Multiscale Transparent Electrode Architecture for Efficient Light Management and Carrier Collection in Solar Cells
The challenge for all photovoltaic technologies is to maximize light absorption, to convert photons with minimal losses into electric charges, and to efficiently extract them to the electrical circuit. For thin-film solar cells, all these tasks rely heavily on the transparent front electrode. Here w...
Saved in:
Published in | Nano letters Vol. 12; no. 3; pp. 1344 - 1348 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
14.03.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The challenge for all photovoltaic technologies is to maximize light absorption, to convert photons with minimal losses into electric charges, and to efficiently extract them to the electrical circuit. For thin-film solar cells, all these tasks rely heavily on the transparent front electrode. Here we present a multiscale electrode architecture that allows us to achieve efficiencies as high as 14.1% with a thin-film silicon tandem solar cell employing only 3 μm of silicon. Our approach combines the versatility of nanoimprint lithography, the unusually high carrier mobility of hydrogenated indium oxide (over 100 cm2/V/s), and the unequaled light-scattering properties of self-textured zinc oxide. A multiscale texture provides light trapping over a broad wavelength range while ensuring an optimum morphology for the growth of high-quality silicon layers. A conductive bilayer stack guarantees carrier extraction while minimizing parasitic absorption losses. The tunability accessible through such multiscale electrode architecture offers unprecedented possibilities to address the trade-off between cell optical and electrical performance. |
---|---|
AbstractList | The challenge for all photovoltaic technologies is to maximize light absorption, to convert photons with minimal losses into electric charges, and to efficiently extract them to the electrical circuit. For thin-film solar cells, all these tasks rely heavily on the transparent front electrode. Here we present a multiscale electrode architecture that allows us to achieve efficiencies as high as 14.1% with a thin-film silicon tandem solar cell employing only 3 μm of silicon. Our approach combines the versatility of nanoimprint lithography, the unusually high carrier mobility of hydrogenated indium oxide (over 100 cm2/V/s), and the unequaled light-scattering properties of self-textured zinc oxide. A multiscale texture provides light trapping over a broad wavelength range while ensuring an optimum morphology for the growth of high-quality silicon layers. A conductive bilayer stack guarantees carrier extraction while minimizing parasitic absorption losses. The tunability accessible through such multiscale electrode architecture offers unprecedented possibilities to address the trade-off between cell optical and electrical performance. The challenge for all photovoltaic technologies is to maximize light absorption, to convert photons with minimal losses into electric charges, and to efficiently extract them to the electrical circuit. For thin-film solar cells, all these tasks rely heavily on the transparent front electrode. Here we present a multiscale electrode architecture that allows us to achieve efficiencies as high as 14.1% with a thin-film silicon tandem solar cell employing only 3 mu m of silicon. Our approach combines the versatility of nanoimprint lithography, the unusually high carrier mobility of hydrogenated indium oxide (over 100 cm super(2)/V/s), and the unequaled light-scattering properties of self-textured zinc oxide. A multiscale texture provides light trapping over a broad wavelength range while ensuring an optimum morphology for the growth of high-quality silicon layers. A conductive bilayer stack guarantees carrier extraction while minimizing parasitic absorption losses. The tunability accessible through such multiscale electrode architecture offers unprecedented possibilities to address the trade-off between cell optical and electrical performance. The challenge for all photovoltaic technologies is to maximize light absorption, to convert photons with minimal losses into electric charges, and to efficiently extract them to the electrical circuit. For thin-film solar cells, all these tasks rely heavily on the transparent front electrode. Here we present a multiscale electrode architecture that allows us to achieve efficiencies as high as 14.1% with a thin-film silicon tandem solar cell employing only 3 μm of silicon. Our approach combines the versatility of nanoimprint lithography, the unusually high carrier mobility of hydrogenated indium oxide (over 100 cm(2)/V/s), and the unequaled light-scattering properties of self-textured zinc oxide. A multiscale texture provides light trapping over a broad wavelength range while ensuring an optimum morphology for the growth of high-quality silicon layers. A conductive bilayer stack guarantees carrier extraction while minimizing parasitic absorption losses. The tunability accessible through such multiscale electrode architecture offers unprecedented possibilities to address the trade-off between cell optical and electrical performance.The challenge for all photovoltaic technologies is to maximize light absorption, to convert photons with minimal losses into electric charges, and to efficiently extract them to the electrical circuit. For thin-film solar cells, all these tasks rely heavily on the transparent front electrode. Here we present a multiscale electrode architecture that allows us to achieve efficiencies as high as 14.1% with a thin-film silicon tandem solar cell employing only 3 μm of silicon. Our approach combines the versatility of nanoimprint lithography, the unusually high carrier mobility of hydrogenated indium oxide (over 100 cm(2)/V/s), and the unequaled light-scattering properties of self-textured zinc oxide. A multiscale texture provides light trapping over a broad wavelength range while ensuring an optimum morphology for the growth of high-quality silicon layers. A conductive bilayer stack guarantees carrier extraction while minimizing parasitic absorption losses. The tunability accessible through such multiscale electrode architecture offers unprecedented possibilities to address the trade-off between cell optical and electrical performance. The challenge for all photovoltaic technologies is to maximize light absorption, to convert photons with minimal losses into electric charges, and to efficiently extract them to the electrical circuit. For thin-film solar cells, all these tasks rely heavily on the transparent front electrode. Here we present a multiscale electrode architecture that allows us to achieve efficiencies as high as 14.1% with a thin-film silicon tandem solar cell employing only 3 μm of silicon. Our approach combines the versatility of nanoimprint lithography, the unusually high carrier mobility of hydrogenated indium oxide (over 100 cm(2)/V/s), and the unequaled light-scattering properties of self-textured zinc oxide. A multiscale texture provides light trapping over a broad wavelength range while ensuring an optimum morphology for the growth of high-quality silicon layers. A conductive bilayer stack guarantees carrier extraction while minimizing parasitic absorption losses. The tunability accessible through such multiscale electrode architecture offers unprecedented possibilities to address the trade-off between cell optical and electrical performance. |
Author | Battaglia, Corsin Hänni, Simon Nicolay, Sylvain Meillaud, Fanny Ballif, Christophe Despeisse, Matthieu Söderström, Karin Escarré, Jordi Boccard, Mathieu |
AuthorAffiliation | Ecole Polytechnique Fédérale de Lausanne (EPFL) |
AuthorAffiliation_xml | – name: Ecole Polytechnique Fédérale de Lausanne (EPFL) |
Author_xml | – sequence: 1 givenname: Mathieu surname: Boccard fullname: Boccard, Mathieu email: mathieu.boccard@epfl.ch – sequence: 2 givenname: Corsin surname: Battaglia fullname: Battaglia, Corsin – sequence: 3 givenname: Simon surname: Hänni fullname: Hänni, Simon – sequence: 4 givenname: Karin surname: Söderström fullname: Söderström, Karin – sequence: 5 givenname: Jordi surname: Escarré fullname: Escarré, Jordi – sequence: 6 givenname: Sylvain surname: Nicolay fullname: Nicolay, Sylvain – sequence: 7 givenname: Fanny surname: Meillaud fullname: Meillaud, Fanny – sequence: 8 givenname: Matthieu surname: Despeisse fullname: Despeisse, Matthieu – sequence: 9 givenname: Christophe surname: Ballif fullname: Ballif, Christophe |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25615355$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22332666$$D View this record in MEDLINE/PubMed |
BookMark | eNp90U1P3DAQBmALUZWP9sAfQL4g6GHBH4kTH9FqoZUW9QA9R7POBIy89mI7B_49jthuJYR6sj16bI3fOSL7Pngk5ISzS84Ev_JOMKmZHvfIIa8lmymtxf5u31YH5CilZ8aYljX7Sg6EkFIopQ5JvBtdtsmAQ_oQwacNRPSZLhyaHEOP9DqaJ5vLaYxIhxDpYhissRNa2senTO_AwyOupwL4ns4hRouRzoOb3rDBU-vpfXBQauhc-ka-DOASft-ux-TPzeJh_nO2_H37a369nEHFRZ71EptWVRUYhJUBzYGtmpb3qnwZdauk1ryt0WAvSqlHKGDoBefCDDVDJY_J-fu7mxheRky5W5ePlg7AYxhTp0UrG9FoXuTFfyVvlGCVrllb6OmWjqs19t0m2jXE1-5vogWcbQFMqQ4lU2PTP1erMpW6Lu7HuzMxpBRx2BHOummq3W6qxV59sMZmmKLNEaz79Ma2CzCpew5j9CXpT9wbijCv_Q |
CitedBy_id | crossref_primary_10_1016_j_apsusc_2017_09_254 crossref_primary_10_1016_j_apsusc_2015_07_089 crossref_primary_10_1364_OE_25_00A467 crossref_primary_10_1016_j_mseb_2012_10_016 crossref_primary_10_1016_j_solmat_2014_03_021 crossref_primary_10_1021_acsphotonics_6b00070 crossref_primary_10_1007_s10854_021_05578_2 crossref_primary_10_1063_1_4907001 crossref_primary_10_1016_j_solmat_2013_07_042 crossref_primary_10_1016_j_solener_2018_01_040 crossref_primary_10_1109_JPHOTOV_2013_2279204 crossref_primary_10_1016_j_electacta_2016_11_078 crossref_primary_10_1016_j_apsusc_2014_07_079 crossref_primary_10_1016_j_tsf_2013_08_014 crossref_primary_10_1063_1_4926735 crossref_primary_10_1002_pip_2300 crossref_primary_10_1016_j_solmat_2013_01_023 crossref_primary_10_7567_JJAP_54_08KB10 crossref_primary_10_1016_j_jallcom_2013_10_085 crossref_primary_10_1016_j_solmat_2013_05_037 crossref_primary_10_1002_adem_201600201 crossref_primary_10_1016_j_solmat_2014_11_013 crossref_primary_10_1109_JPHOTOV_2014_2333883 crossref_primary_10_1016_j_solmat_2013_11_033 crossref_primary_10_1002_smll_201402781 crossref_primary_10_1016_j_optcom_2013_08_062 crossref_primary_10_1016_j_solmat_2015_04_003 crossref_primary_10_1063_1_4867008 crossref_primary_10_1016_j_optmat_2017_02_039 crossref_primary_10_1002_pssr_201300103 crossref_primary_10_1016_j_orgel_2016_06_017 crossref_primary_10_1016_j_solmat_2013_03_040 crossref_primary_10_7567_JJAP_54_08KB05 crossref_primary_10_1364_AO_54_004366 crossref_primary_10_1016_j_solmat_2014_06_009 crossref_primary_10_1039_C5EE03380B crossref_primary_10_1088_0022_3727_49_5_055205 crossref_primary_10_1002_pip_2398 crossref_primary_10_1109_JPHOTOV_2020_3008263 crossref_primary_10_1002_pip_2564 crossref_primary_10_7567_APEX_8_072301 crossref_primary_10_1016_j_jpowsour_2015_07_061 crossref_primary_10_1021_acsaelm_2c01126 crossref_primary_10_7567_JJAP_57_060307 crossref_primary_10_1016_j_solmat_2014_07_025 crossref_primary_10_1063_1_4817914 crossref_primary_10_1002_solr_201700036 crossref_primary_10_1016_j_apsusc_2017_12_223 crossref_primary_10_1016_j_solmat_2015_02_033 crossref_primary_10_1016_j_solmat_2013_05_015 crossref_primary_10_1039_C4NR03915G crossref_primary_10_1016_j_ceramint_2017_04_108 crossref_primary_10_1364_AO_55_006718 crossref_primary_10_1063_1_4895931 crossref_primary_10_1002_pssa_201532961 crossref_primary_10_1002_adsu_201700077 crossref_primary_10_1002_pssa_201700544 crossref_primary_10_1063_1_4935539 crossref_primary_10_1088_0022_3727_48_36_365101 crossref_primary_10_1016_j_solmat_2015_09_008 crossref_primary_10_1063_1_4922963 crossref_primary_10_3390_ma8063648 crossref_primary_10_1016_j_solmat_2015_04_027 crossref_primary_10_1557_opl_2014_918 crossref_primary_10_1109_JPHOTOV_2014_2357495 crossref_primary_10_1002_aenm_201502276 crossref_primary_10_1063_1_4876223 crossref_primary_10_1002_pip_2743 crossref_primary_10_1063_1_4761988 crossref_primary_10_1063_1_4818621 crossref_primary_10_1016_j_solmat_2014_02_028 crossref_primary_10_1021_nl301521z crossref_primary_10_7498_aps_63_056801 crossref_primary_10_1016_j_apsusc_2013_12_088 crossref_primary_10_1557_opl_2012_886 crossref_primary_10_1016_j_solmat_2015_09_015 crossref_primary_10_1021_nl500366c crossref_primary_10_1016_j_apenergy_2014_08_097 crossref_primary_10_4313_TEEM_2016_17_5_275 crossref_primary_10_1109_JPHOTOV_2014_2311233 crossref_primary_10_1063_1_4826639 crossref_primary_10_1016_j_solmat_2014_10_012 crossref_primary_10_1016_j_physb_2018_05_042 crossref_primary_10_1016_j_solener_2018_05_077 crossref_primary_10_1088_1674_4926_37_8_083003 crossref_primary_10_1016_j_solmat_2018_01_036 crossref_primary_10_1002_pip_2639 crossref_primary_10_1364_OE_24_00A925 crossref_primary_10_1039_C4EE03346A crossref_primary_10_1007_s00339_017_1381_8 crossref_primary_10_1016_j_egypro_2015_12_317 crossref_primary_10_1109_JPHOTOV_2012_2214766 crossref_primary_10_1016_j_solener_2017_02_019 crossref_primary_10_1063_1_4802451 crossref_primary_10_1063_1_4823554 crossref_primary_10_1016_j_solmat_2015_05_008 crossref_primary_10_1016_j_solener_2015_03_018 crossref_primary_10_1364_OE_21_00A808 crossref_primary_10_1063_1_4749810 crossref_primary_10_3390_app9214648 crossref_primary_10_1016_j_solmat_2013_10_025 crossref_primary_10_1038_srep29639 crossref_primary_10_1007_s11664_019_07355_8 crossref_primary_10_1016_j_ijleo_2017_08_051 crossref_primary_10_1021_nl501774u crossref_primary_10_1109_JPHOTOV_2016_2571619 crossref_primary_10_1117_1_JNP_10_046006 crossref_primary_10_7498_aps_62_120101 crossref_primary_10_1364_OE_21_00A656 crossref_primary_10_1109_JPHOTOV_2013_2280020 crossref_primary_10_1016_j_solmat_2013_02_032 crossref_primary_10_1016_j_solmat_2014_12_029 crossref_primary_10_1039_C4CP04066J |
Cites_doi | 10.1038/353737a0 10.1038/nmat1387 10.1063/1.3432739 10.1116/1.2981076 10.1063/1.3517492 10.4229/25thEUPVSEC2010-3CO.14.1 10.1143/JJAP.29.630 10.1063/1.2715554 10.1109/T-ED.1984.21594 10.1038/nmat2635 10.1016/j.solmat.2006.06.002 10.1002/pssr.201004303 10.1063/1.2715036 10.4229/26thEUPVSEC2011-3BO.2.6 10.1016/j.tsf.2009.03.056 10.1016/j.solmat.2011.07.023 10.1109/JPHOTOV.2011.2180514 10.1109/JPHOTOV.2011.2179414 10.1016/j.solmat.2006.06.003 10.4229/24thEUPVSEC2009-3BO.9.3 10.1063/1.2794423 10.1063/1.3592885 10.1016/j.solmat.2010.11.010 10.1063/1.1775289 10.1002/pssr.200802118 10.1016/j.tsf.2006.12.093 10.1021/nl9034237 10.1016/j.tsf.2009.08.060 10.1016/j.solener.2004.08.028 10.1143/JJAP.43.7296 10.1016/j.energy.2005.09.006 10.1063/1.89674 10.1063/1.93817 10.1016/S1473-8325(03)00623-0 10.1002/pssa.201026745 10.1016/j.solmat.2010.04.043 10.1126/science.285.5428.692 10.1021/nl1037787 10.1016/j.jnoncrysol.2007.09.084 10.1063/1.3565249 |
ContentType | Journal Article |
Copyright | Copyright © 2012 American Chemical Society 2015 INIST-CNRS 2012 American Chemical Society |
Copyright_xml | – notice: Copyright © 2012 American Chemical Society – notice: 2015 INIST-CNRS – notice: 2012 American Chemical Society |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7SP 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1021/nl203909u |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences Physics Architecture |
EISSN | 1530-6992 |
EndPage | 1348 |
ExternalDocumentID | 22332666 25615355 10_1021_nl203909u b156417487 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 123 4.4 55A 5VS 7~N AABXI ABMVS ABPTK ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 LG6 PK8 RNS ROL TN5 UI2 VF5 VG9 W1F X --- -~X 6P2 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ GGK 53G AFFNX IQODW CGR CUY CVF ECM EIF NPM 7SP 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-a412t-d3e78644aceabca91a0b781d6102e986399185eced2610dea1a0fd2112cf50e63 |
IEDL.DBID | ACS |
ISSN | 1530-6984 1530-6992 |
IngestDate | Thu Jul 10 23:24:28 EDT 2025 Fri Jul 11 00:40:30 EDT 2025 Thu Jan 02 22:08:12 EST 2025 Mon Jul 21 09:12:44 EDT 2025 Thu Apr 24 23:03:29 EDT 2025 Tue Jul 01 00:42:45 EDT 2025 Thu Aug 27 13:42:08 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | light trapping nanoimprinting texture thin-film silicon solar cells Photovoltaics Thin film device Electric charge Light scattering Charge carrier mobility Nanoimprint lithography Indium oxide Texture Thin film Photovoltaic cell Solar cell Trapping Morphology Growth mechanism Zinc oxide Silicon Light absorption Nanomaterial synthesis Bilayers |
Language | English |
License | CC BY 4.0 2012 American Chemical Society |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a412t-d3e78644aceabca91a0b781d6102e986399185eced2610dea1a0fd2112cf50e63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://infoscience.epfl.ch/record/177046/files/paper_640.pdf |
PMID | 22332666 |
PQID | 1762049508 |
PQPubID | 23500 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_928372791 proquest_miscellaneous_1762049508 pubmed_primary_22332666 pascalfrancis_primary_25615355 crossref_primary_10_1021_nl203909u crossref_citationtrail_10_1021_nl203909u acs_journals_10_1021_nl203909u |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-03-14 |
PublicationDateYYYYMMDD | 2012-03-14 |
PublicationDate_xml | – month: 03 year: 2012 text: 2012-03-14 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States |
PublicationTitle | Nano letters |
PublicationTitleAlternate | Nano Lett |
PublicationYear | 2012 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Čampa A. (ref14/cit14) 2007; 515 Aryal M. (ref41/cit41) 2008; 26 Hermann W. A. (ref1/cit1) 2006; 31 ref3/cit3 Deckman H. W. (ref13/cit13) 1983; 42 Dominé D. (ref35/cit35) 2008; 2 Battaglia C. (ref40/cit40) 2010; 96 Buehlmann P. (ref36/cit36) 2007; 91 ref29/cit29 Tiedje T. (ref4/cit4) 1984; 31 Koida T. (ref8/cit8) 2010; 518 Nakajima A. (ref39/cit39) 2004; 43 Ding K. (ref30/cit30) 2011; 95 ref31/cit31 ref2/cit2 ref28/cit28 Escarré J. (ref32/cit32) 2011; 95 ref26/cit26 Gupta A. (ref9/cit9) 2004; 85 Faÿ S. (ref10/cit10) 2006; 90 O’Reagal B. (ref5/cit5) 1991; 353 Berginski M. (ref11/cit11) 2007; 101 Sakai H. (ref17/cit17) 1990; 29 Zhu J. (ref15/cit15) 2010; 10 Cuony P. (ref37/cit37) 2010; 97 Shah A. (ref6/cit6) 1999; 285 Sai H. (ref18/cit18) 2011; 98 Boccard M. (ref7/cit7) 2010; 4 ref22/cit22 Kim M. S. (ref42/cit42) 2007; 90 Staebler D. L. (ref25/cit25) 1977; 31 Battaglia C. (ref34/cit34) 2011; 109 Python M. (ref19/cit19) 2008; 354 ref33/cit33 Law M. (ref20/cit20) 2005; 4 Yamamoto K. (ref21/cit21) 2004; 77 Aberle A. G. (ref23/cit23) 2009; 517 Meillaud F. (ref24/cit24) 2006; 90 Kelzenberg M. D. (ref16/cit16) 2010; 9 Despeisse M. (ref38/cit38) 2011; 208 Boccard M. (ref27/cit27) 2011; 95 Battaglia C. (ref12/cit12) 2011; 11 |
References_xml | – volume: 353 start-page: 737 year: 1991 ident: ref5/cit5 publication-title: Nature doi: 10.1038/353737a0 – volume: 4 start-page: 455 year: 2005 ident: ref20/cit20 publication-title: Nat. Mater. doi: 10.1038/nmat1387 – volume: 96 start-page: 213504 year: 2010 ident: ref40/cit40 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3432739 – volume: 26 start-page: 2562 issue: 6 year: 2008 ident: ref41/cit41 publication-title: J. Vac. Sci. Technol., B doi: 10.1116/1.2981076 – volume: 97 start-page: 213502 year: 2010 ident: ref37/cit37 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3517492 – ident: ref2/cit2 doi: 10.4229/25thEUPVSEC2010-3CO.14.1 – volume: 29 start-page: 630 year: 1990 ident: ref17/cit17 publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.29.630 – volume: 101 start-page: 074903 year: 2007 ident: ref11/cit11 publication-title: J. Appl. Phys. doi: 10.1063/1.2715554 – volume: 31 start-page: 711 year: 1984 ident: ref4/cit4 publication-title: IEEE Trans. Electron Devices doi: 10.1109/T-ED.1984.21594 – volume: 9 start-page: 239 year: 2010 ident: ref16/cit16 publication-title: Nat. Mater. doi: 10.1038/nmat2635 – volume: 90 start-page: 2952 year: 2006 ident: ref24/cit24 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2006.06.002 – volume: 4 start-page: 326 year: 2010 ident: ref7/cit7 publication-title: Phys. Status Solidi RRL doi: 10.1002/pssr.201004303 – ident: ref33/cit33 – volume: 90 start-page: 123113 year: 2007 ident: ref42/cit42 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2715036 – ident: ref22/cit22 doi: 10.4229/26thEUPVSEC2011-3BO.2.6 – volume: 517 start-page: 4706 year: 2009 ident: ref23/cit23 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2009.03.056 – volume: 95 start-page: 3318 year: 2011 ident: ref30/cit30 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2011.07.023 – ident: ref29/cit29 doi: 10.1109/JPHOTOV.2011.2180514 – ident: ref31/cit31 doi: 10.1109/JPHOTOV.2011.2179414 – volume: 90 start-page: 2960 year: 2006 ident: ref10/cit10 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2006.06.003 – ident: ref26/cit26 doi: 10.4229/24thEUPVSEC2009-3BO.9.3 – volume: 91 start-page: 143505 year: 2007 ident: ref36/cit36 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2794423 – volume: 109 start-page: 114501 year: 2011 ident: ref34/cit34 publication-title: J. Appl. Phys. doi: 10.1063/1.3592885 – volume: 95 start-page: 881 year: 2011 ident: ref32/cit32 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2010.11.010 – volume: 85 start-page: 684 year: 2004 ident: ref9/cit9 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1775289 – ident: ref3/cit3 – volume: 2 start-page: 163 year: 2008 ident: ref35/cit35 publication-title: Phys. Status Solidi RRL doi: 10.1002/pssr.200802118 – volume: 515 start-page: 5968 issue: 15 year: 2007 ident: ref14/cit14 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2006.12.093 – volume: 10 start-page: 1979 year: 2010 ident: ref15/cit15 publication-title: Nano Lett. doi: 10.1021/nl9034237 – volume: 518 start-page: 2930 year: 2010 ident: ref8/cit8 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2009.08.060 – volume: 77 start-page: 939 year: 2004 ident: ref21/cit21 publication-title: Solar Energy doi: 10.1016/j.solener.2004.08.028 – volume: 43 start-page: 7296 year: 2004 ident: ref39/cit39 publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.43.7296 – volume: 31 start-page: 1685 year: 2006 ident: ref1/cit1 publication-title: Energy doi: 10.1016/j.energy.2005.09.006 – volume: 31 start-page: 292 year: 1977 ident: ref25/cit25 publication-title: Appl. Phys. Lett. doi: 10.1063/1.89674 – volume: 42 start-page: 968 year: 1983 ident: ref13/cit13 publication-title: Appl. Phys. Lett. doi: 10.1063/1.93817 – ident: ref28/cit28 doi: 10.1016/S1473-8325(03)00623-0 – volume: 208 start-page: 1863 year: 2011 ident: ref38/cit38 publication-title: Phys. Status Solidi A doi: 10.1002/pssa.201026745 – volume: 95 start-page: 195 year: 2011 ident: ref27/cit27 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2010.04.043 – volume: 285 start-page: 692 year: 1999 ident: ref6/cit6 publication-title: Science doi: 10.1126/science.285.5428.692 – volume: 11 start-page: 661 year: 2011 ident: ref12/cit12 publication-title: Nano Lett. doi: 10.1021/nl1037787 – volume: 354 start-page: 2258 year: 2008 ident: ref19/cit19 publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2007.09.084 – volume: 98 start-page: 113502 year: 2011 ident: ref18/cit18 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3565249 |
SSID | ssj0009350 |
Score | 2.4228528 |
Snippet | The challenge for all photovoltaic technologies is to maximize light absorption, to convert photons with minimal losses into electric charges, and to... |
SourceID | proquest pubmed pascalfrancis crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1344 |
SubjectTerms | Applied sciences Architecture Carriers Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science; rheology Electric circuits Electric Power Supplies Electrodes Electronics Energy Equipment Design Equipment Failure Analysis Exact sciences and technology Light Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties Materials science Methods of nanofabrication Molecular electronics, nanoelectronics Nanostructures - chemistry Nanostructures - ultrastructure Nanotechnology - instrumentation Natural energy Particle Size Photovoltaic cells Photovoltaic conversion Physics Refractometry Scattering, Radiation Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Silicon Solar cells Solar cells. Photoelectrochemical cells Solar Energy Surface layer Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) Texture |
Title | Multiscale Transparent Electrode Architecture for Efficient Light Management and Carrier Collection in Solar Cells |
URI | http://dx.doi.org/10.1021/nl203909u https://www.ncbi.nlm.nih.gov/pubmed/22332666 https://www.proquest.com/docview/1762049508 https://www.proquest.com/docview/928372791 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9tAEB5RuFChFigPtxAtj0MvBnttr71HFIJQVbgEJG7WenciVY2cKHEu_PrO2HmhJnAfy_uY8Xzj3fk-gEtKYarnMvS1UZEfqyj1C81aLyoLY6TPJlruRn54VPfP8a-X5GUDLtac4MvwuuzLgApzPfkEW1JR8DL-aXcXzLpRLcNKkUt1kM7iGX3Q8qOceuz4TerZGZoxrUKvka9Yjy_rPHP3FW5n3TrN9ZK_V5OquLKv_5M3vjeFXfgyxZnipnGMPdjAch8-L7EPfoNR3XzLw0PRcJxzY1glOo0yjkNxs3TKIAjdik5NOMFGv7moF4vLM8KUTrTNiAXwRP03om6YEH9K0eXqWbSx3x8fwPNd56l9708lGHwTh7LyXYRpRpDJWDSFNTo0QZESxCXQJVFnDG8o4aNFR5VY4NCQQc9RUSltLwlQRYewWQ5KPAbhqFYKksKmVukYDeokM5Q9Y51al2CoPWjRHuXTEBrn9em4DPP54nnwc7Z9uZ0SmLOORn-V6fncdNiwdqwyar3xgbkloUDypiTx4GzmFDkFHZ-kmBIHExpbyjT-LKDrgVhjo5lXSKY69OCocajFC2REqFmp7x9N-QdsE0CTfOctjE9gsxpN8JRAUFW06iD4B48TASg |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB1Be4AKUT5LoCwGceCSkjiJEx9Xq60W2PbSVuotcuxZqWKVVpvshV_PjJP9KGpF75PEdsaZNxnPewBfKYSpmSsw1EYlYaqSPKw0a72oIk6RPptouRv55FRNLtKfl9llT5PDvTA0iIbu1Pgi_oZdIP5ez2VE-blePoZdAiGSvXk4OtsQ7CZejZU2MKVDukhXLELbl3IEss2tCPTsxjS0GLNOxeJ-mOnDzfF-p1vkB-pPmfw-WrbVkf3zD4fjw2byAp73qFMMOzd5CY-wfgV7W1yEr2HhW3F5lCg6xnNuE2vFuNPJcSiGWzUHQVhXjD39BBtNOcUXm6M0wtROjMyC5fCE_zfh2yfEVS3OOJcWI5zPmzdwcTw-H03CXpAhNGks29AlmBcEoIxFU1mjYxNVOQFegmASdcFgh8I_WnSUl0UODRnMHKWY0s6yCFXyFnbq6xrfgXCUOUVZZXOrdIoGdVYYiqWpzq3LMNYBDGjtyn5DNaWvlcu4XC9eAN9Wb7G0PZ05q2rM7zL9sja96Tg87jIa3HKFtSVhQnKqLAvg88o3StqCXFcxNV4vaWw5k_qznG4A4h4bzSxDMtdxAAedX20eIBPC0Eq9_9-UP8GTyfnJtJz-OP31AZ4SdJN8Gi5OD2GnXSzxI8Gjthr4ffEXrlAJiQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9RADLagSIiqorzaBtplQBy4pOQ5yRxXy64KlIJUKvUWTWYcCbFKV5vspb8ee5J9FLWidyfxTOz4czz-DPCBQpisbI6-0jL2Exlnfql41ovMwwTps4mGu5G_n8mTi-TrZXrZJ4rcC0NKNHSnxhXx2atntuoZBsJP9TQKKEdXi4fwiMt1bNHD0fmaZDd2E1nJiSklUnmyZBLavJSjkGluRKGdmW5oQ6puksXdUNOFnMku_Fgp606a_DletOWxuf6Hx_H-q3kGT3v0KYaduTyHB1i_gO0NTsKXMHctuawpio75nNvFWjHu5uVYFMON2oMgzCvGjoaChU451RfrIzVC11aM9JzH4gn3j8K1UYjftTjnnFqMcDptXsHFZPxrdOL3gxl8nYRR69sYs5yAlDaoS6NVqIMyI-BLUCxClTPoIRiABi3lZ4FFTQKVpVQzMlUaoIz3YKu-qvEAhKUMKkhLkxmpEtSo0lxTTE1UZmyKofJgQPtX9I7VFK5mHoXFavM8-Lh8k4Xpac15usb0NtH3K9FZx-Vxm9DghjmsJAkbkmGlqQfvlvZRkCtyfUXXeLUg3TIm9-exuh6IO2QUsw1FmQo92O9sa_2AKCYsLeXr_y35LTz--XlSnH45-_YGnhCCi_hQXJgcwlY7X-ARoaS2HDjX-AtGfQwM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiscale+Transparent+Electrode+Architecture+for+Efficient+Light+Management+and+Carrier+Collection+in+Solar+Cells&rft.jtitle=Nano+letters&rft.au=Boccard%2C+Mathieu&rft.au=Battaglia%2C+Corsin&rft.au=H%C3%A4nni%2C+Simon&rft.au=S%C3%B6derstr%C3%B6m%2C+Karin&rft.date=2012-03-14&rft.issn=1530-6984&rft.eissn=1530-6992&rft.volume=12&rft.issue=3&rft.spage=1344&rft.epage=1348&rft_id=info:doi/10.1021%2Fnl203909u&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_nl203909u |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon |