Giant Optical Second Harmonic Generation in Two-Dimensional Multiferroics

Nonlinear optical properties of materials such as second and higher order harmonic generation and electro-optic effect play pivotal roles in lasers, frequency conversion, electro-optic modulators, switches, and so forth. The strength of nonlinear optical responses highly depends on intrinsic crystal...

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 17; no. 8; pp. 5027 - 5034
Main Authors Wang, Hua, Qian, Xiaofeng
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 09.08.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nonlinear optical properties of materials such as second and higher order harmonic generation and electro-optic effect play pivotal roles in lasers, frequency conversion, electro-optic modulators, switches, and so forth. The strength of nonlinear optical responses highly depends on intrinsic crystal symmetry, transition dipole moments, specific optical excitation, and local environment. Using first-principles electronic structure theory, here we predict giant second harmonic generation (SHG) in recently discovered two-dimensional (2D) ferroelectric–ferroelastic multiferroics–group IV monochalcogenides (i.e., GeSe, GeS, SnSe, and SnS). Remarkably, the strength of SHG susceptibility in GeSe and SnSe monolayers is more than 1 order of magnitude higher than that in monolayer MoS2, and 2 orders of magnitude higher than that in monolayer hexagonal BN. Their extraordinary SHG is dominated by the large residual of two opposite intraband contributions in the SHG susceptibility. More importantly, the SHG polarization anisotropy is strongly correlated with the intrinsic ferroelastic and ferroelectric orders in group IV monochalcogenide monolayers. Our present findings provide a microscopic understanding of the large SHG susceptibility in 2D group IV monochalcogenide multiferroics from first-principles theory and open up a variety of new avenues for 2D ferroelectrics, multiferroics, and nonlinear optoelectronics, for example, realizing active electrical/optical/mechanical switching of ferroic orders in 2D multiferroics and in situ ultrafast optical characterization of local atomistic and electronic structures using noncontact noninvasive optical SHG techniques.
AbstractList Nonlinear optical properties of materials such as second and higher order harmonic generation and electro-optic effect play pivotal roles in lasers, frequency conversion, electro-optic modulators, switches, and so forth. The strength of nonlinear optical responses highly depends on intrinsic crystal symmetry, transition dipole moments, specific optical excitation, and local environment. Using first-principles electronic structure theory, here we predict giant second harmonic generation (SHG) in recently discovered two-dimensional (2D) ferroelectric-ferroelastic multiferroics-group IV monochalcogenides (i.e., GeSe, GeS, SnSe, and SnS). Remarkably, the strength of SHG susceptibility in GeSe and SnSe monolayers is more than 1 order of magnitude higher than that in monolayer MoS , and 2 orders of magnitude higher than that in monolayer hexagonal BN. Their extraordinary SHG is dominated by the large residual of two opposite intraband contributions in the SHG susceptibility. More importantly, the SHG polarization anisotropy is strongly correlated with the intrinsic ferroelastic and ferroelectric orders in group IV monochalcogenide monolayers. Our present findings provide a microscopic understanding of the large SHG susceptibility in 2D group IV monochalcogenide multiferroics from first-principles theory and open up a variety of new avenues for 2D ferroelectrics, multiferroics, and nonlinear optoelectronics, for example, realizing active electrical/optical/mechanical switching of ferroic orders in 2D multiferroics and in situ ultrafast optical characterization of local atomistic and electronic structures using noncontact noninvasive optical SHG techniques.
Nonlinear optical properties of materials such as second and higher order harmonic generation and electro-optic effect play pivotal roles in lasers, frequency conversion, electro-optic modulators, switches, and so forth. The strength of nonlinear optical responses highly depends on intrinsic crystal symmetry, transition dipole moments, specific optical excitation, and local environment. Using first-principles electronic structure theory, here we predict giant second harmonic generation (SHG) in recently discovered two-dimensional (2D) ferroelectric–ferroelastic multiferroics–group IV monochalcogenides (i.e., GeSe, GeS, SnSe, and SnS). Remarkably, the strength of SHG susceptibility in GeSe and SnSe monolayers is more than 1 order of magnitude higher than that in monolayer MoS2, and 2 orders of magnitude higher than that in monolayer hexagonal BN. Their extraordinary SHG is dominated by the large residual of two opposite intraband contributions in the SHG susceptibility. More importantly, the SHG polarization anisotropy is strongly correlated with the intrinsic ferroelastic and ferroelectric orders in group IV monochalcogenide monolayers. Our present findings provide a microscopic understanding of the large SHG susceptibility in 2D group IV monochalcogenide multiferroics from first-principles theory and open up a variety of new avenues for 2D ferroelectrics, multiferroics, and nonlinear optoelectronics, for example, realizing active electrical/optical/mechanical switching of ferroic orders in 2D multiferroics and in situ ultrafast optical characterization of local atomistic and electronic structures using noncontact noninvasive optical SHG techniques.
Nonlinear optical properties of materials such as second and higher order harmonic generation and electro-optic effect play pivotal roles in lasers, frequency conversion, electro-optic modulators, switches, and so forth. The strength of nonlinear optical responses highly depends on intrinsic crystal symmetry, transition dipole moments, specific optical excitation, and local environment. Using first-principles electronic structure theory, here we predict giant second harmonic generation (SHG) in recently discovered two-dimensional (2D) ferroelectric-ferroelastic multiferroics-group IV monochalcogenides (i.e., GeSe, GeS, SnSe, and SnS). Remarkably, the strength of SHG susceptibility in GeSe and SnSe monolayers is more than 1 order of magnitude higher than that in monolayer MoS2, and 2 orders of magnitude higher than that in monolayer hexagonal BN. Their extraordinary SHG is dominated by the large residual of two opposite intraband contributions in the SHG susceptibility. More importantly, the SHG polarization anisotropy is strongly correlated with the intrinsic ferroelastic and ferroelectric orders in group IV monochalcogenide monolayers. Our present findings provide a microscopic understanding of the large SHG susceptibility in 2D group IV monochalcogenide multiferroics from first-principles theory and open up a variety of new avenues for 2D ferroelectrics, multiferroics, and nonlinear optoelectronics, for example, realizing active electrical/optical/mechanical switching of ferroic orders in 2D multiferroics and in situ ultrafast optical characterization of local atomistic and electronic structures using noncontact noninvasive optical SHG techniques.Nonlinear optical properties of materials such as second and higher order harmonic generation and electro-optic effect play pivotal roles in lasers, frequency conversion, electro-optic modulators, switches, and so forth. The strength of nonlinear optical responses highly depends on intrinsic crystal symmetry, transition dipole moments, specific optical excitation, and local environment. Using first-principles electronic structure theory, here we predict giant second harmonic generation (SHG) in recently discovered two-dimensional (2D) ferroelectric-ferroelastic multiferroics-group IV monochalcogenides (i.e., GeSe, GeS, SnSe, and SnS). Remarkably, the strength of SHG susceptibility in GeSe and SnSe monolayers is more than 1 order of magnitude higher than that in monolayer MoS2, and 2 orders of magnitude higher than that in monolayer hexagonal BN. Their extraordinary SHG is dominated by the large residual of two opposite intraband contributions in the SHG susceptibility. More importantly, the SHG polarization anisotropy is strongly correlated with the intrinsic ferroelastic and ferroelectric orders in group IV monochalcogenide monolayers. Our present findings provide a microscopic understanding of the large SHG susceptibility in 2D group IV monochalcogenide multiferroics from first-principles theory and open up a variety of new avenues for 2D ferroelectrics, multiferroics, and nonlinear optoelectronics, for example, realizing active electrical/optical/mechanical switching of ferroic orders in 2D multiferroics and in situ ultrafast optical characterization of local atomistic and electronic structures using noncontact noninvasive optical SHG techniques.
Author Qian, Xiaofeng
Wang, Hua
AuthorAffiliation Texas A&M University
Department of Materials Science and Engineering, College of Engineering and College of Science
AuthorAffiliation_xml – name: Department of Materials Science and Engineering, College of Engineering and College of Science
– name: Texas A&M University
Author_xml – sequence: 1
  givenname: Hua
  surname: Wang
  fullname: Wang, Hua
  organization: Texas A&M University
– sequence: 2
  givenname: Xiaofeng
  orcidid: 0000-0003-1627-288X
  surname: Qian
  fullname: Qian, Xiaofeng
  email: feng@tamu.edu
  organization: Texas A&M University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28671472$$D View this record in MEDLINE/PubMed
BookMark eNqFkM9PwyAUx4mZcT_0PzCmRy-dQKG03szUbcnMDs4zoZQmLC1MoDH-9zK3efCgJ154n8_Le98xGBhrFADXCE4RxOhOSD81wthWhTBlFcQ4L87ACNEMpnlZ4sFPXZAhGHu_hRCWGYUXYIiLnCHC8Ags51qYkKx3QUvRJq9KWlMnC-E6a7RM5sooJ4K2JtEm2XzY9FF3yvj4EemXvg26Uc5ZLf0lOG9E69XV8Z2At-enzWyRrtbz5exhlQqCSEhRlbGmynIMpZJNUwhCK1QXUuRlA1VcvCSECSYrygoM8wpTmCmWU1JQ0dQkyybg9jB35-x7r3zgnfZSta0wyvaeoxJRSktMcERvjmhfdarmO6c74T756fwI3B8A6az3TjVc6vB9bnBCtxxBvs-ax6z5KWt-zDrK5Jd8mv-PBg_avru1vYtJ-r-VL5IGl68
CitedBy_id crossref_primary_10_3390_nano14080662
crossref_primary_10_1021_acsami_4c20385
crossref_primary_10_1021_acsami_4c19036
crossref_primary_10_1016_j_optmat_2017_12_023
crossref_primary_10_1021_acsnano_0c06901
crossref_primary_10_1039_D1NR06598J
crossref_primary_10_7567_APEX_11_101301
crossref_primary_10_1093_nsr_nwae370
crossref_primary_10_1021_acs_jpcc_4c03591
crossref_primary_10_7498_aps_70_20210638
crossref_primary_10_1103_PhysRevMaterials_3_074009
crossref_primary_10_1021_acsami_2c07704
crossref_primary_10_1103_PhysRevMaterials_5_074005
crossref_primary_10_1021_acsnano_4c02994
crossref_primary_10_1038_s41467_023_41383_7
crossref_primary_10_1002_adfm_202410240
crossref_primary_10_1002_lpor_202300742
crossref_primary_10_1103_PhysRevMaterials_5_054409
crossref_primary_10_1002_aelm_201900818
crossref_primary_10_1063_5_0012300
crossref_primary_10_1038_s42005_022_01086_9
crossref_primary_10_1103_PhysRevB_104_235203
crossref_primary_10_1103_PhysRevB_103_245415
crossref_primary_10_1016_j_xcrp_2022_101111
crossref_primary_10_1021_acsnano_1c00344
crossref_primary_10_1515_nanoph_2024_0267
crossref_primary_10_1039_C7NR09588K
crossref_primary_10_1016_j_jallcom_2023_169962
crossref_primary_10_1039_C8NR01747F
crossref_primary_10_1002_lpor_202100322
crossref_primary_10_1002_smll_202311621
crossref_primary_10_1039_D4NH00620H
crossref_primary_10_1021_acs_jpcc_0c00898
crossref_primary_10_1038_s41467_023_42947_3
crossref_primary_10_1103_PhysRevB_105_165302
crossref_primary_10_1002_adma_202303122
crossref_primary_10_1021_acs_nanolett_2c00898
crossref_primary_10_1103_PhysRevB_100_064301
crossref_primary_10_1016_j_physb_2023_414838
crossref_primary_10_1002_adma_202005735
crossref_primary_10_1088_1361_6528_ab07d9
crossref_primary_10_1103_PhysRevB_101_184101
crossref_primary_10_1360_SSPMA_2022_0515
crossref_primary_10_1038_s41524_020_00462_9
crossref_primary_10_1103_PhysRevB_100_035202
crossref_primary_10_1002_adom_202102776
crossref_primary_10_1063_5_0241377
crossref_primary_10_1103_PhysRevB_107_115409
crossref_primary_10_1002_adts_202000027
crossref_primary_10_1002_cnl2_148
crossref_primary_10_1103_PhysRevB_105_045415
crossref_primary_10_1016_j_spmi_2019_04_008
crossref_primary_10_1364_OE_482269
crossref_primary_10_3788_PI_2023_R03
crossref_primary_10_1088_2053_1583_acab74
crossref_primary_10_1021_acs_jpcc_0c01580
crossref_primary_10_1039_C7RA11014F
crossref_primary_10_1103_PhysRevB_106_195126
crossref_primary_10_1103_PhysRevB_102_045411
crossref_primary_10_1016_j_apsusc_2018_02_045
crossref_primary_10_1039_D0NR02047H
crossref_primary_10_1016_j_matt_2022_05_021
crossref_primary_10_1002_adfm_202311141
crossref_primary_10_1103_PhysRevB_109_125101
crossref_primary_10_1002_adom_202200076
crossref_primary_10_1016_j_pquantelec_2024_100519
crossref_primary_10_1039_D0TC05607C
crossref_primary_10_1002_adma_202004111
crossref_primary_10_1515_nanoph_2020_0038
crossref_primary_10_1021_acsami_8b17225
crossref_primary_10_1021_acsnano_4c02854
crossref_primary_10_1002_adom_202000441
crossref_primary_10_1002_adfm_202310726
crossref_primary_10_1039_D0NR09146D
crossref_primary_10_1021_acs_chemrev_0c00933
crossref_primary_10_1038_s41699_020_00189_7
crossref_primary_10_1039_C8CE00154E
crossref_primary_10_1063_1_5000561
crossref_primary_10_1088_2053_1583_ac94e0
crossref_primary_10_1039_D2MA01079H
crossref_primary_10_1103_PhysRevB_101_155132
crossref_primary_10_1002_adma_202210894
crossref_primary_10_1021_acs_nanolett_4c03880
crossref_primary_10_1039_D0CP06315K
crossref_primary_10_1007_s11664_024_11031_x
crossref_primary_10_1088_1361_648X_ad81a1
crossref_primary_10_1103_PhysRevLett_120_207602
crossref_primary_10_1364_JOSAB_482279
crossref_primary_10_1021_acs_nanolett_7b03476
crossref_primary_10_1103_RevModPhys_93_011001
crossref_primary_10_1103_PhysRevB_105_075123
crossref_primary_10_1002_advs_202201842
crossref_primary_10_1021_acs_chemrev_3c00627
crossref_primary_10_1515_nanoph_2019_0573
crossref_primary_10_1103_PhysRevB_109_115118
crossref_primary_10_1016_j_cpc_2024_109349
crossref_primary_10_1021_acsnano_2c10705
crossref_primary_10_1021_acsnano_3c12938
crossref_primary_10_1021_acs_jpcc_8b09280
crossref_primary_10_1039_D3CP02428H
crossref_primary_10_1103_PhysRevApplied_13_014052
crossref_primary_10_1039_C8NJ03611J
crossref_primary_10_1002_adom_202402649
crossref_primary_10_1021_acsami_3c19251
crossref_primary_10_1103_PhysRevMaterials_8_116203
crossref_primary_10_1016_j_mattod_2021_07_023
crossref_primary_10_1103_PhysRevLett_130_256902
crossref_primary_10_1103_PhysRevMaterials_3_124004
crossref_primary_10_1021_acs_jpcc_4c01931
crossref_primary_10_1021_acs_jpclett_4c01257
crossref_primary_10_1002_adma_201705963
crossref_primary_10_1117_1_AP_6_3_034001
crossref_primary_10_1016_j_scib_2023_01_013
crossref_primary_10_1002_adts_202200791
crossref_primary_10_1038_s41467_020_16291_9
crossref_primary_10_1126_sciadv_aav9743
crossref_primary_10_1002_adom_202101200
crossref_primary_10_1021_acs_jpcc_2c07986
crossref_primary_10_1002_adom_202401321
crossref_primary_10_1039_C8ME00108A
crossref_primary_10_7498_aps_67_20181337
crossref_primary_10_1002_aelm_202201031
crossref_primary_10_1039_D2TA07589J
crossref_primary_10_1103_PhysRevB_110_014422
crossref_primary_10_1002_adom_202400355
crossref_primary_10_1103_PhysRevB_108_235423
crossref_primary_10_1021_acs_jpclett_1c03571
crossref_primary_10_1038_s41699_019_0135_1
crossref_primary_10_1039_C9RA05419G
crossref_primary_10_1038_s41467_022_33017_1
crossref_primary_10_1021_acs_jpcc_2c02778
crossref_primary_10_1039_D2TC03560J
crossref_primary_10_1007_s11696_022_02612_3
crossref_primary_10_1021_acsnano_1c06099
crossref_primary_10_3390_nano14211759
crossref_primary_10_1103_PhysRevB_102_035440
crossref_primary_10_1002_adfm_202105259
crossref_primary_10_1021_acs_nanolett_4c00039
crossref_primary_10_1016_j_molstruc_2024_141231
crossref_primary_10_1021_acsami_1c16020
crossref_primary_10_1103_PhysRevB_103_195404
crossref_primary_10_1016_j_cjsc_2023_100099
crossref_primary_10_1002_adfm_201901420
crossref_primary_10_1021_acsami_1c24696
crossref_primary_10_1002_wcms_1365
crossref_primary_10_3390_molecules28247971
crossref_primary_10_1007_s12274_022_5213_6
crossref_primary_10_1002_adfm_201806874
crossref_primary_10_1002_advs_202001655
crossref_primary_10_1038_s41598_024_69307_5
crossref_primary_10_1016_j_apsusc_2020_146797
crossref_primary_10_1038_s41535_022_00472_4
crossref_primary_10_1039_D0CP02755C
crossref_primary_10_1063_1_5038037
crossref_primary_10_1002_aelm_202101158
crossref_primary_10_1038_s42254_019_0043_5
crossref_primary_10_1038_s41467_021_21267_4
crossref_primary_10_1002_adfm_202200516
crossref_primary_10_1039_C9CP03395E
crossref_primary_10_1515_nanoph_2017_0069
Cites_doi 10.1103/PhysRevB.72.075416
10.1021/acs.nanolett.5b04613
10.1021/acs.jpcc.5b01866
10.1103/PhysRevB.89.081102
10.1103/PhysRevB.54.11169
10.1088/2053-1583/2/4/045005
10.1103/RevModPhys.73.515
10.1021/nl401561r
10.1103/PhysRevLett.77.3865
10.1103/PhysRevB.82.195442
10.1103/PhysRevLett.117.097601
10.1103/PhysRevB.50.17953
10.1038/nature13734
10.1021/acs.nanolett.6b00726
10.1103/PhysRevB.48.11705
10.1038/srep05530
10.1021/nl403328s
10.1021/acs.nanolett.5b02861
10.1038/nnano.2014.176
10.3938/jkps.66.816
10.1126/science.1250564
10.1103/PhysRevB.87.201401
10.1103/PhysRevB.78.245112
10.1038/lsa.2016.131
10.1016/0009-2614(86)87152-4
10.1038/srep22620
10.1103/PhysRev.139.A796
10.1038/nnano.2015.73
10.1088/2053-1583/4/1/015042
10.1016/0022-3697(59)90004-6
10.1038/srep01608
10.1103/PhysRevB.52.14636
10.1038/srep10334
10.1103/PhysRevB.28.1809
10.1038/ncomms3053
10.1103/PhysRevB.94.155428
10.1126/science.aad8609
10.1063/1.4934750
10.1088/2053-1583/2/4/045015
10.1103/PhysRevB.67.165332
10.1021/am4042542
10.1103/PhysRevB.53.10751
10.1103/PhysRevLett.117.246802
10.1038/ncomms14176
10.1103/PhysRevLett.7.118
10.1103/PhysRevB.87.161403
10.1103/PhysRevLett.118.227401
10.1103/PhysRev.140.A1133
10.1103/PhysRevLett.114.097403
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Copyright_xml – notice: Copyright © 2017 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acs.nanolett.7b02268
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1530-6992
EndPage 5034
ExternalDocumentID 28671472
10_1021_acs_nanolett_7b02268
a584056895
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
123
55A
5VS
7~N
AABXI
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
X
---
-~X
4.4
6P2
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
NPM
7X8
ID FETCH-LOGICAL-a414t-1b37fb3620cecff8a45b1d8ca69f0e6999447a7cb578206b2503e765485afd433
IEDL.DBID ACS
ISSN 1530-6984
1530-6992
IngestDate Fri Jul 11 02:50:17 EDT 2025
Mon Jul 21 05:48:17 EDT 2025
Tue Jul 01 03:13:56 EDT 2025
Thu Apr 24 23:03:12 EDT 2025
Thu Aug 27 13:42:06 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords first-principles theory
nonlinear optical properties
multiferroics
group IV monochalcogenides
second harmonic generation
2D materials
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a414t-1b37fb3620cecff8a45b1d8ca69f0e6999447a7cb578206b2503e765485afd433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1627-288X
PMID 28671472
PQID 1915559242
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_1915559242
pubmed_primary_28671472
crossref_citationtrail_10_1021_acs_nanolett_7b02268
crossref_primary_10_1021_acs_nanolett_7b02268
acs_journals_10_1021_acs_nanolett_7b02268
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-08-09
PublicationDateYYYYMMDD 2017-08-09
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-09
  day: 09
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2017
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref27/cit27
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
Butcher P. N. (ref2/cit2) 1991; 9
ref24/cit24
ref38/cit38
ref50/cit50
ref6/cit6
ref36/cit36
ref18/cit18
Boyd R. W. (ref3/cit3) 2008
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
Shen Y.-R. (ref1/cit1) 1984
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref44/cit44
ref7/cit7
References_xml – ident: ref47/cit47
  doi: 10.1103/PhysRevB.72.075416
– ident: ref25/cit25
  doi: 10.1021/acs.nanolett.5b04613
– ident: ref49/cit49
  doi: 10.1021/acs.jpcc.5b01866
– ident: ref48/cit48
  doi: 10.1103/PhysRevB.89.081102
– ident: ref35/cit35
  doi: 10.1103/PhysRevB.54.11169
– ident: ref12/cit12
  doi: 10.1088/2053-1583/2/4/045005
– ident: ref39/cit39
  doi: 10.1103/RevModPhys.73.515
– ident: ref33/cit33
– ident: ref6/cit6
  doi: 10.1021/nl401561r
– ident: ref37/cit37
  doi: 10.1103/PhysRevLett.77.3865
– ident: ref46/cit46
  doi: 10.1103/PhysRevB.82.195442
– ident: ref27/cit27
  doi: 10.1103/PhysRevLett.117.097601
– ident: ref36/cit36
  doi: 10.1103/PhysRevB.50.17953
– ident: ref15/cit15
  doi: 10.1038/nature13734
– ident: ref23/cit23
  doi: 10.1021/acs.nanolett.6b00726
– ident: ref51/cit51
  doi: 10.1103/PhysRevB.48.11705
– ident: ref14/cit14
  doi: 10.1038/srep05530
– ident: ref17/cit17
  doi: 10.1021/nl403328s
– ident: ref30/cit30
  doi: 10.1021/acs.nanolett.5b02861
– ident: ref9/cit9
  doi: 10.1038/nnano.2014.176
– ident: ref11/cit11
  doi: 10.3938/jkps.66.816
– ident: ref20/cit20
  doi: 10.1126/science.1250564
– ident: ref7/cit7
  doi: 10.1103/PhysRevB.87.201401
– ident: ref45/cit45
  doi: 10.1103/PhysRevB.78.245112
– ident: ref53/cit53
  doi: 10.1038/lsa.2016.131
– ident: ref52/cit52
  doi: 10.1016/0009-2614(86)87152-4
– ident: ref19/cit19
  doi: 10.1038/srep22620
– ident: ref44/cit44
  doi: 10.1103/PhysRev.139.A796
– ident: ref21/cit21
  doi: 10.1038/nnano.2015.73
– ident: ref24/cit24
  doi: 10.1088/2053-1583/4/1/015042
– ident: ref50/cit50
  doi: 10.1016/0022-3697(59)90004-6
– ident: ref13/cit13
  doi: 10.1038/srep01608
– ident: ref40/cit40
  doi: 10.1103/PhysRevB.52.14636
– ident: ref18/cit18
  doi: 10.1038/srep10334
– ident: ref38/cit38
  doi: 10.1103/PhysRevB.28.1809
– ident: ref10/cit10
  doi: 10.1038/ncomms3053
– ident: ref43/cit43
  doi: 10.1103/PhysRevB.94.155428
– ident: ref29/cit29
  doi: 10.1126/science.aad8609
– ident: ref28/cit28
  doi: 10.1063/1.4934750
– ident: ref16/cit16
  doi: 10.1088/2053-1583/2/4/045015
– ident: ref42/cit42
  doi: 10.1103/PhysRevB.67.165332
– ident: ref8/cit8
  doi: 10.1021/am4042542
– ident: ref41/cit41
  doi: 10.1103/PhysRevB.53.10751
– ident: ref26/cit26
  doi: 10.1103/PhysRevLett.117.246802
– volume-title: Nonlinear Optics
  year: 2008
  ident: ref3/cit3
– ident: ref32/cit32
  doi: 10.1038/ncomms14176
– ident: ref4/cit4
  doi: 10.1103/PhysRevLett.7.118
– ident: ref5/cit5
  doi: 10.1103/PhysRevB.87.161403
– ident: ref31/cit31
  doi: 10.1103/PhysRevLett.118.227401
– volume: 9
  volume-title: The Elements of Nonlinear Optics
  year: 1991
  ident: ref2/cit2
– volume-title: The Principles of Nonlinear Optics
  year: 1984
  ident: ref1/cit1
– ident: ref34/cit34
  doi: 10.1103/PhysRev.140.A1133
– ident: ref22/cit22
  doi: 10.1103/PhysRevLett.114.097403
SSID ssj0009350
Score 2.595042
Snippet Nonlinear optical properties of materials such as second and higher order harmonic generation and electro-optic effect play pivotal roles in lasers, frequency...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5027
Title Giant Optical Second Harmonic Generation in Two-Dimensional Multiferroics
URI http://dx.doi.org/10.1021/acs.nanolett.7b02268
https://www.ncbi.nlm.nih.gov/pubmed/28671472
https://www.proquest.com/docview/1915559242
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLDDwfpSXjMTC4NIkTuKMVaEUBjq0ldgi23EkBCRVkwqJX89dHuWlClgyRLEV-86573J33xFyHmB-XyA1i7QIGI-EywIlPOZrJ4hB6JGQRbbFvdcf87sH9-HDUfwewbetS6mzViKTFJaRt3wFNscTy2QFrj46W53u8INk1yk6ssIhBpcoELwulVswCxoknX01SAtQZmFtehtkUNfslEkmT61Zrlr67SeF4x8XsknWK-BJO6WmbJElk2yTtU90hDvk9gZ0JaeDSfF_mw7RV45oX05fkD-XlgzVKEj6mNDRa8qusDVASetBi0re2Eyn6aPOdsm4dz3q9lnVaoFJbvGcWcrxYwXGrK2NjmMhuausSGjpgcSMByiSc1_6WiH7fdtTAJwc42PPeVfGEXecPdJI0sQcENo28N0wbWSd8TigTeUog0ASxCMDw0WTXMBOhNVRycIiCm5bId6styestqdJnFo2oa44y7F1xvMvo9h81KTk7Pjl-bNa7CEcLoyYyMSkM3g3ZM93wUW1m2S_1If5jDYyA3LfPvzHeo7Iqo2woEg5OSaNfDozJwBqcnVaaPI7cfnyxQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4BPQCHUloey6MYqZcevGwSJ3GOiEeXZw8siFtkO46EgARtsqrUX98ZJ1kKEkJcrdiyPWPPN5nxNwA_EsrvS5ThmZEJF5kMeaJlxGMTJDkKPZPKZVtcRsNrcXob3s5A2L2FwUlUOFLlgvjP7ALeHrUVqihxNXU_1mh6IjkLnxCP-ORz7R9cPXPtBq4wK55l9IwSKboXc2-MQnbJVC_t0htg0xmd4yW4mU7X5Zrc9ye17pu_r5gcP7yeL_C5haFsv9GbZZixxVdY_I-c8Buc_ELNqdnvJ_e3m12R55yxoRo_Epsua_iqSazsrmCjPyU_pEIBDckHc-96czsel3emWoHr46PRwZC3hRe4Ep6ouaeDONdo2gbGmjyXSoTay6RREcrPRogphYhVbDRx4Q8ijTAqsDFVoA9VnokgWIW5oizsOrCBxVvEDoiDJhKIPXWgLcFKlJJKrJA9-Ik7kbYHp0pdTNz3Umrstidtt6cHQSei1LQM5lRI4-GdXnza66lh8Hjn-91O-ikeNYqfqMKWE5wbcemH6LD6PVhr1GI6ok88gSL2Nz6wnh2YH44uztPzk8uzTVjwCTC4ZJQtmKvHE7uNcKfW351y_wPi0Psm
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4VKiE4lPJou-XlSlw4eNkkTuIcEbBdaEWRAAlxiWzHkVYtyWqTFRK_vjNOdnlICME1ii3bM5P5JjP-BmA3ofq-RBmeGZlwkcmQJ1pGPDZBkqPQM6lctcVZNLgSp9fh9aNWX7iICmeqXBKfrHqU5S3DgLdPzwtVlLijuhtrdD-RnIOPlLmjuOvg8OKBbzdwzVnRnjE6SqSY3pp7YRbyTaZ66pteAJzO8fSX4Wa2ZFdv8rc7qXXX3D9jc3zXnj7DpxaOsoNGf1bggy1WYekRSeEanPxEDarZn5H7680uKILO2ECNb4lVlzW81SReNizY5V3Jj6hhQEP2wdz93tyOx-XQVOtw1T--PBzwtgEDV8ITNfd0EOcaXVzPWJPnUolQe5k0KkI52gixpRCxio0mTvxepBFOBTamTvShyjMRBF9gvigL-w1Yz-LXxPaIiyYSiEF1oC3BS5SUSqyQHdjDk0hbA6pSlxv3vZQeTo8nbY-nA8FUTKlpmcypoca_V0bx2ahRw-Txyvs_phqQoslRHkUVtpzg2ohTP8TA1e_A10Y1ZjP6xBcoYv_7G_azAwvnR_3098nZrw1Y9Ak3uJqUTZivxxO7hain1ttOv_8DArb9qQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Giant+Optical+Second+Harmonic+Generation+in+Two-Dimensional+Multiferroics&rft.jtitle=Nano+letters&rft.au=Wang%2C+Hua&rft.au=Qian%2C+Xiaofeng&rft.date=2017-08-09&rft.issn=1530-6984&rft.eissn=1530-6992&rft.volume=17&rft.issue=8&rft.spage=5027&rft.epage=5034&rft_id=info:doi/10.1021%2Facs.nanolett.7b02268&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_nanolett_7b02268
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon