Multiscale Transparent Electrode Architecture for Efficient Light Management and Carrier Collection in Solar Cells

The challenge for all photovoltaic technologies is to maximize light absorption, to convert photons with minimal losses into electric charges, and to efficiently extract them to the electrical circuit. For thin-film solar cells, all these tasks rely heavily on the transparent front electrode. Here w...

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 12; no. 3; pp. 1344 - 1348
Main Authors Boccard, Mathieu, Battaglia, Corsin, Hänni, Simon, Söderström, Karin, Escarré, Jordi, Nicolay, Sylvain, Meillaud, Fanny, Despeisse, Matthieu, Ballif, Christophe
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 14.03.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The challenge for all photovoltaic technologies is to maximize light absorption, to convert photons with minimal losses into electric charges, and to efficiently extract them to the electrical circuit. For thin-film solar cells, all these tasks rely heavily on the transparent front electrode. Here we present a multiscale electrode architecture that allows us to achieve efficiencies as high as 14.1% with a thin-film silicon tandem solar cell employing only 3 μm of silicon. Our approach combines the versatility of nanoimprint lithography, the unusually high carrier mobility of hydrogenated indium oxide (over 100 cm2/V/s), and the unequaled light-scattering properties of self-textured zinc oxide. A multiscale texture provides light trapping over a broad wavelength range while ensuring an optimum morphology for the growth of high-quality silicon layers. A conductive bilayer stack guarantees carrier extraction while minimizing parasitic absorption losses. The tunability accessible through such multiscale electrode architecture offers unprecedented possibilities to address the trade-off between cell optical and electrical performance.
AbstractList The challenge for all photovoltaic technologies is to maximize light absorption, to convert photons with minimal losses into electric charges, and to efficiently extract them to the electrical circuit. For thin-film solar cells, all these tasks rely heavily on the transparent front electrode. Here we present a multiscale electrode architecture that allows us to achieve efficiencies as high as 14.1% with a thin-film silicon tandem solar cell employing only 3 μm of silicon. Our approach combines the versatility of nanoimprint lithography, the unusually high carrier mobility of hydrogenated indium oxide (over 100 cm2/V/s), and the unequaled light-scattering properties of self-textured zinc oxide. A multiscale texture provides light trapping over a broad wavelength range while ensuring an optimum morphology for the growth of high-quality silicon layers. A conductive bilayer stack guarantees carrier extraction while minimizing parasitic absorption losses. The tunability accessible through such multiscale electrode architecture offers unprecedented possibilities to address the trade-off between cell optical and electrical performance.
The challenge for all photovoltaic technologies is to maximize light absorption, to convert photons with minimal losses into electric charges, and to efficiently extract them to the electrical circuit. For thin-film solar cells, all these tasks rely heavily on the transparent front electrode. Here we present a multiscale electrode architecture that allows us to achieve efficiencies as high as 14.1% with a thin-film silicon tandem solar cell employing only 3 mu m of silicon. Our approach combines the versatility of nanoimprint lithography, the unusually high carrier mobility of hydrogenated indium oxide (over 100 cm super(2)/V/s), and the unequaled light-scattering properties of self-textured zinc oxide. A multiscale texture provides light trapping over a broad wavelength range while ensuring an optimum morphology for the growth of high-quality silicon layers. A conductive bilayer stack guarantees carrier extraction while minimizing parasitic absorption losses. The tunability accessible through such multiscale electrode architecture offers unprecedented possibilities to address the trade-off between cell optical and electrical performance.
The challenge for all photovoltaic technologies is to maximize light absorption, to convert photons with minimal losses into electric charges, and to efficiently extract them to the electrical circuit. For thin-film solar cells, all these tasks rely heavily on the transparent front electrode. Here we present a multiscale electrode architecture that allows us to achieve efficiencies as high as 14.1% with a thin-film silicon tandem solar cell employing only 3 μm of silicon. Our approach combines the versatility of nanoimprint lithography, the unusually high carrier mobility of hydrogenated indium oxide (over 100 cm(2)/V/s), and the unequaled light-scattering properties of self-textured zinc oxide. A multiscale texture provides light trapping over a broad wavelength range while ensuring an optimum morphology for the growth of high-quality silicon layers. A conductive bilayer stack guarantees carrier extraction while minimizing parasitic absorption losses. The tunability accessible through such multiscale electrode architecture offers unprecedented possibilities to address the trade-off between cell optical and electrical performance.The challenge for all photovoltaic technologies is to maximize light absorption, to convert photons with minimal losses into electric charges, and to efficiently extract them to the electrical circuit. For thin-film solar cells, all these tasks rely heavily on the transparent front electrode. Here we present a multiscale electrode architecture that allows us to achieve efficiencies as high as 14.1% with a thin-film silicon tandem solar cell employing only 3 μm of silicon. Our approach combines the versatility of nanoimprint lithography, the unusually high carrier mobility of hydrogenated indium oxide (over 100 cm(2)/V/s), and the unequaled light-scattering properties of self-textured zinc oxide. A multiscale texture provides light trapping over a broad wavelength range while ensuring an optimum morphology for the growth of high-quality silicon layers. A conductive bilayer stack guarantees carrier extraction while minimizing parasitic absorption losses. The tunability accessible through such multiscale electrode architecture offers unprecedented possibilities to address the trade-off between cell optical and electrical performance.
The challenge for all photovoltaic technologies is to maximize light absorption, to convert photons with minimal losses into electric charges, and to efficiently extract them to the electrical circuit. For thin-film solar cells, all these tasks rely heavily on the transparent front electrode. Here we present a multiscale electrode architecture that allows us to achieve efficiencies as high as 14.1% with a thin-film silicon tandem solar cell employing only 3 μm of silicon. Our approach combines the versatility of nanoimprint lithography, the unusually high carrier mobility of hydrogenated indium oxide (over 100 cm(2)/V/s), and the unequaled light-scattering properties of self-textured zinc oxide. A multiscale texture provides light trapping over a broad wavelength range while ensuring an optimum morphology for the growth of high-quality silicon layers. A conductive bilayer stack guarantees carrier extraction while minimizing parasitic absorption losses. The tunability accessible through such multiscale electrode architecture offers unprecedented possibilities to address the trade-off between cell optical and electrical performance.
Author Battaglia, Corsin
Hänni, Simon
Nicolay, Sylvain
Meillaud, Fanny
Ballif, Christophe
Despeisse, Matthieu
Söderström, Karin
Escarré, Jordi
Boccard, Mathieu
AuthorAffiliation Ecole Polytechnique Fédérale de Lausanne (EPFL)
AuthorAffiliation_xml – name: Ecole Polytechnique Fédérale de Lausanne (EPFL)
Author_xml – sequence: 1
  givenname: Mathieu
  surname: Boccard
  fullname: Boccard, Mathieu
  email: mathieu.boccard@epfl.ch
– sequence: 2
  givenname: Corsin
  surname: Battaglia
  fullname: Battaglia, Corsin
– sequence: 3
  givenname: Simon
  surname: Hänni
  fullname: Hänni, Simon
– sequence: 4
  givenname: Karin
  surname: Söderström
  fullname: Söderström, Karin
– sequence: 5
  givenname: Jordi
  surname: Escarré
  fullname: Escarré, Jordi
– sequence: 6
  givenname: Sylvain
  surname: Nicolay
  fullname: Nicolay, Sylvain
– sequence: 7
  givenname: Fanny
  surname: Meillaud
  fullname: Meillaud, Fanny
– sequence: 8
  givenname: Matthieu
  surname: Despeisse
  fullname: Despeisse, Matthieu
– sequence: 9
  givenname: Christophe
  surname: Ballif
  fullname: Ballif, Christophe
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25615355$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22332666$$D View this record in MEDLINE/PubMed
BookMark eNp90U1P3DAQBmALUZWP9sAfQL4g6GHBH4kTH9FqoZUW9QA9R7POBIy89mI7B_49jthuJYR6sj16bI3fOSL7Pngk5ISzS84Ev_JOMKmZHvfIIa8lmymtxf5u31YH5CilZ8aYljX7Sg6EkFIopQ5JvBtdtsmAQ_oQwacNRPSZLhyaHEOP9DqaJ5vLaYxIhxDpYhissRNa2senTO_AwyOupwL4ns4hRouRzoOb3rDBU-vpfXBQauhc-ka-DOASft-ux-TPzeJh_nO2_H37a369nEHFRZ71EptWVRUYhJUBzYGtmpb3qnwZdauk1ryt0WAvSqlHKGDoBefCDDVDJY_J-fu7mxheRky5W5ePlg7AYxhTp0UrG9FoXuTFfyVvlGCVrllb6OmWjqs19t0m2jXE1-5vogWcbQFMqQ4lU2PTP1erMpW6Lu7HuzMxpBRx2BHOummq3W6qxV59sMZmmKLNEaz79Ma2CzCpew5j9CXpT9wbijCv_Q
CitedBy_id crossref_primary_10_1016_j_apsusc_2017_09_254
crossref_primary_10_1016_j_apsusc_2015_07_089
crossref_primary_10_1364_OE_25_00A467
crossref_primary_10_1016_j_mseb_2012_10_016
crossref_primary_10_1016_j_solmat_2014_03_021
crossref_primary_10_1021_acsphotonics_6b00070
crossref_primary_10_1007_s10854_021_05578_2
crossref_primary_10_1063_1_4907001
crossref_primary_10_1016_j_solmat_2013_07_042
crossref_primary_10_1016_j_solener_2018_01_040
crossref_primary_10_1109_JPHOTOV_2013_2279204
crossref_primary_10_1016_j_electacta_2016_11_078
crossref_primary_10_1016_j_apsusc_2014_07_079
crossref_primary_10_1016_j_tsf_2013_08_014
crossref_primary_10_1063_1_4926735
crossref_primary_10_1002_pip_2300
crossref_primary_10_1016_j_solmat_2013_01_023
crossref_primary_10_7567_JJAP_54_08KB10
crossref_primary_10_1016_j_jallcom_2013_10_085
crossref_primary_10_1016_j_solmat_2013_05_037
crossref_primary_10_1002_adem_201600201
crossref_primary_10_1016_j_solmat_2014_11_013
crossref_primary_10_1109_JPHOTOV_2014_2333883
crossref_primary_10_1016_j_solmat_2013_11_033
crossref_primary_10_1002_smll_201402781
crossref_primary_10_1016_j_optcom_2013_08_062
crossref_primary_10_1016_j_solmat_2015_04_003
crossref_primary_10_1063_1_4867008
crossref_primary_10_1016_j_optmat_2017_02_039
crossref_primary_10_1002_pssr_201300103
crossref_primary_10_1016_j_orgel_2016_06_017
crossref_primary_10_1016_j_solmat_2013_03_040
crossref_primary_10_7567_JJAP_54_08KB05
crossref_primary_10_1364_AO_54_004366
crossref_primary_10_1016_j_solmat_2014_06_009
crossref_primary_10_1039_C5EE03380B
crossref_primary_10_1088_0022_3727_49_5_055205
crossref_primary_10_1002_pip_2398
crossref_primary_10_1109_JPHOTOV_2020_3008263
crossref_primary_10_1002_pip_2564
crossref_primary_10_7567_APEX_8_072301
crossref_primary_10_1016_j_jpowsour_2015_07_061
crossref_primary_10_1021_acsaelm_2c01126
crossref_primary_10_7567_JJAP_57_060307
crossref_primary_10_1016_j_solmat_2014_07_025
crossref_primary_10_1063_1_4817914
crossref_primary_10_1002_solr_201700036
crossref_primary_10_1016_j_apsusc_2017_12_223
crossref_primary_10_1016_j_solmat_2015_02_033
crossref_primary_10_1016_j_solmat_2013_05_015
crossref_primary_10_1039_C4NR03915G
crossref_primary_10_1016_j_ceramint_2017_04_108
crossref_primary_10_1364_AO_55_006718
crossref_primary_10_1063_1_4895931
crossref_primary_10_1002_pssa_201532961
crossref_primary_10_1002_adsu_201700077
crossref_primary_10_1002_pssa_201700544
crossref_primary_10_1063_1_4935539
crossref_primary_10_1088_0022_3727_48_36_365101
crossref_primary_10_1016_j_solmat_2015_09_008
crossref_primary_10_1063_1_4922963
crossref_primary_10_3390_ma8063648
crossref_primary_10_1016_j_solmat_2015_04_027
crossref_primary_10_1557_opl_2014_918
crossref_primary_10_1109_JPHOTOV_2014_2357495
crossref_primary_10_1002_aenm_201502276
crossref_primary_10_1063_1_4876223
crossref_primary_10_1002_pip_2743
crossref_primary_10_1063_1_4761988
crossref_primary_10_1063_1_4818621
crossref_primary_10_1016_j_solmat_2014_02_028
crossref_primary_10_1021_nl301521z
crossref_primary_10_7498_aps_63_056801
crossref_primary_10_1016_j_apsusc_2013_12_088
crossref_primary_10_1557_opl_2012_886
crossref_primary_10_1016_j_solmat_2015_09_015
crossref_primary_10_1021_nl500366c
crossref_primary_10_1016_j_apenergy_2014_08_097
crossref_primary_10_4313_TEEM_2016_17_5_275
crossref_primary_10_1109_JPHOTOV_2014_2311233
crossref_primary_10_1063_1_4826639
crossref_primary_10_1016_j_solmat_2014_10_012
crossref_primary_10_1016_j_physb_2018_05_042
crossref_primary_10_1016_j_solener_2018_05_077
crossref_primary_10_1088_1674_4926_37_8_083003
crossref_primary_10_1016_j_solmat_2018_01_036
crossref_primary_10_1002_pip_2639
crossref_primary_10_1364_OE_24_00A925
crossref_primary_10_1039_C4EE03346A
crossref_primary_10_1007_s00339_017_1381_8
crossref_primary_10_1016_j_egypro_2015_12_317
crossref_primary_10_1109_JPHOTOV_2012_2214766
crossref_primary_10_1016_j_solener_2017_02_019
crossref_primary_10_1063_1_4802451
crossref_primary_10_1063_1_4823554
crossref_primary_10_1016_j_solmat_2015_05_008
crossref_primary_10_1016_j_solener_2015_03_018
crossref_primary_10_1364_OE_21_00A808
crossref_primary_10_1063_1_4749810
crossref_primary_10_3390_app9214648
crossref_primary_10_1016_j_solmat_2013_10_025
crossref_primary_10_1038_srep29639
crossref_primary_10_1007_s11664_019_07355_8
crossref_primary_10_1016_j_ijleo_2017_08_051
crossref_primary_10_1021_nl501774u
crossref_primary_10_1109_JPHOTOV_2016_2571619
crossref_primary_10_1117_1_JNP_10_046006
crossref_primary_10_7498_aps_62_120101
crossref_primary_10_1364_OE_21_00A656
crossref_primary_10_1109_JPHOTOV_2013_2280020
crossref_primary_10_1016_j_solmat_2013_02_032
crossref_primary_10_1016_j_solmat_2014_12_029
crossref_primary_10_1039_C4CP04066J
Cites_doi 10.1038/353737a0
10.1038/nmat1387
10.1063/1.3432739
10.1116/1.2981076
10.1063/1.3517492
10.4229/25thEUPVSEC2010-3CO.14.1
10.1143/JJAP.29.630
10.1063/1.2715554
10.1109/T-ED.1984.21594
10.1038/nmat2635
10.1016/j.solmat.2006.06.002
10.1002/pssr.201004303
10.1063/1.2715036
10.4229/26thEUPVSEC2011-3BO.2.6
10.1016/j.tsf.2009.03.056
10.1016/j.solmat.2011.07.023
10.1109/JPHOTOV.2011.2180514
10.1109/JPHOTOV.2011.2179414
10.1016/j.solmat.2006.06.003
10.4229/24thEUPVSEC2009-3BO.9.3
10.1063/1.2794423
10.1063/1.3592885
10.1016/j.solmat.2010.11.010
10.1063/1.1775289
10.1002/pssr.200802118
10.1016/j.tsf.2006.12.093
10.1021/nl9034237
10.1016/j.tsf.2009.08.060
10.1016/j.solener.2004.08.028
10.1143/JJAP.43.7296
10.1016/j.energy.2005.09.006
10.1063/1.89674
10.1063/1.93817
10.1016/S1473-8325(03)00623-0
10.1002/pssa.201026745
10.1016/j.solmat.2010.04.043
10.1126/science.285.5428.692
10.1021/nl1037787
10.1016/j.jnoncrysol.2007.09.084
10.1063/1.3565249
ContentType Journal Article
Copyright Copyright © 2012 American Chemical Society
2015 INIST-CNRS
2012 American Chemical Society
Copyright_xml – notice: Copyright © 2012 American Chemical Society
– notice: 2015 INIST-CNRS
– notice: 2012 American Chemical Society
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1021/nl203909u
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
Physics
Architecture
EISSN 1530-6992
EndPage 1348
ExternalDocumentID 22332666
25615355
10_1021_nl203909u
b156417487
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
123
4.4
55A
5VS
7~N
AABXI
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
X
---
-~X
6P2
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
53G
AFFNX
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-a412t-d3e78644aceabca91a0b781d6102e986399185eced2610dea1a0fd2112cf50e63
IEDL.DBID ACS
ISSN 1530-6984
1530-6992
IngestDate Thu Jul 10 23:24:28 EDT 2025
Fri Jul 11 00:40:30 EDT 2025
Thu Jan 02 22:08:12 EST 2025
Mon Jul 21 09:12:44 EDT 2025
Thu Apr 24 23:03:29 EDT 2025
Tue Jul 01 00:42:45 EDT 2025
Thu Aug 27 13:42:08 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords light trapping
nanoimprinting
texture
thin-film silicon solar cells
Photovoltaics
Thin film device
Electric charge
Light scattering
Charge carrier mobility
Nanoimprint lithography
Indium oxide
Texture
Thin film
Photovoltaic cell
Solar cell
Trapping
Morphology
Growth mechanism
Zinc oxide
Silicon
Light absorption
Nanomaterial synthesis
Bilayers
Language English
License CC BY 4.0
2012 American Chemical Society
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a412t-d3e78644aceabca91a0b781d6102e986399185eced2610dea1a0fd2112cf50e63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://infoscience.epfl.ch/record/177046/files/paper_640.pdf
PMID 22332666
PQID 1762049508
PQPubID 23500
PageCount 5
ParticipantIDs proquest_miscellaneous_928372791
proquest_miscellaneous_1762049508
pubmed_primary_22332666
pascalfrancis_primary_25615355
crossref_primary_10_1021_nl203909u
crossref_citationtrail_10_1021_nl203909u
acs_journals_10_1021_nl203909u
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-03-14
PublicationDateYYYYMMDD 2012-03-14
PublicationDate_xml – month: 03
  year: 2012
  text: 2012-03-14
  day: 14
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2012
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Čampa A. (ref14/cit14) 2007; 515
Aryal M. (ref41/cit41) 2008; 26
Hermann W. A. (ref1/cit1) 2006; 31
ref3/cit3
Deckman H. W. (ref13/cit13) 1983; 42
Dominé D. (ref35/cit35) 2008; 2
Battaglia C. (ref40/cit40) 2010; 96
Buehlmann P. (ref36/cit36) 2007; 91
ref29/cit29
Tiedje T. (ref4/cit4) 1984; 31
Koida T. (ref8/cit8) 2010; 518
Nakajima A. (ref39/cit39) 2004; 43
Ding K. (ref30/cit30) 2011; 95
ref31/cit31
ref2/cit2
ref28/cit28
Escarré J. (ref32/cit32) 2011; 95
ref26/cit26
Gupta A. (ref9/cit9) 2004; 85
Faÿ S. (ref10/cit10) 2006; 90
O’Reagal B. (ref5/cit5) 1991; 353
Berginski M. (ref11/cit11) 2007; 101
Sakai H. (ref17/cit17) 1990; 29
Zhu J. (ref15/cit15) 2010; 10
Cuony P. (ref37/cit37) 2010; 97
Shah A. (ref6/cit6) 1999; 285
Sai H. (ref18/cit18) 2011; 98
Boccard M. (ref7/cit7) 2010; 4
ref22/cit22
Kim M. S. (ref42/cit42) 2007; 90
Staebler D. L. (ref25/cit25) 1977; 31
Battaglia C. (ref34/cit34) 2011; 109
Python M. (ref19/cit19) 2008; 354
ref33/cit33
Law M. (ref20/cit20) 2005; 4
Yamamoto K. (ref21/cit21) 2004; 77
Aberle A. G. (ref23/cit23) 2009; 517
Meillaud F. (ref24/cit24) 2006; 90
Kelzenberg M. D. (ref16/cit16) 2010; 9
Despeisse M. (ref38/cit38) 2011; 208
Boccard M. (ref27/cit27) 2011; 95
Battaglia C. (ref12/cit12) 2011; 11
References_xml – volume: 353
  start-page: 737
  year: 1991
  ident: ref5/cit5
  publication-title: Nature
  doi: 10.1038/353737a0
– volume: 4
  start-page: 455
  year: 2005
  ident: ref20/cit20
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1387
– volume: 96
  start-page: 213504
  year: 2010
  ident: ref40/cit40
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3432739
– volume: 26
  start-page: 2562
  issue: 6
  year: 2008
  ident: ref41/cit41
  publication-title: J. Vac. Sci. Technol., B
  doi: 10.1116/1.2981076
– volume: 97
  start-page: 213502
  year: 2010
  ident: ref37/cit37
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3517492
– ident: ref2/cit2
  doi: 10.4229/25thEUPVSEC2010-3CO.14.1
– volume: 29
  start-page: 630
  year: 1990
  ident: ref17/cit17
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.29.630
– volume: 101
  start-page: 074903
  year: 2007
  ident: ref11/cit11
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2715554
– volume: 31
  start-page: 711
  year: 1984
  ident: ref4/cit4
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/T-ED.1984.21594
– volume: 9
  start-page: 239
  year: 2010
  ident: ref16/cit16
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2635
– volume: 90
  start-page: 2952
  year: 2006
  ident: ref24/cit24
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2006.06.002
– volume: 4
  start-page: 326
  year: 2010
  ident: ref7/cit7
  publication-title: Phys. Status Solidi RRL
  doi: 10.1002/pssr.201004303
– ident: ref33/cit33
– volume: 90
  start-page: 123113
  year: 2007
  ident: ref42/cit42
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2715036
– ident: ref22/cit22
  doi: 10.4229/26thEUPVSEC2011-3BO.2.6
– volume: 517
  start-page: 4706
  year: 2009
  ident: ref23/cit23
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2009.03.056
– volume: 95
  start-page: 3318
  year: 2011
  ident: ref30/cit30
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2011.07.023
– ident: ref29/cit29
  doi: 10.1109/JPHOTOV.2011.2180514
– ident: ref31/cit31
  doi: 10.1109/JPHOTOV.2011.2179414
– volume: 90
  start-page: 2960
  year: 2006
  ident: ref10/cit10
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2006.06.003
– ident: ref26/cit26
  doi: 10.4229/24thEUPVSEC2009-3BO.9.3
– volume: 91
  start-page: 143505
  year: 2007
  ident: ref36/cit36
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2794423
– volume: 109
  start-page: 114501
  year: 2011
  ident: ref34/cit34
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3592885
– volume: 95
  start-page: 881
  year: 2011
  ident: ref32/cit32
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2010.11.010
– volume: 85
  start-page: 684
  year: 2004
  ident: ref9/cit9
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1775289
– ident: ref3/cit3
– volume: 2
  start-page: 163
  year: 2008
  ident: ref35/cit35
  publication-title: Phys. Status Solidi RRL
  doi: 10.1002/pssr.200802118
– volume: 515
  start-page: 5968
  issue: 15
  year: 2007
  ident: ref14/cit14
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2006.12.093
– volume: 10
  start-page: 1979
  year: 2010
  ident: ref15/cit15
  publication-title: Nano Lett.
  doi: 10.1021/nl9034237
– volume: 518
  start-page: 2930
  year: 2010
  ident: ref8/cit8
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2009.08.060
– volume: 77
  start-page: 939
  year: 2004
  ident: ref21/cit21
  publication-title: Solar Energy
  doi: 10.1016/j.solener.2004.08.028
– volume: 43
  start-page: 7296
  year: 2004
  ident: ref39/cit39
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.43.7296
– volume: 31
  start-page: 1685
  year: 2006
  ident: ref1/cit1
  publication-title: Energy
  doi: 10.1016/j.energy.2005.09.006
– volume: 31
  start-page: 292
  year: 1977
  ident: ref25/cit25
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.89674
– volume: 42
  start-page: 968
  year: 1983
  ident: ref13/cit13
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.93817
– ident: ref28/cit28
  doi: 10.1016/S1473-8325(03)00623-0
– volume: 208
  start-page: 1863
  year: 2011
  ident: ref38/cit38
  publication-title: Phys. Status Solidi A
  doi: 10.1002/pssa.201026745
– volume: 95
  start-page: 195
  year: 2011
  ident: ref27/cit27
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2010.04.043
– volume: 285
  start-page: 692
  year: 1999
  ident: ref6/cit6
  publication-title: Science
  doi: 10.1126/science.285.5428.692
– volume: 11
  start-page: 661
  year: 2011
  ident: ref12/cit12
  publication-title: Nano Lett.
  doi: 10.1021/nl1037787
– volume: 354
  start-page: 2258
  year: 2008
  ident: ref19/cit19
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2007.09.084
– volume: 98
  start-page: 113502
  year: 2011
  ident: ref18/cit18
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3565249
SSID ssj0009350
Score 2.4228528
Snippet The challenge for all photovoltaic technologies is to maximize light absorption, to convert photons with minimal losses into electric charges, and to...
SourceID proquest
pubmed
pascalfrancis
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1344
SubjectTerms Applied sciences
Architecture
Carriers
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science; rheology
Electric circuits
Electric Power Supplies
Electrodes
Electronics
Energy
Equipment Design
Equipment Failure Analysis
Exact sciences and technology
Light
Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties
Materials science
Methods of nanofabrication
Molecular electronics, nanoelectronics
Nanostructures - chemistry
Nanostructures - ultrastructure
Nanotechnology - instrumentation
Natural energy
Particle Size
Photovoltaic cells
Photovoltaic conversion
Physics
Refractometry
Scattering, Radiation
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Silicon
Solar cells
Solar cells. Photoelectrochemical cells
Solar Energy
Surface layer
Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)
Texture
Title Multiscale Transparent Electrode Architecture for Efficient Light Management and Carrier Collection in Solar Cells
URI http://dx.doi.org/10.1021/nl203909u
https://www.ncbi.nlm.nih.gov/pubmed/22332666
https://www.proquest.com/docview/1762049508
https://www.proquest.com/docview/928372791
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9tAEB5RuFChFigPtxAtj0MvBnttr71HFIJQVbgEJG7WenciVY2cKHEu_PrO2HmhJnAfy_uY8Xzj3fk-gEtKYarnMvS1UZEfqyj1C81aLyoLY6TPJlruRn54VPfP8a-X5GUDLtac4MvwuuzLgApzPfkEW1JR8DL-aXcXzLpRLcNKkUt1kM7iGX3Q8qOceuz4TerZGZoxrUKvka9Yjy_rPHP3FW5n3TrN9ZK_V5OquLKv_5M3vjeFXfgyxZnipnGMPdjAch8-L7EPfoNR3XzLw0PRcJxzY1glOo0yjkNxs3TKIAjdik5NOMFGv7moF4vLM8KUTrTNiAXwRP03om6YEH9K0eXqWbSx3x8fwPNd56l9708lGHwTh7LyXYRpRpDJWDSFNTo0QZESxCXQJVFnDG8o4aNFR5VY4NCQQc9RUSltLwlQRYewWQ5KPAbhqFYKksKmVukYDeokM5Q9Y51al2CoPWjRHuXTEBrn9em4DPP54nnwc7Z9uZ0SmLOORn-V6fncdNiwdqwyar3xgbkloUDypiTx4GzmFDkFHZ-kmBIHExpbyjT-LKDrgVhjo5lXSKY69OCocajFC2REqFmp7x9N-QdsE0CTfOctjE9gsxpN8JRAUFW06iD4B48TASg
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB1Be4AKUT5LoCwGceCSkjiJEx9Xq60W2PbSVuotcuxZqWKVVpvshV_PjJP9KGpF75PEdsaZNxnPewBfKYSpmSsw1EYlYaqSPKw0a72oIk6RPptouRv55FRNLtKfl9llT5PDvTA0iIbu1Pgi_oZdIP5ez2VE-blePoZdAiGSvXk4OtsQ7CZejZU2MKVDukhXLELbl3IEss2tCPTsxjS0GLNOxeJ-mOnDzfF-p1vkB-pPmfw-WrbVkf3zD4fjw2byAp73qFMMOzd5CY-wfgV7W1yEr2HhW3F5lCg6xnNuE2vFuNPJcSiGWzUHQVhXjD39BBtNOcUXm6M0wtROjMyC5fCE_zfh2yfEVS3OOJcWI5zPmzdwcTw-H03CXpAhNGks29AlmBcEoIxFU1mjYxNVOQFegmASdcFgh8I_WnSUl0UODRnMHKWY0s6yCFXyFnbq6xrfgXCUOUVZZXOrdIoGdVYYiqWpzq3LMNYBDGjtyn5DNaWvlcu4XC9eAN9Wb7G0PZ05q2rM7zL9sja96Tg87jIa3HKFtSVhQnKqLAvg88o3StqCXFcxNV4vaWw5k_qznG4A4h4bzSxDMtdxAAedX20eIBPC0Eq9_9-UP8GTyfnJtJz-OP31AZ4SdJN8Gi5OD2GnXSzxI8Gjthr4ffEXrlAJiQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9RADLagSIiqorzaBtplQBy4pOQ5yRxXy64KlIJUKvUWTWYcCbFKV5vspb8ee5J9FLWidyfxTOz4czz-DPCBQpisbI6-0jL2Exlnfql41ovMwwTps4mGu5G_n8mTi-TrZXrZJ4rcC0NKNHSnxhXx2atntuoZBsJP9TQKKEdXi4fwiMt1bNHD0fmaZDd2E1nJiSklUnmyZBLavJSjkGluRKGdmW5oQ6puksXdUNOFnMku_Fgp606a_DletOWxuf6Hx_H-q3kGT3v0KYaduTyHB1i_gO0NTsKXMHctuawpio75nNvFWjHu5uVYFMON2oMgzCvGjoaChU451RfrIzVC11aM9JzH4gn3j8K1UYjftTjnnFqMcDptXsHFZPxrdOL3gxl8nYRR69sYs5yAlDaoS6NVqIMyI-BLUCxClTPoIRiABi3lZ4FFTQKVpVQzMlUaoIz3YKu-qvEAhKUMKkhLkxmpEtSo0lxTTE1UZmyKofJgQPtX9I7VFK5mHoXFavM8-Lh8k4Xpac15usb0NtH3K9FZx-Vxm9DghjmsJAkbkmGlqQfvlvZRkCtyfUXXeLUg3TIm9-exuh6IO2QUsw1FmQo92O9sa_2AKCYsLeXr_y35LTz--XlSnH45-_YGnhCCi_hQXJgcwlY7X-ARoaS2HDjX-AtGfQwM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiscale+Transparent+Electrode+Architecture+for+Efficient+Light+Management+and+Carrier+Collection+in+Solar+Cells&rft.jtitle=Nano+letters&rft.au=Boccard%2C+Mathieu&rft.au=Battaglia%2C+Corsin&rft.au=H%C3%A4nni%2C+Simon&rft.au=S%C3%B6derstr%C3%B6m%2C+Karin&rft.date=2012-03-14&rft.issn=1530-6984&rft.eissn=1530-6992&rft.volume=12&rft.issue=3&rft.spage=1344&rft.epage=1348&rft_id=info:doi/10.1021%2Fnl203909u&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_nl203909u
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon