Site and sequence specificity of the daunomycin-DNA interaction
The site and sequence specificity of the daunomycin-DNA interaction was examined by equilibrium binding methods, by deoxyribonuclease I footprinting studies, and by examination of the effect of the antibiotic on the cleavage of linearized pBR322 DNA by restriction endonucleases PvuI and EcoRI. These...
Saved in:
Published in | Biochemistry (Easton) Vol. 26; no. 25; pp. 8227 - 8236 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
15.12.1987
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The site and sequence specificity of the daunomycin-DNA interaction was examined by equilibrium binding methods, by deoxyribonuclease I footprinting studies, and by examination of the effect of the antibiotic on the cleavage of linearized pBR322 DNA by restriction endonucleases PvuI and EcoRI. These three experimental approaches provide mutually consistent results showing that daunomycin indeed recognizes specific sites along the DNA lattice. The affinity of daunomycin toward natural DNA increases with increasing GC content. The quantitative results are most readily explained by binding models in which daunomycin interacts with sites containing two adjacent GC base pairs, possibly occurring as part of a triplet recognition sequence. Deoxyribonuclease I footprinting studies utilizing the 160 base pair (bp) tyrT DNA fragment and 61 and 53 bp restriction fragments isolated from pBR322 DNA further define the sequence specificity of daunomycin binding. Specific, reproducible protection patterns were obtained for each DNA fragment at 4 degrees C. Seven protected sequences, ranging in size from 4 to 14 bp, were identified within the tyrT fragment. Relative to the overall tyrT sequence, these protected sequences were GC rich and contained a more limited and distinct distribution of di- and trinucleotides. Within all of the protected sequences, a triplet containing adjacent GC base pairs flanked by an AT base pair could be found in one or more copies. Nowhere in the tyrT fragment did that triplet occur outside a protected sequence. The same triplet occurred within seven out of nine protected sequences observed in the fragments isolated from pBR322 DNA. In the two remaining cases, three contiguous GC base pairs were found. We conclude that the preferred daunomycin triplet binding site contains adjacent GC base pairs, of variable sequence, flanked by an AT base pair. This conclusion is consistent with the results of a recent theoretical study of daunomycin sequence specificity [Chen, K.-X., Gresh, N., & Pullman, B. (1985) J. Biomol. Struct. Dyn. 3, 445-466]. Adriamycin and the beta-anomer of adriamycin produce the same qualitative pattern of protection as daunomycin with the tyrT fragment. Daunomycin inhibits the rate of digestion of pBR322 DNA by PvuI (recognition sequence 5'-CGATCG-3') to a greater extent than it does EcoRI (recognition sequence 5'-GAATTC-3'), a finding consistent with the conclusions derived from our footprinting studies. Our results, as a whole, are the clearest indication to date that daunomycin recognizes a specific DNA sequence as a preferred binding site. |
---|---|
AbstractList | The site and sequence specificity of the daunomycin-DNA interaction was examined by equilibrium binding methods, by deoxyribonuclease I footprinting studies, and by examination of the effect of the antibiotic on the cleavage of linearized pBR322 DNA by restriction endonucleases PvuI and EcoRI. These three experimental approaches provide mutually consistent results showing that daunomycin indeed recognizes specific sites along the DNA lattice. The affinity of daunomycin toward natural DNA increases with increasing GC content. The quantitative results are most readily explained by binding models in which daunomycin interacts with sites containing two adjacent GC base pairs, possibly occurring as part of a triplet recognition sequence. Deoxyribonuclease I footprinting studies utilizing the 160 base pair (bp) tyrT DNA fragment and 61 and 53 bp restriction fragments isolated from pBR322 DNA further define the sequence specificity of daunomycin binding. Specific, reproducible protection patterns were obtained for each DNA fragment at 4 degrees C. Seven protected sequences, ranging in size from 4 to 14 bp, were identified within the tyrT fragment. Relative to the overall tyrT sequence, these protected sequences were GC rich and contained a more limited and distinct distribution of di- and trinucleotides. Within all of the protected sequences, a triplet containing adjacent GC base pairs flanked by an AT base pair could be found in one or more copies. Nowhere in the tyrT fragment did that triplet occur outside a protected sequence. The same triplet occurred within seven out of nine protected sequences observed in the fragments isolated from pBR322 DNA. In the two remaining cases, three contiguous GC base pairs were found. We conclude that the preferred daunomycin triplet binding site contains adjacent GC base pairs, of variable sequence, flanked by an AT base pair. This conclusion is consistent with the results of a recent theoretical study of daunomycin sequence specificity [Chen, K.-X., Gresh, N., & Pullman, B. (1985) J. Biomol. Struct. Dyn. 3, 445-466]. Adriamycin and the beta-anomer of adriamycin produce the same qualitative pattern of protection as daunomycin with the tyrT fragment. Daunomycin inhibits the rate of digestion of pBR322 DNA by PvuI (recognition sequence 5'-CGATCG-3') to a greater extent than it does EcoRI (recognition sequence 5'-GAATTC-3'), a finding consistent with the conclusions derived from our footprinting studies. Our results, as a whole, are the clearest indication to date that daunomycin recognizes a specific DNA sequence as a preferred binding site. The site and sequence specificity of the daunomycin-DNA interaction was examined by equilibrium binding methods, by deoxyribonuclease I footprinting studies, and by examination of the effect of the antibiotic on the cleavage of linearized pBR322 DNA by restriction endonucleases PvuI and EcoRI. These three experimental approaches provide mutually consistent results showing that daunomycin indeed recognizes specific sites along the DNA lattice. The affinity of daunomycin toward natural DNA increases with increasing GC content. The quantitative results are most readily explained by binding models in which daunomycin interacts with sites containing two adjacent GC base pairs, possibly occurring as part of a triplet recognition sequence. Deoxyribonuclease I footprinting studies utilizing the 160 base pair (bp) tyrT DNA fragment and 61 and 53 bp restriction fragments isolated from pBR322 DNA further define the sequence specificity of daunomycin binding. Specific, reproducible protection patterns were obtained for each DNA fragment at 4 degrees C. Seven protected sequences, ranging in size from 4 to 14 bp, were identified within the tyrT fragment. Relative to the overall tyrT sequence, these protected sequences were GC rich and contained a more limited and distinct distribution of di- and trinucleotides. Within all of the protected sequences, a triplet containing adjacent GC base pairs flanked by an AT base pair could be found in one or more copies. Nowhere in the tyrT fragment did that triplet occur outside a protected sequence. The same triplet occurred within seven out of nine protected sequences observed in the fragments isolated from pBR322 DNA. In the two remaining cases, three contiguous GC base pairs were found. We conclude that the preferred daunomycin triplet binding site contains adjacent GC base pairs, of variable sequence, flanked by an AT base pair. This conclusion is consistent with the results of a recent theoretical study of daunomycin sequence specificity [Chen, K.-X., Gresh, N., & Pullman, B. (1985) J. Biomol. Struct. Dyn. 3, 445-466]. Adriamycin and the beta-anomer of adriamycin produce the same qualitative pattern of protection as daunomycin with the tyrT fragment. Daunomycin inhibits the rate of digestion of pBR322 DNA by PvuI (recognition sequence 5'-CGATCG-3') to a greater extent than it does EcoRI (recognition sequence 5'-GAATTC-3'), a finding consistent with the conclusions derived from our footprinting studies. Our results, as a whole, are the clearest indication to date that daunomycin recognizes a specific DNA sequence as a preferred binding site. |
Author | Chaires, Jonathan B Britt, Mark Herrera, Julio E Waring, Michael J Fox, Keith R |
Author_xml | – sequence: 1 givenname: Jonathan B surname: Chaires fullname: Chaires, Jonathan B – sequence: 2 givenname: Keith R surname: Fox fullname: Fox, Keith R – sequence: 3 givenname: Julio E surname: Herrera fullname: Herrera, Julio E – sequence: 4 givenname: Mark surname: Britt fullname: Britt, Mark – sequence: 5 givenname: Michael J surname: Waring fullname: Waring, Michael J |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7012265$$DView record in Pascal Francis http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7074998$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/2831939$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkE1LxDAQhoMoun6cPAs9iB6kmjRN05xkWT9RVHC9eAnTdIrR3XRNWnD_vZFdFg-CpzC8DzN5n22y7lqHhOwzespoxs4qSylXCihna2TAREbTXCmxTgaU0iLNVEG3yHYI73HMqcw3yWZWcqa4GpDzZ9thAq5OAn726AwmYYbGNtbYbp60TdK9YVJD79rp3FiXXjwME-s69GA627pdstHAJODe8t0hL1eX49FNev94fTsa3qeQs6xLDZScMgECq8YUdSllVUJRFCpXQjRYK8pQmjKrFchaVhx5RQWaqipzzqUQfIccLfbOfBv_GTo9tcHgZAIO2z5oKVXJSyEjeLIAjW9D8NjombdT8HPNqP7RpX_pivTBcm1fTbFesUs_MT9c5hAMTBoPztiwwmS0qeLhfzGWZcVPiXSB2dDh1yoG_6ELGWvq8dOzHtMr9Tp6vdZ3kT9e8GCCfm9776LiP3t8Ayf4mvM |
CitedBy_id | crossref_primary_10_7124_bc_000514 crossref_primary_10_1016_j_bpc_2016_05_002 crossref_primary_10_1016_0009_2797_89_90107_5 crossref_primary_10_1073_pnas_95_8_4327 crossref_primary_10_1007_BF02421499 crossref_primary_10_1002_bies_20160 crossref_primary_10_1021_jp507834s crossref_primary_10_1039_C2OB26320C crossref_primary_10_1002_anie_199112541 crossref_primary_10_1080_07391102_2000_10506577 crossref_primary_10_1016_j_mam_2023_101205 crossref_primary_10_1016_S0022_2836_05_80349_3 crossref_primary_10_1016_S0141_8130_02_00009_0 crossref_primary_10_1002_biot_201000212 crossref_primary_10_1007_s10822_019_00268_y crossref_primary_10_1016_j_bmc_2009_10_048 crossref_primary_10_1158_0008_5472_CAN_06_4431 crossref_primary_10_1002_jmr_2639 crossref_primary_10_1016_j_bmc_2003_10_049 crossref_primary_10_1177_095632029300400206 crossref_primary_10_1021_bi952495o crossref_primary_10_1007_BF03162548 crossref_primary_10_1016_j_fct_2019_110834 crossref_primary_10_1111_j_1432_1033_1990_tb19124_x crossref_primary_10_1002_jmr_300020306 crossref_primary_10_1080_10601329208054140 crossref_primary_10_1021_acs_jpcb_4c02213 crossref_primary_10_1016_S0887_2333_96_00070_7 crossref_primary_10_1016_0009_2614_88_85101_7 crossref_primary_10_1016_0022_2836_91_90203_I crossref_primary_10_1021_acs_jpcb_0c05840 crossref_primary_10_1016_0022_2836_89_90577_9 crossref_primary_10_1016_j_jphotochem_2008_03_009 crossref_primary_10_1021_jp311634a crossref_primary_10_1002_elan_201600514 crossref_primary_10_1016_j_aca_2011_08_043 crossref_primary_10_1002_jmr_300070208 crossref_primary_10_1016_S0021_9258_18_47389_9 crossref_primary_10_1016_0006_291X_90_92096_I crossref_primary_10_1080_07391102_1990_10508552 crossref_primary_10_1080_07391102_1990_10508551 crossref_primary_10_1111_j_0014_2956_2004_04292_x crossref_primary_10_1021_jp066877n crossref_primary_10_1002_em_20606 crossref_primary_10_1016_S0021_9258_18_38129_8 crossref_primary_10_1002_anie_199627971 crossref_primary_10_1016_0014_5793_88_80320_X crossref_primary_10_1039_C4AN01882F crossref_primary_10_1016_0014_5793_92_80157_C crossref_primary_10_1016_0014_5793_89_81198_6 crossref_primary_10_1002_adma_201600773 crossref_primary_10_1002_bip_23408 crossref_primary_10_1016_j_jct_2012_05_028 crossref_primary_10_1016_0166_1280_92_87178_3 crossref_primary_10_1002__SICI_1097_4644_19970301_64_3_476__AID_JCB14_3_0_CO_2_E crossref_primary_10_1002_bip_20416 crossref_primary_10_1016_0165_022X_94_90041_8 crossref_primary_10_1089_dna_2011_1299 crossref_primary_10_1021_jm030529h crossref_primary_10_3390_s140100346 crossref_primary_10_1002_ange_19961082317 crossref_primary_10_1080_07391102_2015_1055304 crossref_primary_10_1016_j_bbcan_2013_12_002 crossref_primary_10_1016_0921_8777_93_90004_Z crossref_primary_10_1016_0301_4622_90_80008_U crossref_primary_10_1016_0306_3623_94_90261_5 crossref_primary_10_1002_ange_19911031007 crossref_primary_10_1080_07391102_1994_10508090 crossref_primary_10_1111_j_1432_1033_1989_tb14703_x crossref_primary_10_1111_j_1432_1033_1989_tb14498_x crossref_primary_10_1016_0014_5793_89_81418_8 crossref_primary_10_1016_0141_8130_91_90079_A crossref_primary_10_1002_em_2850260104 crossref_primary_10_1016_j_bcp_2010_01_005 crossref_primary_10_1080_07391102_1991_10507893 crossref_primary_10_1021_acs_jpclett_4c00961 crossref_primary_10_1182_blood_V97_9_2839 crossref_primary_10_1002_cbic_200600083 crossref_primary_10_1016_j_molstruc_2009_05_042 crossref_primary_10_1016_0027_5107_94_00155_X crossref_primary_10_1039_C4RA04327H crossref_primary_10_1016_S0141_8130_00_00146_X crossref_primary_10_1016_0009_2797_96_03697_6 crossref_primary_10_1016_0959_440X_92_90226_W crossref_primary_10_1002_ddr_430340207 crossref_primary_10_1016_j_jsb_2004_05_005 crossref_primary_10_1021_acs_analchem_3c05372 crossref_primary_10_1016_j_bbagen_2013_06_001 crossref_primary_10_1002_bip_10319 crossref_primary_10_1002_jsfa_2740590217 crossref_primary_10_1016_j_bbrc_2019_03_190 crossref_primary_10_1016_j_jconrel_2020_07_012 crossref_primary_10_1088_1361_6528_aac7dd crossref_primary_10_1016_S0301_4622_96_02184_9 crossref_primary_10_1016_0014_5793_89_80747_1 crossref_primary_10_1039_c2mb25080b crossref_primary_10_1016_0304_4165_90_90023_P crossref_primary_10_1371_journal_pone_0023186 crossref_primary_10_1073_pnas_1302554110 crossref_primary_10_1007_BF02903651 crossref_primary_10_1007_BF00686222 crossref_primary_10_1016_j_abb_2008_05_009 crossref_primary_10_1371_journal_pone_0084880 crossref_primary_10_1371_journal_pone_0154666 crossref_primary_10_1016_j_bcp_2004_09_002 crossref_primary_10_1021_jp000916s |
ContentType | Journal Article |
Copyright | 1989 INIST-CNRS |
Copyright_xml | – notice: 1989 INIST-CNRS |
DBID | BSCLL IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
DOI | 10.1021/bi00399a031 |
DatabaseName | Istex Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Applied Sciences |
EISSN | 1520-4995 |
EndPage | 8236 |
ExternalDocumentID | 10_1021_bi00399a031 2831939 7074998 7012265 ark_67375_TPS_T0F9ZCZG_K b372574578 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, U.S. Gov't, P.H.S Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: CA35635 |
GroupedDBID | - .K2 02 08R 186 1WB 23N 3O- 53G 55 55A 5GY 5RE 5VS 85S AABXI AAYJJ ABFLS ABMVS ABOCM ABPTK ABUFD ACGFS ACJ ACNCT ACS AENEX AETEA AFFDN AFFNX AFMIJ AGXLV AIDAL AJYGW ALMA_UNASSIGNED_HOLDINGS ANTXH AQSVZ BAANH CS3 D0L DU5 DZ F20 F5P G8K GJ HR J5H JG JG~ K2 K78 KM L7B LG6 MVM NHB OHT P2P RNS ROL TN5 UNC UQL VQA W1F WH7 X X7M XFK YQJ YXE YZZ ZA5 ZE2 ZGI ZXP --- -DZ -~X .55 .GJ .HR 6TJ ABDPE ABHMW ABJNI BSCLL CUPRZ EBS GGK VG9 XOL YYP ZCA ~02 ~KM 4.4 7~N AAUGY ABFRP ABQRX ABUCX ACKIV ADHLV AEESW AFEFF AGHSJ AHGAQ AJUXI ED~ EJD GNL IH9 IHE IQODW UBC UI2 VF5 XJT XSW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-a412t-ca83015a5ebfc6d877b8a66694955fed901e7c82d9a7d7b3e3b05ecbb84337553 |
IEDL.DBID | ACS |
ISSN | 0006-2960 |
IngestDate | Fri Oct 25 02:56:49 EDT 2024 Thu Sep 26 15:57:26 EDT 2024 Wed Oct 16 00:48:23 EDT 2024 Sun Oct 29 17:09:40 EDT 2023 Wed Oct 30 09:25:25 EDT 2024 Thu Aug 27 13:41:57 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 25 |
Keywords | Antineoplastic agent Molecular interaction Anthracyclins Binding site Nucleotide sequence DNA |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a412t-ca83015a5ebfc6d877b8a66694955fed901e7c82d9a7d7b3e3b05ecbb84337553 |
Notes | istex:1FE9824587939DBE17A89AA97670006D6711E6F5 ark:/67375/TPS-T0F9ZCZG-K ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 2831939 |
PQID | 77983857 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_77983857 crossref_primary_10_1021_bi00399a031 pubmed_primary_2831939 pascalfrancis_primary_7074998 pascalfrancis_primary_7012265 istex_primary_ark_67375_TPS_T0F9ZCZG_K acs_journals_10_1021_bi00399a031 |
ProviderPackageCode | JG~ 55A AABXI ACJ AGXLV W1F ANTXH ACS .K2 ABMVS 1WB BAANH AQSVZ |
PublicationCentury | 1900 |
PublicationDate | 1987-12-15 |
PublicationDateYYYYMMDD | 1987-12-15 |
PublicationDate_xml | – month: 12 year: 1987 text: 1987-12-15 day: 15 |
PublicationDecade | 1980 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States |
PublicationTitle | Biochemistry (Easton) |
PublicationTitleAlternate | Biochemistry |
PublicationYear | 1987 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
SSID | ssj0004074 |
Score | 1.6969608 |
Snippet | The site and sequence specificity of the daunomycin-DNA interaction was examined by equilibrium binding methods, by deoxyribonuclease I footprinting studies,... |
SourceID | proquest crossref pubmed pascalfrancis istex acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 8227 |
SubjectTerms | Antineoplastic agents Applied sciences Base Sequence Biological and medical sciences Daunorubicin Deoxyribonuclease I DNA DNA Restriction Enzymes DNA, Bacterial Doxorubicin Exact sciences and technology General aspects Kinetics Medical sciences Other techniques and industries Pharmacology. Drug treatments Plasmids Polydeoxyribonucleotides |
Title | Site and sequence specificity of the daunomycin-DNA interaction |
URI | http://dx.doi.org/10.1021/bi00399a031 https://api.istex.fr/ark:/67375/TPS-T0F9ZCZG-K/fulltext.pdf https://www.ncbi.nlm.nih.gov/pubmed/2831939 https://search.proquest.com/docview/77983857 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LTxsxEB4hONBLaaFRtzStDyi3pfvy2j5GaUMEAlUiSIiL5ddKCLGp8pCAX894H0l5hbPtgz1j-RvP980AHNAiUVTEaci1zcNMqCIUkVKhjpxxsWI6qro1nJ7lo4vs-JJerkg0zzP4SfxLX3v9qFCRV0tvJQyvhUdAg_OV_DFqii1jcJwgIm9keM8W--fHzJ48P1v-JO88HVLN8ESKupXF21izenOGOzBslTs11eTmcDHXh-bhZSHH9dv5BB8b1En6tZt8hg1X7sJev8SI-_ae9EjFA60-2Hdhe9D2gNtDKI-IlKjSkpZyTbw009OLEL2TSUEQPxKrFl4ZYa7L8PdZn_gKFNNaL_EFLoZ_xoNR2LRcCFUWJ_PQKI43nirqdGFyyxnTXGGEIzCOooWziB4cMzyxQjHLdOpSNKYzWvMsTRmlaQc2y0npvgJx1mTcxiZxuc0MjX1C1RmMrnJXZIbpAAjaQzZXZiarbHgSy_8OKICD1ljyX1184_VpvcqQyzlqeuP5aozK8d9zOY6G4mpwdSRPAug-sfRyAfMJxpyuGWcYGfIAfraeIdEQPrWiSjdZzCRjgqecsgA6tcMslyJ8Q4wsvr2_23344H-APFcmpt9hcz5duC4inrn-Ufn7IyH892w |
link.rule.ids | 315,783,787,2772,27088,27936,27937,57066,57116 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4hONBLaaGoKaX4gDg1NC_H9nG17XZb2FUlFglxsfyKhBDZarMrtf31HTvJUlBf59iRPWNrvvHMNwNwTKtMUZHmMde2jAuhqlgkSsU6ccaliukkdGuYTMvxZfH5il5twNueC4OLaPBPTQji31cXSN_pG08jFSrxpOktytBUeiA0vLhnQSZdzWX0kTME5h0b79Fkb4VM88AKbXmBfvNZkapBwVRtR4s_Q85gekY7MFkvOmSc3J6ulvrU_HhUz_F_d_UMnnYYlAzaQ_McNly9C3uDGv3vu-_khISs0PDcvgvbw74j3B4Ce8SnRNWW9AnYxBM1fbIRYnkyrwiiSWLVyvMkzE0dv58OiK9HsWjZEy_gcvRhNhzHXQOGWBVptoyN4nj_qaJOV6a0nDHNFfo7Ar0qWjmLWMIxwzMrFLNM5y5H1TqjNS_ynFGa78NmPa_dSyDOmoLb1GSutIWhqQ-vOoO-VumqwjAdAUH5yO4CNTLExrNU_iKgCI57ncmvbSmO3w87Cfpcj1GLW5-9xqicfbmQs2QkrofXH-VZBIcPFL6ewHy4saR_-c7QT-QRHPUHRKIifKBF1W6-aiRjguecsgj223OznopgDhGzePXv3R7B9ng2OZfnn6ZnB_DEvw35LJqUvobN5WLlDhELLfWbcAV-AmvW_9E |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4hkNpe-oAi0kLxAXELzcuxfVwt3dLSrqhYJMTF8isSQs2iza5U-PWMnWR5qA_1HNuyZ-z4G898MwB7tMoUFWkec23LuBCqikWiVKwTZ1yqmE5CtYbv4_LorPh6Ts9XIOm5MDiJBkdqghPfn-prW3UZBtKP-tJTSYVKPHF6jbI0OGYHw9N7JmTS5V1GOzlDcN4x8p509jeRaR7dRGteqL98ZKRqUDhVW9Xiz7AzXD-jV_BjOfEQdXJ1sJjrA3P7JKfj_6zsNbzssCgZtJvnDay4eh02BjXa4T9vyD4J0aHh2X0dng_7ynAbCPARpxJVW9IHYhNP2PRBR4jpybQiiCqJVQvPlzCXdXw4HhCfl2LWsijewtno02R4FHeFGGJVpNk8Norjf4Aq6nRlSssZ01yh3SPQuqKVs4gpHDM8s0Ixy3TuclSxM1rzIs8ZpfkmrNbT2m0BcdYU3KYmc6UtDE29m9UZtLlKVxWG6QgIykh2B6mRwUeepfKBgCLY6_Umr9uUHL9vth90umyjZlc-io1ROTk5lZNkJC6GF5_lcQQ7j5S-7MC827Gkf_nO0F7kEez2m0SiIrzDRdVuumgkY4LnnLIINtu9s-yKoA6Rs3j379XuwrOTw5H89mV8_B5e-CciH0yT0m1Ync8Wbgch0Vx_CKfgDrq6Alo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Site+and+sequence+specificity+of+the+daunomycin-DNA+interaction&rft.jtitle=Biochemistry+%28Easton%29&rft.au=Chaires%2C+Jonathan+B.&rft.au=Fox%2C+Keith+R.&rft.au=Herrera%2C+Julio+E.&rft.au=Britt%2C+Mark&rft.date=1987-12-15&rft.issn=0006-2960&rft.eissn=1520-4995&rft.volume=26&rft.issue=25&rft.spage=8227&rft.epage=8236&rft_id=info:doi/10.1021%2Fbi00399a031&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_bi00399a031 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-2960&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-2960&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-2960&client=summon |