High-Performance Germanium Nanowire-Based Lithium-Ion Battery Anodes Extending over 1000 Cycles Through in Situ Formation of a Continuous Porous Network

Here we report the formation of high-performance and high-capacity lithium-ion battery anodes from high-density germanium nanowire arrays grown directly from the current collector. The anodes retain capacities of ∼900 mAh/g after 1100 cycles with excellent rate performance characteristics, even at v...

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 14; no. 2; pp. 716 - 723
Main Authors Kennedy, Tadhg, Mullane, Emma, Geaney, Hugh, Osiak, Michal, O’Dwyer, Colm, Ryan, Kevin M
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 12.02.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Here we report the formation of high-performance and high-capacity lithium-ion battery anodes from high-density germanium nanowire arrays grown directly from the current collector. The anodes retain capacities of ∼900 mAh/g after 1100 cycles with excellent rate performance characteristics, even at very high discharge rates of 20–100C. We show by an ex situ high-resolution transmission electron microscopy and high-resolution scanning electron microscopy study that this performance can be attributed to the complete restructuring of the nanowires that occurs within the first 100 cycles to form a continuous porous network that is mechanically robust. Once formed, this restructured anode retains a remarkably stable capacity with a drop of only 0.01% per cycle thereafter. As this approach encompasses a low energy processing method where all the material is electrochemically active and binder free, the extended cycle life and rate performance characteristics demonstrated makes these anodes highly attractive for the most demanding lithium-ion applications such as long-range battery electric vehicles.
AbstractList Here we report the formation of high-performance and high-capacity lithium-ion battery anodes from high-density germanium nanowire arrays grown directly from the current collector. The anodes retain capacities of 900 mAh/g after 1100 cycles with excellent rate performance characteristics, even at very high discharge rates of 20-100C. We show by an ex situ high-resolution transmission electron microscopy and high-resolution scanning electron microscopy study that this performance can be attributed to the complete restructuring of the nanowires that occurs within the first 100 cycles to form a continuous porous network that is mechanically robust. Once formed, this restructured anode retains a remarkably stable capacity with a drop of only 0.01% per cycle thereafter. As this approach encompasses a low energy processing method where all the material is electrochemically active and binder free, the extended cycle life and rate performance characteristics demonstrated makes these anodes highly attractive for the most demanding lithium-ion applications such as long-range battery electric vehicles.
Here we report the formation of high-performance and high-capacity lithium-ion battery anodes from high-density germanium nanowire arrays grown directly from the current collector. The anodes retain capacities of ∼ 900 mAh/g after 1100 cycles with excellent rate performance characteristics, even at very high discharge rates of 20-100C. We show by an ex situ high-resolution transmission electron microscopy and high-resolution scanning electron microscopy study that this performance can be attributed to the complete restructuring of the nanowires that occurs within the first 100 cycles to form a continuous porous network that is mechanically robust. Once formed, this restructured anode retains a remarkably stable capacity with a drop of only 0.01% per cycle thereafter. As this approach encompasses a low energy processing method where all the material is electrochemically active and binder free, the extended cycle life and rate performance characteristics demonstrated makes these anodes highly attractive for the most demanding lithium-ion applications such as long-range battery electric vehicles.
Here we report the formation of high-performance and high-capacity lithium-ion battery anodes from high-density germanium nanowire arrays grown directly from the current collector. The anodes retain capacities of ∼900 mAh/g after 1100 cycles with excellent rate performance characteristics, even at very high discharge rates of 20–100C. We show by an ex situ high-resolution transmission electron microscopy and high-resolution scanning electron microscopy study that this performance can be attributed to the complete restructuring of the nanowires that occurs within the first 100 cycles to form a continuous porous network that is mechanically robust. Once formed, this restructured anode retains a remarkably stable capacity with a drop of only 0.01% per cycle thereafter. As this approach encompasses a low energy processing method where all the material is electrochemically active and binder free, the extended cycle life and rate performance characteristics demonstrated makes these anodes highly attractive for the most demanding lithium-ion applications such as long-range battery electric vehicles.
Author Kennedy, Tadhg
Osiak, Michal
Ryan, Kevin M
Mullane, Emma
O’Dwyer, Colm
Geaney, Hugh
AuthorAffiliation University of Limerick
Department of Chemistry
Lee Maltings
Materials and Surface Science Institute and the Department of Chemical and Environmental Sciences
University College Cork
Tyndall National Institute
AuthorAffiliation_xml – name: University College Cork
– name: Department of Chemistry
– name: Lee Maltings
– name: Tyndall National Institute
– name: Materials and Surface Science Institute and the Department of Chemical and Environmental Sciences
– name: University of Limerick
Author_xml – sequence: 1
  givenname: Tadhg
  surname: Kennedy
  fullname: Kennedy, Tadhg
– sequence: 2
  givenname: Emma
  surname: Mullane
  fullname: Mullane, Emma
– sequence: 3
  givenname: Hugh
  surname: Geaney
  fullname: Geaney, Hugh
– sequence: 4
  givenname: Michal
  surname: Osiak
  fullname: Osiak, Michal
– sequence: 5
  givenname: Colm
  surname: O’Dwyer
  fullname: O’Dwyer, Colm
– sequence: 6
  givenname: Kevin M
  surname: Ryan
  fullname: Ryan, Kevin M
  email: Kevin.M.Ryan@ul.ie
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28302959$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24417719$$D View this record in MEDLINE/PubMed
BookMark eNqFkc2OFCEUhYkZ4_zowhcwbEx0UQoFVQXLmc78JZ1xEsd1hYZLN2MVjEA59pv4uFKZtnVh4urewMc53HuO0YEPHhB6TckHSmr60Q-cMNnJ9Awd0YaRqpWyPtj3gh-i45TuCSGSNeQFOqw5p11H5RH6eeXWm-oWog1xVF4DvoS5cdOIb5QPjy5CdaYSGLx0eVOOq-vg8ZnKGeIWn_pgIOHzHxm8cX6Nw3eImBYnvNjqoVzdbWKY1hvsPP7s8oQvZp_sikawWOFF8Nn5KUwJ34Y4lxvIjyF-fYmeWzUkeLWrJ-jLxfnd4qpafrq8XpwuK8Upy1XXcmtM2xhQYEFLTawQjFAhRC0VMLXSwjR2ZVuqbM0YaztTG941xKhGWcFO0Lsn3YcYvk2Qcj-6pGEYlIfynZ52DeOivCT_R7mUtKGSzOj7J1THkFIE2z9EN6q47Snp58z6fWaFfbOTnVYjmD35O6QCvN0BKmk12FhycukPV-atZfMXp3Tq78MUfVncPwx_AXm-reY
CitedBy_id crossref_primary_10_1063_1_4967792
crossref_primary_10_1039_C7NR00264E
crossref_primary_10_1039_C8CC03075H
crossref_primary_10_1021_acs_jpcc_5b05857
crossref_primary_10_1039_C6RA14819K
crossref_primary_10_1039_D0TA07484E
crossref_primary_10_3390_applnano4020010
crossref_primary_10_1134_S1027451023070029
crossref_primary_10_1039_C5TA01253H
crossref_primary_10_1039_C6RA14289C
crossref_primary_10_1039_D3SE00630A
crossref_primary_10_1039_C6RA20171G
crossref_primary_10_1063_1_4994011
crossref_primary_10_1007_s12598_022_01994_3
crossref_primary_10_1021_acs_jpcc_8b07745
crossref_primary_10_1002_ppsc_201400153
crossref_primary_10_1016_j_ceramint_2015_04_085
crossref_primary_10_1016_j_mattod_2021_02_008
crossref_primary_10_1021_acs_nanolett_8b01988
crossref_primary_10_1021_acs_jpcc_6b10174
crossref_primary_10_1038_srep17779
crossref_primary_10_1039_C5TA08806B
crossref_primary_10_1038_srep42734
crossref_primary_10_1016_j_jallcom_2019_152281
crossref_primary_10_1016_j_jpowsour_2022_231943
crossref_primary_10_1016_j_electacta_2015_07_093
crossref_primary_10_1039_c4cp01309c
crossref_primary_10_1039_C4RA11753K
crossref_primary_10_1021_acs_inorgchem_8b00334
crossref_primary_10_1021_acsami_7b19391
crossref_primary_10_1039_C6TA08455A
crossref_primary_10_1016_j_jallcom_2015_09_095
crossref_primary_10_1039_C4TA03805C
crossref_primary_10_3390_ma14102609
crossref_primary_10_1002_smll_202102333
crossref_primary_10_1016_j_electacta_2018_01_198
crossref_primary_10_1016_j_electacta_2016_01_197
crossref_primary_10_1007_s10008_015_3035_0
crossref_primary_10_1016_j_ensm_2020_05_010
crossref_primary_10_1021_acsami_3c02197
crossref_primary_10_1039_C9TA09750C
crossref_primary_10_1039_C8CE00221E
crossref_primary_10_1007_s11837_017_2411_x
crossref_primary_10_1016_j_electacta_2015_11_064
crossref_primary_10_1039_C5NR07783D
crossref_primary_10_4191_kcers_2019_56_1_07
crossref_primary_10_1021_acsnano_6b03954
crossref_primary_10_1002_adma_201503978
crossref_primary_10_1088_1757_899X_840_1_012004
crossref_primary_10_1039_C5TA04175A
crossref_primary_10_1016_j_jallcom_2015_09_189
crossref_primary_10_1021_acsami_5b03398
crossref_primary_10_1021_ja5116259
crossref_primary_10_1149_2_0291913jes
crossref_primary_10_1039_C8DT00355F
crossref_primary_10_1007_s10854_018_9542_x
crossref_primary_10_1016_j_jpowsour_2015_06_155
crossref_primary_10_1016_j_jpowsour_2015_06_031
crossref_primary_10_1016_j_ceramint_2016_10_058
crossref_primary_10_1002_aenm_201500599
crossref_primary_10_1016_j_electacta_2022_139832
crossref_primary_10_1016_j_mtchem_2020_100293
crossref_primary_10_1039_C4RA10931G
crossref_primary_10_35848_1882_0786_ad2785
crossref_primary_10_1088_1361_6528_aa57b2
crossref_primary_10_1039_C9CC05823K
crossref_primary_10_1002_admi_201600798
crossref_primary_10_1016_j_electacta_2017_09_105
crossref_primary_10_1002_smll_201403533
crossref_primary_10_1039_C9QI01701A
crossref_primary_10_1016_j_cej_2022_140329
crossref_primary_10_1002_adfm_202200796
crossref_primary_10_1002_ange_201509651
crossref_primary_10_1016_j_mtcomm_2022_103151
crossref_primary_10_1016_j_electacta_2020_136655
crossref_primary_10_1002_smll_202005443
crossref_primary_10_1039_C7TA04028H
crossref_primary_10_1039_C6TA01069E
crossref_primary_10_1088_1361_6463_abc3eb
crossref_primary_10_1016_j_jallcom_2019_06_074
crossref_primary_10_1039_D0DT01706J
crossref_primary_10_1021_acsaem_0c02928
crossref_primary_10_1039_C5RA19548A
crossref_primary_10_1088_1361_6528_aa72c7
crossref_primary_10_1016_j_matlet_2016_03_066
crossref_primary_10_1021_acsnano_8b09027
crossref_primary_10_1039_C4CP05552G
crossref_primary_10_1088_1361_6528_aab3f7
crossref_primary_10_1021_acs_nanolett_0c01774
crossref_primary_10_1039_C5TA04456A
crossref_primary_10_1039_C8NR05296D
crossref_primary_10_1039_c4ta00534a
crossref_primary_10_1021_acs_cgd_9b00210
crossref_primary_10_1021_acs_chemrev_9b00326
crossref_primary_10_1088_1361_6528_aaaad4
crossref_primary_10_1039_C5TA09891B
crossref_primary_10_1002_anie_201509651
crossref_primary_10_1016_j_cplett_2021_139200
crossref_primary_10_1016_j_ceramint_2017_01_076
crossref_primary_10_1002_smll_201700920
crossref_primary_10_1021_acs_nanolett_9b03664
crossref_primary_10_1016_j_cplett_2014_11_018
crossref_primary_10_1021_acsami_3c07569
crossref_primary_10_1016_j_mser_2017_02_001
crossref_primary_10_1039_D1TA00998B
crossref_primary_10_1021_acsnano_5b02528
crossref_primary_10_1039_C5RA19208K
crossref_primary_10_1134_S1023193521110057
crossref_primary_10_3390_batteries9090445
crossref_primary_10_1016_j_nanoen_2021_106860
crossref_primary_10_1039_D3CC02751A
crossref_primary_10_3390_ijms24076860
crossref_primary_10_1021_acsaem_9b00667
crossref_primary_10_1088_1742_6596_660_1_012075
crossref_primary_10_1039_C8DT01060A
crossref_primary_10_1039_C7NJ03573J
crossref_primary_10_1021_acsami_7b00582
crossref_primary_10_1039_C6TA00338A
crossref_primary_10_1039_C5RA17432E
crossref_primary_10_1002_aenm_201602291
crossref_primary_10_1016_j_ensm_2022_05_021
crossref_primary_10_1021_acs_chemmater_6b00200
crossref_primary_10_1039_C9RA06023E
crossref_primary_10_1063_1_4935060
crossref_primary_10_1039_D3NA00648D
crossref_primary_10_1021_acs_chemmater_9b04471
crossref_primary_10_1021_acsaem_1c03404
crossref_primary_10_1063_5_0067237
crossref_primary_10_1016_j_cap_2019_03_014
crossref_primary_10_1016_j_nanoen_2020_104811
crossref_primary_10_1149_2_0021503jes
crossref_primary_10_1002_ppsc_201900248
crossref_primary_10_1039_C4RA01512F
crossref_primary_10_1002_aenm_201803324
crossref_primary_10_1039_C9NR08783D
crossref_primary_10_1016_j_carbon_2018_05_025
crossref_primary_10_1039_C4TA04350B
crossref_primary_10_1016_j_ensm_2016_10_005
crossref_primary_10_1039_C6RA19430C
crossref_primary_10_1021_acsnano_9b04495
crossref_primary_10_1039_C6NR06307A
crossref_primary_10_1039_D1TA03741B
crossref_primary_10_1016_j_electacta_2022_140462
crossref_primary_10_1149_1945_7111_ab9eec
crossref_primary_10_1021_acsnano_8b09034
crossref_primary_10_1039_C5TA00701A
crossref_primary_10_1002_admi_202201170
crossref_primary_10_1039_C6NR00937A
crossref_primary_10_1002_smll_201602545
crossref_primary_10_1021_acsnano_5b00817
crossref_primary_10_1039_C5TA02873F
crossref_primary_10_1021_acs_nanolett_5b02483
crossref_primary_10_1039_C4CP04450A
crossref_primary_10_1002_aenm_202103689
crossref_primary_10_1002_asia_201600005
crossref_primary_10_1016_j_ijmecsci_2018_05_040
crossref_primary_10_1021_nn506760p
crossref_primary_10_1002_smll_202005248
crossref_primary_10_1016_j_jallcom_2016_08_265
crossref_primary_10_1002_smll_202006262
crossref_primary_10_1021_acs_nanolett_6b05081
crossref_primary_10_1021_acsami_9b03931
crossref_primary_10_1021_acsami_1c19952
crossref_primary_10_1039_C5NR04791A
crossref_primary_10_1021_acsami_7b12228
crossref_primary_10_1002_adfm_202000373
crossref_primary_10_1002_smll_201601403
crossref_primary_10_1021_acs_chemmater_5b00218
crossref_primary_10_1039_C8CP05408H
crossref_primary_10_1063_1_4990602
crossref_primary_10_1002_pssa_201900963
crossref_primary_10_1016_j_scib_2021_10_007
crossref_primary_10_1039_C5TC01389E
crossref_primary_10_1021_nl502812x
crossref_primary_10_1016_j_jpowsour_2020_228247
crossref_primary_10_1063_1_4973841
crossref_primary_10_1021_acsnano_7b02589
crossref_primary_10_1039_C5TA06862B
crossref_primary_10_1039_C8CS00291F
crossref_primary_10_4236_jpee_2015_33002
crossref_primary_10_1016_j_compositesb_2017_11_007
crossref_primary_10_1016_j_electacta_2019_03_002
crossref_primary_10_1021_acsnano_7b04523
crossref_primary_10_1002_celc_201402404
crossref_primary_10_1134_S1023193522100081
crossref_primary_10_1021_acsmaterialslett_0c00280
crossref_primary_10_1016_j_jechem_2016_11_017
crossref_primary_10_1039_C9CC03579F
crossref_primary_10_1002_adma_202105917
crossref_primary_10_1016_j_jpowsour_2017_05_093
crossref_primary_10_1088_2053_1591_ab5e47
crossref_primary_10_1016_j_electacta_2017_04_036
crossref_primary_10_1039_C8TA12094C
crossref_primary_10_1039_C8TA04626C
crossref_primary_10_1021_acsnano_6b06828
crossref_primary_10_20517_microstructures_2023_89
crossref_primary_10_1088_1361_6528_ab6678
crossref_primary_10_1021_acsaem_0c01977
crossref_primary_10_1039_C4RA08927H
crossref_primary_10_1039_C5TA01978H
crossref_primary_10_1039_D4TA01072H
crossref_primary_10_1021_acsaem_1c02362
crossref_primary_10_1021_acs_chemmater_9b00475
crossref_primary_10_1364_AO_387936
crossref_primary_10_1002_adma_201402962
crossref_primary_10_1016_j_jpowsour_2014_06_077
crossref_primary_10_1021_acs_jpcc_8b05386
crossref_primary_10_1039_D2MA00847E
crossref_primary_10_1021_acs_chemmater_5b01527
crossref_primary_10_1039_C6RA21841E
crossref_primary_10_1016_j_electacta_2020_135952
crossref_primary_10_1016_j_electacta_2019_05_056
crossref_primary_10_1039_C5EE02183A
crossref_primary_10_1007_s10904_019_01201_4
crossref_primary_10_1021_acsenergylett_6b00615
crossref_primary_10_1021_acsami_7b10158
crossref_primary_10_1002_adma_201908445
crossref_primary_10_1016_j_jnoncrysol_2024_122929
crossref_primary_10_1002_admi_201500340
crossref_primary_10_1038_ncomms5526
crossref_primary_10_1002_jcc_26421
crossref_primary_10_1108_ILT_06_2016_0128
crossref_primary_10_1016_j_cej_2018_04_007
crossref_primary_10_1016_j_jallcom_2017_01_234
crossref_primary_10_1002_chem_202400063
crossref_primary_10_1039_C5TA05400A
crossref_primary_10_1002_smll_201701351
crossref_primary_10_1021_acsami_0c16483
crossref_primary_10_1149_2_1091902jes
crossref_primary_10_1002_adfm_202310563
crossref_primary_10_1016_j_jelechem_2021_115209
crossref_primary_10_1039_C5RA20502F
crossref_primary_10_1007_s11581_022_04528_0
crossref_primary_10_1039_C7TA03509H
crossref_primary_10_1021_acs_jpcc_5b00128
crossref_primary_10_1063_1_4979210
crossref_primary_10_1016_j_electacta_2017_02_115
crossref_primary_10_1021_acsenergylett_4c00262
crossref_primary_10_1021_am5045168
crossref_primary_10_1021_acs_chemmater_7b00714
crossref_primary_10_1021_acs_inorgchem_8b02270
crossref_primary_10_1016_j_electacta_2020_135932
crossref_primary_10_1039_D3NH00501A
crossref_primary_10_1016_j_surfin_2017_06_010
crossref_primary_10_1039_C7TA03334F
crossref_primary_10_1016_j_jpowsour_2016_12_091
crossref_primary_10_1007_s41061_018_0186_3
crossref_primary_10_1039_C5CC00080G
crossref_primary_10_3390_polym14214491
crossref_primary_10_1063_5_0066744
crossref_primary_10_1039_C5TA00319A
crossref_primary_10_1039_D1TA07369A
crossref_primary_10_1039_C7TA07472G
crossref_primary_10_1016_j_electacta_2018_09_075
crossref_primary_10_1038_srep42263
crossref_primary_10_1039_D1DT03316F
crossref_primary_10_1021_acs_nanolett_5b03950
crossref_primary_10_1021_nn503784d
crossref_primary_10_1021_acsnano_7b01705
crossref_primary_10_1016_j_carbon_2015_08_069
crossref_primary_10_1016_j_est_2024_110517
crossref_primary_10_1039_C5CS00708A
crossref_primary_10_1002_adma_201704244
crossref_primary_10_1016_j_apsusc_2019_144852
crossref_primary_10_1021_acs_chemmater_9b02696
crossref_primary_10_1039_C7TC01992K
crossref_primary_10_1021_acs_jpcc_0c06395
crossref_primary_10_1186_s11671_017_2382_4
crossref_primary_10_1002_smll_202207902
crossref_primary_10_1007_s11581_020_03625_2
crossref_primary_10_1021_acsnano_7b07248
crossref_primary_10_1016_j_mtnano_2023_100321
crossref_primary_10_1021_acsaem_9b00380
crossref_primary_10_1137_23M1580954
crossref_primary_10_1007_s41918_020_00070_7
crossref_primary_10_1039_D2GC02724K
crossref_primary_10_1007_s00706_018_2191_1
crossref_primary_10_1002_adma_201800561
crossref_primary_10_1002_smtd_202000218
crossref_primary_10_1016_j_nanoen_2015_10_031
crossref_primary_10_1557_jmr_2016_508
crossref_primary_10_1039_C6RA12671E
crossref_primary_10_1557_adv_2016_216
crossref_primary_10_1021_jp509783h
crossref_primary_10_1016_j_mencom_2021_11_024
crossref_primary_10_1021_acssuschemeng_8b02409
crossref_primary_10_1002_adma_201602300
crossref_primary_10_1021_acsaem_0c02738
crossref_primary_10_1016_j_jallcom_2022_167622
crossref_primary_10_1021_am500782b
crossref_primary_10_1137_18M1189579
crossref_primary_10_1007_s10854_021_05683_2
crossref_primary_10_1039_C6TA07274G
crossref_primary_10_1021_acs_nanolett_5b02880
crossref_primary_10_1002_adfm_202003278
crossref_primary_10_1002_ente_202201177
crossref_primary_10_1007_s10854_020_04976_2
crossref_primary_10_1021_acsaem_8b01934
crossref_primary_10_1021_acs_nanolett_5b02522
crossref_primary_10_1002_smll_201702000
crossref_primary_10_1039_C5CC00486A
crossref_primary_10_1039_C5TA05145B
crossref_primary_10_1016_j_jpowsour_2017_02_041
crossref_primary_10_1002_adfm_202209566
Cites_doi 10.1039/B914950C
10.1149/1.3029674
10.1021/ja208232h
10.1039/C0EE00552E
10.1021/cm301968b
10.1021/cm301023j
10.1039/c1nr10471c
10.1039/c3ta12923c
10.1039/c2cc31219k
10.1021/cm400367v
10.1038/nnano.2007.411
10.1039/C2TA01286C
10.1016/j.jpowsour.2007.06.149
10.1016/j.jpowsour.2012.01.095
10.1021/nl801853x
10.1039/c3tc31123f
10.1002/aenm.201200320
10.1016/j.nantod.2012.08.004
10.1039/c2ee22358a
10.1016/j.elecom.2010.01.008
10.1038/nnano.2012.35
10.1002/adma.200800586
10.1002/aenm.201200496
10.1021/jp305371v
10.1002/ange.201103062
10.1021/nl204063u
10.1021/am3010253
10.1021/ja047435x
10.1021/nl0727157
10.1021/nl2024118
10.1002/adma.200901846
10.1039/c0cc05202g
10.1021/nn303519g
10.1038/nmat3741
10.1016/S0013-4686(01)00858-1
10.1021/jp302344b
10.1149/1.1697412
10.1021/cm202276m
10.1039/c0jm03842c
10.1149/1.1391565
10.1021/ja211266m
10.1038/35068529
ContentType Journal Article
Copyright Copyright © 2014 American Chemical Society
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2014 American Chemical Society
– notice: 2015 INIST-CNRS
DBID IQODW
NPM
AAYXX
CITATION
7X8
7SP
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
L7M
DOI 10.1021/nl403979s
DatabaseName Pascal-Francis
PubMed
CrossRef
MEDLINE - Academic
Electronics & Communications Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
Physics
EISSN 1530-6992
EndPage 723
ExternalDocumentID 10_1021_nl403979s
24417719
28302959
b600763895
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
123
4.4
55A
5VS
7~N
AABXI
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
X
---
-~X
53G
6P2
AAYOK
ABFRP
ABQRX
ADHLV
AFFNX
AHGAQ
GGK
IQODW
AAHBH
ABJNI
ACBEA
CUPRZ
NPM
AAYXX
CITATION
7X8
7SP
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
L7M
ID FETCH-LOGICAL-a413t-764fdd65deaefec9c0f8830188829ae3abc8d5fbf61af233367d2d4750da5af83
IEDL.DBID ACS
ISSN 1530-6984
IngestDate Fri Jun 28 11:02:51 EDT 2024
Fri Aug 16 21:38:47 EDT 2024
Fri Aug 23 00:53:11 EDT 2024
Sat Sep 28 07:58:06 EDT 2024
Thu Nov 24 18:33:20 EST 2022
Thu Aug 27 13:42:16 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords porous
tin seed
rate capability
lithium-ion battery
Germanium nanowires
network
Lithium battery
Scanning electron microscopy
Transmission electron microscopy
High density
Porous materials
Germanium
Nanowires
Arrays
Nanostructured materials
Nanomaterial synthesis
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a413t-764fdd65deaefec9c0f8830188829ae3abc8d5fbf61af233367d2d4750da5af83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://cora.ucc.ie/bitstreams/668f20a2-a8b2-4472-9c56-da71cd6e5f93/download
PMID 24417719
PQID 1499151900
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_1753482330
proquest_miscellaneous_1499151900
crossref_primary_10_1021_nl403979s
pubmed_primary_24417719
pascalfrancis_primary_28302959
acs_journals_10_1021_nl403979s
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2014-02-12
PublicationDateYYYYMMDD 2014-02-12
PublicationDate_xml – month: 02
  year: 2014
  text: 2014-02-12
  day: 12
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2014
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Ko Y. D. (ref13/cit13) 2011; 3
Chockla A. M. (ref15/cit15) 2012; 116
Seo M. H. (ref22/cit22) 2011; 4
Ulldemolins M. (ref39/cit39) 2012; 206
Chockla A. M. (ref2/cit2) 2011; 133
Choi N. S. (ref8/cit8) 2011; 21
Chan C. K. (ref1/cit1) 2007; 3
El Ouatani L. (ref40/cit40) 2009; 156
Park M.-H. (ref30/cit30) 2010; 22
Chen L. (ref42/cit42) 2007; 174
Sieradzki K. (ref36/cit36) 2001; 410
Aurbach D. (ref41/cit41) 2002; 47
Chockla A. M. (ref3/cit3) 2012; 24
Cui G. (ref20/cit20) 2008; 20
Geaney H. (ref5/cit5) 2012; 24
ref37/cit37
Graetz J. (ref10/cit10) 2004; 151
Ren J.-G. (ref24/cit24) 2013; 1
Yu Y. (ref21/cit21) 2013; 3
Chockla A. M. (ref23/cit23) 2012; 116
Wu H. (ref9/cit9) 2012; 7
Kim H. (ref6/cit6) 2008; 8
Geaney H. (ref14/cit14) 2013; 1
Liu X. H. (ref31/cit31) 2011; 11
Vu A. (ref26/cit26) 2012; 2
Wu H. (ref38/cit38) 2012; 7
Yang L. (ref28/cit28) 2010; 12
Courtney I. A. (ref34/cit34) 1999; 146
Chockla A. M. (ref4/cit4) 2012; 4
Xue D. J. (ref25/cit25) 2012; 134
Mullane E. (ref32/cit32) 2013; 25
Yuan F.-W. (ref7/cit7) 2012; 6
Mullane E. (ref17/cit17) 2012; 48
Wang D. (ref11/cit11) 2004; 126
Park M. H. (ref19/cit19) 2011; 123
Song T. (ref27/cit27) 2012; 5
Liu X. (ref29/cit29) 2013; 1
Barrett C. A. (ref33/cit33) 2011; 47
Karki K. (ref35/cit35) 2012; 12
Geaney H. (ref16/cit16) 2011; 23
Barrett C. A. (ref18/cit18) 2010; 20
Chan C. K. (ref12/cit12) 2008; 8
References_xml – volume: 20
  start-page: 135
  year: 2010
  ident: ref18/cit18
  publication-title: J. Mat. Chem.
  doi: 10.1039/B914950C
  contributor:
    fullname: Barrett C. A.
– volume: 156
  start-page: A103
  year: 2009
  ident: ref40/cit40
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3029674
  contributor:
    fullname: El Ouatani L.
– volume: 133
  start-page: 20914
  year: 2011
  ident: ref2/cit2
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja208232h
  contributor:
    fullname: Chockla A. M.
– volume: 4
  start-page: 425
  year: 2011
  ident: ref22/cit22
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C0EE00552E
  contributor:
    fullname: Seo M. H.
– volume: 24
  start-page: 3738
  year: 2012
  ident: ref3/cit3
  publication-title: Chem. Mater.
  doi: 10.1021/cm301968b
  contributor:
    fullname: Chockla A. M.
– volume: 24
  start-page: 2204
  year: 2012
  ident: ref5/cit5
  publication-title: Chem. Mater.
  doi: 10.1021/cm301023j
  contributor:
    fullname: Geaney H.
– volume: 3
  start-page: 3371
  year: 2011
  ident: ref13/cit13
  publication-title: Nanoscale
  doi: 10.1039/c1nr10471c
  contributor:
    fullname: Ko Y. D.
– volume: 1
  start-page: 15076
  year: 2013
  ident: ref29/cit29
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta12923c
  contributor:
    fullname: Liu X.
– volume: 48
  start-page: 5446
  year: 2012
  ident: ref17/cit17
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc31219k
  contributor:
    fullname: Mullane E.
– volume: 25
  start-page: 1816
  year: 2013
  ident: ref32/cit32
  publication-title: Chem. Mater.
  doi: 10.1021/cm400367v
  contributor:
    fullname: Mullane E.
– volume: 3
  start-page: 31
  year: 2007
  ident: ref1/cit1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2007.411
  contributor:
    fullname: Chan C. K.
– volume: 1
  start-page: 1821
  year: 2013
  ident: ref24/cit24
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C2TA01286C
  contributor:
    fullname: Ren J.-G.
– volume: 174
  start-page: 538
  year: 2007
  ident: ref42/cit42
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2007.06.149
  contributor:
    fullname: Chen L.
– volume: 206
  start-page: 245
  year: 2012
  ident: ref39/cit39
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.01.095
  contributor:
    fullname: Ulldemolins M.
– volume: 8
  start-page: 3688
  year: 2008
  ident: ref6/cit6
  publication-title: Nano Lett.
  doi: 10.1021/nl801853x
  contributor:
    fullname: Kim H.
– volume: 1
  start-page: 4996
  year: 2013
  ident: ref14/cit14
  publication-title: J. Mat. Chem. C
  doi: 10.1039/c3tc31123f
  contributor:
    fullname: Geaney H.
– volume: 2
  start-page: 1056
  year: 2012
  ident: ref26/cit26
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201200320
  contributor:
    fullname: Vu A.
– volume: 7
  start-page: 414
  year: 2012
  ident: ref9/cit9
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2012.08.004
  contributor:
    fullname: Wu H.
– volume: 5
  start-page: 9028
  year: 2012
  ident: ref27/cit27
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee22358a
  contributor:
    fullname: Song T.
– volume: 12
  start-page: 418
  year: 2010
  ident: ref28/cit28
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2010.01.008
  contributor:
    fullname: Yang L.
– volume: 7
  start-page: 310
  year: 2012
  ident: ref38/cit38
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.35
  contributor:
    fullname: Wu H.
– volume: 20
  start-page: 3079
  year: 2008
  ident: ref20/cit20
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200800586
  contributor:
    fullname: Cui G.
– volume: 3
  start-page: 281
  year: 2013
  ident: ref21/cit21
  publication-title: Adv. Energy Mater
  doi: 10.1002/aenm.201200496
  contributor:
    fullname: Yu Y.
– volume: 116
  start-page: 18079
  year: 2012
  ident: ref15/cit15
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp305371v
  contributor:
    fullname: Chockla A. M.
– volume: 123
  start-page: 9821
  year: 2011
  ident: ref19/cit19
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201103062
  contributor:
    fullname: Park M. H.
– volume: 12
  start-page: 1392
  year: 2012
  ident: ref35/cit35
  publication-title: Nano Lett.
  doi: 10.1021/nl204063u
  contributor:
    fullname: Karki K.
– volume: 4
  start-page: 4658
  year: 2012
  ident: ref4/cit4
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am3010253
  contributor:
    fullname: Chockla A. M.
– volume: 126
  start-page: 11602
  year: 2004
  ident: ref11/cit11
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja047435x
  contributor:
    fullname: Wang D.
– volume: 8
  start-page: 307
  year: 2008
  ident: ref12/cit12
  publication-title: Nano Lett.
  doi: 10.1021/nl0727157
  contributor:
    fullname: Chan C. K.
– volume: 11
  start-page: 3991
  year: 2011
  ident: ref31/cit31
  publication-title: Nano Lett.
  doi: 10.1021/nl2024118
  contributor:
    fullname: Liu X. H.
– volume: 22
  start-page: 415
  year: 2010
  ident: ref30/cit30
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200901846
  contributor:
    fullname: Park M.-H.
– volume: 47
  start-page: 3843
  year: 2011
  ident: ref33/cit33
  publication-title: Chem. Commun.
  doi: 10.1039/c0cc05202g
  contributor:
    fullname: Barrett C. A.
– volume: 6
  start-page: 9932
  year: 2012
  ident: ref7/cit7
  publication-title: ACS Nano
  doi: 10.1021/nn303519g
  contributor:
    fullname: Yuan F.-W.
– ident: ref37/cit37
  doi: 10.1038/nmat3741
– volume: 47
  start-page: 1423
  year: 2002
  ident: ref41/cit41
  publication-title: Electrochim. Acta
  doi: 10.1016/S0013-4686(01)00858-1
  contributor:
    fullname: Aurbach D.
– volume: 116
  start-page: 11917
  year: 2012
  ident: ref23/cit23
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp302344b
  contributor:
    fullname: Chockla A. M.
– volume: 151
  start-page: A698
  year: 2004
  ident: ref10/cit10
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1697412
  contributor:
    fullname: Graetz J.
– volume: 23
  start-page: 4838
  year: 2011
  ident: ref16/cit16
  publication-title: Chem. Mater.
  doi: 10.1021/cm202276m
  contributor:
    fullname: Geaney H.
– volume: 21
  start-page: 9825
  year: 2011
  ident: ref8/cit8
  publication-title: J. Mater. Chem.
  doi: 10.1039/c0jm03842c
  contributor:
    fullname: Choi N. S.
– volume: 146
  start-page: 59
  year: 1999
  ident: ref34/cit34
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1391565
  contributor:
    fullname: Courtney I. A.
– volume: 134
  start-page: 2512
  year: 2012
  ident: ref25/cit25
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja211266m
  contributor:
    fullname: Xue D. J.
– volume: 410
  start-page: 450
  year: 2001
  ident: ref36/cit36
  publication-title: Nature
  doi: 10.1038/35068529
  contributor:
    fullname: Sieradzki K.
SSID ssj0009350
Score 2.621377
Snippet Here we report the formation of high-performance and high-capacity lithium-ion battery anodes from high-density germanium nanowire arrays grown directly from...
SourceID proquest
crossref
pubmed
pascalfrancis
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 716
SubjectTerms Anodes
Applied sciences
Arrays
Cross-disciplinary physics: materials science; rheology
Direct energy conversion and energy accumulation
Electric vehicles
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Exact sciences and technology
Formations
Lithium-ion batteries
Materials science
Methods of nanofabrication
Nanocrystalline materials
Nanoscale materials and structures: fabrication and characterization
Nanowires
Networks
Physics
Quantum wires
Scanning electron microscopy
Title High-Performance Germanium Nanowire-Based Lithium-Ion Battery Anodes Extending over 1000 Cycles Through in Situ Formation of a Continuous Porous Network
URI http://dx.doi.org/10.1021/nl403979s
https://www.ncbi.nlm.nih.gov/pubmed/24417719
https://search.proquest.com/docview/1499151900
https://search.proquest.com/docview/1753482330
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwELYoXFpVhT5oty2r6eNqSBzndVy2bGnVIiRA4hb5KaK2DiLJgf4Sfi7jZMOCeJ0iRZNY9sx4ZuyZbwj5Kq2JEl_dE3IlKUcZopIJQROMb0UWGK07kKTfe8nuEf95HB8vkS_33OCzcMv95YG_fKqfkBWG9tBHWJPpwQJZN-rasKLmBn4EPsAHXf_Umx5V3zA9z09Fjatg-_YV9_uXnZ2ZrZJvQ7VOn17yZ7Nt5Kb6fxu88aEprJEXcz8TJr1gvCRLxr0iz66hD74mFz7Hg-4vKgfgu9-mXdn-A9x0K49iTLfRymn4VTYn-Jr-qBz0iJznMHGVNjXsdKfo-EPwyaDgD_Jheu5z7eCw7wEEpYODsmlhNhRKQmVBgAfGKl1btTXsV2f-sdfnpL8hR7Odw-kunTdqoAJtYEPThFutk1gbYaxRuQpsluHOgdE1y4WJhFSZjq20SSgsi6IoSTXTHJ0VLWJhs2idLLvKmXcEFI9TprI8MLFEX1HIVKUYFXJmhc2RxyMyRk4Wc0Wri-4OnYXF1RKPyOeBycVpD9hxF9H4BvuvKDs4tDzOR-TTIA8F6pu_RBHO4EpgqIQeNbq9QfAADcaAPMOJIs3bXpgWI_ieb2mYv39sIh_IU3TOOO2az3wky81ZazbQAWrkuFOAS6TYASQ
link.rule.ids 315,786,790,2782,27107,27955,27956,57091,57141
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHAAh3pQtsAyIq9s8nNexrLrdwnZVqVupt8hPEUGdqkkO7S_pz-3Y2e22iAKnSJFjx_bY841n_A0hX4TRcepu94RMCspQhqiIOKcp2rc8D7RSniRpf5ZOjti34-R4QZPj7sLgTzRYU-Od-Ct2gXDL_mKB80E198mDJEMt52DQ6HBFsBv7bKy4gAPXEFuyCN381Gkg2dzSQE9OeYODYfosFnfDTK9uxs_6vEX-R32Uyc_NrhWb8uI3Dsf_68lz8nSBOmG7F5MX5J62L8njG1yEr8ili_igB6t7BLDrNm1bdSeAW3DtOI3pV9R5CqZV-wNf073aQs_PeQ7btla6gR1_po4VggsNBXesD6NzF3kH8z4jEFQWDqu2g_Hy2iTUBjg4mqzKdnXXwEF95h6zPkL9NTka78xHE7pI20A5asSWZikzSqWJ0lwbLQsZmDzHfQRt7ajgOuZC5ioxwqQhN1Ecx2mmIsUQuiiecJPHb8iara1-S0CyJItkXgQ6EYgcuchkhjYiiww3BU71gAxxhMvFsmtK71GPwvJ6iAfk83Kuy9OevuNPhYa3pOC6pCdHK5JiQD4txaLE1edcKtxqHAk0nBBfIwgOgr-UQYuQ5dhRLLPey9SqBZcBLguLjX915CN5OJnvT8vp3uz7O_IIYRujPi3Ne7LWnnX6A0KjVgz9mrgC1QcJjw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9QwELagSIgKcR_LsQyIV5cczvW4LF1aKMtKbaW-RT5FVHBWTfJQfgk_l7GT3W0R11OkaGLH9oxnxp75hpDXwug4ddk9IZOCMuQhKiLOaYr-Lc8DrZQHSfo0T_eO2YeT5GRwFF0uDP5Egy01_hLfSfVSmQFhIHxjv7LA3UM1V8m1JAuZE8TJ9HADshv7iqwoxIHrjK2QhC5-6rSQbC5poZtL3uCEmL6SxZ9NTa9yZrfJ5_XP-kiT052uFTvy-y84jv8_mjvk1mB9wqRnl7vkirb3yPYFTML75IeL_KCLTT4BvHebt626b4Bbce2wjelb1H0KDqr2C76m-7WFHqfzHCa2VrqBXX-2jg2CCxEFd7wP03MXgQdHfWUgqCwcVm0Hs1X6JNQGODi4rMp2ddfAoj5zj3kfqf6AHM92j6Z7dCjfQDlqxpZmKTNKpYnSXBstCxmYPMf9BH3uqOA65kLmKjHCpCE3URzHaaYixdCEUTzhJo8fki1bW_2YgGRJFsm8CHQi0ILkIpMZ-oosMtwUuNwjMsZZLgfxa0p_sx6F5XqKR-TVar3LZQ_j8Tui8SVOWFN6kLQiKUbk5Yo1SpRCd7XCrcaZQAcK7Ww0hoPgLzToGbIcB4o0j3q-2vTgKsFlYfHkXwN5Qa4v3s3Kg_35x6fkBlpvjPrqNM_IVnvW6edoIbVi7MXiJ0o7DAk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Performance+Germanium+Nanowire-Based+Lithium-Ion+Battery+Anodes+Extending+over+1000+Cycles+Through+in+Situ+Formation+of+a+Continuous+Porous+Network&rft.jtitle=Nano+letters&rft.au=Kennedy%2C+Tadhg&rft.au=Mullane%2C+Emma&rft.au=Geaney%2C+Hugh&rft.au=Osiak%2C+Michal&rft.date=2014-02-12&rft.issn=1530-6984&rft.eissn=1530-6992&rft.volume=14&rft.issue=2&rft.spage=716&rft.epage=723-716-723&rft_id=info:doi/10.1021%2Fnl403979s&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon