Cation Exchange Reactions in Colloidal Branched Nanocrystals
Octapod-shaped colloidal nanocrystals composed of a central “core” region of cubic sphalerite CdSe and pods of hexagonal wurtzite CdS are subject to a cation exchange reaction in which Cd2+ ions are progressively exchanged by Cu+ ions. The reaction starts from the tip regions of the CdS pods and pro...
Saved in:
Published in | ACS nano Vol. 5; no. 9; pp. 7176 - 7183 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
27.09.2011
|
Subjects | |
Online Access | Get full text |
ISSN | 1936-0851 1936-086X 1936-086X |
DOI | 10.1021/nn201988w |
Cover
Loading…
Abstract | Octapod-shaped colloidal nanocrystals composed of a central “core” region of cubic sphalerite CdSe and pods of hexagonal wurtzite CdS are subject to a cation exchange reaction in which Cd2+ ions are progressively exchanged by Cu+ ions. The reaction starts from the tip regions of the CdS pods and proceeds toward the center of the nanocrystals. It preserves both the shape and the anionic lattices of the heterostructures. During the exchange, the hexagonal wurtzite CdS pods are converted gradually into pods of hexagonal Cu2S chalcocite. Therefore, the partial cation exchange reactions lead to the formation of a ternary nanostructure, consisting of an octapod in which the central core is still CdSe, while the pods have a segmented CdS/Cu2S composition. When the cation exchange reaches the core, the cubic sphalerite CdSe core is converted into a core of cubic Cu2–x Se berzelianite phase. Therefore fully exchanged octapods are composed of a core of Cu2–x Se and eight pods of Cu2S. All these structures are stable, and the epitaxial interfaces between the various domains are characterized by low lattice mismatch. The Cu2–x Se(core)/Cu2S(pods) octapod represents another example of a nanostructure in which branching is achieved by proper organization of cubic and hexagonal domains in a single nanocrystal. |
---|---|
AbstractList | Octapod-shaped colloidal nanocrystals composed of a central “core” region of cubic sphalerite CdSe and pods of hexagonal wurtzite CdS are subject to a cation exchange reaction in which Cd2+ ions are progressively exchanged by Cu+ ions. The reaction starts from the tip regions of the CdS pods and proceeds toward the center of the nanocrystals. It preserves both the shape and the anionic lattices of the heterostructures. During the exchange, the hexagonal wurtzite CdS pods are converted gradually into pods of hexagonal Cu2S chalcocite. Therefore, the partial cation exchange reactions lead to the formation of a ternary nanostructure, consisting of an octapod in which the central core is still CdSe, while the pods have a segmented CdS/Cu2S composition. When the cation exchange reaches the core, the cubic sphalerite CdSe core is converted into a core of cubic Cu2–x Se berzelianite phase. Therefore fully exchanged octapods are composed of a core of Cu2–x Se and eight pods of Cu2S. All these structures are stable, and the epitaxial interfaces between the various domains are characterized by low lattice mismatch. The Cu2–x Se(core)/Cu2S(pods) octapod represents another example of a nanostructure in which branching is achieved by proper organization of cubic and hexagonal domains in a single nanocrystal. Octapod-shaped colloidal nanocrystals composed of a central "core" region of cubic sphalerite CdSe and pods of hexagonal wurtzite CdS are subject to a cation exchange reaction in which Cd(2+) ions are progressively exchanged by Cu(+) ions. The reaction starts from the tip regions of the CdS pods and proceeds toward the center of the nanocrystals. It preserves both the shape and the anionic lattices of the heterostructures. During the exchange, the hexagonal wurtzite CdS pods are converted gradually into pods of hexagonal Cu(2)S chalcocite. Therefore, the partial cation exchange reactions lead to the formation of a ternary nanostructure, consisting of an octapod in which the central core is still CdSe, while the pods have a segmented CdS/Cu(2)S composition. When the cation exchange reaches the core, the cubic sphalerite CdSe core is converted into a core of cubic Cu(2-x)Se berzelianite phase. Therefore fully exchanged octapods are composed of a core of Cu(2-x)Se and eight pods of Cu(2)S. All these structures are stable, and the epitaxial interfaces between the various domains are characterized by low lattice mismatch. The Cu(2-x)Se(core)/Cu(2)S(pods) octapod represents another example of a nanostructure in which branching is achieved by proper organization of cubic and hexagonal domains in a single nanocrystal. Octapod-shaped colloidal nanocrystals composed of a central "core" region of cubic sphalerite CdSe and pods of hexagonal wurtzite CdS are subject to a cation exchange reaction in which Cd super(2+) ions are progressively exchanged by Cu super(+) ions. The reaction starts from the tip regions of the CdS pods and proceeds toward the center of the nanocrystals. It preserves both the shape and the anionic lattices of the heterostructures. During the exchange, the hexagonal wurtzite CdS pods are converted gradually into pods of hexagonal Cu sub(2)S chalcocite. Therefore, the partial cation exchange reactions lead to the formation of a ternary nanostructure, consisting of an octapod in which the central core is still CdSe, while the pods have a segmented CdS/Cu sub(2)S composition. When the cation exchange reaches the core, the cubic sphalerite CdSe core is converted into a core of cubic Cu sub(2-x)Se berzelianite phase. Therefore fully exchanged octapods are composed of a core of Cu sub(2-x)Se and eight pods of Cu sub(2)S. All these structures are stable, and the epitaxial interfaces between the various domains are characterized by low lattice mismatch. The Cu sub(2-x)Se(core)/Cu sub(2)S(pods) octapod represents another example of a nanostructure in which branching is achieved by proper organization of cubic and hexagonal domains in a single nanocrystal. Octapod-shaped colloidal nanocrystals composed of a central "core" region of cubic sphalerite CdSe and pods of hexagonal wurtzite CdS are subject to a cation exchange reaction in which Cd(2+) ions are progressively exchanged by Cu(+) ions. The reaction starts from the tip regions of the CdS pods and proceeds toward the center of the nanocrystals. It preserves both the shape and the anionic lattices of the heterostructures. During the exchange, the hexagonal wurtzite CdS pods are converted gradually into pods of hexagonal Cu(2)S chalcocite. Therefore, the partial cation exchange reactions lead to the formation of a ternary nanostructure, consisting of an octapod in which the central core is still CdSe, while the pods have a segmented CdS/Cu(2)S composition. When the cation exchange reaches the core, the cubic sphalerite CdSe core is converted into a core of cubic Cu(2-x)Se berzelianite phase. Therefore fully exchanged octapods are composed of a core of Cu(2-x)Se and eight pods of Cu(2)S. All these structures are stable, and the epitaxial interfaces between the various domains are characterized by low lattice mismatch. The Cu(2-x)Se(core)/Cu(2)S(pods) octapod represents another example of a nanostructure in which branching is achieved by proper organization of cubic and hexagonal domains in a single nanocrystal.Octapod-shaped colloidal nanocrystals composed of a central "core" region of cubic sphalerite CdSe and pods of hexagonal wurtzite CdS are subject to a cation exchange reaction in which Cd(2+) ions are progressively exchanged by Cu(+) ions. The reaction starts from the tip regions of the CdS pods and proceeds toward the center of the nanocrystals. It preserves both the shape and the anionic lattices of the heterostructures. During the exchange, the hexagonal wurtzite CdS pods are converted gradually into pods of hexagonal Cu(2)S chalcocite. Therefore, the partial cation exchange reactions lead to the formation of a ternary nanostructure, consisting of an octapod in which the central core is still CdSe, while the pods have a segmented CdS/Cu(2)S composition. When the cation exchange reaches the core, the cubic sphalerite CdSe core is converted into a core of cubic Cu(2-x)Se berzelianite phase. Therefore fully exchanged octapods are composed of a core of Cu(2-x)Se and eight pods of Cu(2)S. All these structures are stable, and the epitaxial interfaces between the various domains are characterized by low lattice mismatch. The Cu(2-x)Se(core)/Cu(2)S(pods) octapod represents another example of a nanostructure in which branching is achieved by proper organization of cubic and hexagonal domains in a single nanocrystal. |
Author | Dorfs, Dirk Kim, Mee Rahn Manna, Liberato Genovese, Alessandro Miszta, Karol |
AuthorAffiliation | Istituto Italiano di Tecnologia |
AuthorAffiliation_xml | – name: Istituto Italiano di Tecnologia |
Author_xml | – sequence: 1 givenname: Karol surname: Miszta fullname: Miszta, Karol – sequence: 2 givenname: Dirk surname: Dorfs fullname: Dorfs, Dirk – sequence: 3 givenname: Alessandro surname: Genovese fullname: Genovese, Alessandro – sequence: 4 givenname: Mee Rahn surname: Kim fullname: Kim, Mee Rahn – sequence: 5 givenname: Liberato surname: Manna fullname: Manna, Liberato email: liberato.manna@iit.it |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21809824$$D View this record in MEDLINE/PubMed |
BookMark | eNp90M9LwzAUB_AgE_dDD_4D0ouoh7okbdIUvGiZP2AoiIK3kqWvrqNLZtKi--_N3NxBhqf3CJ_3knz7qKONBoSOCb4kmJKh1hSTVIjPPdQjacRDLPhbZ9sz0kV952YYs0Qk_AB1KRE4FTTuoatMNpXRwehLTaV-h-AZpFqduKDSQWbq2lSFrIMbK7WaQhE8Sm2UXbpG1u4Q7Ze-wNGmDtDr7egluw_HT3cP2fU4lDGJmpBGZao4K0EVqpikQBnDBfcvnkDMCCk5FyJiWMg0SQEnMQMgEQGuYsYL5T8xQGfrvQtrPlpwTT6vnIK6lhpM63KRxoIkNMJenv8rScIpZsxf7unJhraTORT5wlZzaZf5bzYeXKyBssY5C-WWEJyvcs-3uXs7_GNV1fwk21hZ1TsnTtcTUrl8ZlqrfYI73Dd-WI7d |
CitedBy_id | crossref_primary_10_1021_acs_jpcc_9b08372 crossref_primary_10_1021_ja5032634 crossref_primary_10_1021_acs_chemmater_0c00714 crossref_primary_10_1088_0953_8984_27_35_355801 crossref_primary_10_1021_acs_chemrev_6b00376 crossref_primary_10_1002_ange_201303480 crossref_primary_10_1016_j_materresbull_2014_05_033 crossref_primary_10_1021_nl304115r crossref_primary_10_1021_acs_chemmater_5b01548 crossref_primary_10_1002_ange_201410053 crossref_primary_10_1021_acs_chemrev_2c00688 crossref_primary_10_1016_j_cej_2021_130958 crossref_primary_10_1051_fopen_2023007 crossref_primary_10_1021_acs_chemmater_3c01772 crossref_primary_10_1021_acsnano_4c05197 crossref_primary_10_1039_D0TA03115A crossref_primary_10_1039_c3dt50803j crossref_primary_10_1039_C3TA13982D crossref_primary_10_1002_smll_201400524 crossref_primary_10_1002_ange_201108098 crossref_primary_10_1021_jacs_5b03868 crossref_primary_10_1002_celc_201300124 crossref_primary_10_1021_acs_chemmater_6b03425 crossref_primary_10_1021_nn303217q crossref_primary_10_1002_adma_201503201 crossref_primary_10_1021_acs_jpcc_2c03862 crossref_primary_10_1515_zpch_2018_1148 crossref_primary_10_1016_j_matt_2019_12_024 crossref_primary_10_1021_acs_nanolett_4c01285 crossref_primary_10_1021_acs_chemmater_0c04938 crossref_primary_10_1021_acs_chemrev_5b00739 crossref_primary_10_1016_j_jcis_2015_10_020 crossref_primary_10_1021_acs_chemmater_3c01900 crossref_primary_10_1021_jacs_5b00041 crossref_primary_10_1021_cm500431m crossref_primary_10_1039_C4SC00635F crossref_primary_10_1002_cphc_201500976 crossref_primary_10_1002_anie_201303480 crossref_primary_10_1021_acs_jpclett_1c04232 crossref_primary_10_1021_acs_chemrev_6b00169 crossref_primary_10_1039_C3CS60265F crossref_primary_10_1016_j_jallcom_2018_11_105 crossref_primary_10_1021_nn400894d crossref_primary_10_1021_ja4072207 crossref_primary_10_1039_C8TA11154E crossref_primary_10_1039_C8RA02403K crossref_primary_10_1021_cm202796s crossref_primary_10_1021_jp402939e crossref_primary_10_1039_c3nr03160h crossref_primary_10_1039_c2jm30788j crossref_primary_10_1039_C8CC03498B crossref_primary_10_1021_acs_chemmater_8b05363 crossref_primary_10_1021_acs_chemmater_8b01455 crossref_primary_10_1021_nn3060219 crossref_primary_10_1007_s40820_024_01378_5 crossref_primary_10_1002_anie_201108098 crossref_primary_10_1016_j_jallcom_2019_01_131 crossref_primary_10_1021_acs_jpcc_3c01950 crossref_primary_10_1039_c3ta15191c crossref_primary_10_1039_D3TC03556E crossref_primary_10_1002_slct_201902171 crossref_primary_10_1039_D4TC01102C crossref_primary_10_1016_j_nxmate_2023_100032 crossref_primary_10_1002_adma_202402912 crossref_primary_10_1007_s40843_016_5112_0 crossref_primary_10_1021_ja511010q crossref_primary_10_1021_nn402931y crossref_primary_10_1038_srep30604 crossref_primary_10_1039_C9QI00116F crossref_primary_10_1021_jz300300g crossref_primary_10_1039_C6NR01287F crossref_primary_10_1007_s11664_021_08991_9 crossref_primary_10_1021_nn3048846 crossref_primary_10_1039_C3TC32312A crossref_primary_10_1039_c3tc32049a crossref_primary_10_1021_acs_cgd_8b01289 crossref_primary_10_1021_ar3002409 crossref_primary_10_1021_nl202927a crossref_primary_10_1038_ncomms11503 crossref_primary_10_1002_adma_201804294 crossref_primary_10_1021_acssuschemeng_9b06802 crossref_primary_10_1039_C4NR02114B crossref_primary_10_1002_adma_201302400 crossref_primary_10_1021_jacs_5b06379 crossref_primary_10_1039_C7NJ00801E crossref_primary_10_1039_C5RA17591G crossref_primary_10_1021_cm5008608 crossref_primary_10_1002_anie_201410053 crossref_primary_10_1021_acsami_6b07768 crossref_primary_10_1039_D0TC03540H crossref_primary_10_1021_cg301751c crossref_primary_10_1016_j_jssc_2016_10_026 crossref_primary_10_1021_nl500349j crossref_primary_10_1002_asia_201300078 crossref_primary_10_1021_ja508161c crossref_primary_10_1016_j_snb_2025_137283 crossref_primary_10_1002_anie_201210277 crossref_primary_10_1039_C4RA05275G crossref_primary_10_1039_D2NJ03442E crossref_primary_10_1021_acs_langmuir_9b01285 crossref_primary_10_1021_acs_chemmater_6b04011 crossref_primary_10_1080_05704928_2019_1684303 crossref_primary_10_1039_C6NR02579J crossref_primary_10_1002_ange_201210277 crossref_primary_10_1039_D0TB00182A crossref_primary_10_1002_aenm_202403574 crossref_primary_10_1039_C2CS35241A crossref_primary_10_1039_D3CS01095C crossref_primary_10_1039_C2NR32879H crossref_primary_10_1021_la3027573 |
Cites_doi | 10.1021/nn2001454 10.1016/S0169-4332(01)00357-9 10.1021/jp0709407 10.1021/nn8004747 10.1063/1.2786993 10.1021/nl104398v 10.1021/nl034815s 10.1016/S0022-3697(03)00272-5 10.1021/ja105482k 10.1021/nl103400a 10.1002/adma.200501653 10.1021/nl0518728 10.1021/ja108482a 10.1126/science.271.5251.933 10.1021/jp073474u 10.1021/ja802187c 10.1007/s10008-003-0427-3 10.1021/ja103223x 10.1021/nn9018575 10.1021/jp0445573 10.1126/science.1103755 10.1021/ja1090589 10.1021/ie0715106 10.1021/ja809854q 10.1021/cm8029399 10.1021/nl102539a 10.1021/nl102560b 10.1038/nmat902 10.1016/j.snb.2009.11.009 10.1021/nl050482i 10.1021/jp101816c 10.1021/jp804776j 10.1021/ja103956p 10.1021/ja807874e 10.1021/ja016220+ 10.1021/nl9017572 10.1021/nn101272y 10.1002/anie.200705604 10.1021/nl0717661 10.1016/S0040-6090(97)00476-8 10.1021/jp0645014 10.1016/0040-6090(94)90801-X 10.1039/c0gc00236d 10.1021/nn1002584 10.1021/la0632070 10.1021/cr900137k 10.1021/ja104126u 10.1126/science.1142593 10.1021/nl903059c 10.1021/ja1117528 |
ContentType | Journal Article |
Copyright | Copyright © 2011 American Chemical Society 2011 American Chemical Society |
Copyright_xml | – notice: Copyright © 2011 American Chemical Society – notice: 2011 American Chemical Society |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1021/nn201988w |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 7183 |
ExternalDocumentID | 21809824 10_1021_nn201988w b412714096 |
Genre | Journal Article |
GrantInformation_xml | – fundername: European Research Council grantid: 240111 |
GroupedDBID | - 23M 4.4 53G 55A 5GY 5VS 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ LG6 P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV AHGAQ CITATION CUPRZ GGK NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-a413t-23f9c65fecdcdb9e2550d6019be4511f66883508a979e0745ee131e6c456dc193 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Thu Jul 10 18:34:24 EDT 2025 Fri Jul 11 03:21:09 EDT 2025 Sat May 31 02:06:34 EDT 2025 Thu Apr 24 22:51:52 EDT 2025 Tue Jul 01 03:03:56 EDT 2025 Thu Aug 27 13:43:11 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | copper selenide branched nanostructures nanocrystals copper sulfide cation exchange |
Language | English |
License | 2011 American Chemical Society |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a413t-23f9c65fecdcdb9e2550d6019be4511f66883508a979e0745ee131e6c456dc193 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 21809824 |
PQID | 1762055601 |
PQPubID | 23500 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_894817230 proquest_miscellaneous_1762055601 pubmed_primary_21809824 crossref_primary_10_1021_nn201988w crossref_citationtrail_10_1021_nn201988w acs_journals_10_1021_nn201988w |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-09-27 |
PublicationDateYYYYMMDD | 2011-09-27 |
PublicationDate_xml | – month: 09 year: 2011 text: 2011-09-27 day: 27 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2011 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Alivisatos A. P. (ref8/cit8) 1996; 271 Deka S. (ref51/cit51) 2010; 132 Sadtler B. (ref39/cit39) 2009; 131 Dloczik L. (ref34/cit34) 2004; 8 Huang X. (ref13/cit13) 2011; 133 Zhong X. H. (ref42/cit42) 2007 Dorn A. (ref32/cit32) 2010; 10 Son D. H. (ref46/cit46) 2004; 306 Zhong H. (ref3/cit3) 2007; 111 Dong C. (ref30/cit30) 2008; 3 Zhang H. T. (ref15/cit15) 2011; 11 Wark S. E. (ref28/cit28) 2008; 130 Fu W. (ref10/cit10) 2011; 11 Lubeck C. R. (ref47/cit47) 2006; 18 Smith A. M. (ref35/cit35) 2011; 133 Zhang B. (ref27/cit27) 2009; 10 Rivest J. B. (ref48/cit48) 2011; 5 Yu J. (ref23/cit23) 2010; 12 Song J. H. (ref33/cit33) 2001; 123 Lambert K. (ref40/cit40) 2009; 21 Yang Y. (ref7/cit7) 2010; 132 Choi C. L. (ref4/cit4) 2009; 9 Ristova M. (ref21/cit21) 2001; 181 Matsuda T. (ref37/cit37) 2010; 132 Fiore A. (ref19/cit19) 2009; 131 Calestani D. (ref6/cit6) 2010; 144 Estrada C. A. (ref20/cit20) 1994; 247 Ristova M. (ref22/cit22) 1998; 315 Camargo P. H. C. (ref45/cit45) 2007; 23 Huang T. (ref11/cit11) 2010; 4 Kashida S. (ref50/cit50) 2003; 64 Talapin D. V. (ref1/cit1) 2009; 110 Carbone L. (ref17/cit17) 2007; 7 Robinson R. D. (ref43/cit43) 2007; 317 Ethayaraja M. (ref25/cit25) 2008; 47 Yu J. (ref26/cit26) 2010; 114 Chen W. H. (ref41/cit41) 2008; 112 Moon G. D. (ref24/cit24) 2010; 4 Kanaras A. G. (ref14/cit14) 2005; 5 Regulacio M. D. (ref36/cit36) 2011; 133 Manna L. (ref49/cit49) 2005; 109 Kovalenko M. V. (ref31/cit31) 2008; 47 Chan E. M. (ref44/cit44) 2007; 111 Manna L. (ref9/cit9) 2003; 2 Jeong U. (ref29/cit29) 2005; 5 Fang L. (ref5/cit5) 2007; 127 Talapin D. V. (ref18/cit18) 2003; 3 Amirav L. (ref16/cit16) 2006; 110 Deka S. (ref12/cit12) 2010; 10 Jain P. K. (ref38/cit38) 2010; 132 Goodman M. D. (ref2/cit2) 2010; 4 |
References_xml | – volume: 5 start-page: 3811 year: 2011 ident: ref48/cit48 publication-title: ACS Nano doi: 10.1021/nn2001454 – volume: 181 start-page: 68 year: 2001 ident: ref21/cit21 publication-title: Adv. Surf. Sci. doi: 10.1016/S0169-4332(01)00357-9 – volume: 111 start-page: 6538 year: 2007 ident: ref3/cit3 publication-title: J. Phys. Chem. C doi: 10.1021/jp0709407 – volume: 3 start-page: 123 year: 2008 ident: ref30/cit30 publication-title: ACS Nano doi: 10.1021/nn8004747 – volume: 127 start-page: 184704 year: 2007 ident: ref5/cit5 publication-title: J. Chem. Phys. doi: 10.1063/1.2786993 – volume: 11 start-page: 1913 year: 2011 ident: ref10/cit10 publication-title: Nano Lett. doi: 10.1021/nl104398v – volume: 3 start-page: 1677 year: 2003 ident: ref18/cit18 publication-title: Nano Lett. doi: 10.1021/nl034815s – start-page: 18 year: 2007 ident: ref42/cit42 publication-title: Nanotechnology – volume: 64 start-page: 2357 year: 2003 ident: ref50/cit50 publication-title: J. Phys. Chem. Solids doi: 10.1016/S0022-3697(03)00272-5 – volume: 132 start-page: 12206 year: 2010 ident: ref37/cit37 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja105482k – volume: 11 start-page: 188 year: 2011 ident: ref15/cit15 publication-title: Nano Lett. doi: 10.1021/nl103400a – volume: 18 start-page: 781 year: 2006 ident: ref47/cit47 publication-title: Adv. Mater. doi: 10.1002/adma.200501653 – volume: 5 start-page: 2164 year: 2005 ident: ref14/cit14 publication-title: Nano Lett. doi: 10.1021/nl0518728 – volume: 133 start-page: 24 year: 2011 ident: ref35/cit35 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja108482a – volume: 271 start-page: 933 year: 1996 ident: ref8/cit8 publication-title: Science doi: 10.1126/science.271.5251.933 – volume: 111 start-page: 12210 year: 2007 ident: ref44/cit44 publication-title: J. Phys. Chem. A doi: 10.1021/jp073474u – volume: 130 start-page: 9550 year: 2008 ident: ref28/cit28 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja802187c – volume: 8 start-page: 142 year: 2004 ident: ref34/cit34 publication-title: J. Solid State Electrochem. doi: 10.1007/s10008-003-0427-3 – volume: 132 start-page: 8912 year: 2010 ident: ref51/cit51 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja103223x – volume: 4 start-page: 2307 year: 2010 ident: ref24/cit24 publication-title: ACS Nano doi: 10.1021/nn9018575 – volume: 109 start-page: 6183 year: 2005 ident: ref49/cit49 publication-title: J. Phys. Chem. B doi: 10.1021/jp0445573 – volume: 306 start-page: 1009 year: 2004 ident: ref46/cit46 publication-title: Science doi: 10.1126/science.1103755 – volume: 133 start-page: 2052 year: 2011 ident: ref36/cit36 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1090589 – volume: 47 start-page: 5982 year: 2008 ident: ref25/cit25 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie0715106 – volume: 131 start-page: 5285 year: 2009 ident: ref39/cit39 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja809854q – volume: 21 start-page: 778 year: 2009 ident: ref40/cit40 publication-title: Chem. Mater. doi: 10.1021/cm8029399 – volume: 10 start-page: 3770 year: 2010 ident: ref12/cit12 publication-title: Nano Lett. doi: 10.1021/nl102539a – volume: 10 start-page: 3948 year: 2010 ident: ref32/cit32 publication-title: Nano Lett. doi: 10.1021/nl102560b – volume: 2 start-page: 382 year: 2003 ident: ref9/cit9 publication-title: Nat. Mater. doi: 10.1038/nmat902 – volume: 144 start-page: 472 year: 2010 ident: ref6/cit6 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2009.11.009 – volume: 5 start-page: 937 year: 2005 ident: ref29/cit29 publication-title: Nano Lett. doi: 10.1021/nl050482i – volume: 114 start-page: 13642 year: 2010 ident: ref26/cit26 publication-title: J. Phys. Chem. C doi: 10.1021/jp101816c – volume: 112 start-page: 17471 year: 2008 ident: ref41/cit41 publication-title: J. Phys. Chem. C doi: 10.1021/jp804776j – volume: 132 start-page: 13381 year: 2010 ident: ref7/cit7 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja103956p – volume: 131 start-page: 2274 year: 2009 ident: ref19/cit19 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja807874e – volume: 123 start-page: 9714 year: 2001 ident: ref33/cit33 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja016220+ – volume: 9 start-page: 3544 year: 2009 ident: ref4/cit4 publication-title: Nano Lett. doi: 10.1021/nl9017572 – volume: 4 start-page: 4707 year: 2010 ident: ref11/cit11 publication-title: ACS Nano doi: 10.1021/nn101272y – volume: 47 start-page: 3029 year: 2008 ident: ref31/cit31 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200705604 – volume: 7 start-page: 2942 year: 2007 ident: ref17/cit17 publication-title: Nano Lett. doi: 10.1021/nl0717661 – volume: 315 start-page: 301 year: 1998 ident: ref22/cit22 publication-title: Thin Solid Films doi: 10.1016/S0040-6090(97)00476-8 – volume: 110 start-page: 20922 year: 2006 ident: ref16/cit16 publication-title: J. Phys. Chem. B doi: 10.1021/jp0645014 – volume: 247 start-page: 208 year: 1994 ident: ref20/cit20 publication-title: Thin Solid Films doi: 10.1016/0040-6090(94)90801-X – volume: 12 start-page: 1611 year: 2010 ident: ref23/cit23 publication-title: Green Chem. doi: 10.1039/c0gc00236d – volume: 4 start-page: 2043 year: 2010 ident: ref2/cit2 publication-title: ACS Nano doi: 10.1021/nn1002584 – volume: 23 start-page: 2985 year: 2007 ident: ref45/cit45 publication-title: Langmuir doi: 10.1021/la0632070 – volume: 110 start-page: 389 year: 2009 ident: ref1/cit1 publication-title: Chem. Rev. doi: 10.1021/cr900137k – volume: 132 start-page: 9997 year: 2010 ident: ref38/cit38 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja104126u – volume: 317 start-page: 355 year: 2007 ident: ref43/cit43 publication-title: Science doi: 10.1126/science.1142593 – volume: 10 start-page: 149 year: 2009 ident: ref27/cit27 publication-title: Nano Lett. doi: 10.1021/nl903059c – volume: 133 start-page: 4718 year: 2011 ident: ref13/cit13 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1117528 |
SSID | ssj0057876 |
Score | 2.389424 |
Snippet | Octapod-shaped colloidal nanocrystals composed of a central “core” region of cubic sphalerite CdSe and pods of hexagonal wurtzite CdS are subject to a cation... Octapod-shaped colloidal nanocrystals composed of a central "core" region of cubic sphalerite CdSe and pods of hexagonal wurtzite CdS are subject to a cation... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7176 |
SubjectTerms | Cadmium selenides Cation exchanging Copper sulfides Exchange Intermetallics Ion exchangers Nanocrystals Nanostructure Wurtzite |
Title | Cation Exchange Reactions in Colloidal Branched Nanocrystals |
URI | http://dx.doi.org/10.1021/nn201988w https://www.ncbi.nlm.nih.gov/pubmed/21809824 https://www.proquest.com/docview/1762055601 https://www.proquest.com/docview/894817230 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTsMwEB2VcoED-1KWKiwHLimNEzu2xAVKqwoJDkCl3qJ4iUCgFHURy9czTpqqiBbukzgZj_3eeOxngNPA10ogDruKEuoGsaIuZ1q5lPpGMpL4KtPpvr1j7U5w06XdEpzMqeAT7zxNEaME5-8LsEgYDl7LfxoPxXRrI47lpWNMjZE_FPJB049a6FGDn9Azh09muNJahevidE6-neSlNhrKmvr6Ldb41yevwcqYVzqXeSCsQ8mkG7A8pTa4CReNrBec5kd-2te5N_mphoHznDp2BaH3rPEdV_aujSejHZx5e6r_ifzxdbAFnVbzsdF2x5cnuDHi0tAlfiIUo4lRWmkpDKYOdY3Zl5DGSpIljHEkX3Uei1AY5BHUGM_3DFPIqLRCb25DOe2lZhccbSiToeSUszgIRRjHdZZwKbXkAiGWVqCK3o3GwT-Isro28aKJGypwVjg-UmPpcXsDxuss0-OJ6VuutzHL6KjovQhHgy1xxKnpjbBpnNutPFDdq4Azx4ZbgZoQU68K7OQ9P2mJWDUzToK9__5oH5byxWXhkvAAysP-yBwiOxnKahad3_cx3S4 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xHIAD-1LWgDhwSWkWO7bEpVSgAm0PQKXeoniJqEApalqxfD3jJC2LqOA-sZ3x2PPGY78BOPY9JTn6YVsSl9h-JInNqJI2IZ4W1I09mfF0N1u03vavO6RT0OSYtzA4iBRbSrMk_ie7gHOaJOiqOGMv0zCLIMQ11lyt3Y12XWN4NM8gY4SMMGLEIvT1U-OBZPrdA02AlZl7uVzK6xRlA8tulTyWhwNRlu8_OBv_N_JlWCxQplXNzWIFpnSyCgtfuAfX4KyWzYl18Zq__bVudf7GIbW6iWXOE3pdhW2cm8obD1pZuA_3ZP8N0eRTug7ty4v7Wt0uSinYEXqpge16MZeUxFoqqQTXGEhUFMZiXGhDUBZTyhCKVVjEA64RVRCtHc_RVCK-UhKVugEzSS_RW2ApTagIBCOMRn7Agyiq0JgJoQTj6HBJCfZRC2GxFNIwy3K7TjhWQwlORvoPZUFEbuphPP0mejQWfc7ZN34TOhxNYohrwyQ8okT3htg17vSGLKjilMCaIMMMXU2AgVgJNnMDGPfkGm4z5vrbf_3RAczV75uNsHHVutmB-fzYmdtusAszg_5Q7yFuGYj9zGA_ADyf5Y8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB1BkRAc2JeyBsSBS6BZ7NgSFyitWAsCKnGL4iUCgdKKtGL5esZJWhXUCu4T27HHfm889jPAnu8pyRGHbUlcYvuRJDajStqEeFpQN_ZkptN93aBnTf_ikTwWgaK5C4ONSLGkNEvim1ndVnGhMOAcJgnCFWfsfRwmTLrOePRx9b638hrno3kWGaNkpBI9JaHBTw0KyfQnCo2glhnE1Gfhpt-47GTJy0G3Iw7k1y_dxv-3fg5mCrZpHefuMQ9jOlmA6QENwkU4qmZjY9U-8jvA1p3O7zqk1nNimX2F1rPCMk7MCxxPWlm4Hrfk2yeyytd0CZr12kP1zC6eVLAjRKuO7Xoxl5TEWiqpBNcYUFQUxmRcaCNUFlPKkJJVWMQDrpFdEK0dz9FUIs9SEjt2GUpJK9GrYClNqAgEI4xGfsCDKKrQmAmhBOMIvKQMW9gTYTEl0jDLdrtO2O-GMuz3xiCUhSC5eRfjdZjpbt-0natwDDPa6Q1kiHPEJD6iRLe6WDWu-EY0qOKUwRphw4xsTYABWRlWcifo1-QajTPm-mt__dE2TN6e1sOr88blOkzlu8_cdoMNKHXeunoT6UtHbGU--w3TnegS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cation+Exchange+Reactions+in+Colloidal+Branched+Nanocrystals&rft.jtitle=ACS+nano&rft.au=Miszta%2C+Karol&rft.au=Dorfs%2C+Dirk&rft.au=Genovese%2C+Alessandro&rft.au=Kim%2C+Mee+Rahn&rft.date=2011-09-27&rft.pub=American+Chemical+Society&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=5&rft.issue=9&rft.spage=7176&rft.epage=7183&rft_id=info:doi/10.1021%2Fnn201988w&rft.externalDocID=b412714096 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |