref_primary_10_1016_j_gresc_2023_02_002 crossref_primary_10_1002_anie_201813233 crossref_primary_10_1021_acs_jpcc_3c07887 crossref_primary_10_1021_acs_joc_2c02899 crossref_primary_10_1002_ange_202108503 crossref_primary_10_1021_jacs_0c03097 crossref_primary_10_1039_C8SC05743E crossref_primary_10_1021_acsomega_3c03804 crossref_primary_10_1021_acs_orglett_4c02277 crossref_primary_10_1039_D5NJ00253B crossref_primary_10_1016_j_tetasy_2017_09_001 crossref_primary_10_1016_j_ccr_2021_214120 crossref_primary_10_1016_j_ccr_2020_213251 crossref_primary_10_1039_D4OB01515K crossref_primary_10_1039_C9OB00770A crossref_primary_10_1021_jacs_7b07188 crossref_primary_10_6023_cjoc202201037 crossref_primary_10_1002_ange_201804891 crossref_primary_10_1039_C8OB02265H crossref_primary_10_1039_D3QO01196H crossref_primary_10_1002_anie_202213600 crossref_primary_10_1002_asia_201800759 crossref_primary_10_1002_adsc_202300213 crossref_primary_10_1002_ange_201813233 crossref_primary_10_1039_C9RA02694K crossref_primary_10_1039_D2CC01193J crossref_primary_10_1002_anie_202003104 crossref_primary_10_1016_j_gresc_2022_09_006 crossref_primary_10_1002_ange_202212889 crossref_primary_10_1002_ange_201807639 crossref_primary_10_1016_j_tetlet_2018_04_052 crossref_primary_10_1021_acs_jafc_1c05553 crossref_primary_10_1021_acs_organomet_8b00774 crossref_primary_10_1039_D4QO00014E crossref_primary_10_1002_ange_202016705 crossref_primary_10_1039_C7QO00665A crossref_primary_10_1039_C9NR09333H crossref_primary_10_1021_acscatal_2c02410 crossref_primary_10_1021_jacs_8b03642 crossref_primary_10_1021_acs_orglett_2c00852 crossref_primary_10_1002_tcr_202300133 crossref_primary_10_1021_jacs_3c12985 crossref_primary_10_1002_ange_202315872 crossref_primary_10_1021_acs_orglett_9b03365 crossref_primary_10_1021_acscatal_1c04983 crossref_primary_10_1002_chem_202303406 crossref_primary_10_1021_acs_orglett_8b02339 crossref_primary_10_1002_adsc_201800322 crossref_primary_10_1021_acs_orglett_8b02579 crossref_primary_10_1002_ange_202111778 crossref_primary_10_1039_C9RA10294A crossref_primary_10_1039_D2QO01605B crossref_primary_10_1002_ange_202003104 crossref_primary_10_1002_cjoc_202000741 crossref_primary_10_1016_j_ccr_2017_07_013 crossref_primary_10_1016_j_nanoso_2021_100667 crossref_primary_10_1039_C8DT04416C crossref_primary_10_1002_cctc_202000662 crossref_primary_10_1016_j_gresc_2023_07_002 crossref_primary_10_1002_adsc_201900161 crossref_primary_10_1002_ange_202213600 crossref_primary_10_1021_acs_orglett_3c03536 crossref_primary_10_1002_slct_202404258 crossref_primary_10_1039_D2QO00910B crossref_primary_10_1021_acs_chemrev_8b00404 crossref_primary_10_1002_anie_201807639 crossref_primary_10_1021_acs_joc_1c02916 crossref_primary_10_1039_D3QO01093G crossref_primary_10_1021_jacs_1c04773 crossref_primary_10_1021_acs_orglett_1c04157 crossref_primary_10_1016_j_mcat_2023_113679 crossref_primary_10_1021_acs_orglett_7b02417 crossref_primary_10_1063_5_0067959 crossref_primary_10_1039_C8OB02231C crossref_primary_10_1039_D0CC06311H crossref_primary_10_1002_ange_202107267 crossref_primary_10_1021_acs_orglett_7b03341 crossref_primary_10_1002_anie_202108503 crossref_primary_10_1055_a_2000_8183 crossref_primary_10_1021_acs_orglett_5c00903 crossref_primary_10_1021_acs_orglett_1c03073 crossref_primary_10_1021_jacs_4c09794 crossref_primary_10_1002_adsc_202201030 crossref_primary_10_1002_ange_202403547 crossref_primary_10_1016_j_tet_2023_133793 crossref_primary_10_1002_anie_201804891 crossref_primary_10_1039_D1CC05576C crossref_primary_10_1039_C9QO01367A crossref_primary_10_1016_j_cclet_2021_02_001 crossref_primary_10_1002_cjoc_202000170 crossref_primary_10_1002_cjoc_201800088 crossref_primary_10_1039_C7SC04639A crossref_primary_10_1039_D1SC05963G crossref_primary_10_1021_acscatal_3c04187 crossref_primary_10_1021_acs_chemrev_0c00053 crossref_primary_10_1002_anie_202201099 crossref_primary_10_1002_adsc_202001350 crossref_primary_10_1002_anie_202111778 crossref_primary_10_1016_j_rechem_2023_100843 crossref_primary_10_1021_acs_orglett_7b02341 crossref_primary_10_1002_ange_202106880 crossref_primary_10_3987_COM_18_S_T_41 crossref_primary_10_1002_hlca_201900023 crossref_primary_10_1007_s11426_022_1337_3 crossref_primary_10_1002_anie_202107267 crossref_primary_10_1021_acs_orglett_8b02591 crossref_primary_10_1002_anie_202002289 crossref_primary_10_1039_D3QO02034G crossref_primary_10_1016_j_poly_2021_115623 crossref_primary_10_1021_jacs_9b03328 crossref_primary_10_1016_j_apt_2021_04_031 crossref_primary_10_1002_ange_201914568 crossref_primary_10_3987_COM_22_14640 crossref_primary_10_1039_C9OB02733E crossref_primary_10_1021_jacs_1c01880 crossref_primary_10_1002_anie_202315872 crossref_primary_10_1134_S1070363218110063 crossref_primary_10_1039_C8OB02100G crossref_primary_10_1021_jacs_9b13876 crossref_primary_10_1039_C7QO00664K crossref_primary_10_1038_s42004_022_00678_4 crossref_primary_10_1021_acs_joc_9b01418 crossref_primary_10_1039_D4QO00361F crossref_primary_10_1002_anie_201914568 crossref_primary_10_1021_acs_orglett_4c03693 |
Cites_doi | 10.1016/j.tetlet.2006.10.129 10.1002/anie.200500784 10.1021/om020805a 10.1002/anie.201302349 10.1073/pnas.0307774101 10.1021/ar50141a005 10.1021/ja9837497 10.1021/jo00390a043 10.1021/op4002164 10.1021/ja063444p 10.1002/chem.201500324 10.1002/anie.200462072 10.1002/anie.201302942 10.1021/ja000163n 10.1021/jacs.6b11655 10.1016/j.tet.2012.03.118 10.1021/cr400037u 10.1021/ar700113g 10.1002/anie.197204601 10.1039/C6SC01845A 10.6023/A14040314 10.1039/C6SC03764J 10.1021/ol401593a 10.1021/cr020049i 10.1002/anie.201301341 10.1002/anie.201309677 10.1002/anie.201309521 10.1021/ja909810k 10.1021/ja802399v 10.1002/anie.201204363 10.1039/c4ob00018h 10.1039/c1cs15093f 10.1021/ja00259a043 10.1002/9783527635207.ch4 10.1017/S0890037X00033935 10.1021/acs.orglett.6b00748 10.1016/j.tetlet.2013.01.003 10.1021/cs3007389 10.1002/chem.200700390 10.1002/anie.200604493 10.1002/anie.200604810 10.1039/B919902K 10.1021/ar300051u 10.1002/cjoc.201400361 10.1002/1521-3773(20000602)39:11<1981::AID-ANIE1981>3.0.CO;2-3 10.1002/anie.201208606 10.6023/A12060268 10.1002/anie.201107802 10.1002/adsc.200606065 10.1021/jo960426p 10.1021/ar700137z 10.1002/anie.201309515 |
ContentType | Journal Article |
Copyright | Copyright © 2017 American Chemical Society |
Copyright_xml | – notice: Copyright © 2017 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acs.accounts.7b00007 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-4898 |
EndPage | 1001 |
ExternalDocumentID | 28374998 10_1021_acs_accounts_7b00007 c453627972 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 23M 53G 55A 5GY 5VS 7~N 85S AABXI ABFLS ABMVS ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 P2P RNS ROL TWZ UI2 UPT VF5 VG9 W1F WH7 X YZZ --- -DZ -~X 4.4 5ZA 6J9 6P2 AAYXX ABBLG ABJNI ABLBI ABQRX ACGFO ADHLV AFXLT AGXLV AHGAQ CITATION CUPRZ GGK IH2 XSW ZCA ~02 NPM 7X8 |
ID | FETCH-LOGICAL-a414t-2362c1a7bb5e7482af2694bbcd8ad6103dda0079e3058b4451474b263f29eaa83 |
IEDL.DBID | ACS |
ISSN | 0001-4842 1520-4898 |
IngestDate | Fri Jul 11 07:50:16 EDT 2025 Mon Jul 21 06:05:32 EDT 2025 Tue Jul 01 03:15:59 EDT 2025 Thu Apr 24 23:09:38 EDT 2025 Thu Aug 27 13:42:12 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a414t-2362c1a7bb5e7482af2694bbcd8ad6103dda0079e3058b4451474b263f29eaa83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6055-3139 0000-0002-4700-3765 |
PMID | 28374998 |
PQID | 1884163042 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_1884163042 pubmed_primary_28374998 crossref_citationtrail_10_1021_acs_accounts_7b00007 crossref_primary_10_1021_acs_accounts_7b00007 acs_journals_10_1021_acs_accounts_7b00007 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-04-18 |
PublicationDateYYYYMMDD | 2017-04-18 |
PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-18 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Accounts of chemical research |
PublicationTitleAlternate | Acc. Chem. Res |
PublicationYear | 2017 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref27/cit27 ref33/cit33a ref16/cit16 ref23/cit23 ref8/cit8 ref31/cit31 ref33/cit33c ref33/cit33b ref33/cit33d ref20/cit20 ref5/cit5b Zhu S.-F. (ref14/cit14a) 2011 ref17/cit17 Mueller-Warrant G. W. (ref2/cit2) 1991; 5 ref5/cit5c ref10/cit10 ref5/cit5a ref19/cit19 ref21/cit21 ref3/cit3b ref13/cit13 ref24/cit24 ref5/cit5f ref5/cit5g ref5/cit5d ref5/cit5e de Vries J. G. (ref4/cit4a) 2007 ref18/cit18 ref11/cit11 ref29/cit29 ref25/cit25b ref25/cit25a ref32/cit32 ref28/cit28 ref26/cit26 ref6/cit6d ref6/cit6e ref4/cit4b ref6/cit6f ref4/cit4c ref6/cit6g Hanessian S. (ref3/cit3a) 1983 ref12/cit12 ref14/cit14c ref14/cit14b ref15/cit15 ref30/cit30a ref22/cit22 ref30/cit30c ref30/cit30b ref6/cit6a ref1/cit1 ref6/cit6b ref6/cit6c ref7/cit7 |
References_xml | – ident: ref10/cit10 doi: 10.1016/j.tetlet.2006.10.129 – ident: ref6/cit6c doi: 10.1002/anie.200500784 – ident: ref12/cit12 doi: 10.1021/om020805a – ident: ref6/cit6f doi: 10.1002/anie.201302349 – ident: ref5/cit5e doi: 10.1073/pnas.0307774101 – ident: ref8/cit8 doi: 10.1021/ar50141a005 – ident: ref5/cit5c doi: 10.1021/ja9837497 – ident: ref5/cit5a doi: 10.1021/jo00390a043 – ident: ref30/cit30c doi: 10.1021/op4002164 – ident: ref13/cit13 doi: 10.1021/ja063444p – ident: ref32/cit32 doi: 10.1002/chem.201500324 – ident: ref5/cit5f doi: 10.1002/anie.200462072 – ident: ref25/cit25b doi: 10.1002/anie.201302942 – ident: ref5/cit5d doi: 10.1021/ja000163n – ident: ref28/cit28 doi: 10.1021/jacs.6b11655 – ident: ref18/cit18 doi: 10.1016/j.tet.2012.03.118 – ident: ref9/cit9 doi: 10.1021/cr400037u – volume-title: Total Synthesis of Natural Products: The Chiron Approach year: 1983 ident: ref3/cit3a – ident: ref7/cit7 doi: 10.1021/ar700113g – ident: ref1/cit1 doi: 10.1002/anie.197204601 – ident: ref6/cit6g doi: 10.1039/C6SC01845A – ident: ref33/cit33b doi: 10.6023/A14040314 – ident: ref33/cit33d doi: 10.1039/C6SC03764J – ident: ref22/cit22 doi: 10.1021/ol401593a – ident: ref4/cit4b doi: 10.1021/cr020049i – ident: ref23/cit23 doi: 10.1002/anie.201301341 – ident: ref27/cit27 doi: 10.1002/anie.201309677 – ident: ref33/cit33c doi: 10.1002/anie.201309521 – ident: ref21/cit21 doi: 10.1021/ja909810k – ident: ref17/cit17 doi: 10.1021/ja802399v – ident: ref15/cit15 doi: 10.1002/anie.201204363 – ident: ref26/cit26 doi: 10.1039/c4ob00018h – ident: ref3/cit3b doi: 10.1039/c1cs15093f – ident: ref6/cit6a doi: 10.1021/ja00259a043 – start-page: 137 volume-title: Privileged Chiral Ligands and Catalysts year: 2011 ident: ref14/cit14a doi: 10.1002/9783527635207.ch4 – volume: 5 start-page: 826 year: 1991 ident: ref2/cit2 publication-title: Weed Technology doi: 10.1017/S0890037X00033935 – ident: ref5/cit5g doi: 10.1021/acs.orglett.6b00748 – volume-title: Handbook of Homogeneous Hydrogenation year: 2007 ident: ref4/cit4a – ident: ref31/cit31 doi: 10.1016/j.tetlet.2013.01.003 – ident: ref16/cit16 doi: 10.1021/cs3007389 – ident: ref11/cit11 doi: 10.1002/chem.200700390 – ident: ref30/cit30a – ident: ref6/cit6d doi: 10.1002/anie.200604493 – ident: ref6/cit6e doi: 10.1002/anie.200604810 – ident: ref33/cit33a doi: 10.1039/B919902K – ident: ref14/cit14c doi: 10.1021/ar300051u – ident: ref19/cit19 doi: 10.1002/cjoc.201400361 – ident: ref6/cit6b doi: 10.1002/1521-3773(20000602)39:11<1981::AID-ANIE1981>3.0.CO;2-3 – ident: ref25/cit25a doi: 10.1002/anie.201208606 – ident: ref4/cit4c doi: 10.6023/A12060268 – ident: ref24/cit24 doi: 10.1002/anie.201107802 – ident: ref20/cit20 doi: 10.1002/adsc.200606065 – ident: ref5/cit5b doi: 10.1021/jo960426p – ident: ref14/cit14b doi: 10.1021/ar700137z – ident: ref29/cit29 doi: 10.1002/anie.201309515 – ident: ref30/cit30b |
SSID | ssj0002467 |
Score | 2.5933952 |
Snippet | Chiral carboxylic acid moieties are widely found in pharmaceuticals, agrochemicals, flavors, fragrances, and health supplements. Although they can be... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 988 |
Title | Iridium-Catalyzed Asymmetric Hydrogenation of Unsaturated Carboxylic Acids |
URI | http://dx.doi.org/10.1021/acs.accounts.7b00007 https://www.ncbi.nlm.nih.gov/pubmed/28374998 https://www.proquest.com/docview/1884163042 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDLDwfpSXgsTCkNI4buKOVURVKgEDVOoW-RWpok1Q0wztr-cujyJAVWGNbMs-n33f-XLfEXKLZDku2HnbiCa3GXW03aZIue9L7jabkctczB1-evZ6A9YftoZfjuLPCD517oVKYei8ckLa8IvY2ybZoh6cY4RCwevy5qXMKzgywUVmnNEqVW7FKGiQVPrdIK1Ambm16e6Rlypnp_jJ5L2RzWRDLX5TOP5xIftktwSeVqfQlAOyYeJDsh1U9d6OSP9xOtKjbGIH-KIzXxhtddL5ZIIlt5TVm-tpAsqWb6SVRNYgTpETFKCqtgIxlTDRMbTrqJFOj8mg-_AW9Oyy0oItmMNmNgUzphzhS9kyPuNURJjgKqXSXGgAWK7WAmbbNnA7cImcZsxnknpuRNtGCO6ekFqcxOaMWG1fsogjSZXmTEtwyPyWVk5EHcOkoLxO7kAQYXlS0jAPglMnxI-VdMJSOnXiVlsTqpKyHCtnjNf0spe9PgrKjjXtb6pdD0HkGDARsUkymBvHoCw--NTJaaEOyxGRNQi8RX7-j_VckB2KqACpIvklqc2mmbkCTDOT17kifwJ8q_I- |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb8IwDLbYdmCXvR_s2Um77FBG00DDEVVDwB6XjYlblTSphAZlonBgv352H0ybNCGuURI5jht_ievPALdEluOin7eNrAmbM0fbTUaU-54Sbq0Wudyl3OHnl0anz3uD-qAE9SIXBoVIcKYkDeL_sAs499QmswIKSdXLQnAbsIV4hJFht_zX5QHMeCOjysSbMhecFRlz_8xCfilMfvulf8Bm6nTau_C-FDf91-SjOp-pavj1h8lx7fXswU4OQ61WZjf7UDLxAZT9ovrbIfS606Eezse2T-87iy-jrVayGI-pAFdodRZ6OkHTS7fVmkRWP06IIRSBq7Z8OVUo7wj7tcKhTo6g33548zt2XnfBltzhM5uhUwsd6SlVNx4XTEaU7qpUqIXUCLdcrSVK2zR4VghFDGfc44o13Ig1jZTCPYbNeBKbU7CanuKRIMoqLbhWeD3z6jp0IuYYriQTFbhDRQT5d5MEaUicOQE1FtoJcu1UwC12KAhzAnOqozFaMcpejvrMCDxW9L8pNj9AlVP4RMZmMkfZBIVo6fmnAieZVSxnJA4hvDuKszXWcw3lztvzU_DUfXk8h21GeIFIJMUFbM6mc3OJaGemrlLb_gbTvfqf |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB58gHrx_ajPFbx42NrNpt30WFZLfRVBC8XLkmyyULRb6baH-uud2UdRoRS9hmSYTCaZSSbzDcAFgeW4aOdtIyvC5szRdp0R5L6nhFupRC53KXf4sV1rdfhdt9r9VuoLmUiQUpIG8WlXf-goRxhwrqhdZkUUkrKXheEWYZkid6TcDf95eggzXsvgMvG2zAVnRdbcDCpkm8Lkp22a4XCmhqe5Aa9TltP_Jm_l8UiVw89faI7_mtMmrOfuqNXI9GcLFky8Dat-UQVuB-5uhz3dG_dtn955Jp9GW41k0u9TIa7Qak30cIAqmC6vNYisTpwQUig6sNry5VAhz-_YrxH2dLILnebNi9-y8_oLtuQOH9kMjVvoSE-pqvG4YDKitFelQi2kRrfL1Voit3WDZ4ZQhHTGPa5YzY1Y3Ugp3D1YigexOQCr7ikeCYKu0oJrhdc0r6pDJ2KO4UoyUYJLFESQ758kSEPjzAmosZBOkEunBG6xSkGYA5lTPY33OaPs6aiPDMhjTv_zQgECFDmFUWRsBmPkTVColp6BSrCfacaUImEJ4R1SHP5hPmew8nTdDB5u2_dHsMbIbSAsSXEMS6Ph2Jyg0zNSp6l6fwHpIP0i |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iridium-Catalyzed+Asymmetric+Hydrogenation+of+Unsaturated+Carboxylic+Acids&rft.jtitle=Accounts+of+chemical+research&rft.au=Zhu%2C+Shou-Fei&rft.au=Zhou%2C+Qi-Lin&rft.date=2017-04-18&rft.pub=American+Chemical+Society&rft.issn=0001-4842&rft.eissn=1520-4898&rft.volume=50&rft.issue=4&rft.spage=988&rft.epage=1001&rft_id=info:doi/10.1021%2Facs.accounts.7b00007&rft.externalDocID=c453627972 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon |