Modeling reactive transport in sediments subject to bioturbation and compaction
Current bioturbation models are marked by confusion in their treatment of porosity. Different equations appear to be needed for different biodiffusion mechanisms, i.e., interphase mixing, where biological activity causes bulk mixing of sediment affecting both tracer and porosity profiles, versus int...
Saved in:
Published in | Geochimica et cosmochimica acta Vol. 69; no. 14; pp. 3601 - 3617 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2005
|
Online Access | Get full text |
Cover
Loading…
Abstract | Current bioturbation models are marked by confusion in their treatment of porosity. Different equations appear to be needed for different biodiffusion mechanisms, i.e., interphase mixing, where biological activity causes bulk mixing of sediment affecting both tracer and porosity profiles, versus intraphase mixing, where the solid components are intermixed, but the porosity is left unchanged. Another issue is whether the model depends upon the particle type with which tracers are associated, e.g.,
137Cs on small clay particles versus
210Pb on larger grains. This uncertainty has lead to conflicting conservation equations for radiotracers, and in particular, to the question whether the porosity should be placed inside or outside of the differential term that governs the biodiffusive flux. We have reexamined this situation in the context of multiphase, multicomponent continuum theory. Most importantly, we prove that under the assumption of steady-state porosity, there exists only one correct form of the steady-state conservation equation for a radiotracer, regardless of biodiffusion mechanism and particle type, i.e.,
∂
∂
x
[
φ
s
D
B
∂
C
s
∂
x
]
−
F
sed
s
ρ
s
∂
C
s
∂
x
−
ϕ
s
λ
C
s
=
0
where x is depth, C
s is the concentration/activity of the tracer, F
sed
s is the constant flux of solid sediment to the sediment, ρ
s is the density of the solid phase, φ
s is the solid volume fraction, D
B is the biodiffusion coefficient, and λ is the decay constant. This pertinent finding results from a substantial revision and extension of diagenetic theory. By considering the conservation of momentum, as well as mass, we have identified the correct reference velocities to define biodiffusional fluxes. From that, we have formulated a consistent set of model equations that govern (1) transient porosity and transient tracer concentrations, (2) steady-state porosity and transient tracer concentrations, and (3) steady-state porosity and steady-state tracer concentrations, in sediments that are subject to both compaction and bioturbation. |
---|---|
AbstractList | Current bioturbation models are marked by confusion in their treatment of porosity. Different equations appear to be needed for different biodiffusion mechanisms, i.e., interphase mixing, where biological activity causes bulk mixing of sediment affecting both tracer and porosity profiles, versus intraphase mixing, where the solid components are intermixed, but the porosity is left unchanged. Another issue is whether the model depends upon the particle type with which tracers are associated, e.g., 137Cs on small clay particles versus 210Pb on larger grains. This uncertainty has lead to conflicting conservation equations for radiotracers, and in particular, to the question whether the porosity should be placed inside or outside of the differential term that governs the biodiffusive flux. We have reexamined this situation in the context of multiphase, multicomponent continuum theory. Most importantly, we prove that under the assumption of steady-state porosity, there exists only one correct form of the steady-state conservation equation for a radiotracer, regardless of biodiffusion mechanism and particle type, i.e., [image] where x is depth, Cs is the concentration/activity of the tracer, Fseds is the constant flux of solid sediment to the sediment, [rho]s is the density of the solid phase, [phi]s is the solid volume fraction, DB is the biodiffusion coefficient, and l is the decay constant. This pertinent finding results from a substantial revision and extension of diagenetic theory. By considering the conservation of momentum, as well as mass, we have identified the correct reference velocities to define biodiffusional fluxes. From that, we have formulated a consistent set of model equations that govern (1) transient porosity and transient tracer concentrations, (2) steady-state porosity and transient tracer concentrations, and (3) steady-state porosity and steady-state tracer concentrations, in sediments that are subject to both compaction and bioturbation. Associate Editor: D. J. BurdigeAuthor to whom correspondence should be addressed. Current bioturbation models are marked by confusion in their treatment of porosity. Different equations appear to be needed for different biodiffusion mechanisms, i.e., interphase mixing, where biological activity causes bulk mixing of sediment affecting both tracer and porosity profiles, versus intraphase mixing, where the solid components are intermixed, but the porosity is left unchanged. Another issue is whether the model depends upon the particle type with which tracers are associated, e.g., 137Cs on small clay particles versus 210Pb on larger grains. This uncertainty has lead to conflicting conservation equations for radiotracers, and in particular, to the question whether the porosity should be placed inside or outside of the differential term that governs the biodiffusive flux. We have reexamined this situation in the context of multiphase, multicomponent continuum theory. Most importantly, we prove that under the assumption of steady-state porosity, there exists only one correct form of the steady-state conservation equation for a radiotracer, regardless of biodiffusion mechanism and particle type, i.e., ∂ ∂ x [ φ s D B ∂ C s ∂ x ] − F sed s ρ s ∂ C s ∂ x − ϕ s λ C s = 0 where x is depth, C s is the concentration/activity of the tracer, F sed s is the constant flux of solid sediment to the sediment, ρ s is the density of the solid phase, φ s is the solid volume fraction, D B is the biodiffusion coefficient, and λ is the decay constant. This pertinent finding results from a substantial revision and extension of diagenetic theory. By considering the conservation of momentum, as well as mass, we have identified the correct reference velocities to define biodiffusional fluxes. From that, we have formulated a consistent set of model equations that govern (1) transient porosity and transient tracer concentrations, (2) steady-state porosity and transient tracer concentrations, and (3) steady-state porosity and steady-state tracer concentrations, in sediments that are subject to both compaction and bioturbation. Current bioturbation models are marked by confusion in their treatment of porosity. Different equations appear to be needed for different biodiffusion mechanisms, i.e., interphase mixing, where biological activity causes bulk mixing of sediment affecting both tracer and porosity profiles, versus intraphase mixing, where the solid components are intermixed, but the porosity is left unchanged. Another issue is whether the model depends upon the particle type with which tracers are associated, e.g., super(137)Cs on small clay particles versus super(210)Pb on larger grains. This uncertainty has lead to conflicting conservation equations for radiotracers, and in particular, to the question whether the porosity should be placed inside or outside of the differential term that governs the biodiffusive flux. We have reexamined this situation in the context of multiphase, multicomponent continuum theory. Most importantly, we prove that under the assumption of steady-state porosity, there exists only one correct form of the steady-state conservation equation for a radiotracer, regardless of biodiffusion mechanism and particle type, i.e., [image] where x is depth, C super(s) is the concentration/activity of the tracer, F sub(sed) super(s) is the constant flux of solid sediment to the sediment, [rho] super(s) is the density of the solid phase, [phi] super(s) is the solid volume fraction, D sub(B) is the biodiffusion coefficient, and l is the decay constant. This pertinent finding results from a substantial revision and extension of diagenetic theory. By considering the conservation of momentum, as well as mass, we have identified the correct reference velocities to define biodiffusional fluxes. From that, we have formulated a consistent set of model equations that govern (1) transient porosity and transient tracer concentrations, (2) steady-state porosity and transient tracer concentrations, and (3) steady-state porosity and steady-state tracer concentrations, in sediments that are subject to both compaction and bioturbation. Associate Editor: D. J. BurdigeAuthor to whom correspondence should be addressed. |
Author | Boudreau, Bernard P. Meysman, Filip J.R. Middelburg, Jack J. |
Author_xml | – sequence: 1 givenname: Filip J.R. surname: Meysman fullname: Meysman, Filip J.R. email: f.meysman@nioo.knaw.nl organization: Netherlands Institute of Ecology (NIOO-KNAW), Centre for Estuarine and Marine Ecology, Korringaweg 7, 4401 NT Yerseke, The Netherlands – sequence: 2 givenname: Bernard P. surname: Boudreau fullname: Boudreau, Bernard P. organization: Department of Oceanography, Dalhousie University, Halifax NS B3H 4J1, Canada – sequence: 3 givenname: Jack J. surname: Middelburg fullname: Middelburg, Jack J. organization: Netherlands Institute of Ecology (NIOO-KNAW), Centre for Estuarine and Marine Ecology, Korringaweg 7, 4401 NT Yerseke, The Netherlands |
BookMark | eNqNkT1PwzAQhi0EEqXwA9g8sSWcHcdOxIQQXxKIBWbLca7IVWoX20Xi3-NSJgZguuV97k7vc0T2ffBIyCmDmgGT58v61ZqaA7Q1sBpA7JEZ6xSv-rZp9skMSqhS0KhDcpTSEgBU28KMPD2GESfnX2lEY7N7R5qj8WkdYqbO04SjW6HPiabNsESbaQ50cCFv4mCyC54aP1IbVustHfwxOViYKeHJ95yTl5vr56u76uHp9v7q8qEygjW5asbWqqHHQSkcQDDbW6bEKPueDQIG1kk-NpJLjkIalAvZt8byRixQMiutaObkbLd3HcPbBlPWK5csTpPxGDZJ865vJRf8H0EQoLr-z2D5T3Qd255mu6CNIaWIC72ObmXih2agtzL0UhcZeitDA9NFRmHUD8a6_NVfadtNv5IXOxJLm-8Oo07WobfFSyw69BjcL_QnCf6mPQ |
CitedBy_id | crossref_primary_10_1016_j_ecss_2011_02_004 crossref_primary_10_1007_s10498_016_9301_7 crossref_primary_10_1016_j_gca_2013_02_017 crossref_primary_10_1016_j_jenvrad_2024_107464 crossref_primary_10_1029_2009RG000306 crossref_primary_10_1007_s10596_018_9729_5 crossref_primary_10_1098_rsos_220010 crossref_primary_10_1016_j_gca_2016_08_037 crossref_primary_10_1016_j_scitotenv_2025_178645 crossref_primary_10_5194_gmd_14_5999_2021 crossref_primary_10_5004_dwt_2018_23171 crossref_primary_10_1016_j_gca_2014_12_014 crossref_primary_10_1016_j_gca_2017_03_019 crossref_primary_10_1016_j_seares_2018_02_007 crossref_primary_10_5194_bg_15_861_2018 crossref_primary_10_1016_j_apgeochem_2010_01_003 crossref_primary_10_1016_j_gca_2022_06_040 crossref_primary_10_1016_j_gca_2023_12_030 crossref_primary_10_1890_15_0596_1 crossref_primary_10_1016_j_gca_2020_02_021 crossref_primary_10_1111_gbi_12550 crossref_primary_10_1016_j_jconhyd_2009_11_001 crossref_primary_10_1371_journal_pone_0161609 crossref_primary_10_3390_w11081582 crossref_primary_10_1016_j_gca_2006_11_007 crossref_primary_10_1029_2006GC001442 crossref_primary_10_5194_bg_20_3367_2023 crossref_primary_10_1016_j_gca_2016_07_022 crossref_primary_10_5194_bg_6_1273_2009 crossref_primary_10_1002_lno_70033 crossref_primary_10_1016_j_jenvrad_2019_106122 crossref_primary_10_1016_j_gca_2011_08_007 crossref_primary_10_1111_bor_12408 crossref_primary_10_5194_bg_13_5333_2016 crossref_primary_10_5194_gmd_10_453_2017 crossref_primary_10_1371_journal_pone_0050031 crossref_primary_10_1016_j_jembe_2006_10_052 crossref_primary_10_1111_j_1462_2920_2010_02279_x crossref_primary_10_1016_j_jenvrad_2010_03_005 crossref_primary_10_1515_johh_2017_0049 crossref_primary_10_1016_j_gca_2010_02_037 crossref_primary_10_1016_j_soilbio_2015_06_008 crossref_primary_10_1007_s11368_012_0557_2 crossref_primary_10_5194_gmd_16_7107_2023 crossref_primary_10_1016_j_dsr_2010_03_013 crossref_primary_10_1002_lno_10275 crossref_primary_10_1007_s00343_017_6215_1 crossref_primary_10_1016_j_gca_2006_11_024 crossref_primary_10_5194_cp_11_187_2015 crossref_primary_10_1016_j_earscirev_2013_02_008 crossref_primary_10_1016_j_earscirev_2021_103681 crossref_primary_10_1016_j_epsl_2011_09_043 crossref_primary_10_1016_j_dsr_2012_04_014 crossref_primary_10_1007_s10933_012_9622_5 crossref_primary_10_1016_j_jmarsys_2009_09_001 crossref_primary_10_1016_j_pocean_2008_01_001 crossref_primary_10_1109_JOE_2007_907927 crossref_primary_10_1007_s10933_011_9520_2 crossref_primary_10_1073_pnas_1917494117 crossref_primary_10_1016_j_ecss_2019_03_008 crossref_primary_10_1016_j_gca_2021_02_024 crossref_primary_10_1002_jqs_1183 crossref_primary_10_1016_j_ecss_2011_01_012 crossref_primary_10_1016_j_marchem_2016_04_003 crossref_primary_10_1111_1751_7915_13622 crossref_primary_10_5194_bg_7_1443_2010 crossref_primary_10_1016_j_gca_2022_11_026 crossref_primary_10_1016_j_gca_2011_03_007 crossref_primary_10_1002_2013GC005034 |
Cites_doi | 10.1680/geot.1996.46.1.103 10.1021/ie9901123 10.1016/S1385-1101(02)00150-8 10.2475/ajs.286.3.161 10.1063/1.1712886 10.1007/978-94-009-1926-6 10.1021/j150501a005 10.2475/ajs.287.7.693 10.1016/0025-3227(82)90084-6 10.1007/978-3-642-45944-3 10.1016/0012-821X(77)90217-5 10.1002/andp.18551700105 10.1016/S0967-0645(02)00133-9 10.2475/ajs.299.7-9.517 10.1016/0025-3227(83)90062-2 10.1357/002224003322201241 10.1016/0016-7037(93)90007-J 10.1061/(ASCE)0733-9410(1986)112:11(1033) 10.1016/0012-821X(92)90153-M 10.1029/JC091iC07p08559 10.1016/0309-1708(86)90025-4 10.1071/MF98053 10.1016/S0025-3227(99)00018-3 10.4319/lo.2001.46.6.1425 10.1016/0016-7037(87)90214-6 10.1016/0012-821X(79)90208-5 10.1007/BF00145268 10.1029/2000RG000081 10.1016/S0169-555X(02)00138-1 10.1038/339367a0 10.1680/geot.1958.8.4.171 10.1016/S0272-7714(03)00174-4 10.4319/lo.1998.43.1.000I 10.1007/BF00349395 10.1016/S0309-1708(96)00063-2 10.1357/002224098321822401 10.1029/JC080i021p03032 10.1016/0012-821X(82)90037-1 10.1016/0016-7037(85)90172-3 10.1680/geot.1981.31.4.519 10.1016/0025-3227(83)90063-4 10.1016/0012-821X(77)90001-2 10.1357/002224090784984560 10.1016/0016-7037(89)90306-2 10.1029/JC087iC01p00566 10.1016/0016-7037(62)90112-6 10.3354/ame026081 10.1046/j.1365-246X.1999.00717.x 10.1016/0016-7037(85)90010-9 |
ContentType | Journal Article |
Copyright | 2005 Elsevier Ltd |
Copyright_xml | – notice: 2005 Elsevier Ltd |
DBID | AAYXX CITATION F1W H96 L.G 8FD FR3 KR7 H8D L7M |
DOI | 10.1016/j.gca.2005.01.004 |
DatabaseName | CrossRef ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Engineering Research Database Civil Engineering Abstracts Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional ASFA: Aquatic Sciences and Fisheries Abstracts Technology Research Database Civil Engineering Abstracts Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database Technology Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 1872-9533 |
EndPage | 3617 |
ExternalDocumentID | 10_1016_j_gca_2005_01_004 S0016703705000499 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 8WZ 9JN A6W AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABMAC ABPPZ ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE ADIYS ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ IHE IMUCA J1W KOM LY3 M41 MO0 MVM N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SEP SES SEW SPC SSE SSZ T5K TN5 TWZ UQL VH1 VOH WUQ XJT XOL XSW ZKB ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU BNPGV CITATION SSH F1W H96 L.G 8FD FR3 KR7 EFKBS H8D L7M |
ID | FETCH-LOGICAL-a413t-3d5c7b9eb77eb041c9c174d6991b40b1862d36262e46ae6f695ac234fe61c6c43 |
IEDL.DBID | .~1 |
ISSN | 0016-7037 |
IngestDate | Mon Jul 21 11:39:37 EDT 2025 Fri Jul 11 02:03:13 EDT 2025 Fri Jul 11 03:41:10 EDT 2025 Tue Jul 01 01:33:16 EDT 2025 Thu Apr 24 22:56:45 EDT 2025 Fri Feb 23 02:27:59 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a413t-3d5c7b9eb77eb041c9c174d6991b40b1862d36262e46ae6f695ac234fe61c6c43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PQID | 17448814 |
PQPubID | 23500 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_28956242 proquest_miscellaneous_28040789 proquest_miscellaneous_17448814 crossref_primary_10_1016_j_gca_2005_01_004 crossref_citationtrail_10_1016_j_gca_2005_01_004 elsevier_sciencedirect_doi_10_1016_j_gca_2005_01_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20050701 |
PublicationDateYYYYMMDD | 2005-07-01 |
PublicationDate_xml | – month: 07 year: 2005 text: 20050701 day: 01 |
PublicationDecade | 2000 |
PublicationTitle | Geochimica et cosmochimica acta |
PublicationYear | 2005 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Been, Sills (bib4) 1981; 31 Guinasso, Schink (bib34) 1975; 80 Officer (bib52) 1982; 46 Reise (bib55) 2002; 48 Boudreau (bib11) 1986; 286 Fukumori, Christensen, Klein (bib29) 1992; 114 Lichtner (bib44) 1985; 49 Curtiss, Bird (bib24) 1999; 38 Alperin, Suayah, Benninger, Martens (bib1) 2002; 49 Officer, Lynch (bib54) 1983; 52 Henderson, Lindsay, Slowey (bib38) 1999; 160 Terzaghi (bib61) 1942 Jones, Jago (bib40) 1993; 115 Hancock, Hunter (bib35) 1999; 50 American Elsevier. Berg, Rysgaard, Funch, Sejr (bib6) 2001; 26 Wheatcroft, Jumars, Smith, Nowell (bib65) 1990; 48 Boudreau (bib13) 1997 Cochran (bib21) 1985; 49 Hassanizadeh (bib37) 1996; 23 Toorman (bib62) 1996; 46 Cussler (bib25) 1997 Mulsow, Boudreau, Smith (bib48) 1998; 43 McVay, Townsend, Bloomquist (bib45) 1986; 112 Boudreau (bib12) 1989; 53 Nie, Suayah, Benninger, Alperin (bib50) 2001; 46 Bear J. and Bachmat Y. (1991) Boudreau, Bennett (bib16) 1999; 299 Soetaert, Herman, Middelburg, Heip (bib58) 1998; 56 Gibson (bib31) 1958; 8 Crank (bib23) 1975 Bird, Stewart, Lightfoot (bib9) 2002 Bustos, Concha, Burger, Tory (bib17) 1999 Fick (bib27) 1855; 94 Huyakorn, Pinder (bib39) 1983 Officer, Lynch (bib53) 1982; 61 Christensen (bib18) 1982; 87 Bear J. (1972) Smith, Pope, Demaster, Magaard (bib57) 1993; 57 Boudreau, Imboden (bib15) 1987; 287 Fowler, Noon (bib28) 1999; 136 Meysman (bib46) 2001 Steefel, MacQuarrie (bib59) 1996 Christensen, Bhunia (bib20) 1986; 91 Christensen (bib19) 1983; 52 Kirkwood, Crawford (bib41) 1952; 56 Murray, Meadows, Meadows (bib49) 2002; 47 Benninger, Aller, Cochran, Turekian (bib5) 1979; 43 Nozaki, Cochran, Turekian, Keller (bib51) 1977; 34 Boudreau (bib14) 2000; 38 Van Cappellen, Gaillard (bib64) 1996 Gray, Hassanizadeh (bib33) 1998; 21 Biot (bib8) 1941; 12 Gardiner (bib30) 1985 Goldberg, Koide (bib32) 1962; 26 Meysman, Boudreau, Middleburg (bib47) 2003; 61 Taylor, Krishna (bib60) 1993 Berner (bib7) 1980 Bowen (bib10) 1976 Dellapenna, Kuehl, Schaffner (bib26) 2003; 58 Lasaga (bib43) 1988 Robbins, Krezoski, Mozley (bib56) 1977; 36 Kluwer Academic Publishers. Comans, Middelburg, Zonderhuis, Woittiez, Delange, Das, Vanderweijden (bib22) 1989; 339 Kirwan, Kump (bib42) 1987; 51 Truesdell, Toupin (bib63) 1960 Hassanizadeh (bib36) 1986; 9 Robbins (10.1016/j.gca.2005.01.004_bib56) 1977; 36 Wheatcroft (10.1016/j.gca.2005.01.004_bib65) 1990; 48 Taylor (10.1016/j.gca.2005.01.004_bib60) 1993 Hancock (10.1016/j.gca.2005.01.004_bib35) 1999; 50 Benninger (10.1016/j.gca.2005.01.004_bib5) 1979; 43 Nozaki (10.1016/j.gca.2005.01.004_bib51) 1977; 34 Kirkwood (10.1016/j.gca.2005.01.004_bib41) 1952; 56 Curtiss (10.1016/j.gca.2005.01.004_bib24) 1999; 38 Lichtner (10.1016/j.gca.2005.01.004_bib44) 1985; 49 Fukumori (10.1016/j.gca.2005.01.004_bib29) 1992; 114 Biot (10.1016/j.gca.2005.01.004_bib8) 1941; 12 Henderson (10.1016/j.gca.2005.01.004_bib38) 1999; 160 Mulsow (10.1016/j.gca.2005.01.004_bib48) 1998; 43 Terzaghi (10.1016/j.gca.2005.01.004_bib61) 1942 Goldberg (10.1016/j.gca.2005.01.004_bib32) 1962; 26 Berg (10.1016/j.gca.2005.01.004_bib6) 2001; 26 Cussler (10.1016/j.gca.2005.01.004_bib25) 1997 Gardiner (10.1016/j.gca.2005.01.004_bib30) 1985 Fowler (10.1016/j.gca.2005.01.004_bib28) 1999; 136 Fick (10.1016/j.gca.2005.01.004_bib27) 1855; 94 Kirwan (10.1016/j.gca.2005.01.004_bib42) 1987; 51 Alperin (10.1016/j.gca.2005.01.004_bib1) 2002; 49 Van Cappellen (10.1016/j.gca.2005.01.004_bib64) 1996 Officer (10.1016/j.gca.2005.01.004_bib54) 1983; 52 Boudreau (10.1016/j.gca.2005.01.004_bib13) 1997 Bustos (10.1016/j.gca.2005.01.004_bib17) 1999 McVay (10.1016/j.gca.2005.01.004_bib45) 1986; 112 Officer (10.1016/j.gca.2005.01.004_bib52) 1982; 46 Smith (10.1016/j.gca.2005.01.004_bib57) 1993; 57 Hassanizadeh (10.1016/j.gca.2005.01.004_bib36) 1986; 9 Christensen (10.1016/j.gca.2005.01.004_bib19) 1983; 52 Boudreau (10.1016/j.gca.2005.01.004_bib11) 1986; 286 Crank (10.1016/j.gca.2005.01.004_bib23) 1975 Gray (10.1016/j.gca.2005.01.004_bib33) 1998; 21 Comans (10.1016/j.gca.2005.01.004_bib22) 1989; 339 Steefel (10.1016/j.gca.2005.01.004_bib59) 1996 Meysman (10.1016/j.gca.2005.01.004_bib47) 2003; 61 Reise (10.1016/j.gca.2005.01.004_bib55) 2002; 48 Gibson (10.1016/j.gca.2005.01.004_bib31) 1958; 8 Bird (10.1016/j.gca.2005.01.004_bib9) 2002 Dellapenna (10.1016/j.gca.2005.01.004_bib26) 2003; 58 Boudreau (10.1016/j.gca.2005.01.004_bib14) 2000; 38 Christensen (10.1016/j.gca.2005.01.004_bib20) 1986; 91 Boudreau (10.1016/j.gca.2005.01.004_bib12) 1989; 53 Truesdell (10.1016/j.gca.2005.01.004_bib63) 1960 Officer (10.1016/j.gca.2005.01.004_bib53) 1982; 61 Boudreau (10.1016/j.gca.2005.01.004_bib15) 1987; 287 Murray (10.1016/j.gca.2005.01.004_bib49) 2002; 47 Toorman (10.1016/j.gca.2005.01.004_bib62) 1996; 46 Jones (10.1016/j.gca.2005.01.004_bib40) 1993; 115 Bowen (10.1016/j.gca.2005.01.004_bib10) 1976 Berner (10.1016/j.gca.2005.01.004_bib7) 1980 Christensen (10.1016/j.gca.2005.01.004_bib18) 1982; 87 Guinasso (10.1016/j.gca.2005.01.004_bib34) 1975; 80 Hassanizadeh (10.1016/j.gca.2005.01.004_bib37) 1996; 23 Soetaert (10.1016/j.gca.2005.01.004_bib58) 1998; 56 Been (10.1016/j.gca.2005.01.004_bib4) 1981; 31 Lasaga (10.1016/j.gca.2005.01.004_bib43) 1988 10.1016/j.gca.2005.01.004_bib2 Cochran (10.1016/j.gca.2005.01.004_bib21) 1985; 49 10.1016/j.gca.2005.01.004_bib3 Meysman (10.1016/j.gca.2005.01.004_bib46) 2001 Boudreau (10.1016/j.gca.2005.01.004_bib16) 1999; 299 Nie (10.1016/j.gca.2005.01.004_bib50) 2001; 46 Huyakorn (10.1016/j.gca.2005.01.004_bib39) 1983 |
References_xml | – year: 1985 ident: bib30 publication-title: Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences – volume: 31 start-page: 519 year: 1981 end-page: 535 ident: bib4 article-title: Self-weight consolidation of soft soils—An experimental and theoretical study publication-title: Geotechnique – volume: 8 start-page: 171 year: 1958 end-page: 182 ident: bib31 article-title: The progress of consolidation in a clay layer increasing in thickness with time publication-title: Geotechnique – volume: 94 start-page: 59 year: 1855 end-page: 86 ident: bib27 article-title: Uber Diffusion publication-title: Ann. Phys. – volume: 12 start-page: 155 year: 1941 ident: bib8 article-title: General theory of three-dimensional consolidation publication-title: J. Appl. Phys. – volume: 36 start-page: 325 year: 1977 end-page: 333 ident: bib56 article-title: Radioactivity in sediments of Great Lakes—Post-depositional redistribution by deposit-feeding organisms publication-title: Earth Planet. Sci. Lett. – volume: 114 start-page: 85 year: 1992 end-page: 99 ident: bib29 article-title: A model for Cs-137 and other tracers in lake-sediments considering particle-size and the inverse solution publication-title: Earth Planet. Sci. Lett. – year: 1980 ident: bib7 publication-title: Early Diagenesis – volume: 49 start-page: 1195 year: 1985 end-page: 1210 ident: bib21 article-title: Particle mixing rates in sediments of the eastern Equatorial Pacific—Evidence from Pb-210, Pu-239, Pu-240 and Cs-137 distributions at Manop sites publication-title: Geochim. Cosmochim. Acta – volume: 38 start-page: 389 year: 2000 end-page: 416 ident: bib14 article-title: The mathematics of early diagenesis publication-title: Rev. Geophys. – volume: 339 start-page: 367 year: 1989 end-page: 369 ident: bib22 article-title: Mobilization of radiocesium in pore water of lake-sediments publication-title: Nature – volume: 61 start-page: 391 year: 2003 end-page: 410 ident: bib47 article-title: Relations between local, nonlocal, discrete and continuous models of bioturbation publication-title: J. Mar. Res. – volume: 52 start-page: 292 year: 1983 end-page: 296 ident: bib54 article-title: Mixing, sedimentation-rates and age dating for sediment cores—Reply— publication-title: Mar. Geol. – year: 1993 ident: bib60 publication-title: Multicomponent Mass Transfer – volume: 53 start-page: 1857 year: 1989 end-page: 1866 ident: bib12 article-title: The diffusion and telegraph equations in diagenetic modeling publication-title: Geochim. Cosmochim. Acta – volume: 57 start-page: 1473 year: 1993 end-page: 1488 ident: bib57 article-title: Age-dependent mixing of deep-sea sediments publication-title: Geochim. Cosmochim. Acta – volume: 286 start-page: 161 year: 1986 end-page: 198 ident: bib11 article-title: Mathematics of tracer mixing in sediments: I. Spatially-dependent, diffusive mixing publication-title: Am. J. Sci. – volume: 87 start-page: 566 year: 1982 end-page: 572 ident: bib18 article-title: A model for radionuclides in sediments influenced by mixing and compaction publication-title: J. Geophys. Res. Ocean. Atmos. – start-page: 335 year: 1996 end-page: 376 ident: bib64 article-title: Biogeochemical dynamics in aquatic sediments publication-title: Reactive Transport in Porous Media – reference: Bear J. (1972) – year: 2002 ident: bib9 publication-title: Transport Phenomena – volume: 49 start-page: 4645 year: 2002 end-page: 4665 ident: bib1 article-title: Modern organic carbon burial fluxes, recent sedimentation rates, and particle mixing rates from the upper continental slope near Cape Hatteras, North Carolina (USA) publication-title: Deep-Sea Res. LI – volume: 50 start-page: 533 year: 1999 end-page: 545 ident: bib35 article-title: Use of excess Pb-210 and Th-228 to estimate rates of sediment accumulation and bioturbation in Port Phillip Bay, Australia publication-title: Mar. Freshw. Res. – year: 1983 ident: bib39 publication-title: Computational Methods in Subsurface Flow – volume: 9 start-page: 207 year: 1986 end-page: 222 ident: bib36 article-title: Derivations of basic equations of mass transport in porous media, Part 2. Generalized Darcy’s and Fick’s Laws publication-title: Adv. Water Resour. – volume: 23 start-page: 107 year: 1996 end-page: 124 ident: bib37 article-title: On the transient non-Fickian dispersion theory publication-title: Transp. Porous Media – volume: 46 start-page: 261 year: 1982 end-page: 278 ident: bib52 article-title: Mixing. sedimentation-rates and age dating for sediment cores publication-title: Mar. Geol. – volume: 61 start-page: 55 year: 1982 end-page: 62 ident: bib53 article-title: Interpretation procedures for the determination of sediment parameters from time-dependent flux inputs publication-title: Earth Planet. Sci. Lett. – reference: . Kluwer Academic Publishers. – volume: 287 start-page: 693 year: 1987 end-page: 719 ident: bib15 article-title: Mathematics of tracer mixing in sediments: III. The theory of nonlocal mixing within sediments publication-title: Am. J. Sci. – start-page: 83 year: 1996 end-page: 129 ident: bib59 article-title: Approaches to modeling of reactive transport in porous media publication-title: Reactive Transport in Porous Media – volume: 160 start-page: 105 year: 1999 end-page: 118 ident: bib38 article-title: Variation in bioturbation with water depth on marine slopes publication-title: Mar. Geol. – volume: 51 start-page: 1219 year: 1987 end-page: 1226 ident: bib42 article-title: Models of geochemical systems for mixture theory—Diffusion publication-title: Geochim. Cosmochim. Acta – year: 1942 ident: bib61 publication-title: Theoretical Soil Mechanics – volume: 46 start-page: 1425 year: 2001 end-page: 1437 ident: bib50 article-title: Modeling detailed sedimentary Pb-210 and fallout Pu-239, Pu-240 profiles to allow episodic events publication-title: Limnol. Oceanogr. – reference: . American Elsevier. – volume: 52 start-page: 291 year: 1983 end-page: 292 ident: bib19 article-title: Mixing, sedimentation-rates and age dating for sediment cores—Comment publication-title: Mar. Geol. – volume: 299 start-page: 517 year: 1999 end-page: 528 ident: bib16 article-title: New rheological and porosity equations for steady-state compaction publication-title: Am. J. Sci. – year: 1997 ident: bib25 publication-title: Diffusion. Mass Transfer in Fluid Systems – volume: 21 start-page: 261 year: 1998 end-page: 281 ident: bib33 article-title: Macroscale continuum mechanics for multiphase porous-media flow including phases, interfaces, common lines and common points publication-title: Adv. Water Resour. – volume: 91 start-page: 8559 year: 1986 end-page: 8571 ident: bib20 article-title: Modeling radiotracers in sediments—Comparison with observations in Lakes Huron and Michigan publication-title: J. Geophys. Res. Oceans – reference: Bear J. and Bachmat Y. (1991) – volume: 48 start-page: 127 year: 2002 end-page: 141 ident: bib55 article-title: Sediment mediated species interactions in coastal waters publication-title: J. Sea Res. – volume: 112 start-page: 1033 year: 1986 end-page: 1049 ident: bib45 article-title: Quiescent consolidation of phosphatic waste clays publication-title: J. Geotech. Eng. ASCE – volume: 46 start-page: 103 year: 1996 end-page: 113 ident: bib62 article-title: Sedimentation and self-weight consolidation publication-title: Geotechnique – year: 1999 ident: bib17 publication-title: Sedimentation and Thickening – volume: 80 start-page: 3032 year: 1975 end-page: 3043 ident: bib34 article-title: Quantitative estimates of biological mixing rates in abyssal sediments publication-title: J. Geophys. Res. Ocean. Atmos. – year: 1997 ident: bib13 publication-title: Diagenetic Models and Their Implementation – year: 1975 ident: bib23 publication-title: The Mathematics of Diffusion – start-page: 1 year: 1976 end-page: 27 ident: bib10 article-title: Theory of mixtures publication-title: Continuum Physics Vol. III Mixtures and EM Field Theories – year: 1988 ident: bib43 publication-title: Kinetic Theory in the Earth Sciences – volume: 58 start-page: 621 year: 2003 end-page: 643 ident: bib26 article-title: Ephemeral deposition, seabed mixing and fine-scale strata formation in the York River Estuary, Chesapeake Bay publication-title: Estuar. Coast. Shelf Sci. – volume: 115 start-page: 133 year: 1993 end-page: 142 ident: bib40 article-title: In situ assessment of modification of sediment properties by burrowing invertebrates publication-title: Mar. Biol. – volume: 34 start-page: 167 year: 1977 end-page: 173 ident: bib51 article-title: Radiocarbon and Pb-210 distribution in submersible-taken deep-sea cores from Project Famous publication-title: Earth Planet. Sci. Lett. – volume: 49 start-page: 779 year: 1985 end-page: 800 ident: bib44 article-title: Continuum model for simultaneous chemical reactions and mass transport in hydrothermal systems publication-title: Geochim. Cosmochim. Acta – year: 2001 ident: bib46 publication-title: Modelling the influence of ecological interactions on reactive transport processes in sediments. Ph.D. disse – volume: 56 start-page: 519 year: 1998 end-page: 534 ident: bib58 article-title: Assessing organic matter mineralization, degradability and mixing rate in an ocean margin sediment (Northeast Atlantic) by diagenetic modeling publication-title: J. Mar. Res. – start-page: 226 year: 1960 end-page: 793 ident: bib63 article-title: The classical field theories publication-title: Handbuch der Physik – volume: 43 start-page: 1 year: 1998 end-page: 9 ident: bib48 article-title: Bioturbation and porosity gradients publication-title: Limnol. Oceanage. – volume: 47 start-page: 15 year: 2002 end-page: 30 ident: bib49 article-title: Biogeomorphological Implications of microscale interactions between sediment geotechnics and marine benthos publication-title: Geomorphology – volume: 43 start-page: 241 year: 1979 end-page: 259 ident: bib5 article-title: Effects of biological sediment mixing on the publication-title: Earth Planet. Sci. Lett. – volume: 56 start-page: 1048 year: 1952 end-page: 1051 ident: bib41 article-title: The macroscopic equations of transport publication-title: J. Phys. Chem. – volume: 48 start-page: 177 year: 1990 end-page: 207 ident: bib65 article-title: A mechanistic view of the particulate biodiffusion coefficient—Step lengths, rest periods and transport directions publication-title: J. Mar. Res. – volume: 26 start-page: 81 year: 2001 end-page: 94 ident: bib6 article-title: Effects of bioturbation on solutes and solids in marine sediments publication-title: Aquat. Microb. Ecol. – volume: 38 start-page: 2515 year: 1999 end-page: 2522 ident: bib24 article-title: Multicomponent diffusion publication-title: Ind. Eng. Chem. Res. – volume: 136 start-page: 251 year: 1999 end-page: 260 ident: bib28 article-title: Mathematical models of compaction, consolidation and regional groundwater flow publication-title: Geophys. J. Int. – volume: 26 start-page: 417 year: 1962 end-page: 450 ident: bib32 article-title: Geochronological studies of deep-sea sediments by the lo/Th method publication-title: Geochim. Cosmochim. Acta – volume: 46 start-page: 103 year: 1996 ident: 10.1016/j.gca.2005.01.004_bib62 article-title: Sedimentation and self-weight consolidation publication-title: Geotechnique doi: 10.1680/geot.1996.46.1.103 – volume: 38 start-page: 2515 year: 1999 ident: 10.1016/j.gca.2005.01.004_bib24 article-title: Multicomponent diffusion publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie9901123 – volume: 48 start-page: 127 year: 2002 ident: 10.1016/j.gca.2005.01.004_bib55 article-title: Sediment mediated species interactions in coastal waters publication-title: J. Sea Res. doi: 10.1016/S1385-1101(02)00150-8 – volume: 286 start-page: 161 year: 1986 ident: 10.1016/j.gca.2005.01.004_bib11 article-title: Mathematics of tracer mixing in sediments: I. Spatially-dependent, diffusive mixing publication-title: Am. J. Sci. doi: 10.2475/ajs.286.3.161 – volume: 12 start-page: 155 year: 1941 ident: 10.1016/j.gca.2005.01.004_bib8 article-title: General theory of three-dimensional consolidation publication-title: J. Appl. Phys. doi: 10.1063/1.1712886 – ident: 10.1016/j.gca.2005.01.004_bib3 doi: 10.1007/978-94-009-1926-6 – volume: 56 start-page: 1048 year: 1952 ident: 10.1016/j.gca.2005.01.004_bib41 article-title: The macroscopic equations of transport publication-title: J. Phys. Chem. doi: 10.1021/j150501a005 – volume: 287 start-page: 693 year: 1987 ident: 10.1016/j.gca.2005.01.004_bib15 article-title: Mathematics of tracer mixing in sediments: III. The theory of nonlocal mixing within sediments publication-title: Am. J. Sci. doi: 10.2475/ajs.287.7.693 – volume: 46 start-page: 261 year: 1982 ident: 10.1016/j.gca.2005.01.004_bib52 article-title: Mixing. sedimentation-rates and age dating for sediment cores publication-title: Mar. Geol. doi: 10.1016/0025-3227(82)90084-6 – start-page: 226 year: 1960 ident: 10.1016/j.gca.2005.01.004_bib63 article-title: The classical field theories doi: 10.1007/978-3-642-45944-3 – volume: 36 start-page: 325 year: 1977 ident: 10.1016/j.gca.2005.01.004_bib56 article-title: Radioactivity in sediments of Great Lakes—Post-depositional redistribution by deposit-feeding organisms publication-title: Earth Planet. Sci. Lett. doi: 10.1016/0012-821X(77)90217-5 – year: 1999 ident: 10.1016/j.gca.2005.01.004_bib17 – volume: 94 start-page: 59 year: 1855 ident: 10.1016/j.gca.2005.01.004_bib27 article-title: Uber Diffusion publication-title: Ann. Phys. doi: 10.1002/andp.18551700105 – volume: 49 start-page: 4645 year: 2002 ident: 10.1016/j.gca.2005.01.004_bib1 article-title: Modern organic carbon burial fluxes, recent sedimentation rates, and particle mixing rates from the upper continental slope near Cape Hatteras, North Carolina (USA) publication-title: Deep-Sea Res. LI doi: 10.1016/S0967-0645(02)00133-9 – year: 1942 ident: 10.1016/j.gca.2005.01.004_bib61 – volume: 299 start-page: 517 year: 1999 ident: 10.1016/j.gca.2005.01.004_bib16 article-title: New rheological and porosity equations for steady-state compaction publication-title: Am. J. Sci. doi: 10.2475/ajs.299.7-9.517 – volume: 52 start-page: 291 year: 1983 ident: 10.1016/j.gca.2005.01.004_bib19 article-title: Mixing, sedimentation-rates and age dating for sediment cores—Comment publication-title: Mar. Geol. doi: 10.1016/0025-3227(83)90062-2 – volume: 61 start-page: 391 year: 2003 ident: 10.1016/j.gca.2005.01.004_bib47 article-title: Relations between local, nonlocal, discrete and continuous models of bioturbation publication-title: J. Mar. Res. doi: 10.1357/002224003322201241 – volume: 57 start-page: 1473 year: 1993 ident: 10.1016/j.gca.2005.01.004_bib57 article-title: Age-dependent mixing of deep-sea sediments publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(93)90007-J – volume: 112 start-page: 1033 year: 1986 ident: 10.1016/j.gca.2005.01.004_bib45 article-title: Quiescent consolidation of phosphatic waste clays publication-title: J. Geotech. Eng. ASCE doi: 10.1061/(ASCE)0733-9410(1986)112:11(1033) – start-page: 335 year: 1996 ident: 10.1016/j.gca.2005.01.004_bib64 article-title: Biogeochemical dynamics in aquatic sediments – volume: 114 start-page: 85 year: 1992 ident: 10.1016/j.gca.2005.01.004_bib29 article-title: A model for Cs-137 and other tracers in lake-sediments considering particle-size and the inverse solution publication-title: Earth Planet. Sci. Lett. doi: 10.1016/0012-821X(92)90153-M – volume: 91 start-page: 8559 year: 1986 ident: 10.1016/j.gca.2005.01.004_bib20 article-title: Modeling radiotracers in sediments—Comparison with observations in Lakes Huron and Michigan publication-title: J. Geophys. Res. Oceans doi: 10.1029/JC091iC07p08559 – volume: 9 start-page: 207 year: 1986 ident: 10.1016/j.gca.2005.01.004_bib36 article-title: Derivations of basic equations of mass transport in porous media, Part 2. Generalized Darcy’s and Fick’s Laws publication-title: Adv. Water Resour. doi: 10.1016/0309-1708(86)90025-4 – volume: 50 start-page: 533 year: 1999 ident: 10.1016/j.gca.2005.01.004_bib35 article-title: Use of excess Pb-210 and Th-228 to estimate rates of sediment accumulation and bioturbation in Port Phillip Bay, Australia publication-title: Mar. Freshw. Res. doi: 10.1071/MF98053 – volume: 160 start-page: 105 year: 1999 ident: 10.1016/j.gca.2005.01.004_bib38 article-title: Variation in bioturbation with water depth on marine slopes publication-title: Mar. Geol. doi: 10.1016/S0025-3227(99)00018-3 – volume: 46 start-page: 1425 year: 2001 ident: 10.1016/j.gca.2005.01.004_bib50 article-title: Modeling detailed sedimentary Pb-210 and fallout Pu-239, Pu-240 profiles to allow episodic events publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2001.46.6.1425 – year: 2002 ident: 10.1016/j.gca.2005.01.004_bib9 – volume: 51 start-page: 1219 year: 1987 ident: 10.1016/j.gca.2005.01.004_bib42 article-title: Models of geochemical systems for mixture theory—Diffusion publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(87)90214-6 – volume: 43 start-page: 241 year: 1979 ident: 10.1016/j.gca.2005.01.004_bib5 article-title: Effects of biological sediment mixing on the 210Pb chronology and trace metal distribution in a Long Island Sound sediment core publication-title: Earth Planet. Sci. Lett. doi: 10.1016/0012-821X(79)90208-5 – year: 1997 ident: 10.1016/j.gca.2005.01.004_bib13 – volume: 23 start-page: 107 year: 1996 ident: 10.1016/j.gca.2005.01.004_bib37 article-title: On the transient non-Fickian dispersion theory publication-title: Transp. Porous Media doi: 10.1007/BF00145268 – year: 1980 ident: 10.1016/j.gca.2005.01.004_bib7 – volume: 38 start-page: 389 year: 2000 ident: 10.1016/j.gca.2005.01.004_bib14 article-title: The mathematics of early diagenesis publication-title: Rev. Geophys. doi: 10.1029/2000RG000081 – volume: 47 start-page: 15 year: 2002 ident: 10.1016/j.gca.2005.01.004_bib49 article-title: Biogeomorphological Implications of microscale interactions between sediment geotechnics and marine benthos publication-title: Geomorphology doi: 10.1016/S0169-555X(02)00138-1 – volume: 339 start-page: 367 year: 1989 ident: 10.1016/j.gca.2005.01.004_bib22 article-title: Mobilization of radiocesium in pore water of lake-sediments publication-title: Nature doi: 10.1038/339367a0 – volume: 8 start-page: 171 year: 1958 ident: 10.1016/j.gca.2005.01.004_bib31 article-title: The progress of consolidation in a clay layer increasing in thickness with time publication-title: Geotechnique doi: 10.1680/geot.1958.8.4.171 – ident: 10.1016/j.gca.2005.01.004_bib2 – year: 1997 ident: 10.1016/j.gca.2005.01.004_bib25 – volume: 58 start-page: 621 year: 2003 ident: 10.1016/j.gca.2005.01.004_bib26 article-title: Ephemeral deposition, seabed mixing and fine-scale strata formation in the York River Estuary, Chesapeake Bay publication-title: Estuar. Coast. Shelf Sci. doi: 10.1016/S0272-7714(03)00174-4 – year: 1988 ident: 10.1016/j.gca.2005.01.004_bib43 – volume: 43 start-page: 1 year: 1998 ident: 10.1016/j.gca.2005.01.004_bib48 article-title: Bioturbation and porosity gradients publication-title: Limnol. Oceanage. doi: 10.4319/lo.1998.43.1.000I – volume: 115 start-page: 133 year: 1993 ident: 10.1016/j.gca.2005.01.004_bib40 article-title: In situ assessment of modification of sediment properties by burrowing invertebrates publication-title: Mar. Biol. doi: 10.1007/BF00349395 – volume: 21 start-page: 261 year: 1998 ident: 10.1016/j.gca.2005.01.004_bib33 article-title: Macroscale continuum mechanics for multiphase porous-media flow including phases, interfaces, common lines and common points publication-title: Adv. Water Resour. doi: 10.1016/S0309-1708(96)00063-2 – volume: 56 start-page: 519 year: 1998 ident: 10.1016/j.gca.2005.01.004_bib58 article-title: Assessing organic matter mineralization, degradability and mixing rate in an ocean margin sediment (Northeast Atlantic) by diagenetic modeling publication-title: J. Mar. Res. doi: 10.1357/002224098321822401 – volume: 80 start-page: 3032 year: 1975 ident: 10.1016/j.gca.2005.01.004_bib34 article-title: Quantitative estimates of biological mixing rates in abyssal sediments publication-title: J. Geophys. Res. Ocean. Atmos. doi: 10.1029/JC080i021p03032 – volume: 61 start-page: 55 year: 1982 ident: 10.1016/j.gca.2005.01.004_bib53 article-title: Interpretation procedures for the determination of sediment parameters from time-dependent flux inputs publication-title: Earth Planet. Sci. Lett. doi: 10.1016/0012-821X(82)90037-1 – year: 1993 ident: 10.1016/j.gca.2005.01.004_bib60 – volume: 49 start-page: 779 year: 1985 ident: 10.1016/j.gca.2005.01.004_bib44 article-title: Continuum model for simultaneous chemical reactions and mass transport in hydrothermal systems publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(85)90172-3 – start-page: 1 year: 1976 ident: 10.1016/j.gca.2005.01.004_bib10 article-title: Theory of mixtures – volume: 31 start-page: 519 year: 1981 ident: 10.1016/j.gca.2005.01.004_bib4 article-title: Self-weight consolidation of soft soils—An experimental and theoretical study publication-title: Geotechnique doi: 10.1680/geot.1981.31.4.519 – volume: 52 start-page: 292 year: 1983 ident: 10.1016/j.gca.2005.01.004_bib54 article-title: Mixing, sedimentation-rates and age dating for sediment cores—Reply— publication-title: Mar. Geol. doi: 10.1016/0025-3227(83)90063-4 – volume: 34 start-page: 167 year: 1977 ident: 10.1016/j.gca.2005.01.004_bib51 article-title: Radiocarbon and Pb-210 distribution in submersible-taken deep-sea cores from Project Famous publication-title: Earth Planet. Sci. Lett. doi: 10.1016/0012-821X(77)90001-2 – volume: 48 start-page: 177 year: 1990 ident: 10.1016/j.gca.2005.01.004_bib65 article-title: A mechanistic view of the particulate biodiffusion coefficient—Step lengths, rest periods and transport directions publication-title: J. Mar. Res. doi: 10.1357/002224090784984560 – volume: 53 start-page: 1857 year: 1989 ident: 10.1016/j.gca.2005.01.004_bib12 article-title: The diffusion and telegraph equations in diagenetic modeling publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(89)90306-2 – volume: 87 start-page: 566 year: 1982 ident: 10.1016/j.gca.2005.01.004_bib18 article-title: A model for radionuclides in sediments influenced by mixing and compaction publication-title: J. Geophys. Res. Ocean. Atmos. doi: 10.1029/JC087iC01p00566 – year: 1983 ident: 10.1016/j.gca.2005.01.004_bib39 – volume: 26 start-page: 417 year: 1962 ident: 10.1016/j.gca.2005.01.004_bib32 article-title: Geochronological studies of deep-sea sediments by the lo/Th method publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(62)90112-6 – volume: 26 start-page: 81 year: 2001 ident: 10.1016/j.gca.2005.01.004_bib6 article-title: Effects of bioturbation on solutes and solids in marine sediments publication-title: Aquat. Microb. Ecol. doi: 10.3354/ame026081 – year: 2001 ident: 10.1016/j.gca.2005.01.004_bib46 – volume: 136 start-page: 251 year: 1999 ident: 10.1016/j.gca.2005.01.004_bib28 article-title: Mathematical models of compaction, consolidation and regional groundwater flow publication-title: Geophys. J. Int. doi: 10.1046/j.1365-246X.1999.00717.x – year: 1985 ident: 10.1016/j.gca.2005.01.004_bib30 – volume: 49 start-page: 1195 year: 1985 ident: 10.1016/j.gca.2005.01.004_bib21 article-title: Particle mixing rates in sediments of the eastern Equatorial Pacific—Evidence from Pb-210, Pu-239, Pu-240 and Cs-137 distributions at Manop sites publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(85)90010-9 – start-page: 83 year: 1996 ident: 10.1016/j.gca.2005.01.004_bib59 article-title: Approaches to modeling of reactive transport in porous media – year: 1975 ident: 10.1016/j.gca.2005.01.004_bib23 |
SSID | ssj0007550 |
Score | 2.1105094 |
Snippet | Current bioturbation models are marked by confusion in their treatment of porosity. Different equations appear to be needed for different biodiffusion... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3601 |
Title | Modeling reactive transport in sediments subject to bioturbation and compaction |
URI | https://dx.doi.org/10.1016/j.gca.2005.01.004 https://www.proquest.com/docview/17448814 https://www.proquest.com/docview/28040789 https://www.proquest.com/docview/28956242 |
Volume | 69 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqEBIL4inKo3hgQkqbNLaTjFVFKSDKQqVulu04qAglFU0HFn47d04CAqEOrNFZcs7ne_juuyPkUoFfb4WynlZx5rEkVZ7CKsIkyzApp1LuEN4PEzGesrsZn7XIsMHCYFllrfsrne60df2lV3Ozt5jPEeMbCJDXyOeV444IdhahlHc_vss8Is4rGEogPKRuMpuuxuvZqPpZJej69ay2P2zTLy3tTM9ol-zUPiMdVNvaIy2b75OtGzeT9_2APOI8M0SVU3AAnfqiZdOynM5zuoR_dEA2ulxpfHahZUH1vABjo925UJWn1BWjO5DDIZmOrp-GY6-ek-ApMEGlF6bcRDqxOoqs9llgEgNxRirA9dPM1wEELSl2nelbBqciMpFwZfohy6wIjDAsPCIbeZHbY0JDq0XM0yixDALH0I-Z0ZHRMTahx_Vt4jcckqZuIo6zLF5lUy32IoGpONySSz-QwNQ2ufpasqg6aKwjZg3b5Q8xkKDh1y27aI5IwvXAnIfKbbFaSmAEqKhgDUU_9jGXmayjgCASXJmT_23ulGy7fq-uxveMbJRvK3sOnkypO05UO2RzcHs_nnwCIATyew |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKEYIF8RTlVQ9MSGmTxnaSEVWUAm1ZWqmbZTsOCkJJRdOBhd_O2UlAINSBNTpLzvl8D9_jQ-hKgF-vmdCOFGHikCgWjjBVhFGSmKSciKnt8B5P2HBGHuZ03kD9uhfGlFVWur_U6VZbV1-6FTe7izQ1Pb4eA3kNXFo67htok8D1NTAGnY_vOo-A0rIPxWOOIa9Tm7bI61mJ6l3F67gVWNsfxumXmra2Z7CHdiunEd-U-9pHDZ0doK07C8r7foieDKCZaSvH4AFa_YWLemY5TjO8hJ-0nWx4uZLm3QUXOZZpDtZG2oPBIouxrUa3XQ5HaDa4nfaHTgWU4AiwQYXjx1QFMtIyCLR0iaciBYFGzMD3k8SVHkQtsRk709MEjoUlLKJC9XySaOYppoh_jJpZnukThH0tWUjjINIEIkffDYmSgZKhmUJv1reQW3OIq2qKuAGzeOV1udgLB6YadEvKXY8DU1vo-mvJohyhsY6Y1GznP-SAg4pft6xdHxGH-2GSHiLT-WrJgRGgo7w1FL3QNcnMaB0FRJHgy5z-b3NttD2cjkd8dD95PEM7dvirLfg9R83ibaUvwK0p5KUV20-tCvQJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+reactive+transport+in+sediments+subject+to+bioturbation+and+compaction&rft.jtitle=Geochimica+et+cosmochimica+acta&rft.au=Meysman%2C+Filip+JR&rft.au=Boudreau%2C+Bernard+P&rft.au=Middelburg%2C+Jack+J&rft.date=2005-07-01&rft.issn=0016-7037&rft.volume=69&rft.issue=14&rft.spage=3601&rft.epage=3617&rft_id=info:doi/10.1016%2Fj.gca.2005.01.004&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7037&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7037&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7037&client=summon |