Magic Carbon Clusters in the Chemical Vapor Deposition Growth of Graphene
Ground-state structures of supported C clusters, C N (N = 16, ..., 26), on four selected transition metal surfaces [Rh(111), Ru(0001), Ni(111), and Cu(111)] are systematically explored by ab initio calculations. It is found that the core–shell structured C21, which is a fraction of C60 possessing th...
Saved in:
Published in | Journal of the American Chemical Society Vol. 134; no. 6; pp. 2970 - 2975 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
15.02.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ground-state structures of supported C clusters, C N (N = 16, ..., 26), on four selected transition metal surfaces [Rh(111), Ru(0001), Ni(111), and Cu(111)] are systematically explored by ab initio calculations. It is found that the core–shell structured C21, which is a fraction of C60 possessing three isolated pentagons and C 3v symmetry, is a very stable magic cluster on all these metal surfaces. Comparison with experimental scanning tunneling microscopy images, dI/dV curves, and cluster heights proves that C21 is the experimentally observed dominating C precursor in graphene chemical vapor deposition (CVD) growth. The exceptional stability of the C21 cluster is attributed to its high symmetry, core–shell geometry, and strong binding between edge C atoms and the metal surfaces. Besides, the high barrier of two C21 clusters’ dimerization explains its temperature-dependent behavior in graphene CVD growth. |
---|---|
AbstractList | Ground-state structures of supported C clusters, C(N) (N = 16, ..., 26), on four selected transition metal surfaces [Rh(111), Ru(0001), Ni(111), and Cu(111)] are systematically explored by ab initio calculations. It is found that the core-shell structured C(21), which is a fraction of C(60) possessing three isolated pentagons and C(3v) symmetry, is a very stable magic cluster on all these metal surfaces. Comparison with experimental scanning tunneling microscopy images, dI/dV curves, and cluster heights proves that C(21) is the experimentally observed dominating C precursor in graphene chemical vapor deposition (CVD) growth. The exceptional stability of the C(21) cluster is attributed to its high symmetry, core-shell geometry, and strong binding between edge C atoms and the metal surfaces. Besides, the high barrier of two C(21) clusters' dimerization explains its temperature-dependent behavior in graphene CVD growth. Ground-state structures of supported C clusters, C(N) (N = 16, ..., 26), on four selected transition metal surfaces [Rh(111), Ru(0001), Ni(111), and Cu(111)] are systematically explored by ab initio calculations. It is found that the core-shell structured C(21), which is a fraction of C(60) possessing three isolated pentagons and C(3v) symmetry, is a very stable magic cluster on all these metal surfaces. Comparison with experimental scanning tunneling microscopy images, dI/dV curves, and cluster heights proves that C(21) is the experimentally observed dominating C precursor in graphene chemical vapor deposition (CVD) growth. The exceptional stability of the C(21) cluster is attributed to its high symmetry, core-shell geometry, and strong binding between edge C atoms and the metal surfaces. Besides, the high barrier of two C(21) clusters' dimerization explains its temperature-dependent behavior in graphene CVD growth.Ground-state structures of supported C clusters, C(N) (N = 16, ..., 26), on four selected transition metal surfaces [Rh(111), Ru(0001), Ni(111), and Cu(111)] are systematically explored by ab initio calculations. It is found that the core-shell structured C(21), which is a fraction of C(60) possessing three isolated pentagons and C(3v) symmetry, is a very stable magic cluster on all these metal surfaces. Comparison with experimental scanning tunneling microscopy images, dI/dV curves, and cluster heights proves that C(21) is the experimentally observed dominating C precursor in graphene chemical vapor deposition (CVD) growth. The exceptional stability of the C(21) cluster is attributed to its high symmetry, core-shell geometry, and strong binding between edge C atoms and the metal surfaces. Besides, the high barrier of two C(21) clusters' dimerization explains its temperature-dependent behavior in graphene CVD growth. Ground-state structures of supported C clusters, C N (N = 16, ..., 26), on four selected transition metal surfaces [Rh(111), Ru(0001), Ni(111), and Cu(111)] are systematically explored by ab initio calculations. It is found that the core–shell structured C21, which is a fraction of C60 possessing three isolated pentagons and C 3v symmetry, is a very stable magic cluster on all these metal surfaces. Comparison with experimental scanning tunneling microscopy images, dI/dV curves, and cluster heights proves that C21 is the experimentally observed dominating C precursor in graphene chemical vapor deposition (CVD) growth. The exceptional stability of the C21 cluster is attributed to its high symmetry, core–shell geometry, and strong binding between edge C atoms and the metal surfaces. Besides, the high barrier of two C21 clusters’ dimerization explains its temperature-dependent behavior in graphene CVD growth. Ground-state structures of supported C clusters, CN (N = 16, ..., 26), on four selected transition metal surfaces [Rh(111), Ru(0001), Ni(111), and Cu(111)] are systematically explored by ab initio calculations. It is found that the core–shell structured C₂₁, which is a fraction of C₆₀ possessing three isolated pentagons and C₃ᵥ symmetry, is a very stable magic cluster on all these metal surfaces. Comparison with experimental scanning tunneling microscopy images, dI/dV curves, and cluster heights proves that C₂₁ is the experimentally observed dominating C precursor in graphene chemical vapor deposition (CVD) growth. The exceptional stability of the C₂₁ cluster is attributed to its high symmetry, core–shell geometry, and strong binding between edge C atoms and the metal surfaces. Besides, the high barrier of two C₂₁ clusters’ dimerization explains its temperature-dependent behavior in graphene CVD growth. |
Author | Zhao, Jijun Ding, Feng Yuan, Qinghong Chen, Xiaoshuang Gao, Junfeng Shu, Haibo |
AuthorAffiliation | Dalian University of Technology Chinese Academy of Sciences Hong Kong Polytechnic University |
AuthorAffiliation_xml | – name: Chinese Academy of Sciences – name: Hong Kong Polytechnic University – name: Dalian University of Technology |
Author_xml | – sequence: 1 givenname: Qinghong surname: Yuan fullname: Yuan, Qinghong – sequence: 2 givenname: Junfeng surname: Gao fullname: Gao, Junfeng – sequence: 3 givenname: Haibo surname: Shu fullname: Shu, Haibo – sequence: 4 givenname: Jijun surname: Zhao fullname: Zhao, Jijun email: tcfding@inet.polyu.edu.hk, zhaojj@dlut.edu.cn, xschen@mail.sitp.ac.cn – sequence: 5 givenname: Xiaoshuang surname: Chen fullname: Chen, Xiaoshuang email: tcfding@inet.polyu.edu.hk, zhaojj@dlut.edu.cn, xschen@mail.sitp.ac.cn – sequence: 6 givenname: Feng surname: Ding fullname: Ding, Feng email: tcfding@inet.polyu.edu.hk, zhaojj@dlut.edu.cn, xschen@mail.sitp.ac.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22082182$$D View this record in MEDLINE/PubMed |
BookMark | eNp90T1PwzAQBmALFdEPGPgDKAsChlD7EifuiAKUSkUswGpdEpe6SuNgJ0L8e1y1ZUAV091Jz93w3pD0alMrQs4ZvWUU2HiFQDkVKT8iA8aBhpxB0iMDSimEqUiiPhk6t_JjDIKdkD4AFcAEDMjsGT90EWRoc1MHWdW5VlkX6DpolyrIlmqtC6yCd2yMDe5VY5xutZdTa77aZWAWvsNmqWp1So4XWDl1tqsj8vb48Jo9hfOX6Sy7m4cYs6gNSyZoqQAEYkETTBBEniY0YaBojnlUpmkOjDLOhRDIcjbhKsonaRwvKMaliEbkanu3seazU66Va-0KVVVYK9M5OQGWAkQx9_L6Xwk-kIgnSTTx9GJHu3ytStlYvUb7LfdBeTDegsIa56xayEK3uImitagryajcvEL-vsJv3PzZ2B89ZC-3FgsnV6aztU_wgPsBr86RHw |
CitedBy_id | crossref_primary_10_1039_C5CP03820K crossref_primary_10_1088_1367_2630_15_5_053012 crossref_primary_10_1063_1_5108699 crossref_primary_10_1021_acs_jpcc_6b02673 crossref_primary_10_1039_D3NR05562K crossref_primary_10_1038_srep03534 crossref_primary_10_1002_adfm_201904349 crossref_primary_10_1038_s41524_020_00489_y crossref_primary_10_1038_srep12091 crossref_primary_10_1039_C5NR06016H crossref_primary_10_1103_PhysRevB_105_245404 crossref_primary_10_1088_1361_648X_ab62bf crossref_primary_10_1021_acs_jpcc_9b00761 crossref_primary_10_1039_C8NH00383A crossref_primary_10_1016_j_susc_2015_02_014 crossref_primary_10_1021_acsami_4c11398 crossref_primary_10_1038_s41598_018_27026_8 crossref_primary_10_1002_anie_201406570 crossref_primary_10_1016_j_carbon_2014_09_091 crossref_primary_10_1039_C5CP04497A crossref_primary_10_1557_mrs_2017_236 crossref_primary_10_1002_smll_201401458 crossref_primary_10_1021_nn500209d crossref_primary_10_1021_acs_jpcc_0c02040 crossref_primary_10_1021_jp404326d crossref_primary_10_1038_s41467_023_44525_z crossref_primary_10_1021_acs_chemrev_8b00325 crossref_primary_10_1021_acsami_9b15654 crossref_primary_10_1021_acs_jpcc_3c01586 crossref_primary_10_1039_C5NR08614K crossref_primary_10_1088_2399_1984_aab423 crossref_primary_10_1007_s12274_016_1297_1 crossref_primary_10_1021_acs_accounts_7b00592 crossref_primary_10_1039_C6RA18023J crossref_primary_10_1021_acs_jpclett_4c03481 crossref_primary_10_1039_C4SC02223H crossref_primary_10_1002_adfm_202310346 crossref_primary_10_1039_C8NR03109F crossref_primary_10_1021_acs_jpcc_6b06750 crossref_primary_10_1021_jp4123612 crossref_primary_10_1021_nn4023679 crossref_primary_10_1021_jz5015899 crossref_primary_10_1021_cm301993z crossref_primary_10_1063_5_0056413 crossref_primary_10_1016_j_carbon_2017_11_048 crossref_primary_10_1002_adma_202200734 crossref_primary_10_1021_acs_jpcc_7b04209 crossref_primary_10_1038_srep03238 crossref_primary_10_1016_j_susc_2012_07_005 crossref_primary_10_1021_acs_jpcc_7b06620 crossref_primary_10_1002_adfm_201808721 crossref_primary_10_1021_acs_jpclett_1c02316 crossref_primary_10_1038_s41524_019_0167_2 crossref_primary_10_1088_0953_8984_24_31_314203 crossref_primary_10_1021_nn305223y crossref_primary_10_3390_nano12172963 crossref_primary_10_1038_srep04431 crossref_primary_10_1021_acs_chemrev_0c01191 crossref_primary_10_1038_s43586_020_00005_y crossref_primary_10_1016_j_physrep_2014_03_003 crossref_primary_10_1039_C3NR04694J crossref_primary_10_1088_1361_6633_aa9bbf crossref_primary_10_1016_j_carbon_2022_09_053 crossref_primary_10_1021_acs_jpcc_7b09622 crossref_primary_10_1039_C4NR05590J crossref_primary_10_1002_ange_201406570 crossref_primary_10_1039_C3CP53933D crossref_primary_10_1016_j_physleta_2015_03_009 crossref_primary_10_1007_s10876_014_0834_x crossref_primary_10_1039_C5NR07680C crossref_primary_10_1016_j_chphma_2024_07_001 crossref_primary_10_1021_acs_jpcc_7b01999 crossref_primary_10_1021_ja403583s crossref_primary_10_1002_adma_201903266 crossref_primary_10_1098_rsos_160223 crossref_primary_10_1038_srep00861 crossref_primary_10_1016_j_susc_2012_11_008 crossref_primary_10_1039_D4NH00077C crossref_primary_10_1002_smll_201303680 crossref_primary_10_1002_adfm_202006671 crossref_primary_10_1039_c2ra23105k crossref_primary_10_1007_s12274_019_2276_0 crossref_primary_10_1002_adma_202211855 crossref_primary_10_1103_PhysRevB_85_155436 crossref_primary_10_1007_s41061_017_0141_8 crossref_primary_10_1039_c3cp54275k crossref_primary_10_1039_C5TC00910C crossref_primary_10_1002_adma_201305922 crossref_primary_10_1088_0034_4885_78_3_036501 crossref_primary_10_1039_C4CP02837F crossref_primary_10_1063_1_4974335 crossref_primary_10_1038_s41467_023_37222_4 crossref_primary_10_1021_ja312687a crossref_primary_10_1126_sciadv_aaw8337 crossref_primary_10_1088_2053_1583_aa868f crossref_primary_10_1039_C9CP06425G crossref_primary_10_1016_j_carbon_2019_09_048 crossref_primary_10_1016_j_mattod_2020_09_031 crossref_primary_10_1039_D2NR03489A crossref_primary_10_1002_adma_202201253 crossref_primary_10_1021_jp5118536 crossref_primary_10_1088_2053_1583_aaf59c crossref_primary_10_1002_adts_201800085 crossref_primary_10_1002_sstr_202400191 crossref_primary_10_1021_acs_nanolett_8b01379 crossref_primary_10_2139_ssrn_4151705 crossref_primary_10_1021_jz301029g crossref_primary_10_1038_s41524_020_0281_1 crossref_primary_10_1021_acs_jpcc_5b00340 crossref_primary_10_1038_srep29107 crossref_primary_10_1021_acsami_5b09453 crossref_primary_10_1021_nn300726r crossref_primary_10_1002_smll_201805395 crossref_primary_10_1140_epjd_e2013_30538_3 crossref_primary_10_1002_admi_201800255 crossref_primary_10_1021_acs_jpcc_3c08138 crossref_primary_10_1073_pnas_1312802110 crossref_primary_10_1039_C7CP03835F crossref_primary_10_1016_j_carbon_2014_02_081 crossref_primary_10_1039_c3cp53802h crossref_primary_10_1039_D2NJ01702D crossref_primary_10_1016_j_apsusc_2013_11_124 crossref_primary_10_1021_cs401135g crossref_primary_10_1002_smtd_202100771 crossref_primary_10_1039_c3cp50876e crossref_primary_10_1002_adfm_202203191 crossref_primary_10_1021_nn406462e crossref_primary_10_1002_advs_202105201 crossref_primary_10_1021_acsami_0c15990 crossref_primary_10_1016_j_carbon_2019_02_016 crossref_primary_10_1039_c2cc32995f crossref_primary_10_1021_acs_jpcc_0c10749 crossref_primary_10_1021_nn3041446 crossref_primary_10_1021_acsami_4c16639 crossref_primary_10_1002_wcms_1635 crossref_primary_10_1016_j_cej_2024_154716 crossref_primary_10_1039_C4NR03757J crossref_primary_10_1021_nn506041t |
Cites_doi | 10.1038/nmat2941 10.1016/j.susc.2008.08.037 10.1021/nl1016706 10.1103/PhysRevB.78.073401 10.1103/PhysRevB.73.113404 10.1038/nnano.2011.30 10.1021/jz1011466 10.1103/PhysRevLett.50.1998 10.1021/jp2028092 10.1103/PhysRevB.50.17953 10.1002/adma.201102456 10.1103/PhysRevLett.103.166101 10.1103/PhysRevLett.104.186101 10.1021/jp1033596 10.1021/nl902140j 10.1021/jp2051454 10.1103/PhysRevB.70.075407 10.1038/nmat3010 10.1016/0039-6028(92)90183-7 10.1021/jp9085848 10.1021/nl103053t 10.1103/PhysRevB.54.11169 10.1063/1.3587239 10.1016/0927-0256(96)00008-0 10.1063/1.3473045 10.1039/C0CC03617J 10.1126/science.1199183 10.1103/PhysRevB.76.075429 10.1021/nl903272n 10.1088/1367-2630/11/2/023006 10.1126/science.1171245 10.1021/ja2037854 10.1103/PhysRevB.83.195425 10.1038/nmat2711 10.1021/ja110927p 10.1103/RevModPhys.77.371 10.1103/PhysRevB.80.235422 10.1021/nn200832y 10.1021/nl200464j 10.1103/PhysRevB.80.245411 10.1103/PhysRevLett.77.3865 10.1016/0039-6028(94)00731-4 |
ContentType | Journal Article |
Copyright | Copyright © 2011 American Chemical Society |
Copyright_xml | – notice: Copyright © 2011 American Chemical Society |
DBID | AAYXX CITATION NPM 7S9 L.6 7X8 |
DOI | 10.1021/ja2050875 |
DatabaseName | CrossRef PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 2975 |
ExternalDocumentID | 22082182 10_1021_ja2050875 d087006052 |
Genre | Journal Article |
GroupedDBID | - .K2 02 4.4 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ EJD ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TAF TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 AAYWT NPM 7S9 L.6 7X8 |
ID | FETCH-LOGICAL-a413t-d180de228aac06a6a28b760612e0bab3d77b210155888a1b195e3b9744f0a4d83 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Fri Jul 11 11:28:16 EDT 2025 Tue Aug 05 09:45:53 EDT 2025 Mon Jul 21 05:25:17 EDT 2025 Tue Jul 01 02:08:15 EDT 2025 Thu Apr 24 23:03:12 EDT 2025 Thu Aug 27 13:42:50 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a413t-d180de228aac06a6a28b760612e0bab3d77b210155888a1b195e3b9744f0a4d83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 22082182 |
PQID | 2000356639 |
PQPubID | 24069 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_921722345 proquest_miscellaneous_2000356639 pubmed_primary_22082182 crossref_citationtrail_10_1021_ja2050875 crossref_primary_10_1021_ja2050875 acs_journals_10_1021_ja2050875 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-02-15 |
PublicationDateYYYYMMDD | 2012-02-15 |
PublicationDate_xml | – month: 02 year: 2012 text: 2012-02-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2012 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Kresse G. (ref28/cit28) 1996; 6 Saadi S. (ref20/cit20) 2010; 114 Marchini S. (ref7/cit7) 2007; 76 Preobrajenski A. B. (ref8/cit8) 2008; 78 Kwon S.-Y. (ref15/cit15) 2009; 9 van Wesep R. G. (ref22/cit22) 2011; 134 Wang B. (ref25/cit25) 2011; 11 Perdew J. P. (ref31/cit31) 1996; 77 Yuan Q. (ref38/cit38) 2011; 133 Dimiev A. (ref2/cit2) 2011; 331 Cui Y. (ref26/cit26) 2011; 47 Land T. A. (ref14/cit14) 1992; 264 Yu Q. (ref42/cit42) 2011; 10 Chen H. (ref35/cit35) 2010; 104 Tai T. B. (ref37/cit37) 2009; 114 Liu Z. (ref3/cit3) 2011; 11 Starodub E. (ref6/cit6) 2009; 80 Gao L. (ref16/cit16) 2010; 10 Wintterlin J. (ref5/cit5) 2009; 603 Gao J. (ref19/cit19) 2011; 133 Meyer J. C. (ref40/cit40) 2011; 10 Cockayne E. (ref39/cit39) 2011; 83 Yakobson B. I. (ref41/cit41) 2011; 5 Amara H. (ref18/cit18) 2006; 73 Tersoff J. (ref33/cit33) 1983; 50 Mills G. (ref32/cit32) 1995; 324 Cheng D. (ref23/cit23) 2011; 115 Šiber A. (ref36/cit36) 2004; 70 Wu W. (ref1/cit1) 2011; 23 Sutter P. (ref13/cit13) 2009; 80 Zhang Y. (ref11/cit11) 2010; 1 Li X. (ref17/cit17) 2009; 324 Ci L. (ref4/cit4) 2010; 9 Kresse G. (ref29/cit29) 1996; 54 Gao J. (ref24/cit24) 2011; 115 Lu J. (ref27/cit27) 2011; 6 Baletto F. (ref34/cit34) 2005; 77 Lee Y. (ref12/cit12) 2010; 10 Wu P. (ref21/cit21) 2010; 133 Blöchl P. E. (ref30/cit30) 1994; 50 Lacovig P. (ref9/cit9) 2009; 103 Coraux J. (ref10/cit10) 2009; 11 |
References_xml | – volume: 10 start-page: 209 year: 2011 ident: ref40/cit40 publication-title: Nat. Mater. doi: 10.1038/nmat2941 – volume: 603 start-page: 1841 year: 2009 ident: ref5/cit5 publication-title: Surf. Sci. doi: 10.1016/j.susc.2008.08.037 – volume: 10 start-page: 3512 year: 2010 ident: ref16/cit16 publication-title: Nano Lett. doi: 10.1021/nl1016706 – volume: 78 start-page: 073401 year: 2008 ident: ref8/cit8 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.78.073401 – volume: 73 start-page: 113404 year: 2006 ident: ref18/cit18 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.73.113404 – volume: 6 start-page: 247 year: 2011 ident: ref27/cit27 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2011.30 – volume: 1 start-page: 3101 year: 2010 ident: ref11/cit11 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz1011466 – volume: 50 start-page: 1998 year: 1983 ident: ref33/cit33 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.50.1998 – volume: 115 start-page: 10537 year: 2011 ident: ref23/cit23 publication-title: J. Phys. Chem. C doi: 10.1021/jp2028092 – volume: 50 start-page: 17953 year: 1994 ident: ref30/cit30 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 23 start-page: 4898 year: 2011 ident: ref1/cit1 publication-title: Adv. Mater. doi: 10.1002/adma.201102456 – volume: 103 start-page: 166101 year: 2009 ident: ref9/cit9 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.166101 – volume: 104 start-page: 186101 year: 2010 ident: ref35/cit35 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.186101 – volume: 114 start-page: 11221 year: 2010 ident: ref20/cit20 publication-title: J. Phys. Chem. C doi: 10.1021/jp1033596 – volume: 9 start-page: 3985 year: 2009 ident: ref15/cit15 publication-title: Nano Lett. doi: 10.1021/nl902140j – volume: 115 start-page: 17695 year: 2011 ident: ref24/cit24 publication-title: J. Phys. Chem. C doi: 10.1021/jp2051454 – volume: 70 start-page: 075407 year: 2004 ident: ref36/cit36 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.70.075407 – volume: 10 start-page: 443 year: 2011 ident: ref42/cit42 publication-title: Nat. Mater. doi: 10.1038/nmat3010 – volume: 264 start-page: 261 year: 1992 ident: ref14/cit14 publication-title: Surf. Sci. doi: 10.1016/0039-6028(92)90183-7 – volume: 114 start-page: 994 year: 2009 ident: ref37/cit37 publication-title: J. Phys. Chem. A doi: 10.1021/jp9085848 – volume: 11 start-page: 424 year: 2011 ident: ref25/cit25 publication-title: Nano Lett. doi: 10.1021/nl103053t – volume: 54 start-page: 11169 year: 1996 ident: ref29/cit29 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 134 start-page: 171105 year: 2011 ident: ref22/cit22 publication-title: J. Chem. Phys. doi: 10.1063/1.3587239 – volume: 6 start-page: 15 year: 1996 ident: ref28/cit28 publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 133 start-page: 071101 year: 2010 ident: ref21/cit21 publication-title: J. Chem. Phys. doi: 10.1063/1.3473045 – volume: 47 start-page: 1470 year: 2011 ident: ref26/cit26 publication-title: Chem. Commun. doi: 10.1039/C0CC03617J – volume: 331 start-page: 1168 year: 2011 ident: ref2/cit2 publication-title: Science doi: 10.1126/science.1199183 – volume: 76 start-page: 075429 year: 2007 ident: ref7/cit7 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.76.075429 – volume: 10 start-page: 490 year: 2010 ident: ref12/cit12 publication-title: Nano Lett. doi: 10.1021/nl903272n – volume: 11 start-page: 023006 year: 2009 ident: ref10/cit10 publication-title: New J. Phys. doi: 10.1088/1367-2630/11/2/023006 – volume: 324 start-page: 1312 year: 2009 ident: ref17/cit17 publication-title: Science doi: 10.1126/science.1171245 – volume: 133 start-page: 16072 year: 2011 ident: ref38/cit38 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2037854 – volume: 83 start-page: 195425 year: 2011 ident: ref39/cit39 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.195425 – volume: 9 start-page: 430 year: 2010 ident: ref4/cit4 publication-title: Nat. Mater. doi: 10.1038/nmat2711 – volume: 133 start-page: 5009 year: 2011 ident: ref19/cit19 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja110927p – volume: 77 start-page: 371 year: 2005 ident: ref34/cit34 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.77.371 – volume: 80 start-page: 235422 year: 2009 ident: ref6/cit6 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.80.235422 – volume: 5 start-page: 1569 year: 2011 ident: ref41/cit41 publication-title: ACS Nano doi: 10.1021/nn200832y – volume: 11 start-page: 2032 year: 2011 ident: ref3/cit3 publication-title: Nano Lett. doi: 10.1021/nl200464j – volume: 80 start-page: 245411 year: 2009 ident: ref13/cit13 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.80.245411 – volume: 77 start-page: 3865 year: 1996 ident: ref31/cit31 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 324 start-page: 305 year: 1995 ident: ref32/cit32 publication-title: Surf. Sci. doi: 10.1016/0039-6028(94)00731-4 |
SSID | ssj0004281 |
Score | 2.4381692 |
Snippet | Ground-state structures of supported C clusters, C N (N = 16, ..., 26), on four selected transition metal surfaces [Rh(111), Ru(0001), Ni(111), and Cu(111)]... Ground-state structures of supported C clusters, C(N) (N = 16, ..., 26), on four selected transition metal surfaces [Rh(111), Ru(0001), Ni(111), and Cu(111)]... Ground-state structures of supported C clusters, CN (N = 16, ..., 26), on four selected transition metal surfaces [Rh(111), Ru(0001), Ni(111), and Cu(111)] are... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2970 |
SubjectTerms | copper dimerization geometry graphene nickel scanning tunneling microscopy vapors |
Title | Magic Carbon Clusters in the Chemical Vapor Deposition Growth of Graphene |
URI | http://dx.doi.org/10.1021/ja2050875 https://www.ncbi.nlm.nih.gov/pubmed/22082182 https://www.proquest.com/docview/2000356639 https://www.proquest.com/docview/921722345 |
Volume | 134 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwEB5ROLQXKH2xlCL3ceglyLHjR46r0OUhLRdKtbfVOHEEYpWtNtkLv57x7poWlS23HCZOYk8836cZfwPwTUnPayzLhCPHJDO8SmyqfeKVo70PsxwXOtvDC316lZ2P1GgDvq7J4IugDyS4CrrrL2BLaGsCw-oXl38OPwqbRoxrrJZRPujvW0PoKdvHoWcNnlzElcEOHMfTOctyktujeeeOyrt_xRr_98qvYXuFK1l_6Qi7sOGbN_CyiO3c3sLZEGmTYwXO3LRhxWQeFBJadtMwgoAs6gawX0iAnB37WMzFToind9dsWtMVhoIw_w6uBj9-FqfJqo9CghSiuqRKLa-8EBax5Bo1CuuMDtjGc4dOVsY4Yn6ELIgOY-rSXHnpiGhkNa1WZeV72Gymjd8DplSVC2Nrp4JsvpCuTpEYlzXOao2p6cEhTfR49R-040WKWxDFiDPSg-9xDcblSoU8NMOYPGX65cH091J64ymjz3EhxzShIduBjZ_O29Bfk0sCqzLvAVtjk4f2XEJmNMyHpRM8PEkIAkdEvvaf-6KP8IpAlAiV3Kk6gM1uNvefCKh07nDhqPeEGNzl |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVYDnBhX8pqEAcuQY4dJ86xCksLLRcWcYvGiSMQVYpIeuHrGacJBQSCWw4Tx_E272nGbwg5ksKwDJLEYcDA8QKWOsr1jWOkxrMPvBAqne3-td-58y4f5EMtk2PvwmAnCmypqIL4E3UBKxPEmbTy69NkFkEIt0SrHd1M7kBy5TZQN1C-aFSEPr9qPVBSfPVAv8DKyr2cL47rFFUdq7JKnk9GpT5J3r5pNv6v50tkoUaZtD1eFstkyuQrZC5qirutkm4f8MijEbzqYU6jwcjqJRT0KacICGmjIkDvAeE5PTVNahe9QNZePtJhhk9g08PMGrk7P7uNOk5dVcEBdFilk7qKpYZzBZAwH3zgSge-RTqGadAiDQKNPBBxBpJjcLUbSiM00g4vw7lLlVgnM_kwN5uESpmGPFCZllZEnwuduYD8SwVa-T64QYvs4YDE9a4o4irgzZFwNCPSIsfNVMRJrUluS2MMfjI9_DB9GQtx_GR00MxnjANqYx-Qm-GosNU2mUDoKsIWob_YhLZYFxceNrMxXgsfX-IcoRJSsa2__mifzHVu-724172-2ibzCK-4zfF25Q6ZKV9HZhchTKn3qrX7DgG15UY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7xkAoXKG2BBUpN1UMvQY4dJ84RBbZLeVUCKm7ROHEEAmURyV749YyzyfIQq_aWw8Rx_Jrv04y_AfihpOUFZpnHkaMXRDz3tB9azypDZx8GMTY62yen4eAy-H2lrlqi6O7CUCcqaqlqgvhuV9_nRasw4KSCBFdOgn0W5l24zpGtveT8-R6k0H4HdyMdyk5J6OWrzgtl1WsvNAVaNi6mvwxnk841mSW3u6Pa7GaPb3Qb_7_3H2GpRZtsb7w8VmDGlp9gIemKvH2GwxOko48l-GCGJUvuRk43oWI3JSNgyDo1AfYXCaazfduleLFfxN7razYs6Aldmpj9Apf9g4tk4LXVFTwkx1V7ua95boXQiBkPMUShTRQ6xGO5QSPzKDLEBwlvEElG3_ixstIQ_QgKmsNcy1WYK4elXQemVB6LSBdGOTF9IU3hI_EwHRkdhuhHPdimQUnb3VGlTeBbEPHoRqQHP7vpSLNWm9yVyLh7z_T7xPR-LMjxntFON6cpDaiLgWBph6PKVd3kkiCsjHvAptjErmiXkAE1szZeD5MvCUGQiSjZxr_-6Bt8-LPfT48PT482YZFQlnCp3r7agrn6YWS_EpKpzXazfJ8AuADnyQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magic+Carbon+Clusters+in+the+Chemical+Vapor+Deposition+Growth+of+Graphene&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Yuan%2C+Qinghong&rft.au=Gao%2C+Junfeng&rft.au=Shu%2C+Haibo&rft.au=Zhao%2C+Jijun&rft.date=2012-02-15&rft.pub=American+Chemical+Society&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=134&rft.issue=6&rft.spage=2970&rft.epage=2975&rft_id=info:doi/10.1021%2Fja2050875&rft.externalDocID=d087006052 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |