Giant Optical Second Harmonic Generation in Two-Dimensional Multiferroics
Nonlinear optical properties of materials such as second and higher order harmonic generation and electro-optic effect play pivotal roles in lasers, frequency conversion, electro-optic modulators, switches, and so forth. The strength of nonlinear optical responses highly depends on intrinsic crystal...
Saved in:
Published in | Nano letters Vol. 17; no. 8; pp. 5027 - 5034 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
09.08.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nonlinear optical properties of materials such as second and higher order harmonic generation and electro-optic effect play pivotal roles in lasers, frequency conversion, electro-optic modulators, switches, and so forth. The strength of nonlinear optical responses highly depends on intrinsic crystal symmetry, transition dipole moments, specific optical excitation, and local environment. Using first-principles electronic structure theory, here we predict giant second harmonic generation (SHG) in recently discovered two-dimensional (2D) ferroelectric–ferroelastic multiferroics–group IV monochalcogenides (i.e., GeSe, GeS, SnSe, and SnS). Remarkably, the strength of SHG susceptibility in GeSe and SnSe monolayers is more than 1 order of magnitude higher than that in monolayer MoS2, and 2 orders of magnitude higher than that in monolayer hexagonal BN. Their extraordinary SHG is dominated by the large residual of two opposite intraband contributions in the SHG susceptibility. More importantly, the SHG polarization anisotropy is strongly correlated with the intrinsic ferroelastic and ferroelectric orders in group IV monochalcogenide monolayers. Our present findings provide a microscopic understanding of the large SHG susceptibility in 2D group IV monochalcogenide multiferroics from first-principles theory and open up a variety of new avenues for 2D ferroelectrics, multiferroics, and nonlinear optoelectronics, for example, realizing active electrical/optical/mechanical switching of ferroic orders in 2D multiferroics and in situ ultrafast optical characterization of local atomistic and electronic structures using noncontact noninvasive optical SHG techniques. |
---|---|
AbstractList | Nonlinear optical properties of materials such as second and higher order harmonic generation and electro-optic effect play pivotal roles in lasers, frequency conversion, electro-optic modulators, switches, and so forth. The strength of nonlinear optical responses highly depends on intrinsic crystal symmetry, transition dipole moments, specific optical excitation, and local environment. Using first-principles electronic structure theory, here we predict giant second harmonic generation (SHG) in recently discovered two-dimensional (2D) ferroelectric-ferroelastic multiferroics-group IV monochalcogenides (i.e., GeSe, GeS, SnSe, and SnS). Remarkably, the strength of SHG susceptibility in GeSe and SnSe monolayers is more than 1 order of magnitude higher than that in monolayer MoS
, and 2 orders of magnitude higher than that in monolayer hexagonal BN. Their extraordinary SHG is dominated by the large residual of two opposite intraband contributions in the SHG susceptibility. More importantly, the SHG polarization anisotropy is strongly correlated with the intrinsic ferroelastic and ferroelectric orders in group IV monochalcogenide monolayers. Our present findings provide a microscopic understanding of the large SHG susceptibility in 2D group IV monochalcogenide multiferroics from first-principles theory and open up a variety of new avenues for 2D ferroelectrics, multiferroics, and nonlinear optoelectronics, for example, realizing active electrical/optical/mechanical switching of ferroic orders in 2D multiferroics and in situ ultrafast optical characterization of local atomistic and electronic structures using noncontact noninvasive optical SHG techniques. Nonlinear optical properties of materials such as second and higher order harmonic generation and electro-optic effect play pivotal roles in lasers, frequency conversion, electro-optic modulators, switches, and so forth. The strength of nonlinear optical responses highly depends on intrinsic crystal symmetry, transition dipole moments, specific optical excitation, and local environment. Using first-principles electronic structure theory, here we predict giant second harmonic generation (SHG) in recently discovered two-dimensional (2D) ferroelectric–ferroelastic multiferroics–group IV monochalcogenides (i.e., GeSe, GeS, SnSe, and SnS). Remarkably, the strength of SHG susceptibility in GeSe and SnSe monolayers is more than 1 order of magnitude higher than that in monolayer MoS2, and 2 orders of magnitude higher than that in monolayer hexagonal BN. Their extraordinary SHG is dominated by the large residual of two opposite intraband contributions in the SHG susceptibility. More importantly, the SHG polarization anisotropy is strongly correlated with the intrinsic ferroelastic and ferroelectric orders in group IV monochalcogenide monolayers. Our present findings provide a microscopic understanding of the large SHG susceptibility in 2D group IV monochalcogenide multiferroics from first-principles theory and open up a variety of new avenues for 2D ferroelectrics, multiferroics, and nonlinear optoelectronics, for example, realizing active electrical/optical/mechanical switching of ferroic orders in 2D multiferroics and in situ ultrafast optical characterization of local atomistic and electronic structures using noncontact noninvasive optical SHG techniques. Nonlinear optical properties of materials such as second and higher order harmonic generation and electro-optic effect play pivotal roles in lasers, frequency conversion, electro-optic modulators, switches, and so forth. The strength of nonlinear optical responses highly depends on intrinsic crystal symmetry, transition dipole moments, specific optical excitation, and local environment. Using first-principles electronic structure theory, here we predict giant second harmonic generation (SHG) in recently discovered two-dimensional (2D) ferroelectric-ferroelastic multiferroics-group IV monochalcogenides (i.e., GeSe, GeS, SnSe, and SnS). Remarkably, the strength of SHG susceptibility in GeSe and SnSe monolayers is more than 1 order of magnitude higher than that in monolayer MoS2, and 2 orders of magnitude higher than that in monolayer hexagonal BN. Their extraordinary SHG is dominated by the large residual of two opposite intraband contributions in the SHG susceptibility. More importantly, the SHG polarization anisotropy is strongly correlated with the intrinsic ferroelastic and ferroelectric orders in group IV monochalcogenide monolayers. Our present findings provide a microscopic understanding of the large SHG susceptibility in 2D group IV monochalcogenide multiferroics from first-principles theory and open up a variety of new avenues for 2D ferroelectrics, multiferroics, and nonlinear optoelectronics, for example, realizing active electrical/optical/mechanical switching of ferroic orders in 2D multiferroics and in situ ultrafast optical characterization of local atomistic and electronic structures using noncontact noninvasive optical SHG techniques.Nonlinear optical properties of materials such as second and higher order harmonic generation and electro-optic effect play pivotal roles in lasers, frequency conversion, electro-optic modulators, switches, and so forth. The strength of nonlinear optical responses highly depends on intrinsic crystal symmetry, transition dipole moments, specific optical excitation, and local environment. Using first-principles electronic structure theory, here we predict giant second harmonic generation (SHG) in recently discovered two-dimensional (2D) ferroelectric-ferroelastic multiferroics-group IV monochalcogenides (i.e., GeSe, GeS, SnSe, and SnS). Remarkably, the strength of SHG susceptibility in GeSe and SnSe monolayers is more than 1 order of magnitude higher than that in monolayer MoS2, and 2 orders of magnitude higher than that in monolayer hexagonal BN. Their extraordinary SHG is dominated by the large residual of two opposite intraband contributions in the SHG susceptibility. More importantly, the SHG polarization anisotropy is strongly correlated with the intrinsic ferroelastic and ferroelectric orders in group IV monochalcogenide monolayers. Our present findings provide a microscopic understanding of the large SHG susceptibility in 2D group IV monochalcogenide multiferroics from first-principles theory and open up a variety of new avenues for 2D ferroelectrics, multiferroics, and nonlinear optoelectronics, for example, realizing active electrical/optical/mechanical switching of ferroic orders in 2D multiferroics and in situ ultrafast optical characterization of local atomistic and electronic structures using noncontact noninvasive optical SHG techniques. |
Author | Qian, Xiaofeng Wang, Hua |
AuthorAffiliation | Texas A&M University Department of Materials Science and Engineering, College of Engineering and College of Science |
AuthorAffiliation_xml | – name: Department of Materials Science and Engineering, College of Engineering and College of Science – name: Texas A&M University |
Author_xml | – sequence: 1 givenname: Hua surname: Wang fullname: Wang, Hua organization: Texas A&M University – sequence: 2 givenname: Xiaofeng orcidid: 0000-0003-1627-288X surname: Qian fullname: Qian, Xiaofeng email: feng@tamu.edu organization: Texas A&M University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28671472$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkM9PwyAUx4mZcT_0PzCmRy-dQKG03szUbcnMDs4zoZQmLC1MoDH-9zK3efCgJ154n8_Le98xGBhrFADXCE4RxOhOSD81wthWhTBlFcQ4L87ACNEMpnlZ4sFPXZAhGHu_hRCWGYUXYIiLnCHC8Ags51qYkKx3QUvRJq9KWlMnC-E6a7RM5sooJ4K2JtEm2XzY9FF3yvj4EemXvg26Uc5ZLf0lOG9E69XV8Z2At-enzWyRrtbz5exhlQqCSEhRlbGmynIMpZJNUwhCK1QXUuRlA1VcvCSECSYrygoM8wpTmCmWU1JQ0dQkyybg9jB35-x7r3zgnfZSta0wyvaeoxJRSktMcERvjmhfdarmO6c74T756fwI3B8A6az3TjVc6vB9bnBCtxxBvs-ax6z5KWt-zDrK5Jd8mv-PBg_avru1vYtJ-r-VL5IGl68 |
CitedBy_id | crossref_primary_10_3390_nano14080662 crossref_primary_10_1021_acsami_4c20385 crossref_primary_10_1021_acsami_4c19036 crossref_primary_10_1016_j_optmat_2017_12_023 crossref_primary_10_1021_acsnano_0c06901 crossref_primary_10_1039_D1NR06598J crossref_primary_10_7567_APEX_11_101301 crossref_primary_10_1093_nsr_nwae370 crossref_primary_10_1021_acs_jpcc_4c03591 crossref_primary_10_7498_aps_70_20210638 crossref_primary_10_1103_PhysRevMaterials_3_074009 crossref_primary_10_1021_acsami_2c07704 crossref_primary_10_1103_PhysRevMaterials_5_074005 crossref_primary_10_1021_acsnano_4c02994 crossref_primary_10_1038_s41467_023_41383_7 crossref_primary_10_1002_adfm_202410240 crossref_primary_10_1002_lpor_202300742 crossref_primary_10_1103_PhysRevMaterials_5_054409 crossref_primary_10_1002_aelm_201900818 crossref_primary_10_1063_5_0012300 crossref_primary_10_1038_s42005_022_01086_9 crossref_primary_10_1103_PhysRevB_104_235203 crossref_primary_10_1103_PhysRevB_103_245415 crossref_primary_10_1016_j_xcrp_2022_101111 crossref_primary_10_1021_acsnano_1c00344 crossref_primary_10_1515_nanoph_2024_0267 crossref_primary_10_1039_C7NR09588K crossref_primary_10_1016_j_jallcom_2023_169962 crossref_primary_10_1039_C8NR01747F crossref_primary_10_1002_lpor_202100322 crossref_primary_10_1002_smll_202311621 crossref_primary_10_1039_D4NH00620H crossref_primary_10_1021_acs_jpcc_0c00898 crossref_primary_10_1038_s41467_023_42947_3 crossref_primary_10_1103_PhysRevB_105_165302 crossref_primary_10_1002_adma_202303122 crossref_primary_10_1021_acs_nanolett_2c00898 crossref_primary_10_1103_PhysRevB_100_064301 crossref_primary_10_1016_j_physb_2023_414838 crossref_primary_10_1002_adma_202005735 crossref_primary_10_1088_1361_6528_ab07d9 crossref_primary_10_1103_PhysRevB_101_184101 crossref_primary_10_1360_SSPMA_2022_0515 crossref_primary_10_1038_s41524_020_00462_9 crossref_primary_10_1103_PhysRevB_100_035202 crossref_primary_10_1002_adom_202102776 crossref_primary_10_1063_5_0241377 crossref_primary_10_1103_PhysRevB_107_115409 crossref_primary_10_1002_adts_202000027 crossref_primary_10_1002_cnl2_148 crossref_primary_10_1103_PhysRevB_105_045415 crossref_primary_10_1016_j_spmi_2019_04_008 crossref_primary_10_1364_OE_482269 crossref_primary_10_3788_PI_2023_R03 crossref_primary_10_1088_2053_1583_acab74 crossref_primary_10_1021_acs_jpcc_0c01580 crossref_primary_10_1039_C7RA11014F crossref_primary_10_1103_PhysRevB_106_195126 crossref_primary_10_1103_PhysRevB_102_045411 crossref_primary_10_1016_j_apsusc_2018_02_045 crossref_primary_10_1039_D0NR02047H crossref_primary_10_1016_j_matt_2022_05_021 crossref_primary_10_1002_adfm_202311141 crossref_primary_10_1103_PhysRevB_109_125101 crossref_primary_10_1002_adom_202200076 crossref_primary_10_1016_j_pquantelec_2024_100519 crossref_primary_10_1039_D0TC05607C crossref_primary_10_1002_adma_202004111 crossref_primary_10_1515_nanoph_2020_0038 crossref_primary_10_1021_acsami_8b17225 crossref_primary_10_1021_acsnano_4c02854 crossref_primary_10_1002_adom_202000441 crossref_primary_10_1002_adfm_202310726 crossref_primary_10_1039_D0NR09146D crossref_primary_10_1021_acs_chemrev_0c00933 crossref_primary_10_1038_s41699_020_00189_7 crossref_primary_10_1039_C8CE00154E crossref_primary_10_1063_1_5000561 crossref_primary_10_1088_2053_1583_ac94e0 crossref_primary_10_1039_D2MA01079H crossref_primary_10_1103_PhysRevB_101_155132 crossref_primary_10_1002_adma_202210894 crossref_primary_10_1021_acs_nanolett_4c03880 crossref_primary_10_1039_D0CP06315K crossref_primary_10_1007_s11664_024_11031_x crossref_primary_10_1088_1361_648X_ad81a1 crossref_primary_10_1103_PhysRevLett_120_207602 crossref_primary_10_1364_JOSAB_482279 crossref_primary_10_1021_acs_nanolett_7b03476 crossref_primary_10_1103_RevModPhys_93_011001 crossref_primary_10_1103_PhysRevB_105_075123 crossref_primary_10_1002_advs_202201842 crossref_primary_10_1021_acs_chemrev_3c00627 crossref_primary_10_1515_nanoph_2019_0573 crossref_primary_10_1103_PhysRevB_109_115118 crossref_primary_10_1016_j_cpc_2024_109349 crossref_primary_10_1021_acsnano_2c10705 crossref_primary_10_1021_acsnano_3c12938 crossref_primary_10_1021_acs_jpcc_8b09280 crossref_primary_10_1039_D3CP02428H crossref_primary_10_1103_PhysRevApplied_13_014052 crossref_primary_10_1039_C8NJ03611J crossref_primary_10_1002_adom_202402649 crossref_primary_10_1021_acsami_3c19251 crossref_primary_10_1103_PhysRevMaterials_8_116203 crossref_primary_10_1016_j_mattod_2021_07_023 crossref_primary_10_1103_PhysRevLett_130_256902 crossref_primary_10_1103_PhysRevMaterials_3_124004 crossref_primary_10_1021_acs_jpcc_4c01931 crossref_primary_10_1021_acs_jpclett_4c01257 crossref_primary_10_1002_adma_201705963 crossref_primary_10_1117_1_AP_6_3_034001 crossref_primary_10_1016_j_scib_2023_01_013 crossref_primary_10_1002_adts_202200791 crossref_primary_10_1038_s41467_020_16291_9 crossref_primary_10_1126_sciadv_aav9743 crossref_primary_10_1002_adom_202101200 crossref_primary_10_1021_acs_jpcc_2c07986 crossref_primary_10_1002_adom_202401321 crossref_primary_10_1039_C8ME00108A crossref_primary_10_7498_aps_67_20181337 crossref_primary_10_1002_aelm_202201031 crossref_primary_10_1039_D2TA07589J crossref_primary_10_1103_PhysRevB_110_014422 crossref_primary_10_1002_adom_202400355 crossref_primary_10_1103_PhysRevB_108_235423 crossref_primary_10_1021_acs_jpclett_1c03571 crossref_primary_10_1038_s41699_019_0135_1 crossref_primary_10_1039_C9RA05419G crossref_primary_10_1038_s41467_022_33017_1 crossref_primary_10_1021_acs_jpcc_2c02778 crossref_primary_10_1039_D2TC03560J crossref_primary_10_1007_s11696_022_02612_3 crossref_primary_10_1021_acsnano_1c06099 crossref_primary_10_3390_nano14211759 crossref_primary_10_1103_PhysRevB_102_035440 crossref_primary_10_1002_adfm_202105259 crossref_primary_10_1021_acs_nanolett_4c00039 crossref_primary_10_1016_j_molstruc_2024_141231 crossref_primary_10_1021_acsami_1c16020 crossref_primary_10_1103_PhysRevB_103_195404 crossref_primary_10_1016_j_cjsc_2023_100099 crossref_primary_10_1002_adfm_201901420 crossref_primary_10_1021_acsami_1c24696 crossref_primary_10_1002_wcms_1365 crossref_primary_10_3390_molecules28247971 crossref_primary_10_1007_s12274_022_5213_6 crossref_primary_10_1002_adfm_201806874 crossref_primary_10_1002_advs_202001655 crossref_primary_10_1038_s41598_024_69307_5 crossref_primary_10_1016_j_apsusc_2020_146797 crossref_primary_10_1038_s41535_022_00472_4 crossref_primary_10_1039_D0CP02755C crossref_primary_10_1063_1_5038037 crossref_primary_10_1002_aelm_202101158 crossref_primary_10_1038_s42254_019_0043_5 crossref_primary_10_1038_s41467_021_21267_4 crossref_primary_10_1002_adfm_202200516 crossref_primary_10_1039_C9CP03395E crossref_primary_10_1515_nanoph_2017_0069 |
Cites_doi | 10.1103/PhysRevB.72.075416 10.1021/acs.nanolett.5b04613 10.1021/acs.jpcc.5b01866 10.1103/PhysRevB.89.081102 10.1103/PhysRevB.54.11169 10.1088/2053-1583/2/4/045005 10.1103/RevModPhys.73.515 10.1021/nl401561r 10.1103/PhysRevLett.77.3865 10.1103/PhysRevB.82.195442 10.1103/PhysRevLett.117.097601 10.1103/PhysRevB.50.17953 10.1038/nature13734 10.1021/acs.nanolett.6b00726 10.1103/PhysRevB.48.11705 10.1038/srep05530 10.1021/nl403328s 10.1021/acs.nanolett.5b02861 10.1038/nnano.2014.176 10.3938/jkps.66.816 10.1126/science.1250564 10.1103/PhysRevB.87.201401 10.1103/PhysRevB.78.245112 10.1038/lsa.2016.131 10.1016/0009-2614(86)87152-4 10.1038/srep22620 10.1103/PhysRev.139.A796 10.1038/nnano.2015.73 10.1088/2053-1583/4/1/015042 10.1016/0022-3697(59)90004-6 10.1038/srep01608 10.1103/PhysRevB.52.14636 10.1038/srep10334 10.1103/PhysRevB.28.1809 10.1038/ncomms3053 10.1103/PhysRevB.94.155428 10.1126/science.aad8609 10.1063/1.4934750 10.1088/2053-1583/2/4/045015 10.1103/PhysRevB.67.165332 10.1021/am4042542 10.1103/PhysRevB.53.10751 10.1103/PhysRevLett.117.246802 10.1038/ncomms14176 10.1103/PhysRevLett.7.118 10.1103/PhysRevB.87.161403 10.1103/PhysRevLett.118.227401 10.1103/PhysRev.140.A1133 10.1103/PhysRevLett.114.097403 |
ContentType | Journal Article |
Copyright | Copyright © 2017 American Chemical Society |
Copyright_xml | – notice: Copyright © 2017 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acs.nanolett.7b02268 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1530-6992 |
EndPage | 5034 |
ExternalDocumentID | 28671472 10_1021_acs_nanolett_7b02268 a584056895 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 123 55A 5VS 7~N AABXI ABMVS ABPTK ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 PK8 RNS ROL TN5 UI2 VF5 VG9 W1F X --- -~X 4.4 6P2 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ GGK NPM 7X8 |
ID | FETCH-LOGICAL-a414t-1b37fb3620cecff8a45b1d8ca69f0e6999447a7cb578206b2503e765485afd433 |
IEDL.DBID | ACS |
ISSN | 1530-6984 1530-6992 |
IngestDate | Fri Jul 11 02:50:17 EDT 2025 Mon Jul 21 05:48:17 EDT 2025 Tue Jul 01 03:13:56 EDT 2025 Thu Apr 24 23:03:12 EDT 2025 Thu Aug 27 13:42:06 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | first-principles theory nonlinear optical properties multiferroics group IV monochalcogenides second harmonic generation 2D materials |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a414t-1b37fb3620cecff8a45b1d8ca69f0e6999447a7cb578206b2503e765485afd433 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1627-288X |
PMID | 28671472 |
PQID | 1915559242 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1915559242 pubmed_primary_28671472 crossref_citationtrail_10_1021_acs_nanolett_7b02268 crossref_primary_10_1021_acs_nanolett_7b02268 acs_journals_10_1021_acs_nanolett_7b02268 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-08-09 |
PublicationDateYYYYMMDD | 2017-08-09 |
PublicationDate_xml | – month: 08 year: 2017 text: 2017-08-09 day: 09 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Nano letters |
PublicationTitleAlternate | Nano Lett |
PublicationYear | 2017 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref27/cit27 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 Butcher P. N. (ref2/cit2) 1991; 9 ref24/cit24 ref38/cit38 ref50/cit50 ref6/cit6 ref36/cit36 ref18/cit18 Boyd R. W. (ref3/cit3) 2008 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 Shen Y.-R. (ref1/cit1) 1984 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref47/cit47 doi: 10.1103/PhysRevB.72.075416 – ident: ref25/cit25 doi: 10.1021/acs.nanolett.5b04613 – ident: ref49/cit49 doi: 10.1021/acs.jpcc.5b01866 – ident: ref48/cit48 doi: 10.1103/PhysRevB.89.081102 – ident: ref35/cit35 doi: 10.1103/PhysRevB.54.11169 – ident: ref12/cit12 doi: 10.1088/2053-1583/2/4/045005 – ident: ref39/cit39 doi: 10.1103/RevModPhys.73.515 – ident: ref33/cit33 – ident: ref6/cit6 doi: 10.1021/nl401561r – ident: ref37/cit37 doi: 10.1103/PhysRevLett.77.3865 – ident: ref46/cit46 doi: 10.1103/PhysRevB.82.195442 – ident: ref27/cit27 doi: 10.1103/PhysRevLett.117.097601 – ident: ref36/cit36 doi: 10.1103/PhysRevB.50.17953 – ident: ref15/cit15 doi: 10.1038/nature13734 – ident: ref23/cit23 doi: 10.1021/acs.nanolett.6b00726 – ident: ref51/cit51 doi: 10.1103/PhysRevB.48.11705 – ident: ref14/cit14 doi: 10.1038/srep05530 – ident: ref17/cit17 doi: 10.1021/nl403328s – ident: ref30/cit30 doi: 10.1021/acs.nanolett.5b02861 – ident: ref9/cit9 doi: 10.1038/nnano.2014.176 – ident: ref11/cit11 doi: 10.3938/jkps.66.816 – ident: ref20/cit20 doi: 10.1126/science.1250564 – ident: ref7/cit7 doi: 10.1103/PhysRevB.87.201401 – ident: ref45/cit45 doi: 10.1103/PhysRevB.78.245112 – ident: ref53/cit53 doi: 10.1038/lsa.2016.131 – ident: ref52/cit52 doi: 10.1016/0009-2614(86)87152-4 – ident: ref19/cit19 doi: 10.1038/srep22620 – ident: ref44/cit44 doi: 10.1103/PhysRev.139.A796 – ident: ref21/cit21 doi: 10.1038/nnano.2015.73 – ident: ref24/cit24 doi: 10.1088/2053-1583/4/1/015042 – ident: ref50/cit50 doi: 10.1016/0022-3697(59)90004-6 – ident: ref13/cit13 doi: 10.1038/srep01608 – ident: ref40/cit40 doi: 10.1103/PhysRevB.52.14636 – ident: ref18/cit18 doi: 10.1038/srep10334 – ident: ref38/cit38 doi: 10.1103/PhysRevB.28.1809 – ident: ref10/cit10 doi: 10.1038/ncomms3053 – ident: ref43/cit43 doi: 10.1103/PhysRevB.94.155428 – ident: ref29/cit29 doi: 10.1126/science.aad8609 – ident: ref28/cit28 doi: 10.1063/1.4934750 – ident: ref16/cit16 doi: 10.1088/2053-1583/2/4/045015 – ident: ref42/cit42 doi: 10.1103/PhysRevB.67.165332 – ident: ref8/cit8 doi: 10.1021/am4042542 – ident: ref41/cit41 doi: 10.1103/PhysRevB.53.10751 – ident: ref26/cit26 doi: 10.1103/PhysRevLett.117.246802 – volume-title: Nonlinear Optics year: 2008 ident: ref3/cit3 – ident: ref32/cit32 doi: 10.1038/ncomms14176 – ident: ref4/cit4 doi: 10.1103/PhysRevLett.7.118 – ident: ref5/cit5 doi: 10.1103/PhysRevB.87.161403 – ident: ref31/cit31 doi: 10.1103/PhysRevLett.118.227401 – volume: 9 volume-title: The Elements of Nonlinear Optics year: 1991 ident: ref2/cit2 – volume-title: The Principles of Nonlinear Optics year: 1984 ident: ref1/cit1 – ident: ref34/cit34 doi: 10.1103/PhysRev.140.A1133 – ident: ref22/cit22 doi: 10.1103/PhysRevLett.114.097403 |
SSID | ssj0009350 |
Score | 2.595042 |
Snippet | Nonlinear optical properties of materials such as second and higher order harmonic generation and electro-optic effect play pivotal roles in lasers, frequency... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5027 |
Title | Giant Optical Second Harmonic Generation in Two-Dimensional Multiferroics |
URI | http://dx.doi.org/10.1021/acs.nanolett.7b02268 https://www.ncbi.nlm.nih.gov/pubmed/28671472 https://www.proquest.com/docview/1915559242 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLDDwfpSXjMTC4NIkTuKMVaEUBjq0ldgi23EkBCRVkwqJX89dHuWlClgyRLEV-86573J33xFyHmB-XyA1i7QIGI-EywIlPOZrJ4hB6JGQRbbFvdcf87sH9-HDUfwewbetS6mzViKTFJaRt3wFNscTy2QFrj46W53u8INk1yk6ssIhBpcoELwulVswCxoknX01SAtQZmFtehtkUNfslEkmT61Zrlr67SeF4x8XsknWK-BJO6WmbJElk2yTtU90hDvk9gZ0JaeDSfF_mw7RV45oX05fkD-XlgzVKEj6mNDRa8qusDVASetBi0re2Eyn6aPOdsm4dz3q9lnVaoFJbvGcWcrxYwXGrK2NjmMhuausSGjpgcSMByiSc1_6WiH7fdtTAJwc42PPeVfGEXecPdJI0sQcENo28N0wbWSd8TigTeUog0ASxCMDw0WTXMBOhNVRycIiCm5bId6styestqdJnFo2oa44y7F1xvMvo9h81KTk7Pjl-bNa7CEcLoyYyMSkM3g3ZM93wUW1m2S_1If5jDYyA3LfPvzHeo7Iqo2woEg5OSaNfDozJwBqcnVaaPI7cfnyxQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4BPQCHUloey6MYqZcevGwSJ3GOiEeXZw8siFtkO46EgARtsqrUX98ZJ1kKEkJcrdiyPWPPN5nxNwA_EsrvS5ThmZEJF5kMeaJlxGMTJDkKPZPKZVtcRsNrcXob3s5A2L2FwUlUOFLlgvjP7ALeHrUVqihxNXU_1mh6IjkLnxCP-ORz7R9cPXPtBq4wK55l9IwSKboXc2-MQnbJVC_t0htg0xmd4yW4mU7X5Zrc9ye17pu_r5gcP7yeL_C5haFsv9GbZZixxVdY_I-c8Buc_ELNqdnvJ_e3m12R55yxoRo_Epsua_iqSazsrmCjPyU_pEIBDckHc-96czsel3emWoHr46PRwZC3hRe4Ep6ouaeDONdo2gbGmjyXSoTay6RREcrPRogphYhVbDRx4Q8ijTAqsDFVoA9VnokgWIW5oizsOrCBxVvEDoiDJhKIPXWgLcFKlJJKrJA9-Ik7kbYHp0pdTNz3Umrstidtt6cHQSei1LQM5lRI4-GdXnza66lh8Hjn-91O-ikeNYqfqMKWE5wbcemH6LD6PVhr1GI6ok88gSL2Nz6wnh2YH44uztPzk8uzTVjwCTC4ZJQtmKvHE7uNcKfW351y_wPi0Psm |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4VKiE4lPJou-XlSlw4eNkkTuIcEbBdaEWRAAlxiWzHkVYtyWqTFRK_vjNOdnlICME1ii3bM5P5JjP-BmA3ofq-RBmeGZlwkcmQJ1pGPDZBkqPQM6lctcVZNLgSp9fh9aNWX7iICmeqXBKfrHqU5S3DgLdPzwtVlLijuhtrdD-RnIOPlLmjuOvg8OKBbzdwzVnRnjE6SqSY3pp7YRbyTaZ66pteAJzO8fSX4Wa2ZFdv8rc7qXXX3D9jc3zXnj7DpxaOsoNGf1bggy1WYekRSeEanPxEDarZn5H7680uKILO2ECNb4lVlzW81SReNizY5V3Jj6hhQEP2wdz93tyOx-XQVOtw1T--PBzwtgEDV8ITNfd0EOcaXVzPWJPnUolQe5k0KkI52gixpRCxio0mTvxepBFOBTamTvShyjMRBF9gvigL-w1Yz-LXxPaIiyYSiEF1oC3BS5SUSqyQHdjDk0hbA6pSlxv3vZQeTo8nbY-nA8FUTKlpmcypoca_V0bx2ahRw-Txyvs_phqQoslRHkUVtpzg2ohTP8TA1e_A10Y1ZjP6xBcoYv_7G_azAwvnR_3098nZrw1Y9Ak3uJqUTZivxxO7hain1ttOv_8DArb9qQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Giant+Optical+Second+Harmonic+Generation+in+Two-Dimensional+Multiferroics&rft.jtitle=Nano+letters&rft.au=Wang%2C+Hua&rft.au=Qian%2C+Xiaofeng&rft.date=2017-08-09&rft.issn=1530-6984&rft.eissn=1530-6992&rft.volume=17&rft.issue=8&rft.spage=5027&rft.epage=5034&rft_id=info:doi/10.1021%2Facs.nanolett.7b02268&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_nanolett_7b02268 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon |