Site and sequence specificity of the daunomycin-DNA interaction

The site and sequence specificity of the daunomycin-DNA interaction was examined by equilibrium binding methods, by deoxyribonuclease I footprinting studies, and by examination of the effect of the antibiotic on the cleavage of linearized pBR322 DNA by restriction endonucleases PvuI and EcoRI. These...

Full description

Saved in:
Bibliographic Details
Published inBiochemistry (Easton) Vol. 26; no. 25; pp. 8227 - 8236
Main Authors Chaires, Jonathan B, Fox, Keith R, Herrera, Julio E, Britt, Mark, Waring, Michael J
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 15.12.1987
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The site and sequence specificity of the daunomycin-DNA interaction was examined by equilibrium binding methods, by deoxyribonuclease I footprinting studies, and by examination of the effect of the antibiotic on the cleavage of linearized pBR322 DNA by restriction endonucleases PvuI and EcoRI. These three experimental approaches provide mutually consistent results showing that daunomycin indeed recognizes specific sites along the DNA lattice. The affinity of daunomycin toward natural DNA increases with increasing GC content. The quantitative results are most readily explained by binding models in which daunomycin interacts with sites containing two adjacent GC base pairs, possibly occurring as part of a triplet recognition sequence. Deoxyribonuclease I footprinting studies utilizing the 160 base pair (bp) tyrT DNA fragment and 61 and 53 bp restriction fragments isolated from pBR322 DNA further define the sequence specificity of daunomycin binding. Specific, reproducible protection patterns were obtained for each DNA fragment at 4 degrees C. Seven protected sequences, ranging in size from 4 to 14 bp, were identified within the tyrT fragment. Relative to the overall tyrT sequence, these protected sequences were GC rich and contained a more limited and distinct distribution of di- and trinucleotides. Within all of the protected sequences, a triplet containing adjacent GC base pairs flanked by an AT base pair could be found in one or more copies. Nowhere in the tyrT fragment did that triplet occur outside a protected sequence. The same triplet occurred within seven out of nine protected sequences observed in the fragments isolated from pBR322 DNA. In the two remaining cases, three contiguous GC base pairs were found. We conclude that the preferred daunomycin triplet binding site contains adjacent GC base pairs, of variable sequence, flanked by an AT base pair. This conclusion is consistent with the results of a recent theoretical study of daunomycin sequence specificity [Chen, K.-X., Gresh, N., & Pullman, B. (1985) J. Biomol. Struct. Dyn. 3, 445-466]. Adriamycin and the beta-anomer of adriamycin produce the same qualitative pattern of protection as daunomycin with the tyrT fragment. Daunomycin inhibits the rate of digestion of pBR322 DNA by PvuI (recognition sequence 5'-CGATCG-3') to a greater extent than it does EcoRI (recognition sequence 5'-GAATTC-3'), a finding consistent with the conclusions derived from our footprinting studies. Our results, as a whole, are the clearest indication to date that daunomycin recognizes a specific DNA sequence as a preferred binding site.
AbstractList The site and sequence specificity of the daunomycin-DNA interaction was examined by equilibrium binding methods, by deoxyribonuclease I footprinting studies, and by examination of the effect of the antibiotic on the cleavage of linearized pBR322 DNA by restriction endonucleases PvuI and EcoRI. These three experimental approaches provide mutually consistent results showing that daunomycin indeed recognizes specific sites along the DNA lattice. The affinity of daunomycin toward natural DNA increases with increasing GC content. The quantitative results are most readily explained by binding models in which daunomycin interacts with sites containing two adjacent GC base pairs, possibly occurring as part of a triplet recognition sequence. Deoxyribonuclease I footprinting studies utilizing the 160 base pair (bp) tyrT DNA fragment and 61 and 53 bp restriction fragments isolated from pBR322 DNA further define the sequence specificity of daunomycin binding. Specific, reproducible protection patterns were obtained for each DNA fragment at 4 degrees C. Seven protected sequences, ranging in size from 4 to 14 bp, were identified within the tyrT fragment. Relative to the overall tyrT sequence, these protected sequences were GC rich and contained a more limited and distinct distribution of di- and trinucleotides. Within all of the protected sequences, a triplet containing adjacent GC base pairs flanked by an AT base pair could be found in one or more copies. Nowhere in the tyrT fragment did that triplet occur outside a protected sequence. The same triplet occurred within seven out of nine protected sequences observed in the fragments isolated from pBR322 DNA. In the two remaining cases, three contiguous GC base pairs were found. We conclude that the preferred daunomycin triplet binding site contains adjacent GC base pairs, of variable sequence, flanked by an AT base pair. This conclusion is consistent with the results of a recent theoretical study of daunomycin sequence specificity [Chen, K.-X., Gresh, N., & Pullman, B. (1985) J. Biomol. Struct. Dyn. 3, 445-466]. Adriamycin and the beta-anomer of adriamycin produce the same qualitative pattern of protection as daunomycin with the tyrT fragment. Daunomycin inhibits the rate of digestion of pBR322 DNA by PvuI (recognition sequence 5'-CGATCG-3') to a greater extent than it does EcoRI (recognition sequence 5'-GAATTC-3'), a finding consistent with the conclusions derived from our footprinting studies. Our results, as a whole, are the clearest indication to date that daunomycin recognizes a specific DNA sequence as a preferred binding site.
The site and sequence specificity of the daunomycin-DNA interaction was examined by equilibrium binding methods, by deoxyribonuclease I footprinting studies, and by examination of the effect of the antibiotic on the cleavage of linearized pBR322 DNA by restriction endonucleases PvuI and EcoRI. These three experimental approaches provide mutually consistent results showing that daunomycin indeed recognizes specific sites along the DNA lattice. The affinity of daunomycin toward natural DNA increases with increasing GC content. The quantitative results are most readily explained by binding models in which daunomycin interacts with sites containing two adjacent GC base pairs, possibly occurring as part of a triplet recognition sequence. Deoxyribonuclease I footprinting studies utilizing the 160 base pair (bp) tyrT DNA fragment and 61 and 53 bp restriction fragments isolated from pBR322 DNA further define the sequence specificity of daunomycin binding. Specific, reproducible protection patterns were obtained for each DNA fragment at 4 degrees C. Seven protected sequences, ranging in size from 4 to 14 bp, were identified within the tyrT fragment. Relative to the overall tyrT sequence, these protected sequences were GC rich and contained a more limited and distinct distribution of di- and trinucleotides. Within all of the protected sequences, a triplet containing adjacent GC base pairs flanked by an AT base pair could be found in one or more copies. Nowhere in the tyrT fragment did that triplet occur outside a protected sequence. The same triplet occurred within seven out of nine protected sequences observed in the fragments isolated from pBR322 DNA. In the two remaining cases, three contiguous GC base pairs were found. We conclude that the preferred daunomycin triplet binding site contains adjacent GC base pairs, of variable sequence, flanked by an AT base pair. This conclusion is consistent with the results of a recent theoretical study of daunomycin sequence specificity [Chen, K.-X., Gresh, N., & Pullman, B. (1985) J. Biomol. Struct. Dyn. 3, 445-466]. Adriamycin and the beta-anomer of adriamycin produce the same qualitative pattern of protection as daunomycin with the tyrT fragment. Daunomycin inhibits the rate of digestion of pBR322 DNA by PvuI (recognition sequence 5'-CGATCG-3') to a greater extent than it does EcoRI (recognition sequence 5'-GAATTC-3'), a finding consistent with the conclusions derived from our footprinting studies. Our results, as a whole, are the clearest indication to date that daunomycin recognizes a specific DNA sequence as a preferred binding site.
Author Chaires, Jonathan B
Britt, Mark
Herrera, Julio E
Waring, Michael J
Fox, Keith R
Author_xml – sequence: 1
  givenname: Jonathan B
  surname: Chaires
  fullname: Chaires, Jonathan B
– sequence: 2
  givenname: Keith R
  surname: Fox
  fullname: Fox, Keith R
– sequence: 3
  givenname: Julio E
  surname: Herrera
  fullname: Herrera, Julio E
– sequence: 4
  givenname: Mark
  surname: Britt
  fullname: Britt, Mark
– sequence: 5
  givenname: Michael J
  surname: Waring
  fullname: Waring, Michael J
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7012265$$DView record in Pascal Francis
http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7074998$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/2831939$$D View this record in MEDLINE/PubMed
BookMark eNqFkE1LxDAQhoMoun6cPAs9iB6kmjRN05xkWT9RVHC9eAnTdIrR3XRNWnD_vZFdFg-CpzC8DzN5n22y7lqHhOwzespoxs4qSylXCihna2TAREbTXCmxTgaU0iLNVEG3yHYI73HMqcw3yWZWcqa4GpDzZ9thAq5OAn726AwmYYbGNtbYbp60TdK9YVJD79rp3FiXXjwME-s69GA627pdstHAJODe8t0hL1eX49FNev94fTsa3qeQs6xLDZScMgECq8YUdSllVUJRFCpXQjRYK8pQmjKrFchaVhx5RQWaqipzzqUQfIccLfbOfBv_GTo9tcHgZAIO2z5oKVXJSyEjeLIAjW9D8NjombdT8HPNqP7RpX_pivTBcm1fTbFesUs_MT9c5hAMTBoPztiwwmS0qeLhfzGWZcVPiXSB2dDh1yoG_6ELGWvq8dOzHtMr9Tp6vdZ3kT9e8GCCfm9776LiP3t8Ayf4mvM
CitedBy_id crossref_primary_10_7124_bc_000514
crossref_primary_10_1016_j_bpc_2016_05_002
crossref_primary_10_1016_0009_2797_89_90107_5
crossref_primary_10_1073_pnas_95_8_4327
crossref_primary_10_1007_BF02421499
crossref_primary_10_1002_bies_20160
crossref_primary_10_1021_jp507834s
crossref_primary_10_1039_C2OB26320C
crossref_primary_10_1002_anie_199112541
crossref_primary_10_1080_07391102_2000_10506577
crossref_primary_10_1016_j_mam_2023_101205
crossref_primary_10_1016_S0022_2836_05_80349_3
crossref_primary_10_1016_S0141_8130_02_00009_0
crossref_primary_10_1002_biot_201000212
crossref_primary_10_1007_s10822_019_00268_y
crossref_primary_10_1016_j_bmc_2009_10_048
crossref_primary_10_1158_0008_5472_CAN_06_4431
crossref_primary_10_1002_jmr_2639
crossref_primary_10_1016_j_bmc_2003_10_049
crossref_primary_10_1177_095632029300400206
crossref_primary_10_1021_bi952495o
crossref_primary_10_1007_BF03162548
crossref_primary_10_1016_j_fct_2019_110834
crossref_primary_10_1111_j_1432_1033_1990_tb19124_x
crossref_primary_10_1002_jmr_300020306
crossref_primary_10_1080_10601329208054140
crossref_primary_10_1021_acs_jpcb_4c02213
crossref_primary_10_1016_S0887_2333_96_00070_7
crossref_primary_10_1016_0009_2614_88_85101_7
crossref_primary_10_1016_0022_2836_91_90203_I
crossref_primary_10_1021_acs_jpcb_0c05840
crossref_primary_10_1016_0022_2836_89_90577_9
crossref_primary_10_1016_j_jphotochem_2008_03_009
crossref_primary_10_1021_jp311634a
crossref_primary_10_1002_elan_201600514
crossref_primary_10_1016_j_aca_2011_08_043
crossref_primary_10_1002_jmr_300070208
crossref_primary_10_1016_S0021_9258_18_47389_9
crossref_primary_10_1016_0006_291X_90_92096_I
crossref_primary_10_1080_07391102_1990_10508552
crossref_primary_10_1080_07391102_1990_10508551
crossref_primary_10_1111_j_0014_2956_2004_04292_x
crossref_primary_10_1021_jp066877n
crossref_primary_10_1002_em_20606
crossref_primary_10_1016_S0021_9258_18_38129_8
crossref_primary_10_1002_anie_199627971
crossref_primary_10_1016_0014_5793_88_80320_X
crossref_primary_10_1039_C4AN01882F
crossref_primary_10_1016_0014_5793_92_80157_C
crossref_primary_10_1016_0014_5793_89_81198_6
crossref_primary_10_1002_adma_201600773
crossref_primary_10_1002_bip_23408
crossref_primary_10_1016_j_jct_2012_05_028
crossref_primary_10_1016_0166_1280_92_87178_3
crossref_primary_10_1002__SICI_1097_4644_19970301_64_3_476__AID_JCB14_3_0_CO_2_E
crossref_primary_10_1002_bip_20416
crossref_primary_10_1016_0165_022X_94_90041_8
crossref_primary_10_1089_dna_2011_1299
crossref_primary_10_1021_jm030529h
crossref_primary_10_3390_s140100346
crossref_primary_10_1002_ange_19961082317
crossref_primary_10_1080_07391102_2015_1055304
crossref_primary_10_1016_j_bbcan_2013_12_002
crossref_primary_10_1016_0921_8777_93_90004_Z
crossref_primary_10_1016_0301_4622_90_80008_U
crossref_primary_10_1016_0306_3623_94_90261_5
crossref_primary_10_1002_ange_19911031007
crossref_primary_10_1080_07391102_1994_10508090
crossref_primary_10_1111_j_1432_1033_1989_tb14703_x
crossref_primary_10_1111_j_1432_1033_1989_tb14498_x
crossref_primary_10_1016_0014_5793_89_81418_8
crossref_primary_10_1016_0141_8130_91_90079_A
crossref_primary_10_1002_em_2850260104
crossref_primary_10_1016_j_bcp_2010_01_005
crossref_primary_10_1080_07391102_1991_10507893
crossref_primary_10_1021_acs_jpclett_4c00961
crossref_primary_10_1182_blood_V97_9_2839
crossref_primary_10_1002_cbic_200600083
crossref_primary_10_1016_j_molstruc_2009_05_042
crossref_primary_10_1016_0027_5107_94_00155_X
crossref_primary_10_1039_C4RA04327H
crossref_primary_10_1016_S0141_8130_00_00146_X
crossref_primary_10_1016_0009_2797_96_03697_6
crossref_primary_10_1016_0959_440X_92_90226_W
crossref_primary_10_1002_ddr_430340207
crossref_primary_10_1016_j_jsb_2004_05_005
crossref_primary_10_1021_acs_analchem_3c05372
crossref_primary_10_1016_j_bbagen_2013_06_001
crossref_primary_10_1002_bip_10319
crossref_primary_10_1002_jsfa_2740590217
crossref_primary_10_1016_j_bbrc_2019_03_190
crossref_primary_10_1016_j_jconrel_2020_07_012
crossref_primary_10_1088_1361_6528_aac7dd
crossref_primary_10_1016_S0301_4622_96_02184_9
crossref_primary_10_1016_0014_5793_89_80747_1
crossref_primary_10_1039_c2mb25080b
crossref_primary_10_1016_0304_4165_90_90023_P
crossref_primary_10_1371_journal_pone_0023186
crossref_primary_10_1073_pnas_1302554110
crossref_primary_10_1007_BF02903651
crossref_primary_10_1007_BF00686222
crossref_primary_10_1016_j_abb_2008_05_009
crossref_primary_10_1371_journal_pone_0084880
crossref_primary_10_1371_journal_pone_0154666
crossref_primary_10_1016_j_bcp_2004_09_002
crossref_primary_10_1021_jp000916s
ContentType Journal Article
Copyright 1989 INIST-CNRS
Copyright_xml – notice: 1989 INIST-CNRS
DBID BSCLL
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1021/bi00399a031
DatabaseName Istex
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Applied Sciences
EISSN 1520-4995
EndPage 8236
ExternalDocumentID 10_1021_bi00399a031
2831939
7074998
7012265
ark_67375_TPS_T0F9ZCZG_K
b372574578
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, U.S. Gov't, P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: CA35635
GroupedDBID -
.K2
02
08R
186
1WB
23N
3O-
53G
55
55A
5GY
5RE
5VS
85S
AABXI
AAYJJ
ABFLS
ABMVS
ABOCM
ABPTK
ABUFD
ACGFS
ACJ
ACNCT
ACS
AENEX
AETEA
AFFDN
AFFNX
AFMIJ
AGXLV
AIDAL
AJYGW
ALMA_UNASSIGNED_HOLDINGS
ANTXH
AQSVZ
BAANH
CS3
D0L
DU5
DZ
F20
F5P
G8K
GJ
HR
J5H
JG
JG~
K2
K78
KM
L7B
LG6
MVM
NHB
OHT
P2P
RNS
ROL
TN5
UNC
UQL
VQA
W1F
WH7
X
X7M
XFK
YQJ
YXE
YZZ
ZA5
ZE2
ZGI
ZXP
---
-DZ
-~X
.55
.GJ
.HR
6TJ
ABDPE
ABHMW
ABJNI
BSCLL
CUPRZ
EBS
GGK
VG9
XOL
YYP
ZCA
~02
~KM
4.4
7~N
AAUGY
ABFRP
ABQRX
ABUCX
ACKIV
ADHLV
AEESW
AFEFF
AGHSJ
AHGAQ
AJUXI
ED~
EJD
GNL
IH9
IHE
IQODW
UBC
UI2
VF5
XJT
XSW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-a412t-ca83015a5ebfc6d877b8a66694955fed901e7c82d9a7d7b3e3b05ecbb84337553
IEDL.DBID ACS
ISSN 0006-2960
IngestDate Fri Oct 25 02:56:49 EDT 2024
Thu Sep 26 15:57:26 EDT 2024
Wed Oct 16 00:48:23 EDT 2024
Sun Oct 29 17:09:40 EDT 2023
Wed Oct 30 09:25:25 EDT 2024
Thu Aug 27 13:41:57 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 25
Keywords Antineoplastic agent
Molecular interaction
Anthracyclins
Binding site
Nucleotide sequence
DNA
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a412t-ca83015a5ebfc6d877b8a66694955fed901e7c82d9a7d7b3e3b05ecbb84337553
Notes istex:1FE9824587939DBE17A89AA97670006D6711E6F5
ark:/67375/TPS-T0F9ZCZG-K
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 2831939
PQID 77983857
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_77983857
crossref_primary_10_1021_bi00399a031
pubmed_primary_2831939
pascalfrancis_primary_7074998
pascalfrancis_primary_7012265
istex_primary_ark_67375_TPS_T0F9ZCZG_K
acs_journals_10_1021_bi00399a031
ProviderPackageCode JG~
55A
AABXI
ACJ
AGXLV
W1F
ANTXH
ACS
.K2
ABMVS
1WB
BAANH
AQSVZ
PublicationCentury 1900
PublicationDate 1987-12-15
PublicationDateYYYYMMDD 1987-12-15
PublicationDate_xml – month: 12
  year: 1987
  text: 1987-12-15
  day: 15
PublicationDecade 1980
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
PublicationTitle Biochemistry (Easton)
PublicationTitleAlternate Biochemistry
PublicationYear 1987
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
SSID ssj0004074
Score 1.6969608
Snippet The site and sequence specificity of the daunomycin-DNA interaction was examined by equilibrium binding methods, by deoxyribonuclease I footprinting studies,...
SourceID proquest
crossref
pubmed
pascalfrancis
istex
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 8227
SubjectTerms Antineoplastic agents
Applied sciences
Base Sequence
Biological and medical sciences
Daunorubicin
Deoxyribonuclease I
DNA
DNA Restriction Enzymes
DNA, Bacterial
Doxorubicin
Exact sciences and technology
General aspects
Kinetics
Medical sciences
Other techniques and industries
Pharmacology. Drug treatments
Plasmids
Polydeoxyribonucleotides
Title Site and sequence specificity of the daunomycin-DNA interaction
URI http://dx.doi.org/10.1021/bi00399a031
https://api.istex.fr/ark:/67375/TPS-T0F9ZCZG-K/fulltext.pdf
https://www.ncbi.nlm.nih.gov/pubmed/2831939
https://search.proquest.com/docview/77983857
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LTxsxEB4hONBLaaFRtzStDyi3pfvy2j5GaUMEAlUiSIiL5ddKCLGp8pCAX894H0l5hbPtgz1j-RvP980AHNAiUVTEaci1zcNMqCIUkVKhjpxxsWI6qro1nJ7lo4vs-JJerkg0zzP4SfxLX3v9qFCRV0tvJQyvhUdAg_OV_DFqii1jcJwgIm9keM8W--fHzJ48P1v-JO88HVLN8ESKupXF21izenOGOzBslTs11eTmcDHXh-bhZSHH9dv5BB8b1En6tZt8hg1X7sJev8SI-_ae9EjFA60-2Hdhe9D2gNtDKI-IlKjSkpZyTbw009OLEL2TSUEQPxKrFl4ZYa7L8PdZn_gKFNNaL_EFLoZ_xoNR2LRcCFUWJ_PQKI43nirqdGFyyxnTXGGEIzCOooWziB4cMzyxQjHLdOpSNKYzWvMsTRmlaQc2y0npvgJx1mTcxiZxuc0MjX1C1RmMrnJXZIbpAAjaQzZXZiarbHgSy_8OKICD1ljyX1184_VpvcqQyzlqeuP5aozK8d9zOY6G4mpwdSRPAug-sfRyAfMJxpyuGWcYGfIAfraeIdEQPrWiSjdZzCRjgqecsgA6tcMslyJ8Q4wsvr2_23344H-APFcmpt9hcz5duC4inrn-Ufn7IyH892w
link.rule.ids 315,783,787,2772,27088,27936,27937,57066,57116
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4hONBLaaGoKaX4gDg1NC_H9nG17XZb2FUlFglxsfyKhBDZarMrtf31HTvJUlBf59iRPWNrvvHMNwNwTKtMUZHmMde2jAuhqlgkSsU6ccaliukkdGuYTMvxZfH5il5twNueC4OLaPBPTQji31cXSN_pG08jFSrxpOktytBUeiA0vLhnQSZdzWX0kTME5h0b79Fkb4VM88AKbXmBfvNZkapBwVRtR4s_Q85gekY7MFkvOmSc3J6ulvrU_HhUz_F_d_UMnnYYlAzaQ_McNly9C3uDGv3vu-_khISs0PDcvgvbw74j3B4Ce8SnRNWW9AnYxBM1fbIRYnkyrwiiSWLVyvMkzE0dv58OiK9HsWjZEy_gcvRhNhzHXQOGWBVptoyN4nj_qaJOV6a0nDHNFfo7Ar0qWjmLWMIxwzMrFLNM5y5H1TqjNS_ynFGa78NmPa_dSyDOmoLb1GSutIWhqQ-vOoO-VumqwjAdAUH5yO4CNTLExrNU_iKgCI57ncmvbSmO3w87Cfpcj1GLW5-9xqicfbmQs2QkrofXH-VZBIcPFL6ewHy4saR_-c7QT-QRHPUHRKIifKBF1W6-aiRjguecsgj223OznopgDhGzePXv3R7B9ng2OZfnn6ZnB_DEvw35LJqUvobN5WLlDhELLfWbcAV-AmvW_9E
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4hkNpe-oAi0kLxAXELzcuxfVwt3dLSrqhYJMTF8isSQs2iza5U-PWMnWR5qA_1HNuyZ-z4G898MwB7tMoUFWkec23LuBCqikWiVKwTZ1yqmE5CtYbv4_LorPh6Ts9XIOm5MDiJBkdqghPfn-prW3UZBtKP-tJTSYVKPHF6jbI0OGYHw9N7JmTS5V1GOzlDcN4x8p509jeRaR7dRGteqL98ZKRqUDhVW9Xiz7AzXD-jV_BjOfEQdXJ1sJjrA3P7JKfj_6zsNbzssCgZtJvnDay4eh02BjXa4T9vyD4J0aHh2X0dng_7ynAbCPARpxJVW9IHYhNP2PRBR4jpybQiiCqJVQvPlzCXdXw4HhCfl2LWsijewtno02R4FHeFGGJVpNk8Norjf4Aq6nRlSssZ01yh3SPQuqKVs4gpHDM8s0Ixy3TuclSxM1rzIs8ZpfkmrNbT2m0BcdYU3KYmc6UtDE29m9UZtLlKVxWG6QgIykh2B6mRwUeepfKBgCLY6_Umr9uUHL9vth90umyjZlc-io1ROTk5lZNkJC6GF5_lcQQ7j5S-7MC827Gkf_nO0F7kEez2m0SiIrzDRdVuumgkY4LnnLIINtu9s-yKoA6Rs3j379XuwrOTw5H89mV8_B5e-CciH0yT0m1Ync8Wbgch0Vx_CKfgDrq6Alo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Site+and+sequence+specificity+of+the+daunomycin-DNA+interaction&rft.jtitle=Biochemistry+%28Easton%29&rft.au=Chaires%2C+Jonathan+B.&rft.au=Fox%2C+Keith+R.&rft.au=Herrera%2C+Julio+E.&rft.au=Britt%2C+Mark&rft.date=1987-12-15&rft.issn=0006-2960&rft.eissn=1520-4995&rft.volume=26&rft.issue=25&rft.spage=8227&rft.epage=8236&rft_id=info:doi/10.1021%2Fbi00399a031&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_bi00399a031
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-2960&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-2960&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-2960&client=summon