Persistent influence of obliquity on ice age terminations since the Middle Pleistocene transition

Understanding more exactly how the timing of deglaciations depends on changes in insolation, or the energy received by Earth from the Sun, requires precise and independent records of both environmental change and solar energy input. Bajo et al . strengthened the weak link of that two-member chain, t...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 367; no. 6483; pp. 1235 - 1239
Main Authors Bajo, Petra, Drysdale, Russell N., Woodhead, Jon D., Hellstrom, John C., Hodell, David, Ferretti, Patrizia, Voelker, Antje H. L., Zanchetta, Giovanni, Rodrigues, Teresa, Wolff, Eric, Tyler, Jonathan, Frisia, Silvia, Spötl, Christoph, Fallick, Anthony E.
Format Journal Article
LanguageEnglish
Published United States The American Association for the Advancement of Science 13.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Understanding more exactly how the timing of deglaciations depends on changes in insolation, or the energy received by Earth from the Sun, requires precise and independent records of both environmental change and solar energy input. Bajo et al . strengthened the weak link of that two-member chain, the environmental record, by developing a precise, radiometrically dated chronology of the 11 deglaciations of the past million years derived from speleothems. This allowed them to show more clearly how the initiation and duration of glacial terminations over that period depended on solar obliquity and precession. Science , this issue p. 1235 Precisely dated speleothem records of deglaciations allow more insight into the role of insolation. Radiometric dating of glacial terminations over the past 640,000 years suggests pacing by Earth’s climatic precession, with each glacial-interglacial period spanning four or five cycles of ~20,000 years. However, the lack of firm age estimates for older Pleistocene terminations confounds attempts to test the persistence of precession forcing. We combine an Italian speleothem record anchored by a uranium-lead chronology with North Atlantic ocean data to show that the first two deglaciations of the so-called 100,000-year world are separated by two obliquity cycles, with each termination starting at the same high phase of obliquity, but at opposing phases of precession. An assessment of 11 radiometrically dated terminations spanning the past million years suggests that obliquity exerted a persistent influence on not only their initiation but also their duration.
AbstractList Radiometric dating of glacial terminations over the past 640,000 years suggests pacing by Earth's climatic precession, with each glacial-interglacial period spanning four or five cycles of ~20,000 years. However, the lack of firm age estimates for older Pleistocene terminations confounds attempts to test the persistence of precession forcing. We combine an Italian speleothem record anchored by a uranium-lead chronology with North Atlantic ocean data to show that the first two deglaciations of the so-called 100,000-year world are separated by two obliquity cycles, with each termination starting at the same high phase of obliquity, but at opposing phases of precession. An assessment of 11 radiometrically dated terminations spanning the past million years suggests that obliquity exerted a persistent influence on not only their initiation but also their duration.Radiometric dating of glacial terminations over the past 640,000 years suggests pacing by Earth's climatic precession, with each glacial-interglacial period spanning four or five cycles of ~20,000 years. However, the lack of firm age estimates for older Pleistocene terminations confounds attempts to test the persistence of precession forcing. We combine an Italian speleothem record anchored by a uranium-lead chronology with North Atlantic ocean data to show that the first two deglaciations of the so-called 100,000-year world are separated by two obliquity cycles, with each termination starting at the same high phase of obliquity, but at opposing phases of precession. An assessment of 11 radiometrically dated terminations spanning the past million years suggests that obliquity exerted a persistent influence on not only their initiation but also their duration.
Radiometric dating of glacial terminations over the past 640,000 years suggests pacing by Earth's climatic precession, with each glacial-interglacial period spanning four or five cycles of ~20,000 years. However, the lack of firm age estimates for older Pleistocene terminations confounds attempts to test the persistence of precession forcing. We combine an Italian speleothem record anchored by a uranium-lead chronology with North Atlantic ocean data to show that the first two deglaciations of the so-called 100,000-year world are separated by two obliquity cycles, with each termination starting at the same high phase of obliquity, but at opposing phases of precession. An assessment of 11 radiometrically dated terminations spanning the past million years suggests that obliquity exerted a persistent influence on not only their initiation but also their duration.
Understanding more exactly how the timing of deglaciations depends on changes in insolation, or the energy received by Earth from the Sun, requires precise and independent records of both environmental change and solar energy input. Bajo et al . strengthened the weak link of that two-member chain, the environmental record, by developing a precise, radiometrically dated chronology of the 11 deglaciations of the past million years derived from speleothems. This allowed them to show more clearly how the initiation and duration of glacial terminations over that period depended on solar obliquity and precession. Science , this issue p. 1235 Precisely dated speleothem records of deglaciations allow more insight into the role of insolation. Radiometric dating of glacial terminations over the past 640,000 years suggests pacing by Earth’s climatic precession, with each glacial-interglacial period spanning four or five cycles of ~20,000 years. However, the lack of firm age estimates for older Pleistocene terminations confounds attempts to test the persistence of precession forcing. We combine an Italian speleothem record anchored by a uranium-lead chronology with North Atlantic ocean data to show that the first two deglaciations of the so-called 100,000-year world are separated by two obliquity cycles, with each termination starting at the same high phase of obliquity, but at opposing phases of precession. An assessment of 11 radiometrically dated terminations spanning the past million years suggests that obliquity exerted a persistent influence on not only their initiation but also their duration.
An underground record of past deglaciationsUnderstanding more exactly how the timing of deglaciations depends on changes in insolation, or the energy received by Earth from the Sun, requires precise and independent records of both environmental change and solar energy input. Bajo et al. strengthened the weak link of that two-member chain, the environmental record, by developing a precise, radiometrically dated chronology of the 11 deglaciations of the past million years derived from speleothems. This allowed them to show more clearly how the initiation and duration of glacial terminations over that period depended on solar obliquity and precession.Science, this issue p. 1235Radiometric dating of glacial terminations over the past 640,000 years suggests pacing by Earth’s climatic precession, with each glacial-interglacial period spanning four or five cycles of ~20,000 years. However, the lack of firm age estimates for older Pleistocene terminations confounds attempts to test the persistence of precession forcing. We combine an Italian speleothem record anchored by a uranium-lead chronology with North Atlantic ocean data to show that the first two deglaciations of the so-called 100,000-year world are separated by two obliquity cycles, with each termination starting at the same high phase of obliquity, but at opposing phases of precession. An assessment of 11 radiometrically dated terminations spanning the past million years suggests that obliquity exerted a persistent influence on not only their initiation but also their duration.
Author Tyler, Jonathan
Voelker, Antje H. L.
Frisia, Silvia
Hellstrom, John C.
Drysdale, Russell N.
Rodrigues, Teresa
Zanchetta, Giovanni
Bajo, Petra
Woodhead, Jon D.
Wolff, Eric
Spötl, Christoph
Fallick, Anthony E.
Hodell, David
Ferretti, Patrizia
Author_xml – sequence: 1
  givenname: Petra
  orcidid: 0000-0002-0395-8113
  surname: Bajo
  fullname: Bajo, Petra
  organization: School of Geography, University of Melbourne, Carlton, Victoria 3053, Australia., Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales 2234, Australia., Croatian Geological Survey, 10000 Zagreb, Croatia
– sequence: 2
  givenname: Russell N.
  orcidid: 0000-0001-7867-031X
  surname: Drysdale
  fullname: Drysdale, Russell N.
  organization: School of Geography, University of Melbourne, Carlton, Victoria 3053, Australia., Laboratoire EDYTEM–UMR5204, Université de Savoie Mont Blanc, 73376 Le Bourget du Lac, France
– sequence: 3
  givenname: Jon D.
  orcidid: 0000-0002-7614-0136
  surname: Woodhead
  fullname: Woodhead, Jon D.
  organization: School of Earth Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
– sequence: 4
  givenname: John C.
  surname: Hellstrom
  fullname: Hellstrom, John C.
  organization: School of Earth Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
– sequence: 5
  givenname: David
  orcidid: 0000-0001-8537-1588
  surname: Hodell
  fullname: Hodell, David
  organization: Godwin Laboratory for Palaeoclimate Research, Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK
– sequence: 6
  givenname: Patrizia
  orcidid: 0000-0002-4814-3655
  surname: Ferretti
  fullname: Ferretti, Patrizia
  organization: Istituto per la Dinamica dei Processi Ambientali, Consiglio Nazionale delle Ricerche (IDPA-CNR), Venice 30172, Italy., Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca’ Foscari, Venice 30172, Italy
– sequence: 7
  givenname: Antje H. L.
  orcidid: 0000-0001-6465-6023
  surname: Voelker
  fullname: Voelker, Antje H. L.
  organization: Instituto Português do Mar e da Atmosfera (IPMA), Divisão de Geologia e Georecursos Marinhos, 1495-165 Alges, Portugal., Centre of Marine Sciences (CCMAR), University of the Algarve, 8005-139 Faro, Portugal
– sequence: 8
  givenname: Giovanni
  orcidid: 0000-0002-7080-9599
  surname: Zanchetta
  fullname: Zanchetta, Giovanni
  organization: Department of Earth Sciences, University of Pisa, Pisa 56100, Italy
– sequence: 9
  givenname: Teresa
  orcidid: 0000-0001-7811-7506
  surname: Rodrigues
  fullname: Rodrigues, Teresa
  organization: Instituto Português do Mar e da Atmosfera (IPMA), Divisão de Geologia e Georecursos Marinhos, 1495-165 Alges, Portugal., Centre of Marine Sciences (CCMAR), University of the Algarve, 8005-139 Faro, Portugal
– sequence: 10
  givenname: Eric
  orcidid: 0000-0002-5914-8531
  surname: Wolff
  fullname: Wolff, Eric
  organization: Godwin Laboratory for Palaeoclimate Research, Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK
– sequence: 11
  givenname: Jonathan
  orcidid: 0000-0001-8046-0215
  surname: Tyler
  fullname: Tyler, Jonathan
  organization: Department of Earth Sciences, University of Adelaide, North Terrace, South Australia 5005, Australia
– sequence: 12
  givenname: Silvia
  surname: Frisia
  fullname: Frisia, Silvia
  organization: School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia
– sequence: 13
  givenname: Christoph
  orcidid: 0000-0001-7167-4940
  surname: Spötl
  fullname: Spötl, Christoph
  organization: Institute of Geology, University of Innsbruck, 6020 Innsbruck, Austria
– sequence: 14
  givenname: Anthony E.
  orcidid: 0000-0002-7649-6167
  surname: Fallick
  fullname: Fallick, Anthony E.
  organization: Scottish Universities Environmental Research Centre, East Kilbride G75 0QF, Scotland, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32165584$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtrHDEQhEVwyD6Sc25BkEsu422NpHkcw-IXOMSH5DxoNC1bZlbalTSY_ffWxGsfDDk1dH9VNFUrcua8Q0K-MjhnrKw2UVt0Gs-VemKMiQ9kyaCVRVsCPyNLAF4VDdRyQVYxPgLkW8s_kQUvWSVlI5ZE3WGINiZ0iVpnxmm2o95Q34_2MNl0pN5Rm3fqHmnCsLNOJetdpNHOaHpA-ssOw4j0bsTs5DW6vA7KRTuDn8lHo8aIX05zTf5eXvzZXhe3v69utj9vCyUYT4VsZSWBiRoaxoUeqlYZaYZ-aEyruRiGkknoNTTSaBBQq15wo3qNYFgjS8XX5MeL7z74w4QxdTsbNY6jcuin2JW8rjlvBWMZ_f4OffRTcPm7maoaaOrMrsm3EzX1Oxy6fbA7FY7da3gZ2LwAOvgYA5o3hEE319Od6ulO9WSFfKfQNv2LM-dlx__qngHyy5gH
CitedBy_id crossref_primary_10_1029_2021GL094290
crossref_primary_10_1146_annurev_earth_032320_104209
crossref_primary_10_1016_j_quascirev_2025_109241
crossref_primary_10_1029_2023PA004779
crossref_primary_10_1007_s00382_025_07650_7
crossref_primary_10_3390_geosciences13120354
crossref_primary_10_1111_1755_6724_15000
crossref_primary_10_1016_j_quascirev_2021_106856
crossref_primary_10_1007_s00382_022_06544_2
crossref_primary_10_1038_s41467_021_22388_6
crossref_primary_10_1038_s41561_023_01235_x
crossref_primary_10_1016_j_gloplacha_2023_104221
crossref_primary_10_1007_s12371_021_00573_9
crossref_primary_10_3847_1538_4357_ada277
crossref_primary_10_1038_s43247_022_00509_3
crossref_primary_10_1038_s43247_023_00772_y
crossref_primary_10_3390_genes14030619
crossref_primary_10_5194_sd_33_249_2024
crossref_primary_10_1016_j_quascirev_2021_106948
crossref_primary_10_1029_2019PA003773
crossref_primary_10_1002_dep2_140
crossref_primary_10_1016_j_xinn_2022_100338
crossref_primary_10_1038_s41467_022_31619_3
crossref_primary_10_1007_s12371_023_00876_z
crossref_primary_10_1016_j_dsr_2023_104224
crossref_primary_10_1016_j_quascirev_2023_108451
crossref_primary_10_3389_fnbeh_2021_662129
crossref_primary_10_3390_geosciences11020065
crossref_primary_10_1007_s00445_025_01796_2
crossref_primary_10_1177_09596836211019120
crossref_primary_10_1038_s41467_020_18083_7
crossref_primary_10_3390_min14050454
crossref_primary_10_3390_atmos15080902
crossref_primary_10_1038_s41467_024_50207_1
crossref_primary_10_1126_science_abj7761
crossref_primary_10_5194_cp_19_607_2023
crossref_primary_10_1063_5_0079963
crossref_primary_10_1016_j_quascirev_2024_108684
crossref_primary_10_1016_j_quascirev_2021_107050
crossref_primary_10_1016_j_cageo_2023_105342
crossref_primary_10_1016_j_quaint_2021_04_027
crossref_primary_10_1029_2020PA004200
crossref_primary_10_1016_j_quageo_2021_101243
crossref_primary_10_1016_j_quascirev_2022_107633
crossref_primary_10_1016_j_quascirev_2022_107559
crossref_primary_10_1126_science_adp3491
crossref_primary_10_1016_j_quascirev_2021_106965
crossref_primary_10_1029_2022GL101875
crossref_primary_10_1186_s13578_021_00577_6
crossref_primary_10_3390_geosciences11080347
crossref_primary_10_1029_2020PA003994
crossref_primary_10_3390_atmos13091378
crossref_primary_10_1029_2024PA005050
crossref_primary_10_1038_s41467_023_37639_x
Cites_doi 10.1038/nature21364
10.1016/0016-7037(54)90003-4
10.1016/0012-821X(81)90197-7
10.1038/ngeo828
10.1073/pnas.1411762111
10.1126/science.1101706
10.1016/j.quageo.2006.08.002
10.1016/j.dsr2.2014.11.006
10.1002/rcm.1010
10.1016/j.gca.2012.02.020
10.1214/ba/1339616472
10.1029/96EO00259
10.1029/2010PA001927
10.1126/science.1170371
10.5038/1827-806X.37.3.2
10.1038/s41467-018-06683-3
10.1126/science.1203580
10.1016/S0016-7037(97)83123-7
10.1016/j.quascirev.2011.08.005
10.1002/2017GL076253
10.2204/iodp.proc.339.204.2018
10.1126/science.1249770
10.1016/j.quascirev.2014.06.016
10.1029/2004PA001071
10.1016/j.quascirev.2017.07.004
10.5194/gmd-12-3649-2019
10.1016/j.gloplacha.2015.07.002
10.1029/2011PA002209
10.1126/science.194.4270.1121
10.1016/j.quascirev.2006.07.013
10.1016/j.quaint.2015.09.042
10.1126/science.1177840
10.1016/S0016-7037(98)00256-7
10.1126/science.aat9393
10.1126/science.207.4434.943
10.1016/0277-3791(91)90033-Q
10.1016/j.gca.2019.08.001
10.1002/2015RG000482
10.1016/j.quageo.2007.01.004
10.1016/j.gloplacha.2015.08.015
10.1016/j.quascirev.2006.07.008
10.1016/j.quageo.2012.10.005
10.1126/science.1184119
10.1039/b308781f
10.1016/j.quageo.2012.06.009
10.1038/nature03401
10.1126/science.1221294
10.1016/j.epsl.2004.09.010
10.1016/j.quageo.2012.03.015
10.1130/MEM145-p449
10.1130/G23161A.1
10.1002/rcm.5037
10.1029/2005GL024658
10.1126/science.283.5404.971
10.1073/pnas.1400668111
10.1038/nature10626
10.1029/2006GC001492
10.1038/nature14499
10.1126/science.1125249
10.1016/j.quageo.2012.02.028
10.1126/science.1139994
10.1038/nature18591
10.2113/0520407
10.1038/330367a0
10.1016/S0016-7037(98)00097-0
ContentType Journal Article
Copyright Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Copyright_xml – notice: Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
– notice: Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
DBID AAYXX
CITATION
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
DOI 10.1126/science.aaw1114
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
CrossRef
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 1239
ExternalDocumentID 32165584
10_1126_science_aaw1114
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYXX
ABCQX
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AEUPB
AFBNE
AFFDN
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ASPBG
AVWKF
BKF
BLC
C45
CITATION
CS3
DB2
DU5
EBS
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPY
ISE
JCF
JLS
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QS-
RHI
RXW
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
GX1
NPM
OK1
UIG
YCJ
ZKG
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-a413t-59565014708134cd69af5fdbd8f9c34dd2150bc085fc0407ab43fabce0f1852a3
ISSN 0036-8075
1095-9203
IngestDate Thu Jul 10 18:33:59 EDT 2025
Fri Jul 25 10:46:29 EDT 2025
Thu Apr 03 06:55:50 EDT 2025
Thu Apr 24 23:07:20 EDT 2025
Tue Jul 01 01:35:10 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6483
Language English
License Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a413t-59565014708134cd69af5fdbd8f9c34dd2150bc085fc0407ab43fabce0f1852a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7867-031X
0000-0002-7080-9599
0000-0002-0395-8113
0000-0001-8537-1588
0000-0001-7167-4940
0000-0002-4814-3655
0000-0002-5914-8531
0000-0002-7649-6167
0000-0001-6465-6023
0000-0001-8046-0215
0000-0001-7811-7506
0000-0002-7614-0136
OpenAccessLink http://hdl.handle.net/10400.1/16914
PMID 32165584
PQID 2376808777
PQPubID 1256
PageCount 5
ParticipantIDs proquest_miscellaneous_2377339411
proquest_journals_2376808777
pubmed_primary_32165584
crossref_primary_10_1126_science_aaw1114
crossref_citationtrail_10_1126_science_aaw1114
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-13
PublicationDateYYYYMMDD 2020-03-13
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-13
  day: 13
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2020
Publisher The American Association for the Advancement of Science
Publisher_xml – name: The American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_64_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_62_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_68_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_66_2
e_1_3_2_60_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_58_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_56_2
e_1_3_2_50_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_65_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_63_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_67_2
e_1_3_2_61_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_2_2
References_xml – ident: e_1_3_2_10_2
  doi: 10.1038/nature21364
– ident: e_1_3_2_54_2
  doi: 10.1016/0016-7037(54)90003-4
– ident: e_1_3_2_4_2
  doi: 10.1016/0012-821X(81)90197-7
– ident: e_1_3_2_13_2
  doi: 10.1038/ngeo828
– ident: e_1_3_2_64_2
  doi: 10.1073/pnas.1411762111
– ident: e_1_3_2_29_2
  doi: 10.1126/science.1101706
– ident: e_1_3_2_22_2
  doi: 10.1016/j.quageo.2006.08.002
– ident: e_1_3_2_47_2
  doi: 10.1016/j.dsr2.2014.11.006
– ident: e_1_3_2_36_2
  doi: 10.1002/rcm.1010
– ident: e_1_3_2_42_2
  doi: 10.1016/j.gca.2012.02.020
– ident: e_1_3_2_57_2
  doi: 10.1214/ba/1339616472
– ident: e_1_3_2_56_2
  doi: 10.1029/96EO00259
– ident: e_1_3_2_50_2
  doi: 10.1029/2010PA001927
– ident: e_1_3_2_27_2
  doi: 10.1126/science.1170371
– ident: e_1_3_2_33_2
  doi: 10.5038/1827-806X.37.3.2
– ident: e_1_3_2_24_2
  doi: 10.1038/s41467-018-06683-3
– ident: e_1_3_2_67_2
  doi: 10.1126/science.1203580
– ident: e_1_3_2_49_2
  doi: 10.1016/S0016-7037(97)83123-7
– ident: e_1_3_2_63_2
  doi: 10.1016/j.quascirev.2011.08.005
– ident: e_1_3_2_55_2
  doi: 10.1002/2017GL076253
– ident: e_1_3_2_48_2
  doi: 10.2204/iodp.proc.339.204.2018
– ident: e_1_3_2_9_2
  doi: 10.1126/science.1249770
– ident: e_1_3_2_30_2
  doi: 10.1016/j.quascirev.2014.06.016
– ident: e_1_3_2_6_2
  doi: 10.1029/2004PA001071
– ident: e_1_3_2_32_2
  doi: 10.1016/j.quascirev.2017.07.004
– ident: e_1_3_2_65_2
  doi: 10.5194/gmd-12-3649-2019
– ident: e_1_3_2_31_2
  doi: 10.1016/j.gloplacha.2015.07.002
– ident: e_1_3_2_26_2
  doi: 10.1029/2011PA002209
– ident: e_1_3_2_3_2
  doi: 10.1126/science.194.4270.1121
– ident: e_1_3_2_66_2
– ident: e_1_3_2_15_2
  doi: 10.1016/j.quascirev.2006.07.013
– ident: e_1_3_2_7_2
  doi: 10.1016/j.quaint.2015.09.042
– ident: e_1_3_2_18_2
  doi: 10.1126/science.1177840
– ident: e_1_3_2_39_2
  doi: 10.1016/S0016-7037(98)00256-7
– ident: e_1_3_2_61_2
  doi: 10.1126/science.aat9393
– ident: e_1_3_2_68_2
  doi: 10.1126/science.207.4434.943
– ident: e_1_3_2_2_2
  doi: 10.1016/0277-3791(91)90033-Q
– ident: e_1_3_2_35_2
  doi: 10.1016/j.gca.2019.08.001
– ident: e_1_3_2_59_2
  doi: 10.1002/2015RG000482
– ident: e_1_3_2_45_2
  doi: 10.1016/j.quageo.2007.01.004
– ident: e_1_3_2_46_2
  doi: 10.1016/j.gloplacha.2015.08.015
– ident: e_1_3_2_5_2
  doi: 10.1016/j.quascirev.2006.07.008
– ident: e_1_3_2_21_2
  doi: 10.1016/j.quageo.2012.10.005
– ident: e_1_3_2_60_2
  doi: 10.1126/science.1184119
– ident: e_1_3_2_41_2
  doi: 10.1039/b308781f
– ident: e_1_3_2_34_2
  doi: 10.1016/j.quageo.2012.06.009
– ident: e_1_3_2_12_2
  doi: 10.1038/nature03401
– ident: e_1_3_2_8_2
  doi: 10.1126/science.1221294
– ident: e_1_3_2_20_2
  doi: 10.1016/j.epsl.2004.09.010
– ident: e_1_3_2_43_2
  doi: 10.1016/j.quageo.2012.03.015
– ident: e_1_3_2_11_2
  doi: 10.1130/MEM145-p449
– ident: e_1_3_2_53_2
  doi: 10.1130/G23161A.1
– ident: e_1_3_2_37_2
  doi: 10.1002/rcm.5037
– ident: e_1_3_2_44_2
  doi: 10.1029/2005GL024658
– ident: e_1_3_2_62_2
  doi: 10.1126/science.283.5404.971
– ident: e_1_3_2_58_2
  doi: 10.1073/pnas.1400668111
– ident: e_1_3_2_14_2
  doi: 10.1038/nature10626
– ident: e_1_3_2_38_2
  doi: 10.1029/2006GC001492
– ident: e_1_3_2_28_2
  doi: 10.1038/nature14499
– ident: e_1_3_2_17_2
  doi: 10.1126/science.1125249
– ident: e_1_3_2_23_2
  doi: 10.1016/j.quageo.2012.02.028
– ident: e_1_3_2_25_2
  doi: 10.1126/science.1139994
– ident: e_1_3_2_16_2
  doi: 10.1038/nature18591
– ident: e_1_3_2_40_2
  doi: 10.2113/0520407
– ident: e_1_3_2_52_2
  doi: 10.1038/330367a0
– ident: e_1_3_2_51_2
  doi: 10.1016/S0016-7037(98)00097-0
SSID ssj0009593
Score 2.532328
Snippet Understanding more exactly how the timing of deglaciations depends on changes in insolation, or the energy received by Earth from the Sun, requires precise and...
Radiometric dating of glacial terminations over the past 640,000 years suggests pacing by Earth's climatic precession, with each glacial-interglacial period...
An underground record of past deglaciationsUnderstanding more exactly how the timing of deglaciations depends on changes in insolation, or the energy received...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 1235
SubjectTerms Environmental changes
Glacial periods
Ice ages
Interglacial periods
Pleistocene
Precession
Radiometric dating
Solar energy
Uranium
Title Persistent influence of obliquity on ice age terminations since the Middle Pleistocene transition
URI https://www.ncbi.nlm.nih.gov/pubmed/32165584
https://www.proquest.com/docview/2376808777
https://www.proquest.com/docview/2377339411
Volume 367
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKJyReEBu3wkBG4mGoapXESZo8tivTNGkTQpu0t8h2bCgqCTSt0PiF_CzOiR3XoFUavERpLk6U8_Vc7O-cQ8hbJkSccSVGKhMQoOgwHWWcK4h5AgnWQqY8xETh84v09Co-u06ue71fHmtpsxZj-fPWvJL_kSocA7liluw_SNYNCgdgH-QLW5AwbO8kY6Svo5gqrPNvm42g91eL5eL7piVbVMMFpgR8UkNLezHMt2aBl6LTed7OUAw_LBUWGZCg-rBtRGWoXL7r2mkBcEndMo8nXMdXnBpWQUcysLd5Mw4z_qW21OCVMwrz1Y3jNn_cNA1OKV6Mncmo6_KzReMZPGvuzoDZXDbrVf214xUPj8f-TAaErUiLY752tsWRjW0yCjnAXpJRwHyNzUwHDwvNNM6Yp4Ix-dcz5_Azv91UeM0t1ZjzH6D1461V7JgAfxlLR2Fsg6coLewAhR3gHtmLIGCJ-mRvOpvPTnYWgLZlprwEru4d_vSQdoQ9rftz-Yg8tHELnRoQ7pOeqg7IfdPJ9OaA7FsxN_TIFjJ_95jwLT6pwyetNXX4pHVFAZ8UPiH18UlbfFKAEzX4pB4-6RafT8jVyfvL49ORbekx4uAtrUcJhOO4kj0BT5TFskxzrhNdijLTuWRxWYIHGggJcYCWYF4mXMRMcyFVoDHLn7OnpF_VlXpOKJcMYplUK1wbjgLNS57oXKUZKzOWZWpAxt1nLKStd49tV5bFDtENyJG74Zsp9bL70sNOLoXVB02B_LKsra85IG_cadDWuATHK1Vv2msmjOVxGA7IMyNP9ywWhWkC8cCLu7_HS_Jg-0c6JP31aqNegZO8Fq8t_n4DWOXEDw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Persistent+influence+of+obliquity+on+ice+age+terminations+since+the+Middle+Pleistocene+transition&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Bajo%2C+Petra&rft.au=Drysdale%2C+Russell+N.&rft.au=Woodhead%2C+Jon+D.&rft.au=Hellstrom%2C+John+C.&rft.date=2020-03-13&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=367&rft.issue=6483&rft.spage=1235&rft.epage=1239&rft_id=info:doi/10.1126%2Fscience.aaw1114&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_science_aaw1114
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon