Magic Carbon Clusters in the Chemical Vapor Deposition Growth of Graphene

Ground-state structures of supported C clusters, C N (N = 16, ..., 26), on four selected transition metal surfaces [Rh(111), Ru(0001), Ni(111), and Cu(111)] are systematically explored by ab initio calculations. It is found that the core–shell structured C21, which is a fraction of C60 possessing th...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 134; no. 6; pp. 2970 - 2975
Main Authors Yuan, Qinghong, Gao, Junfeng, Shu, Haibo, Zhao, Jijun, Chen, Xiaoshuang, Ding, Feng
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 15.02.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ground-state structures of supported C clusters, C N (N = 16, ..., 26), on four selected transition metal surfaces [Rh(111), Ru(0001), Ni(111), and Cu(111)] are systematically explored by ab initio calculations. It is found that the core–shell structured C21, which is a fraction of C60 possessing three isolated pentagons and C 3v symmetry, is a very stable magic cluster on all these metal surfaces. Comparison with experimental scanning tunneling microscopy images, dI/dV curves, and cluster heights proves that C21 is the experimentally observed dominating C precursor in graphene chemical vapor deposition (CVD) growth. The exceptional stability of the C21 cluster is attributed to its high symmetry, core–shell geometry, and strong binding between edge C atoms and the metal surfaces. Besides, the high barrier of two C21 clusters’ dimerization explains its temperature-dependent behavior in graphene CVD growth.
AbstractList Ground-state structures of supported C clusters, C(N) (N = 16, ..., 26), on four selected transition metal surfaces [Rh(111), Ru(0001), Ni(111), and Cu(111)] are systematically explored by ab initio calculations. It is found that the core-shell structured C(21), which is a fraction of C(60) possessing three isolated pentagons and C(3v) symmetry, is a very stable magic cluster on all these metal surfaces. Comparison with experimental scanning tunneling microscopy images, dI/dV curves, and cluster heights proves that C(21) is the experimentally observed dominating C precursor in graphene chemical vapor deposition (CVD) growth. The exceptional stability of the C(21) cluster is attributed to its high symmetry, core-shell geometry, and strong binding between edge C atoms and the metal surfaces. Besides, the high barrier of two C(21) clusters' dimerization explains its temperature-dependent behavior in graphene CVD growth.
Ground-state structures of supported C clusters, C(N) (N = 16, ..., 26), on four selected transition metal surfaces [Rh(111), Ru(0001), Ni(111), and Cu(111)] are systematically explored by ab initio calculations. It is found that the core-shell structured C(21), which is a fraction of C(60) possessing three isolated pentagons and C(3v) symmetry, is a very stable magic cluster on all these metal surfaces. Comparison with experimental scanning tunneling microscopy images, dI/dV curves, and cluster heights proves that C(21) is the experimentally observed dominating C precursor in graphene chemical vapor deposition (CVD) growth. The exceptional stability of the C(21) cluster is attributed to its high symmetry, core-shell geometry, and strong binding between edge C atoms and the metal surfaces. Besides, the high barrier of two C(21) clusters' dimerization explains its temperature-dependent behavior in graphene CVD growth.Ground-state structures of supported C clusters, C(N) (N = 16, ..., 26), on four selected transition metal surfaces [Rh(111), Ru(0001), Ni(111), and Cu(111)] are systematically explored by ab initio calculations. It is found that the core-shell structured C(21), which is a fraction of C(60) possessing three isolated pentagons and C(3v) symmetry, is a very stable magic cluster on all these metal surfaces. Comparison with experimental scanning tunneling microscopy images, dI/dV curves, and cluster heights proves that C(21) is the experimentally observed dominating C precursor in graphene chemical vapor deposition (CVD) growth. The exceptional stability of the C(21) cluster is attributed to its high symmetry, core-shell geometry, and strong binding between edge C atoms and the metal surfaces. Besides, the high barrier of two C(21) clusters' dimerization explains its temperature-dependent behavior in graphene CVD growth.
Ground-state structures of supported C clusters, C N (N = 16, ..., 26), on four selected transition metal surfaces [Rh(111), Ru(0001), Ni(111), and Cu(111)] are systematically explored by ab initio calculations. It is found that the core–shell structured C21, which is a fraction of C60 possessing three isolated pentagons and C 3v symmetry, is a very stable magic cluster on all these metal surfaces. Comparison with experimental scanning tunneling microscopy images, dI/dV curves, and cluster heights proves that C21 is the experimentally observed dominating C precursor in graphene chemical vapor deposition (CVD) growth. The exceptional stability of the C21 cluster is attributed to its high symmetry, core–shell geometry, and strong binding between edge C atoms and the metal surfaces. Besides, the high barrier of two C21 clusters’ dimerization explains its temperature-dependent behavior in graphene CVD growth.
Ground-state structures of supported C clusters, CN (N = 16, ..., 26), on four selected transition metal surfaces [Rh(111), Ru(0001), Ni(111), and Cu(111)] are systematically explored by ab initio calculations. It is found that the core–shell structured C₂₁, which is a fraction of C₆₀ possessing three isolated pentagons and C₃ᵥ symmetry, is a very stable magic cluster on all these metal surfaces. Comparison with experimental scanning tunneling microscopy images, dI/dV curves, and cluster heights proves that C₂₁ is the experimentally observed dominating C precursor in graphene chemical vapor deposition (CVD) growth. The exceptional stability of the C₂₁ cluster is attributed to its high symmetry, core–shell geometry, and strong binding between edge C atoms and the metal surfaces. Besides, the high barrier of two C₂₁ clusters’ dimerization explains its temperature-dependent behavior in graphene CVD growth.
Author Zhao, Jijun
Ding, Feng
Yuan, Qinghong
Chen, Xiaoshuang
Gao, Junfeng
Shu, Haibo
AuthorAffiliation Dalian University of Technology
Chinese Academy of Sciences
Hong Kong Polytechnic University
AuthorAffiliation_xml – name: Chinese Academy of Sciences
– name: Hong Kong Polytechnic University
– name: Dalian University of Technology
Author_xml – sequence: 1
  givenname: Qinghong
  surname: Yuan
  fullname: Yuan, Qinghong
– sequence: 2
  givenname: Junfeng
  surname: Gao
  fullname: Gao, Junfeng
– sequence: 3
  givenname: Haibo
  surname: Shu
  fullname: Shu, Haibo
– sequence: 4
  givenname: Jijun
  surname: Zhao
  fullname: Zhao, Jijun
  email: tcfding@inet.polyu.edu.hk, zhaojj@dlut.edu.cn, xschen@mail.sitp.ac.cn
– sequence: 5
  givenname: Xiaoshuang
  surname: Chen
  fullname: Chen, Xiaoshuang
  email: tcfding@inet.polyu.edu.hk, zhaojj@dlut.edu.cn, xschen@mail.sitp.ac.cn
– sequence: 6
  givenname: Feng
  surname: Ding
  fullname: Ding, Feng
  email: tcfding@inet.polyu.edu.hk, zhaojj@dlut.edu.cn, xschen@mail.sitp.ac.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22082182$$D View this record in MEDLINE/PubMed
BookMark eNp90T1PwzAQBmALFdEPGPgDKAsChlD7EifuiAKUSkUswGpdEpe6SuNgJ0L8e1y1ZUAV091Jz93w3pD0alMrQs4ZvWUU2HiFQDkVKT8iA8aBhpxB0iMDSimEqUiiPhk6t_JjDIKdkD4AFcAEDMjsGT90EWRoc1MHWdW5VlkX6DpolyrIlmqtC6yCd2yMDe5VY5xutZdTa77aZWAWvsNmqWp1So4XWDl1tqsj8vb48Jo9hfOX6Sy7m4cYs6gNSyZoqQAEYkETTBBEniY0YaBojnlUpmkOjDLOhRDIcjbhKsonaRwvKMaliEbkanu3seazU66Va-0KVVVYK9M5OQGWAkQx9_L6Xwk-kIgnSTTx9GJHu3ytStlYvUb7LfdBeTDegsIa56xayEK3uImitagryajcvEL-vsJv3PzZ2B89ZC-3FgsnV6aztU_wgPsBr86RHw
CitedBy_id crossref_primary_10_1039_C5CP03820K
crossref_primary_10_1088_1367_2630_15_5_053012
crossref_primary_10_1063_1_5108699
crossref_primary_10_1021_acs_jpcc_6b02673
crossref_primary_10_1039_D3NR05562K
crossref_primary_10_1038_srep03534
crossref_primary_10_1002_adfm_201904349
crossref_primary_10_1038_s41524_020_00489_y
crossref_primary_10_1038_srep12091
crossref_primary_10_1039_C5NR06016H
crossref_primary_10_1103_PhysRevB_105_245404
crossref_primary_10_1088_1361_648X_ab62bf
crossref_primary_10_1021_acs_jpcc_9b00761
crossref_primary_10_1039_C8NH00383A
crossref_primary_10_1016_j_susc_2015_02_014
crossref_primary_10_1021_acsami_4c11398
crossref_primary_10_1038_s41598_018_27026_8
crossref_primary_10_1002_anie_201406570
crossref_primary_10_1016_j_carbon_2014_09_091
crossref_primary_10_1039_C5CP04497A
crossref_primary_10_1557_mrs_2017_236
crossref_primary_10_1002_smll_201401458
crossref_primary_10_1021_nn500209d
crossref_primary_10_1021_acs_jpcc_0c02040
crossref_primary_10_1021_jp404326d
crossref_primary_10_1038_s41467_023_44525_z
crossref_primary_10_1021_acs_chemrev_8b00325
crossref_primary_10_1021_acsami_9b15654
crossref_primary_10_1021_acs_jpcc_3c01586
crossref_primary_10_1039_C5NR08614K
crossref_primary_10_1088_2399_1984_aab423
crossref_primary_10_1007_s12274_016_1297_1
crossref_primary_10_1021_acs_accounts_7b00592
crossref_primary_10_1039_C6RA18023J
crossref_primary_10_1021_acs_jpclett_4c03481
crossref_primary_10_1039_C4SC02223H
crossref_primary_10_1002_adfm_202310346
crossref_primary_10_1039_C8NR03109F
crossref_primary_10_1021_acs_jpcc_6b06750
crossref_primary_10_1021_jp4123612
crossref_primary_10_1021_nn4023679
crossref_primary_10_1021_jz5015899
crossref_primary_10_1021_cm301993z
crossref_primary_10_1063_5_0056413
crossref_primary_10_1016_j_carbon_2017_11_048
crossref_primary_10_1002_adma_202200734
crossref_primary_10_1021_acs_jpcc_7b04209
crossref_primary_10_1038_srep03238
crossref_primary_10_1016_j_susc_2012_07_005
crossref_primary_10_1021_acs_jpcc_7b06620
crossref_primary_10_1002_adfm_201808721
crossref_primary_10_1021_acs_jpclett_1c02316
crossref_primary_10_1038_s41524_019_0167_2
crossref_primary_10_1088_0953_8984_24_31_314203
crossref_primary_10_1021_nn305223y
crossref_primary_10_3390_nano12172963
crossref_primary_10_1038_srep04431
crossref_primary_10_1021_acs_chemrev_0c01191
crossref_primary_10_1038_s43586_020_00005_y
crossref_primary_10_1016_j_physrep_2014_03_003
crossref_primary_10_1039_C3NR04694J
crossref_primary_10_1088_1361_6633_aa9bbf
crossref_primary_10_1016_j_carbon_2022_09_053
crossref_primary_10_1021_acs_jpcc_7b09622
crossref_primary_10_1039_C4NR05590J
crossref_primary_10_1002_ange_201406570
crossref_primary_10_1039_C3CP53933D
crossref_primary_10_1016_j_physleta_2015_03_009
crossref_primary_10_1007_s10876_014_0834_x
crossref_primary_10_1039_C5NR07680C
crossref_primary_10_1016_j_chphma_2024_07_001
crossref_primary_10_1021_acs_jpcc_7b01999
crossref_primary_10_1021_ja403583s
crossref_primary_10_1002_adma_201903266
crossref_primary_10_1098_rsos_160223
crossref_primary_10_1038_srep00861
crossref_primary_10_1016_j_susc_2012_11_008
crossref_primary_10_1039_D4NH00077C
crossref_primary_10_1002_smll_201303680
crossref_primary_10_1002_adfm_202006671
crossref_primary_10_1039_c2ra23105k
crossref_primary_10_1007_s12274_019_2276_0
crossref_primary_10_1002_adma_202211855
crossref_primary_10_1103_PhysRevB_85_155436
crossref_primary_10_1007_s41061_017_0141_8
crossref_primary_10_1039_c3cp54275k
crossref_primary_10_1039_C5TC00910C
crossref_primary_10_1002_adma_201305922
crossref_primary_10_1088_0034_4885_78_3_036501
crossref_primary_10_1039_C4CP02837F
crossref_primary_10_1063_1_4974335
crossref_primary_10_1038_s41467_023_37222_4
crossref_primary_10_1021_ja312687a
crossref_primary_10_1126_sciadv_aaw8337
crossref_primary_10_1088_2053_1583_aa868f
crossref_primary_10_1039_C9CP06425G
crossref_primary_10_1016_j_carbon_2019_09_048
crossref_primary_10_1016_j_mattod_2020_09_031
crossref_primary_10_1039_D2NR03489A
crossref_primary_10_1002_adma_202201253
crossref_primary_10_1021_jp5118536
crossref_primary_10_1088_2053_1583_aaf59c
crossref_primary_10_1002_adts_201800085
crossref_primary_10_1002_sstr_202400191
crossref_primary_10_1021_acs_nanolett_8b01379
crossref_primary_10_2139_ssrn_4151705
crossref_primary_10_1021_jz301029g
crossref_primary_10_1038_s41524_020_0281_1
crossref_primary_10_1021_acs_jpcc_5b00340
crossref_primary_10_1038_srep29107
crossref_primary_10_1021_acsami_5b09453
crossref_primary_10_1021_nn300726r
crossref_primary_10_1002_smll_201805395
crossref_primary_10_1140_epjd_e2013_30538_3
crossref_primary_10_1002_admi_201800255
crossref_primary_10_1021_acs_jpcc_3c08138
crossref_primary_10_1073_pnas_1312802110
crossref_primary_10_1039_C7CP03835F
crossref_primary_10_1016_j_carbon_2014_02_081
crossref_primary_10_1039_c3cp53802h
crossref_primary_10_1039_D2NJ01702D
crossref_primary_10_1016_j_apsusc_2013_11_124
crossref_primary_10_1021_cs401135g
crossref_primary_10_1002_smtd_202100771
crossref_primary_10_1039_c3cp50876e
crossref_primary_10_1002_adfm_202203191
crossref_primary_10_1021_nn406462e
crossref_primary_10_1002_advs_202105201
crossref_primary_10_1021_acsami_0c15990
crossref_primary_10_1016_j_carbon_2019_02_016
crossref_primary_10_1039_c2cc32995f
crossref_primary_10_1021_acs_jpcc_0c10749
crossref_primary_10_1021_nn3041446
crossref_primary_10_1021_acsami_4c16639
crossref_primary_10_1002_wcms_1635
crossref_primary_10_1016_j_cej_2024_154716
crossref_primary_10_1039_C4NR03757J
crossref_primary_10_1021_nn506041t
Cites_doi 10.1038/nmat2941
10.1016/j.susc.2008.08.037
10.1021/nl1016706
10.1103/PhysRevB.78.073401
10.1103/PhysRevB.73.113404
10.1038/nnano.2011.30
10.1021/jz1011466
10.1103/PhysRevLett.50.1998
10.1021/jp2028092
10.1103/PhysRevB.50.17953
10.1002/adma.201102456
10.1103/PhysRevLett.103.166101
10.1103/PhysRevLett.104.186101
10.1021/jp1033596
10.1021/nl902140j
10.1021/jp2051454
10.1103/PhysRevB.70.075407
10.1038/nmat3010
10.1016/0039-6028(92)90183-7
10.1021/jp9085848
10.1021/nl103053t
10.1103/PhysRevB.54.11169
10.1063/1.3587239
10.1016/0927-0256(96)00008-0
10.1063/1.3473045
10.1039/C0CC03617J
10.1126/science.1199183
10.1103/PhysRevB.76.075429
10.1021/nl903272n
10.1088/1367-2630/11/2/023006
10.1126/science.1171245
10.1021/ja2037854
10.1103/PhysRevB.83.195425
10.1038/nmat2711
10.1021/ja110927p
10.1103/RevModPhys.77.371
10.1103/PhysRevB.80.235422
10.1021/nn200832y
10.1021/nl200464j
10.1103/PhysRevB.80.245411
10.1103/PhysRevLett.77.3865
10.1016/0039-6028(94)00731-4
ContentType Journal Article
Copyright Copyright © 2011 American Chemical Society
Copyright_xml – notice: Copyright © 2011 American Chemical Society
DBID AAYXX
CITATION
NPM
7S9
L.6
7X8
DOI 10.1021/ja2050875
DatabaseName CrossRef
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 2975
ExternalDocumentID 22082182
10_1021_ja2050875
d087006052
Genre Journal Article
GroupedDBID -
.K2
02
4.4
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
EJD
ET
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TAF
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
YQT
ZCA
~02
AAYWT
NPM
7S9
L.6
7X8
ID FETCH-LOGICAL-a413t-d180de228aac06a6a28b760612e0bab3d77b210155888a1b195e3b9744f0a4d83
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Fri Jul 11 11:28:16 EDT 2025
Tue Aug 05 09:45:53 EDT 2025
Mon Jul 21 05:25:17 EDT 2025
Tue Jul 01 02:08:15 EDT 2025
Thu Apr 24 23:03:12 EDT 2025
Thu Aug 27 13:42:50 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a413t-d180de228aac06a6a28b760612e0bab3d77b210155888a1b195e3b9744f0a4d83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 22082182
PQID 2000356639
PQPubID 24069
PageCount 6
ParticipantIDs proquest_miscellaneous_921722345
proquest_miscellaneous_2000356639
pubmed_primary_22082182
crossref_citationtrail_10_1021_ja2050875
crossref_primary_10_1021_ja2050875
acs_journals_10_1021_ja2050875
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-02-15
PublicationDateYYYYMMDD 2012-02-15
PublicationDate_xml – month: 02
  year: 2012
  text: 2012-02-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2012
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Kresse G. (ref28/cit28) 1996; 6
Saadi S. (ref20/cit20) 2010; 114
Marchini S. (ref7/cit7) 2007; 76
Preobrajenski A. B. (ref8/cit8) 2008; 78
Kwon S.-Y. (ref15/cit15) 2009; 9
van Wesep R. G. (ref22/cit22) 2011; 134
Wang B. (ref25/cit25) 2011; 11
Perdew J. P. (ref31/cit31) 1996; 77
Yuan Q. (ref38/cit38) 2011; 133
Dimiev A. (ref2/cit2) 2011; 331
Cui Y. (ref26/cit26) 2011; 47
Land T. A. (ref14/cit14) 1992; 264
Yu Q. (ref42/cit42) 2011; 10
Chen H. (ref35/cit35) 2010; 104
Tai T. B. (ref37/cit37) 2009; 114
Liu Z. (ref3/cit3) 2011; 11
Starodub E. (ref6/cit6) 2009; 80
Gao L. (ref16/cit16) 2010; 10
Wintterlin J. (ref5/cit5) 2009; 603
Gao J. (ref19/cit19) 2011; 133
Meyer J. C. (ref40/cit40) 2011; 10
Cockayne E. (ref39/cit39) 2011; 83
Yakobson B. I. (ref41/cit41) 2011; 5
Amara H. (ref18/cit18) 2006; 73
Tersoff J. (ref33/cit33) 1983; 50
Mills G. (ref32/cit32) 1995; 324
Cheng D. (ref23/cit23) 2011; 115
Šiber A. (ref36/cit36) 2004; 70
Wu W. (ref1/cit1) 2011; 23
Sutter P. (ref13/cit13) 2009; 80
Zhang Y. (ref11/cit11) 2010; 1
Li X. (ref17/cit17) 2009; 324
Ci L. (ref4/cit4) 2010; 9
Kresse G. (ref29/cit29) 1996; 54
Gao J. (ref24/cit24) 2011; 115
Lu J. (ref27/cit27) 2011; 6
Baletto F. (ref34/cit34) 2005; 77
Lee Y. (ref12/cit12) 2010; 10
Wu P. (ref21/cit21) 2010; 133
Blöchl P. E. (ref30/cit30) 1994; 50
Lacovig P. (ref9/cit9) 2009; 103
Coraux J. (ref10/cit10) 2009; 11
References_xml – volume: 10
  start-page: 209
  year: 2011
  ident: ref40/cit40
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2941
– volume: 603
  start-page: 1841
  year: 2009
  ident: ref5/cit5
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2008.08.037
– volume: 10
  start-page: 3512
  year: 2010
  ident: ref16/cit16
  publication-title: Nano Lett.
  doi: 10.1021/nl1016706
– volume: 78
  start-page: 073401
  year: 2008
  ident: ref8/cit8
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.78.073401
– volume: 73
  start-page: 113404
  year: 2006
  ident: ref18/cit18
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.73.113404
– volume: 6
  start-page: 247
  year: 2011
  ident: ref27/cit27
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2011.30
– volume: 1
  start-page: 3101
  year: 2010
  ident: ref11/cit11
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz1011466
– volume: 50
  start-page: 1998
  year: 1983
  ident: ref33/cit33
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.50.1998
– volume: 115
  start-page: 10537
  year: 2011
  ident: ref23/cit23
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp2028092
– volume: 50
  start-page: 17953
  year: 1994
  ident: ref30/cit30
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 23
  start-page: 4898
  year: 2011
  ident: ref1/cit1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201102456
– volume: 103
  start-page: 166101
  year: 2009
  ident: ref9/cit9
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.166101
– volume: 104
  start-page: 186101
  year: 2010
  ident: ref35/cit35
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.186101
– volume: 114
  start-page: 11221
  year: 2010
  ident: ref20/cit20
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp1033596
– volume: 9
  start-page: 3985
  year: 2009
  ident: ref15/cit15
  publication-title: Nano Lett.
  doi: 10.1021/nl902140j
– volume: 115
  start-page: 17695
  year: 2011
  ident: ref24/cit24
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp2051454
– volume: 70
  start-page: 075407
  year: 2004
  ident: ref36/cit36
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.70.075407
– volume: 10
  start-page: 443
  year: 2011
  ident: ref42/cit42
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3010
– volume: 264
  start-page: 261
  year: 1992
  ident: ref14/cit14
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(92)90183-7
– volume: 114
  start-page: 994
  year: 2009
  ident: ref37/cit37
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp9085848
– volume: 11
  start-page: 424
  year: 2011
  ident: ref25/cit25
  publication-title: Nano Lett.
  doi: 10.1021/nl103053t
– volume: 54
  start-page: 11169
  year: 1996
  ident: ref29/cit29
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 134
  start-page: 171105
  year: 2011
  ident: ref22/cit22
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3587239
– volume: 6
  start-page: 15
  year: 1996
  ident: ref28/cit28
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 133
  start-page: 071101
  year: 2010
  ident: ref21/cit21
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3473045
– volume: 47
  start-page: 1470
  year: 2011
  ident: ref26/cit26
  publication-title: Chem. Commun.
  doi: 10.1039/C0CC03617J
– volume: 331
  start-page: 1168
  year: 2011
  ident: ref2/cit2
  publication-title: Science
  doi: 10.1126/science.1199183
– volume: 76
  start-page: 075429
  year: 2007
  ident: ref7/cit7
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.76.075429
– volume: 10
  start-page: 490
  year: 2010
  ident: ref12/cit12
  publication-title: Nano Lett.
  doi: 10.1021/nl903272n
– volume: 11
  start-page: 023006
  year: 2009
  ident: ref10/cit10
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/11/2/023006
– volume: 324
  start-page: 1312
  year: 2009
  ident: ref17/cit17
  publication-title: Science
  doi: 10.1126/science.1171245
– volume: 133
  start-page: 16072
  year: 2011
  ident: ref38/cit38
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2037854
– volume: 83
  start-page: 195425
  year: 2011
  ident: ref39/cit39
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.195425
– volume: 9
  start-page: 430
  year: 2010
  ident: ref4/cit4
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2711
– volume: 133
  start-page: 5009
  year: 2011
  ident: ref19/cit19
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja110927p
– volume: 77
  start-page: 371
  year: 2005
  ident: ref34/cit34
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.77.371
– volume: 80
  start-page: 235422
  year: 2009
  ident: ref6/cit6
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.80.235422
– volume: 5
  start-page: 1569
  year: 2011
  ident: ref41/cit41
  publication-title: ACS Nano
  doi: 10.1021/nn200832y
– volume: 11
  start-page: 2032
  year: 2011
  ident: ref3/cit3
  publication-title: Nano Lett.
  doi: 10.1021/nl200464j
– volume: 80
  start-page: 245411
  year: 2009
  ident: ref13/cit13
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.80.245411
– volume: 77
  start-page: 3865
  year: 1996
  ident: ref31/cit31
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 324
  start-page: 305
  year: 1995
  ident: ref32/cit32
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(94)00731-4
SSID ssj0004281
Score 2.4381692
Snippet Ground-state structures of supported C clusters, C N (N = 16, ..., 26), on four selected transition metal surfaces [Rh(111), Ru(0001), Ni(111), and Cu(111)]...
Ground-state structures of supported C clusters, C(N) (N = 16, ..., 26), on four selected transition metal surfaces [Rh(111), Ru(0001), Ni(111), and Cu(111)]...
Ground-state structures of supported C clusters, CN (N = 16, ..., 26), on four selected transition metal surfaces [Rh(111), Ru(0001), Ni(111), and Cu(111)] are...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2970
SubjectTerms copper
dimerization
geometry
graphene
nickel
scanning tunneling microscopy
vapors
Title Magic Carbon Clusters in the Chemical Vapor Deposition Growth of Graphene
URI http://dx.doi.org/10.1021/ja2050875
https://www.ncbi.nlm.nih.gov/pubmed/22082182
https://www.proquest.com/docview/2000356639
https://www.proquest.com/docview/921722345
Volume 134
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwEB5ROLQXKH2xlCL3ceglyLHjR46r0OUhLRdKtbfVOHEEYpWtNtkLv57x7poWlS23HCZOYk8836cZfwPwTUnPayzLhCPHJDO8SmyqfeKVo70PsxwXOtvDC316lZ2P1GgDvq7J4IugDyS4CrrrL2BLaGsCw-oXl38OPwqbRoxrrJZRPujvW0PoKdvHoWcNnlzElcEOHMfTOctyktujeeeOyrt_xRr_98qvYXuFK1l_6Qi7sOGbN_CyiO3c3sLZEGmTYwXO3LRhxWQeFBJadtMwgoAs6gawX0iAnB37WMzFToind9dsWtMVhoIw_w6uBj9-FqfJqo9CghSiuqRKLa-8EBax5Bo1CuuMDtjGc4dOVsY4Yn6ELIgOY-rSXHnpiGhkNa1WZeV72Gymjd8DplSVC2Nrp4JsvpCuTpEYlzXOao2p6cEhTfR49R-040WKWxDFiDPSg-9xDcblSoU8NMOYPGX65cH091J64ymjz3EhxzShIduBjZ_O29Bfk0sCqzLvAVtjk4f2XEJmNMyHpRM8PEkIAkdEvvaf-6KP8IpAlAiV3Kk6gM1uNvefCKh07nDhqPeEGNzl
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVYDnBhX8pqEAcuQY4dJ86xCksLLRcWcYvGiSMQVYpIeuHrGacJBQSCWw4Tx_E272nGbwg5ksKwDJLEYcDA8QKWOsr1jWOkxrMPvBAqne3-td-58y4f5EMtk2PvwmAnCmypqIL4E3UBKxPEmbTy69NkFkEIt0SrHd1M7kBy5TZQN1C-aFSEPr9qPVBSfPVAv8DKyr2cL47rFFUdq7JKnk9GpT5J3r5pNv6v50tkoUaZtD1eFstkyuQrZC5qirutkm4f8MijEbzqYU6jwcjqJRT0KacICGmjIkDvAeE5PTVNahe9QNZePtJhhk9g08PMGrk7P7uNOk5dVcEBdFilk7qKpYZzBZAwH3zgSge-RTqGadAiDQKNPBBxBpJjcLUbSiM00g4vw7lLlVgnM_kwN5uESpmGPFCZllZEnwuduYD8SwVa-T64QYvs4YDE9a4o4irgzZFwNCPSIsfNVMRJrUluS2MMfjI9_DB9GQtx_GR00MxnjANqYx-Qm-GosNU2mUDoKsIWob_YhLZYFxceNrMxXgsfX-IcoRJSsa2__mifzHVu-724172-2ibzCK-4zfF25Q6ZKV9HZhchTKn3qrX7DgG15UY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7xkAoXKG2BBUpN1UMvQY4dJ84RBbZLeVUCKm7ROHEEAmURyV749YyzyfIQq_aWw8Rx_Jrv04y_AfihpOUFZpnHkaMXRDz3tB9azypDZx8GMTY62yen4eAy-H2lrlqi6O7CUCcqaqlqgvhuV9_nRasw4KSCBFdOgn0W5l24zpGtveT8-R6k0H4HdyMdyk5J6OWrzgtl1WsvNAVaNi6mvwxnk841mSW3u6Pa7GaPb3Qb_7_3H2GpRZtsb7w8VmDGlp9gIemKvH2GwxOko48l-GCGJUvuRk43oWI3JSNgyDo1AfYXCaazfduleLFfxN7razYs6Aldmpj9Apf9g4tk4LXVFTwkx1V7ua95boXQiBkPMUShTRQ6xGO5QSPzKDLEBwlvEElG3_ixstIQ_QgKmsNcy1WYK4elXQemVB6LSBdGOTF9IU3hI_EwHRkdhuhHPdimQUnb3VGlTeBbEPHoRqQHP7vpSLNWm9yVyLh7z_T7xPR-LMjxntFON6cpDaiLgWBph6PKVd3kkiCsjHvAptjErmiXkAE1szZeD5MvCUGQiSjZxr_-6Bt8-LPfT48PT482YZFQlnCp3r7agrn6YWS_EpKpzXazfJ8AuADnyQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magic+Carbon+Clusters+in+the+Chemical+Vapor+Deposition+Growth+of+Graphene&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Yuan%2C+Qinghong&rft.au=Gao%2C+Junfeng&rft.au=Shu%2C+Haibo&rft.au=Zhao%2C+Jijun&rft.date=2012-02-15&rft.pub=American+Chemical+Society&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=134&rft.issue=6&rft.spage=2970&rft.epage=2975&rft_id=info:doi/10.1021%2Fja2050875&rft.externalDocID=d087006052
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon