Cation Exchange Reactions in Colloidal Branched Nanocrystals

Octapod-shaped colloidal nanocrystals composed of a central “core” region of cubic sphalerite CdSe and pods of hexagonal wurtzite CdS are subject to a cation exchange reaction in which Cd2+ ions are progressively exchanged by Cu+ ions. The reaction starts from the tip regions of the CdS pods and pro...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 5; no. 9; pp. 7176 - 7183
Main Authors Miszta, Karol, Dorfs, Dirk, Genovese, Alessandro, Kim, Mee Rahn, Manna, Liberato
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 27.09.2011
Subjects
Online AccessGet full text
ISSN1936-0851
1936-086X
1936-086X
DOI10.1021/nn201988w

Cover

Loading…
Abstract Octapod-shaped colloidal nanocrystals composed of a central “core” region of cubic sphalerite CdSe and pods of hexagonal wurtzite CdS are subject to a cation exchange reaction in which Cd2+ ions are progressively exchanged by Cu+ ions. The reaction starts from the tip regions of the CdS pods and proceeds toward the center of the nanocrystals. It preserves both the shape and the anionic lattices of the heterostructures. During the exchange, the hexagonal wurtzite CdS pods are converted gradually into pods of hexagonal Cu2S chalcocite. Therefore, the partial cation exchange reactions lead to the formation of a ternary nanostructure, consisting of an octapod in which the central core is still CdSe, while the pods have a segmented CdS/Cu2S composition. When the cation exchange reaches the core, the cubic sphalerite CdSe core is converted into a core of cubic Cu2–x Se berzelianite phase. Therefore fully exchanged octapods are composed of a core of Cu2–x Se and eight pods of Cu2S. All these structures are stable, and the epitaxial interfaces between the various domains are characterized by low lattice mismatch. The Cu2–x Se(core)/Cu2S(pods) octapod represents another example of a nanostructure in which branching is achieved by proper organization of cubic and hexagonal domains in a single nanocrystal.
AbstractList Octapod-shaped colloidal nanocrystals composed of a central “core” region of cubic sphalerite CdSe and pods of hexagonal wurtzite CdS are subject to a cation exchange reaction in which Cd2+ ions are progressively exchanged by Cu+ ions. The reaction starts from the tip regions of the CdS pods and proceeds toward the center of the nanocrystals. It preserves both the shape and the anionic lattices of the heterostructures. During the exchange, the hexagonal wurtzite CdS pods are converted gradually into pods of hexagonal Cu2S chalcocite. Therefore, the partial cation exchange reactions lead to the formation of a ternary nanostructure, consisting of an octapod in which the central core is still CdSe, while the pods have a segmented CdS/Cu2S composition. When the cation exchange reaches the core, the cubic sphalerite CdSe core is converted into a core of cubic Cu2–x Se berzelianite phase. Therefore fully exchanged octapods are composed of a core of Cu2–x Se and eight pods of Cu2S. All these structures are stable, and the epitaxial interfaces between the various domains are characterized by low lattice mismatch. The Cu2–x Se(core)/Cu2S(pods) octapod represents another example of a nanostructure in which branching is achieved by proper organization of cubic and hexagonal domains in a single nanocrystal.
Octapod-shaped colloidal nanocrystals composed of a central "core" region of cubic sphalerite CdSe and pods of hexagonal wurtzite CdS are subject to a cation exchange reaction in which Cd(2+) ions are progressively exchanged by Cu(+) ions. The reaction starts from the tip regions of the CdS pods and proceeds toward the center of the nanocrystals. It preserves both the shape and the anionic lattices of the heterostructures. During the exchange, the hexagonal wurtzite CdS pods are converted gradually into pods of hexagonal Cu(2)S chalcocite. Therefore, the partial cation exchange reactions lead to the formation of a ternary nanostructure, consisting of an octapod in which the central core is still CdSe, while the pods have a segmented CdS/Cu(2)S composition. When the cation exchange reaches the core, the cubic sphalerite CdSe core is converted into a core of cubic Cu(2-x)Se berzelianite phase. Therefore fully exchanged octapods are composed of a core of Cu(2-x)Se and eight pods of Cu(2)S. All these structures are stable, and the epitaxial interfaces between the various domains are characterized by low lattice mismatch. The Cu(2-x)Se(core)/Cu(2)S(pods) octapod represents another example of a nanostructure in which branching is achieved by proper organization of cubic and hexagonal domains in a single nanocrystal.
Octapod-shaped colloidal nanocrystals composed of a central "core" region of cubic sphalerite CdSe and pods of hexagonal wurtzite CdS are subject to a cation exchange reaction in which Cd super(2+) ions are progressively exchanged by Cu super(+) ions. The reaction starts from the tip regions of the CdS pods and proceeds toward the center of the nanocrystals. It preserves both the shape and the anionic lattices of the heterostructures. During the exchange, the hexagonal wurtzite CdS pods are converted gradually into pods of hexagonal Cu sub(2)S chalcocite. Therefore, the partial cation exchange reactions lead to the formation of a ternary nanostructure, consisting of an octapod in which the central core is still CdSe, while the pods have a segmented CdS/Cu sub(2)S composition. When the cation exchange reaches the core, the cubic sphalerite CdSe core is converted into a core of cubic Cu sub(2-x)Se berzelianite phase. Therefore fully exchanged octapods are composed of a core of Cu sub(2-x)Se and eight pods of Cu sub(2)S. All these structures are stable, and the epitaxial interfaces between the various domains are characterized by low lattice mismatch. The Cu sub(2-x)Se(core)/Cu sub(2)S(pods) octapod represents another example of a nanostructure in which branching is achieved by proper organization of cubic and hexagonal domains in a single nanocrystal.
Octapod-shaped colloidal nanocrystals composed of a central "core" region of cubic sphalerite CdSe and pods of hexagonal wurtzite CdS are subject to a cation exchange reaction in which Cd(2+) ions are progressively exchanged by Cu(+) ions. The reaction starts from the tip regions of the CdS pods and proceeds toward the center of the nanocrystals. It preserves both the shape and the anionic lattices of the heterostructures. During the exchange, the hexagonal wurtzite CdS pods are converted gradually into pods of hexagonal Cu(2)S chalcocite. Therefore, the partial cation exchange reactions lead to the formation of a ternary nanostructure, consisting of an octapod in which the central core is still CdSe, while the pods have a segmented CdS/Cu(2)S composition. When the cation exchange reaches the core, the cubic sphalerite CdSe core is converted into a core of cubic Cu(2-x)Se berzelianite phase. Therefore fully exchanged octapods are composed of a core of Cu(2-x)Se and eight pods of Cu(2)S. All these structures are stable, and the epitaxial interfaces between the various domains are characterized by low lattice mismatch. The Cu(2-x)Se(core)/Cu(2)S(pods) octapod represents another example of a nanostructure in which branching is achieved by proper organization of cubic and hexagonal domains in a single nanocrystal.Octapod-shaped colloidal nanocrystals composed of a central "core" region of cubic sphalerite CdSe and pods of hexagonal wurtzite CdS are subject to a cation exchange reaction in which Cd(2+) ions are progressively exchanged by Cu(+) ions. The reaction starts from the tip regions of the CdS pods and proceeds toward the center of the nanocrystals. It preserves both the shape and the anionic lattices of the heterostructures. During the exchange, the hexagonal wurtzite CdS pods are converted gradually into pods of hexagonal Cu(2)S chalcocite. Therefore, the partial cation exchange reactions lead to the formation of a ternary nanostructure, consisting of an octapod in which the central core is still CdSe, while the pods have a segmented CdS/Cu(2)S composition. When the cation exchange reaches the core, the cubic sphalerite CdSe core is converted into a core of cubic Cu(2-x)Se berzelianite phase. Therefore fully exchanged octapods are composed of a core of Cu(2-x)Se and eight pods of Cu(2)S. All these structures are stable, and the epitaxial interfaces between the various domains are characterized by low lattice mismatch. The Cu(2-x)Se(core)/Cu(2)S(pods) octapod represents another example of a nanostructure in which branching is achieved by proper organization of cubic and hexagonal domains in a single nanocrystal.
Author Dorfs, Dirk
Kim, Mee Rahn
Manna, Liberato
Genovese, Alessandro
Miszta, Karol
AuthorAffiliation Istituto Italiano di Tecnologia
AuthorAffiliation_xml – name: Istituto Italiano di Tecnologia
Author_xml – sequence: 1
  givenname: Karol
  surname: Miszta
  fullname: Miszta, Karol
– sequence: 2
  givenname: Dirk
  surname: Dorfs
  fullname: Dorfs, Dirk
– sequence: 3
  givenname: Alessandro
  surname: Genovese
  fullname: Genovese, Alessandro
– sequence: 4
  givenname: Mee Rahn
  surname: Kim
  fullname: Kim, Mee Rahn
– sequence: 5
  givenname: Liberato
  surname: Manna
  fullname: Manna, Liberato
  email: liberato.manna@iit.it
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21809824$$D View this record in MEDLINE/PubMed
BookMark eNp90M9LwzAUB_AgE_dDD_4D0ouoh7okbdIUvGiZP2AoiIK3kqWvrqNLZtKi--_N3NxBhqf3CJ_3knz7qKONBoSOCb4kmJKh1hSTVIjPPdQjacRDLPhbZ9sz0kV952YYs0Qk_AB1KRE4FTTuoatMNpXRwehLTaV-h-AZpFqduKDSQWbq2lSFrIMbK7WaQhE8Sm2UXbpG1u4Q7Ze-wNGmDtDr7egluw_HT3cP2fU4lDGJmpBGZao4K0EVqpikQBnDBfcvnkDMCCk5FyJiWMg0SQEnMQMgEQGuYsYL5T8xQGfrvQtrPlpwTT6vnIK6lhpM63KRxoIkNMJenv8rScIpZsxf7unJhraTORT5wlZzaZf5bzYeXKyBssY5C-WWEJyvcs-3uXs7_GNV1fwk21hZ1TsnTtcTUrl8ZlqrfYI73Dd-WI7d
CitedBy_id crossref_primary_10_1021_acs_jpcc_9b08372
crossref_primary_10_1021_ja5032634
crossref_primary_10_1021_acs_chemmater_0c00714
crossref_primary_10_1088_0953_8984_27_35_355801
crossref_primary_10_1021_acs_chemrev_6b00376
crossref_primary_10_1002_ange_201303480
crossref_primary_10_1016_j_materresbull_2014_05_033
crossref_primary_10_1021_nl304115r
crossref_primary_10_1021_acs_chemmater_5b01548
crossref_primary_10_1002_ange_201410053
crossref_primary_10_1021_acs_chemrev_2c00688
crossref_primary_10_1016_j_cej_2021_130958
crossref_primary_10_1051_fopen_2023007
crossref_primary_10_1021_acs_chemmater_3c01772
crossref_primary_10_1021_acsnano_4c05197
crossref_primary_10_1039_D0TA03115A
crossref_primary_10_1039_c3dt50803j
crossref_primary_10_1039_C3TA13982D
crossref_primary_10_1002_smll_201400524
crossref_primary_10_1002_ange_201108098
crossref_primary_10_1021_jacs_5b03868
crossref_primary_10_1002_celc_201300124
crossref_primary_10_1021_acs_chemmater_6b03425
crossref_primary_10_1021_nn303217q
crossref_primary_10_1002_adma_201503201
crossref_primary_10_1021_acs_jpcc_2c03862
crossref_primary_10_1515_zpch_2018_1148
crossref_primary_10_1016_j_matt_2019_12_024
crossref_primary_10_1021_acs_nanolett_4c01285
crossref_primary_10_1021_acs_chemmater_0c04938
crossref_primary_10_1021_acs_chemrev_5b00739
crossref_primary_10_1016_j_jcis_2015_10_020
crossref_primary_10_1021_acs_chemmater_3c01900
crossref_primary_10_1021_jacs_5b00041
crossref_primary_10_1021_cm500431m
crossref_primary_10_1039_C4SC00635F
crossref_primary_10_1002_cphc_201500976
crossref_primary_10_1002_anie_201303480
crossref_primary_10_1021_acs_jpclett_1c04232
crossref_primary_10_1021_acs_chemrev_6b00169
crossref_primary_10_1039_C3CS60265F
crossref_primary_10_1016_j_jallcom_2018_11_105
crossref_primary_10_1021_nn400894d
crossref_primary_10_1021_ja4072207
crossref_primary_10_1039_C8TA11154E
crossref_primary_10_1039_C8RA02403K
crossref_primary_10_1021_cm202796s
crossref_primary_10_1021_jp402939e
crossref_primary_10_1039_c3nr03160h
crossref_primary_10_1039_c2jm30788j
crossref_primary_10_1039_C8CC03498B
crossref_primary_10_1021_acs_chemmater_8b05363
crossref_primary_10_1021_acs_chemmater_8b01455
crossref_primary_10_1021_nn3060219
crossref_primary_10_1007_s40820_024_01378_5
crossref_primary_10_1002_anie_201108098
crossref_primary_10_1016_j_jallcom_2019_01_131
crossref_primary_10_1021_acs_jpcc_3c01950
crossref_primary_10_1039_c3ta15191c
crossref_primary_10_1039_D3TC03556E
crossref_primary_10_1002_slct_201902171
crossref_primary_10_1039_D4TC01102C
crossref_primary_10_1016_j_nxmate_2023_100032
crossref_primary_10_1002_adma_202402912
crossref_primary_10_1007_s40843_016_5112_0
crossref_primary_10_1021_ja511010q
crossref_primary_10_1021_nn402931y
crossref_primary_10_1038_srep30604
crossref_primary_10_1039_C9QI00116F
crossref_primary_10_1021_jz300300g
crossref_primary_10_1039_C6NR01287F
crossref_primary_10_1007_s11664_021_08991_9
crossref_primary_10_1021_nn3048846
crossref_primary_10_1039_C3TC32312A
crossref_primary_10_1039_c3tc32049a
crossref_primary_10_1021_acs_cgd_8b01289
crossref_primary_10_1021_ar3002409
crossref_primary_10_1021_nl202927a
crossref_primary_10_1038_ncomms11503
crossref_primary_10_1002_adma_201804294
crossref_primary_10_1021_acssuschemeng_9b06802
crossref_primary_10_1039_C4NR02114B
crossref_primary_10_1002_adma_201302400
crossref_primary_10_1021_jacs_5b06379
crossref_primary_10_1039_C7NJ00801E
crossref_primary_10_1039_C5RA17591G
crossref_primary_10_1021_cm5008608
crossref_primary_10_1002_anie_201410053
crossref_primary_10_1021_acsami_6b07768
crossref_primary_10_1039_D0TC03540H
crossref_primary_10_1021_cg301751c
crossref_primary_10_1016_j_jssc_2016_10_026
crossref_primary_10_1021_nl500349j
crossref_primary_10_1002_asia_201300078
crossref_primary_10_1021_ja508161c
crossref_primary_10_1016_j_snb_2025_137283
crossref_primary_10_1002_anie_201210277
crossref_primary_10_1039_C4RA05275G
crossref_primary_10_1039_D2NJ03442E
crossref_primary_10_1021_acs_langmuir_9b01285
crossref_primary_10_1021_acs_chemmater_6b04011
crossref_primary_10_1080_05704928_2019_1684303
crossref_primary_10_1039_C6NR02579J
crossref_primary_10_1002_ange_201210277
crossref_primary_10_1039_D0TB00182A
crossref_primary_10_1002_aenm_202403574
crossref_primary_10_1039_C2CS35241A
crossref_primary_10_1039_D3CS01095C
crossref_primary_10_1039_C2NR32879H
crossref_primary_10_1021_la3027573
Cites_doi 10.1021/nn2001454
10.1016/S0169-4332(01)00357-9
10.1021/jp0709407
10.1021/nn8004747
10.1063/1.2786993
10.1021/nl104398v
10.1021/nl034815s
10.1016/S0022-3697(03)00272-5
10.1021/ja105482k
10.1021/nl103400a
10.1002/adma.200501653
10.1021/nl0518728
10.1021/ja108482a
10.1126/science.271.5251.933
10.1021/jp073474u
10.1021/ja802187c
10.1007/s10008-003-0427-3
10.1021/ja103223x
10.1021/nn9018575
10.1021/jp0445573
10.1126/science.1103755
10.1021/ja1090589
10.1021/ie0715106
10.1021/ja809854q
10.1021/cm8029399
10.1021/nl102539a
10.1021/nl102560b
10.1038/nmat902
10.1016/j.snb.2009.11.009
10.1021/nl050482i
10.1021/jp101816c
10.1021/jp804776j
10.1021/ja103956p
10.1021/ja807874e
10.1021/ja016220+
10.1021/nl9017572
10.1021/nn101272y
10.1002/anie.200705604
10.1021/nl0717661
10.1016/S0040-6090(97)00476-8
10.1021/jp0645014
10.1016/0040-6090(94)90801-X
10.1039/c0gc00236d
10.1021/nn1002584
10.1021/la0632070
10.1021/cr900137k
10.1021/ja104126u
10.1126/science.1142593
10.1021/nl903059c
10.1021/ja1117528
ContentType Journal Article
Copyright Copyright © 2011 American Chemical Society
2011 American Chemical Society
Copyright_xml – notice: Copyright © 2011 American Chemical Society
– notice: 2011 American Chemical Society
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1021/nn201988w
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList
PubMed
Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 7183
ExternalDocumentID 21809824
10_1021_nn201988w
b412714096
Genre Journal Article
GrantInformation_xml – fundername: European Research Council
  grantid: 240111
GroupedDBID -
23M
4.4
53G
55A
5GY
5VS
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
LG6
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-a413t-23f9c65fecdcdb9e2550d6019be4511f66883508a979e0745ee131e6c456dc193
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Thu Jul 10 18:34:24 EDT 2025
Fri Jul 11 03:21:09 EDT 2025
Sat May 31 02:06:34 EDT 2025
Thu Apr 24 22:51:52 EDT 2025
Tue Jul 01 03:03:56 EDT 2025
Thu Aug 27 13:43:11 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords copper selenide
branched nanostructures
nanocrystals
copper sulfide
cation exchange
Language English
License 2011 American Chemical Society
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a413t-23f9c65fecdcdb9e2550d6019be4511f66883508a979e0745ee131e6c456dc193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 21809824
PQID 1762055601
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_894817230
proquest_miscellaneous_1762055601
pubmed_primary_21809824
crossref_primary_10_1021_nn201988w
crossref_citationtrail_10_1021_nn201988w
acs_journals_10_1021_nn201988w
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-09-27
PublicationDateYYYYMMDD 2011-09-27
PublicationDate_xml – month: 09
  year: 2011
  text: 2011-09-27
  day: 27
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2011
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Alivisatos A. P. (ref8/cit8) 1996; 271
Deka S. (ref51/cit51) 2010; 132
Sadtler B. (ref39/cit39) 2009; 131
Dloczik L. (ref34/cit34) 2004; 8
Huang X. (ref13/cit13) 2011; 133
Zhong X. H. (ref42/cit42) 2007
Dorn A. (ref32/cit32) 2010; 10
Son D. H. (ref46/cit46) 2004; 306
Zhong H. (ref3/cit3) 2007; 111
Dong C. (ref30/cit30) 2008; 3
Zhang H. T. (ref15/cit15) 2011; 11
Wark S. E. (ref28/cit28) 2008; 130
Fu W. (ref10/cit10) 2011; 11
Lubeck C. R. (ref47/cit47) 2006; 18
Smith A. M. (ref35/cit35) 2011; 133
Zhang B. (ref27/cit27) 2009; 10
Rivest J. B. (ref48/cit48) 2011; 5
Yu J. (ref23/cit23) 2010; 12
Song J. H. (ref33/cit33) 2001; 123
Lambert K. (ref40/cit40) 2009; 21
Yang Y. (ref7/cit7) 2010; 132
Choi C. L. (ref4/cit4) 2009; 9
Ristova M. (ref21/cit21) 2001; 181
Matsuda T. (ref37/cit37) 2010; 132
Fiore A. (ref19/cit19) 2009; 131
Calestani D. (ref6/cit6) 2010; 144
Estrada C. A. (ref20/cit20) 1994; 247
Ristova M. (ref22/cit22) 1998; 315
Camargo P. H. C. (ref45/cit45) 2007; 23
Huang T. (ref11/cit11) 2010; 4
Kashida S. (ref50/cit50) 2003; 64
Talapin D. V. (ref1/cit1) 2009; 110
Carbone L. (ref17/cit17) 2007; 7
Robinson R. D. (ref43/cit43) 2007; 317
Ethayaraja M. (ref25/cit25) 2008; 47
Yu J. (ref26/cit26) 2010; 114
Chen W. H. (ref41/cit41) 2008; 112
Moon G. D. (ref24/cit24) 2010; 4
Kanaras A. G. (ref14/cit14) 2005; 5
Regulacio M. D. (ref36/cit36) 2011; 133
Manna L. (ref49/cit49) 2005; 109
Kovalenko M. V. (ref31/cit31) 2008; 47
Chan E. M. (ref44/cit44) 2007; 111
Manna L. (ref9/cit9) 2003; 2
Jeong U. (ref29/cit29) 2005; 5
Fang L. (ref5/cit5) 2007; 127
Talapin D. V. (ref18/cit18) 2003; 3
Amirav L. (ref16/cit16) 2006; 110
Deka S. (ref12/cit12) 2010; 10
Jain P. K. (ref38/cit38) 2010; 132
Goodman M. D. (ref2/cit2) 2010; 4
References_xml – volume: 5
  start-page: 3811
  year: 2011
  ident: ref48/cit48
  publication-title: ACS Nano
  doi: 10.1021/nn2001454
– volume: 181
  start-page: 68
  year: 2001
  ident: ref21/cit21
  publication-title: Adv. Surf. Sci.
  doi: 10.1016/S0169-4332(01)00357-9
– volume: 111
  start-page: 6538
  year: 2007
  ident: ref3/cit3
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp0709407
– volume: 3
  start-page: 123
  year: 2008
  ident: ref30/cit30
  publication-title: ACS Nano
  doi: 10.1021/nn8004747
– volume: 127
  start-page: 184704
  year: 2007
  ident: ref5/cit5
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2786993
– volume: 11
  start-page: 1913
  year: 2011
  ident: ref10/cit10
  publication-title: Nano Lett.
  doi: 10.1021/nl104398v
– volume: 3
  start-page: 1677
  year: 2003
  ident: ref18/cit18
  publication-title: Nano Lett.
  doi: 10.1021/nl034815s
– start-page: 18
  year: 2007
  ident: ref42/cit42
  publication-title: Nanotechnology
– volume: 64
  start-page: 2357
  year: 2003
  ident: ref50/cit50
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/S0022-3697(03)00272-5
– volume: 132
  start-page: 12206
  year: 2010
  ident: ref37/cit37
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja105482k
– volume: 11
  start-page: 188
  year: 2011
  ident: ref15/cit15
  publication-title: Nano Lett.
  doi: 10.1021/nl103400a
– volume: 18
  start-page: 781
  year: 2006
  ident: ref47/cit47
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200501653
– volume: 5
  start-page: 2164
  year: 2005
  ident: ref14/cit14
  publication-title: Nano Lett.
  doi: 10.1021/nl0518728
– volume: 133
  start-page: 24
  year: 2011
  ident: ref35/cit35
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja108482a
– volume: 271
  start-page: 933
  year: 1996
  ident: ref8/cit8
  publication-title: Science
  doi: 10.1126/science.271.5251.933
– volume: 111
  start-page: 12210
  year: 2007
  ident: ref44/cit44
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp073474u
– volume: 130
  start-page: 9550
  year: 2008
  ident: ref28/cit28
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja802187c
– volume: 8
  start-page: 142
  year: 2004
  ident: ref34/cit34
  publication-title: J. Solid State Electrochem.
  doi: 10.1007/s10008-003-0427-3
– volume: 132
  start-page: 8912
  year: 2010
  ident: ref51/cit51
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja103223x
– volume: 4
  start-page: 2307
  year: 2010
  ident: ref24/cit24
  publication-title: ACS Nano
  doi: 10.1021/nn9018575
– volume: 109
  start-page: 6183
  year: 2005
  ident: ref49/cit49
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0445573
– volume: 306
  start-page: 1009
  year: 2004
  ident: ref46/cit46
  publication-title: Science
  doi: 10.1126/science.1103755
– volume: 133
  start-page: 2052
  year: 2011
  ident: ref36/cit36
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1090589
– volume: 47
  start-page: 5982
  year: 2008
  ident: ref25/cit25
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie0715106
– volume: 131
  start-page: 5285
  year: 2009
  ident: ref39/cit39
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja809854q
– volume: 21
  start-page: 778
  year: 2009
  ident: ref40/cit40
  publication-title: Chem. Mater.
  doi: 10.1021/cm8029399
– volume: 10
  start-page: 3770
  year: 2010
  ident: ref12/cit12
  publication-title: Nano Lett.
  doi: 10.1021/nl102539a
– volume: 10
  start-page: 3948
  year: 2010
  ident: ref32/cit32
  publication-title: Nano Lett.
  doi: 10.1021/nl102560b
– volume: 2
  start-page: 382
  year: 2003
  ident: ref9/cit9
  publication-title: Nat. Mater.
  doi: 10.1038/nmat902
– volume: 144
  start-page: 472
  year: 2010
  ident: ref6/cit6
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2009.11.009
– volume: 5
  start-page: 937
  year: 2005
  ident: ref29/cit29
  publication-title: Nano Lett.
  doi: 10.1021/nl050482i
– volume: 114
  start-page: 13642
  year: 2010
  ident: ref26/cit26
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp101816c
– volume: 112
  start-page: 17471
  year: 2008
  ident: ref41/cit41
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp804776j
– volume: 132
  start-page: 13381
  year: 2010
  ident: ref7/cit7
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja103956p
– volume: 131
  start-page: 2274
  year: 2009
  ident: ref19/cit19
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja807874e
– volume: 123
  start-page: 9714
  year: 2001
  ident: ref33/cit33
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja016220+
– volume: 9
  start-page: 3544
  year: 2009
  ident: ref4/cit4
  publication-title: Nano Lett.
  doi: 10.1021/nl9017572
– volume: 4
  start-page: 4707
  year: 2010
  ident: ref11/cit11
  publication-title: ACS Nano
  doi: 10.1021/nn101272y
– volume: 47
  start-page: 3029
  year: 2008
  ident: ref31/cit31
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200705604
– volume: 7
  start-page: 2942
  year: 2007
  ident: ref17/cit17
  publication-title: Nano Lett.
  doi: 10.1021/nl0717661
– volume: 315
  start-page: 301
  year: 1998
  ident: ref22/cit22
  publication-title: Thin Solid Films
  doi: 10.1016/S0040-6090(97)00476-8
– volume: 110
  start-page: 20922
  year: 2006
  ident: ref16/cit16
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0645014
– volume: 247
  start-page: 208
  year: 1994
  ident: ref20/cit20
  publication-title: Thin Solid Films
  doi: 10.1016/0040-6090(94)90801-X
– volume: 12
  start-page: 1611
  year: 2010
  ident: ref23/cit23
  publication-title: Green Chem.
  doi: 10.1039/c0gc00236d
– volume: 4
  start-page: 2043
  year: 2010
  ident: ref2/cit2
  publication-title: ACS Nano
  doi: 10.1021/nn1002584
– volume: 23
  start-page: 2985
  year: 2007
  ident: ref45/cit45
  publication-title: Langmuir
  doi: 10.1021/la0632070
– volume: 110
  start-page: 389
  year: 2009
  ident: ref1/cit1
  publication-title: Chem. Rev.
  doi: 10.1021/cr900137k
– volume: 132
  start-page: 9997
  year: 2010
  ident: ref38/cit38
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja104126u
– volume: 317
  start-page: 355
  year: 2007
  ident: ref43/cit43
  publication-title: Science
  doi: 10.1126/science.1142593
– volume: 10
  start-page: 149
  year: 2009
  ident: ref27/cit27
  publication-title: Nano Lett.
  doi: 10.1021/nl903059c
– volume: 133
  start-page: 4718
  year: 2011
  ident: ref13/cit13
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1117528
SSID ssj0057876
Score 2.389424
Snippet Octapod-shaped colloidal nanocrystals composed of a central “core” region of cubic sphalerite CdSe and pods of hexagonal wurtzite CdS are subject to a cation...
Octapod-shaped colloidal nanocrystals composed of a central "core" region of cubic sphalerite CdSe and pods of hexagonal wurtzite CdS are subject to a cation...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7176
SubjectTerms Cadmium selenides
Cation exchanging
Copper sulfides
Exchange
Intermetallics
Ion exchangers
Nanocrystals
Nanostructure
Wurtzite
Title Cation Exchange Reactions in Colloidal Branched Nanocrystals
URI http://dx.doi.org/10.1021/nn201988w
https://www.ncbi.nlm.nih.gov/pubmed/21809824
https://www.proquest.com/docview/1762055601
https://www.proquest.com/docview/894817230
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTsMwEB2VcoED-1KWKiwHLimNEzu2xAVKqwoJDkCl3qJ4iUCgFHURy9czTpqqiBbukzgZj_3eeOxngNPA10ogDruKEuoGsaIuZ1q5lPpGMpL4KtPpvr1j7U5w06XdEpzMqeAT7zxNEaME5-8LsEgYDl7LfxoPxXRrI47lpWNMjZE_FPJB049a6FGDn9Azh09muNJahevidE6-neSlNhrKmvr6Ldb41yevwcqYVzqXeSCsQ8mkG7A8pTa4CReNrBec5kd-2te5N_mphoHznDp2BaH3rPEdV_aujSejHZx5e6r_ifzxdbAFnVbzsdF2x5cnuDHi0tAlfiIUo4lRWmkpDKYOdY3Zl5DGSpIljHEkX3Uei1AY5BHUGM_3DFPIqLRCb25DOe2lZhccbSiToeSUszgIRRjHdZZwKbXkAiGWVqCK3o3GwT-Isro28aKJGypwVjg-UmPpcXsDxuss0-OJ6VuutzHL6KjovQhHgy1xxKnpjbBpnNutPFDdq4Azx4ZbgZoQU68K7OQ9P2mJWDUzToK9__5oH5byxWXhkvAAysP-yBwiOxnKahad3_cx3S4
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xHIAD-1LWgDhwSWkWO7bEpVSgAm0PQKXeoniJqEApalqxfD3jJC2LqOA-sZ3x2PPGY78BOPY9JTn6YVsSl9h-JInNqJI2IZ4W1I09mfF0N1u03vavO6RT0OSYtzA4iBRbSrMk_ie7gHOaJOiqOGMv0zCLIMQ11lyt3Y12XWN4NM8gY4SMMGLEIvT1U-OBZPrdA02AlZl7uVzK6xRlA8tulTyWhwNRlu8_OBv_N_JlWCxQplXNzWIFpnSyCgtfuAfX4KyWzYl18Zq__bVudf7GIbW6iWXOE3pdhW2cm8obD1pZuA_3ZP8N0eRTug7ty4v7Wt0uSinYEXqpge16MZeUxFoqqQTXGEhUFMZiXGhDUBZTyhCKVVjEA64RVRCtHc_RVCK-UhKVugEzSS_RW2ApTagIBCOMRn7Agyiq0JgJoQTj6HBJCfZRC2GxFNIwy3K7TjhWQwlORvoPZUFEbuphPP0mejQWfc7ZN34TOhxNYohrwyQ8okT3htg17vSGLKjilMCaIMMMXU2AgVgJNnMDGPfkGm4z5vrbf_3RAczV75uNsHHVutmB-fzYmdtusAszg_5Q7yFuGYj9zGA_ADyf5Y8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB1BkRAc2JeyBsSBS6BZ7NgSFyitWAsCKnGL4iUCgdKKtGL5esZJWhXUCu4T27HHfm889jPAnu8pyRGHbUlcYvuRJDajStqEeFpQN_ZkptN93aBnTf_ikTwWgaK5C4ONSLGkNEvim1ndVnGhMOAcJgnCFWfsfRwmTLrOePRx9b638hrno3kWGaNkpBI9JaHBTw0KyfQnCo2glhnE1Gfhpt-47GTJy0G3Iw7k1y_dxv-3fg5mCrZpHefuMQ9jOlmA6QENwkU4qmZjY9U-8jvA1p3O7zqk1nNimX2F1rPCMk7MCxxPWlm4Hrfk2yeyytd0CZr12kP1zC6eVLAjRKuO7Xoxl5TEWiqpBNcYUFQUxmRcaCNUFlPKkJJVWMQDrpFdEK0dz9FUIs9SEjt2GUpJK9GrYClNqAgEI4xGfsCDKKrQmAmhBOMIvKQMW9gTYTEl0jDLdrtO2O-GMuz3xiCUhSC5eRfjdZjpbt-0natwDDPa6Q1kiHPEJD6iRLe6WDWu-EY0qOKUwRphw4xsTYABWRlWcifo1-QajTPm-mt__dE2TN6e1sOr88blOkzlu8_cdoMNKHXeunoT6UtHbGU--w3TnegS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cation+Exchange+Reactions+in+Colloidal+Branched+Nanocrystals&rft.jtitle=ACS+nano&rft.au=Miszta%2C+Karol&rft.au=Dorfs%2C+Dirk&rft.au=Genovese%2C+Alessandro&rft.au=Kim%2C+Mee+Rahn&rft.date=2011-09-27&rft.pub=American+Chemical+Society&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=5&rft.issue=9&rft.spage=7176&rft.epage=7183&rft_id=info:doi/10.1021%2Fnn201988w&rft.externalDocID=b412714096
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon