Transformation of 17α-Estradiol, 17β-Estradiol, and Estrone in Sediments Under Nitrate- and Sulfate-Reducing Conditions

The natural manure-borne hormones, 17α-estradiol (17α-E2), 17β-estradiol (17β-E2), and estrone (E1), are routinely detected in surface water near agricultural land and wastewater treatment facilities. Once in the stream network, hormones may enter the sediment bed where they are subject to anaerobic...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 47; no. 13; pp. 7178 - 7185
Main Authors Mashtare, Michael L, Lee, Linda S, Nies, Loring F, Turco, Ronald F
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 02.07.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The natural manure-borne hormones, 17α-estradiol (17α-E2), 17β-estradiol (17β-E2), and estrone (E1), are routinely detected in surface water near agricultural land and wastewater treatment facilities. Once in the stream network, hormones may enter the sediment bed where they are subject to anaerobic conditions. This study focuses on the difference in anaerobic transformation rates and formation of metabolites from 17α-E2, 17β-E2, and E1 (applied at ∼3.66 μmol kg–1 of sediment on a dry weight basis) under nitrate- and sulfate-reducing conditions. Sediment extracts were analyzed using negative electrospray ionization tandem mass spectrometry. Under both redox conditions, degradation was stereospecific and followed similar trends in half-lives, 17β-E2 < 17α-E2 < E1, with degradation considerably slower under sulfate-reducing conditions. Both E2 isomers were predominantly converted to E1; however, isomeric conversion also occurred with peak concentrations of ∼1.7 mol % of 17β-E2 formed in 17α-E2 amended sediments and peak concentrations of ∼2.4 mol % of 17α-E2 formed from 17β-E2. In E1-amended systems, E1 transformed to E2 with preferential formation of the more potent 17β isomer up to ∼30 mol % suggesting that isomer interconversion is through E1. Sediments, therefore, may serve as both a sink and a source of the more estrogenic compound E2. Transformation of amended hormones in autoclaved sediments was markedly slower than in nonautoclaved sediments. Results support the inclusion of isomer-specific behavior and the potential for reversible transformation and interconversion in anaerobic sediments in modeling fate in stream networks and developing risk management strategies.
AbstractList The natural manure-borne hormones, 17α-estradiol (17α-E2), 17β-estradiol (17β-E2), and estrone (E1), are routinely detected in surface water near agricultural land and wastewater treatment facilities. Once in the stream network, hormones may enter the sediment bed where they are subject to anaerobic conditions. This study focuses on the difference in anaerobic transformation rates and formation of metabolites from 17α-E2, 17β-E2, and E1 (applied at ∼3.66 μmol kg–¹ of sediment on a dry weight basis) under nitrate- and sulfate-reducing conditions. Sediment extracts were analyzed using negative electrospray ionization tandem mass spectrometry. Under both redox conditions, degradation was stereospecific and followed similar trends in half-lives, 17β-E2 < 17α-E2 < E1, with degradation considerably slower under sulfate-reducing conditions. Both E2 isomers were predominantly converted to E1; however, isomeric conversion also occurred with peak concentrations of ∼1.7 mol % of 17β-E2 formed in 17α-E2 amended sediments and peak concentrations of ∼2.4 mol % of 17α-E2 formed from 17β-E2. In E1-amended systems, E1 transformed to E2 with preferential formation of the more potent 17β isomer up to ∼30 mol % suggesting that isomer interconversion is through E1. Sediments, therefore, may serve as both a sink and a source of the more estrogenic compound E2. Transformation of amended hormones in autoclaved sediments was markedly slower than in nonautoclaved sediments. Results support the inclusion of isomer-specific behavior and the potential for reversible transformation and interconversion in anaerobic sediments in modeling fate in stream networks and developing risk management strategies.
The natural manure-borne hormones, 17α-estradiol (17α-E2), 17β-estradiol (17β-E2), and estrone (E1), are routinely detected in surface water near agricultural land and wastewater treatment facilities. Once in the stream network, hormones may enter the sediment bed where they are subject to anaerobic conditions. This study focuses on the difference in anaerobic transformation rates and formation of metabolites from 17α-E2, 17β-E2, and E1 (applied at ∼3.66 μmol kg(-1) of sediment on a dry weight basis) under nitrate- and sulfate-reducing conditions. Sediment extracts were analyzed using negative electrospray ionization tandem mass spectrometry. Under both redox conditions, degradation was stereospecific and followed similar trends in half-lives, 17β-E2 < 17α-E2 < E1, with degradation considerably slower under sulfate-reducing conditions. Both E2 isomers were predominantly converted to E1; however, isomeric conversion also occurred with peak concentrations of ∼1.7 mol % of 17β-E2 formed in 17α-E2 amended sediments and peak concentrations of ∼2.4 mol % of 17α-E2 formed from 17β-E2. In E1-amended systems, E1 transformed to E2 with preferential formation of the more potent 17β isomer up to ∼30 mol % suggesting that isomer interconversion is through E1. Sediments, therefore, may serve as both a sink and a source of the more estrogenic compound E2. Transformation of amended hormones in autoclaved sediments was markedly slower than in nonautoclaved sediments. Results support the inclusion of isomer-specific behavior and the potential for reversible transformation and interconversion in anaerobic sediments in modeling fate in stream networks and developing risk management strategies.The natural manure-borne hormones, 17α-estradiol (17α-E2), 17β-estradiol (17β-E2), and estrone (E1), are routinely detected in surface water near agricultural land and wastewater treatment facilities. Once in the stream network, hormones may enter the sediment bed where they are subject to anaerobic conditions. This study focuses on the difference in anaerobic transformation rates and formation of metabolites from 17α-E2, 17β-E2, and E1 (applied at ∼3.66 μmol kg(-1) of sediment on a dry weight basis) under nitrate- and sulfate-reducing conditions. Sediment extracts were analyzed using negative electrospray ionization tandem mass spectrometry. Under both redox conditions, degradation was stereospecific and followed similar trends in half-lives, 17β-E2 < 17α-E2 < E1, with degradation considerably slower under sulfate-reducing conditions. Both E2 isomers were predominantly converted to E1; however, isomeric conversion also occurred with peak concentrations of ∼1.7 mol % of 17β-E2 formed in 17α-E2 amended sediments and peak concentrations of ∼2.4 mol % of 17α-E2 formed from 17β-E2. In E1-amended systems, E1 transformed to E2 with preferential formation of the more potent 17β isomer up to ∼30 mol % suggesting that isomer interconversion is through E1. Sediments, therefore, may serve as both a sink and a source of the more estrogenic compound E2. Transformation of amended hormones in autoclaved sediments was markedly slower than in nonautoclaved sediments. Results support the inclusion of isomer-specific behavior and the potential for reversible transformation and interconversion in anaerobic sediments in modeling fate in stream networks and developing risk management strategies.
The natural manure-borne hormones, 17 alpha -estradiol (17 alpha -E2), 17 beta -estradiol (17 beta -E2), and estrone (E1), are routinely detected in surface water near agricultural land and wastewater treatment facilities. Once in the stream network, hormones may enter the sediment bed where they are subject to anaerobic conditions. This study focuses on the difference in anaerobic transformation rates and formation of metabolites from 17 alpha -E2, 17 beta -E2, and E1 (applied at similar to 3.66 mu mol kg super(-1) of sediment on a dry weight basis) under nitrate- and sulfate-reducing conditions. Sediment extracts were analyzed using negative electrospray ionization tandem mass spectrometry. Under both redox conditions, degradation was stereospecific and followed similar trends in half-lives, 17 beta -E2 < 17 alpha -E2 < E1, with degradation considerably slower under sulfate-reducing conditions. Both E2 isomers were predominantly converted to E1; however, isomeric conversion also occurred with peak concentrations of similar to 1.7 mol % of 17 beta -E2 formed in 17 alpha -E2 amended sediments and peak concentrations of similar to 2.4 mol % of 17 alpha -E2 formed from 17 beta -E2. In E1-amended systems, E1 transformed to E2 with preferential formation of the more potent 17 beta isomer up to similar to 30 mol % suggesting that isomer interconversion is through E1. Sediments, therefore, may serve as both a sink and a source of the more estrogenic compound E2. Transformation of amended hormones in autoclaved sediments was markedly slower than in nonautoclaved sediments. Results support the inclusion of isomer-specific behavior and the potential for reversible transformation and interconversion in anaerobic sediments in modeling fate in stream networks and developing risk management strategies.
The natural manure-borne hormones, 17α-estradiol (17α-E2), 17β-estradiol (17β-E2), and estrone (E1), are routinely detected in surface water near agricultural land and wastewater treatment facilities. Once in the stream network, hormones may enter the sediment bed where they are subject to anaerobic conditions. This study focuses on the difference in anaerobic transformation rates and formation of metabolites from 17α-E2, 17β-E2, and E1 (applied at ∼3.66 μmol kg–1 of sediment on a dry weight basis) under nitrate- and sulfate-reducing conditions. Sediment extracts were analyzed using negative electrospray ionization tandem mass spectrometry. Under both redox conditions, degradation was stereospecific and followed similar trends in half-lives, 17β-E2 < 17α-E2 < E1, with degradation considerably slower under sulfate-reducing conditions. Both E2 isomers were predominantly converted to E1; however, isomeric conversion also occurred with peak concentrations of ∼1.7 mol % of 17β-E2 formed in 17α-E2 amended sediments and peak concentrations of ∼2.4 mol % of 17α-E2 formed from 17β-E2. In E1-amended systems, E1 transformed to E2 with preferential formation of the more potent 17β isomer up to ∼30 mol % suggesting that isomer interconversion is through E1. Sediments, therefore, may serve as both a sink and a source of the more estrogenic compound E2. Transformation of amended hormones in autoclaved sediments was markedly slower than in nonautoclaved sediments. Results support the inclusion of isomer-specific behavior and the potential for reversible transformation and interconversion in anaerobic sediments in modeling fate in stream networks and developing risk management strategies.
Author Lee, Linda S
Mashtare, Michael L
Turco, Ronald F
Nies, Loring F
AuthorAffiliation Purdue University
AuthorAffiliation_xml – name: Purdue University
Author_xml – sequence: 1
  givenname: Michael L
  surname: Mashtare
  fullname: Mashtare, Michael L
– sequence: 2
  givenname: Linda S
  surname: Lee
  fullname: Lee, Linda S
  email: lslee@purdue.edu
– sequence: 3
  givenname: Loring F
  surname: Nies
  fullname: Nies, Loring F
– sequence: 4
  givenname: Ronald F
  surname: Turco
  fullname: Turco, Ronald F
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27519734$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23706021$$D View this record in MEDLINE/PubMed
BookMark eNqFkt1qFTEUhYNU7Gn1wheQuREsOHbvZH4yl-VQq1BasC14N-QkO5Iyk9Rk5qKPpQ_iM5lpT1Wk0Kuw4Fs7m7X2HtvxwRNjrxE-IHA8pFQBSCH5M7bCmkNZyxp32AoARdmJ5usu20vpGgC4APmC7XLRQpOdK3Z7GZVPNsRRTS74ItgC218_yuM0RWVcGN4v-ue_WnlTLDLvUDhfXJBxI_kpFVfeUCzOXCYnKu-4i3mwi_hCZtbOfyvWwRu3_JResudWDYlebd99dvXx-HL9qTw9P_m8PjotVYU4lXZjOhAaGi4Nb6S2pCvaCC45IGwaAy031gjSslLaIKpGU0WdgrZRbSc7sc_e3c-9ieH7TGnqR5c0DYPyFObU8xwLdp2sqidRrDCnmQ3N06iQiLmUts7omy06b0Yy_U10o4q3_UMJGXi7BVTSarC5Ee3SX66tsWvFst7hPadjSCmS7bWb7mrLibuhR-iXc-j_nEN2HPzneBj6GLvdQunUX4c5-tzKI9xvKvm_uA
CODEN ESTHAG
CitedBy_id crossref_primary_10_1016_j_jclepro_2024_143019
crossref_primary_10_1016_j_jhazmat_2021_127108
crossref_primary_10_1016_j_envres_2023_116673
crossref_primary_10_1007_s11356_019_04402_z
crossref_primary_10_1016_j_scitotenv_2016_08_004
crossref_primary_10_2134_jeq2016_05_0173
crossref_primary_10_1016_j_scitotenv_2017_07_219
crossref_primary_10_1016_j_jhazmat_2024_136662
crossref_primary_10_1016_j_scitotenv_2015_08_067
crossref_primary_10_1002_etc_2962
crossref_primary_10_1021_acs_est_3c00801
crossref_primary_10_1007_s12665_016_5259_4
crossref_primary_10_1007_s10661_016_5691_7
crossref_primary_10_1016_j_jhydrol_2024_132184
crossref_primary_10_1021_es504815t
crossref_primary_10_2166_wh_2021_031
crossref_primary_10_1007_s00244_016_0315_3
crossref_primary_10_1021_acs_est_6b02171
crossref_primary_10_1016_j_jhazmat_2020_122092
crossref_primary_10_1016_j_watres_2014_08_041
crossref_primary_10_1016_j_envres_2022_113133
crossref_primary_10_1016_j_jhazmat_2019_04_080
crossref_primary_10_1177_0734242X251326271
crossref_primary_10_1016_j_agee_2018_01_022
crossref_primary_10_1029_2020WR028518
crossref_primary_10_1002_etc_3447
crossref_primary_10_1016_j_biortech_2022_127667
crossref_primary_10_1016_j_jhazmat_2018_06_001
crossref_primary_10_1002_jssc_201500443
crossref_primary_10_1016_j_jhazmat_2019_04_036
crossref_primary_10_1016_j_chemosphere_2016_02_115
crossref_primary_10_1007_s10653_019_00477_2
crossref_primary_10_3390_nano8040257
crossref_primary_10_1002_etc_3383
crossref_primary_10_1080_03601234_2017_1318635
crossref_primary_10_1021_acs_est_5b06196
crossref_primary_10_1080_03067319_2020_1746776
crossref_primary_10_1080_10643389_2017_1369234
crossref_primary_10_1016_j_envpol_2020_115155
crossref_primary_10_1590_2318_0331_252020190021
crossref_primary_10_2134_jeq2019_01_0023
crossref_primary_10_1021_acs_est_8b02637
Cites_doi 10.1146/annurev.py.13.090175.002041
10.1016/j.chemosphere.2012.09.032
10.1021/es301551h
10.1897/05-074R.1
10.1021/es034898e
10.1021/es062234+
10.1016/j.chemosphere.2006.11.040
10.1002/etc.5620210302
10.1128/AEM.00347-09
10.1021/es802797j
10.1021/es202072f
10.1128/AEM.72.1.628-637.2006
10.1021/es0607739
10.2134/jeq1989.00472425001800010007x
10.1016/S0021-9797(03)00597-6
10.1021/es011055j
10.1002/j.1554-7531.2008.tb00348.x
10.1128/jb.54.5.557-562.1947
10.1021/jf8016942
10.1016/j.chemosphere.2010.11.068
10.1042/bj0420376
10.1016/j.chemosphere.2010.11.021
10.1021/es0262232
10.1021/es071896b
10.1021/es0351488
10.1016/j.scitotenv.2006.01.021
10.1021/es300273k
10.2134/jeq2004.0331
10.1016/0005-2744(67)90220-3
10.1021/es034410+
10.1128/jb.156.3.1332-1337.1983
10.1016/j.pedobi.2007.05.002
10.1007/s11270-010-0558-y
10.1016/j.chemosphere.2009.03.024
10.1099/ijs.0.63672-0
10.2134/jeq2001.2070
10.1021/es2011435
10.1134/S0026261707050025
ContentType Journal Article
Copyright Copyright © 2013 American Chemical Society
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2013 American Chemical Society
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QH
7ST
7TV
7U1
7UA
C1K
F1W
H97
L.G
SOI
7S9
L.6
DOI 10.1021/es4008382
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Aqualine
Environment Abstracts
Pollution Abstracts
Risk Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Risk Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ASFA: Aquatic Sciences and Fisheries Abstracts
Pollution Abstracts
Aqualine
Environment Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic
Risk Abstracts

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
Applied Sciences
EISSN 1520-5851
EndPage 7185
ExternalDocumentID 23706021
27519734
10_1021_es4008382
b873678781
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID -
.K2
1AW
3R3
4.4
4R4
53G
55A
5GY
5VS
63O
7~N
85S
AABXI
ABFLS
ABMVS
ABOGM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
K2
LG6
MS
PQEST
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
XZL
YZZ
---
-DZ
-~X
..I
.DC
6TJ
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
ADUKH
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
MS~
MW2
XSW
ZCA
.HR
186
1WB
42X
8WZ
A6W
AAYOK
ABHMW
ABTAH
ACKIV
ACRPL
ADMHC
ADNMO
AETEA
AEYZD
ANPPW
ANTXH
IHE
IQODW
MVM
NHB
OHT
RNS
TAE
UBC
UBX
UBY
UQL
VJK
VOH
YV5
ZCG
ZY4
~A~
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QH
7ST
7TV
7U1
7UA
C1K
F1W
H97
L.G
SOI
7S9
L.6
ID FETCH-LOGICAL-a411t-fbd903c0628d268cfec4eb3282010b6d072dfd3ec84acd11a6ce4e9a076a79893
IEDL.DBID ACS
ISSN 0013-936X
1520-5851
IngestDate Fri Jul 11 09:50:39 EDT 2025
Fri Jul 11 04:53:54 EDT 2025
Fri Jul 11 00:34:12 EDT 2025
Mon Jul 21 05:55:48 EDT 2025
Wed Apr 02 07:16:10 EDT 2025
Tue Jul 01 04:28:37 EDT 2025
Thu Apr 24 23:11:25 EDT 2025
Thu Aug 27 13:42:49 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords Biodegradation
Microbial activity
Pollutant behavior
Estrogen
17β-Estradiol
Endocrine disruptor
17α-Estradiol
Sediments
Pollution
Anaerobe
Selfpurification
Estrone
Kinetics
Sex steroid hormone
Organic compounds
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a411t-fbd903c0628d268cfec4eb3282010b6d072dfd3ec84acd11a6ce4e9a076a79893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 23706021
PQID 1381100875
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2000199844
proquest_miscellaneous_1419362006
proquest_miscellaneous_1381100875
pubmed_primary_23706021
pascalfrancis_primary_27519734
crossref_citationtrail_10_1021_es4008382
crossref_primary_10_1021_es4008382
acs_journals_10_1021_es4008382
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-07-02
PublicationDateYYYYMMDD 2013-07-02
PublicationDate_xml – month: 07
  year: 2013
  text: 2013-07-02
  day: 02
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2013
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Young R. B. (ref4/cit4) 2009
Wolf D. C. (ref30/cit30) 1989; 18
Mashtare M. L. (ref41/cit41) 2011; 82
Ying G. G. (ref8/cit8) 2005; 24
Dytczak M. A. (ref16/cit16) 2008; 80
Kolpin D. W. (ref43/cit43) 2002; 36
Ying G. G. (ref13/cit13) 2003; 37
Joss A. (ref15/cit15) 2004; 38
Fahrbach M. (ref44/cit44) 2006; 56
Colucci M. S. (ref6/cit6) 2001; 30
Li Z. (ref34/cit34) 2012; 46
Jürgens M. D. (ref14/cit14) 2002; 21
Zheng W. (ref22/cit22) 2012; 46
Gall H. E. (ref42/cit42) 2011; 45
Van Emmerik T. (ref39/cit39) 2003; 266
Aga D. S. (ref1/cit1) 2008
Hutchins S. R. (ref18/cit18) 2007; 41
Mansell D. S. (ref23/cit23) 2011; 45
Hyun H. H. (ref37/cit37) 1983; 156
Snow D. D. (ref19/cit19) 2009; 83
Carr D. L. (ref11/cit11) 2011; 216
Homklin S. (ref27/cit27) 2011; 82
Jacobsen A. (ref32/cit32) 2005; 34
Hanselman T. A. (ref3/cit3) 2003; 37
Turfitt G. E. (ref20/cit20) 1947; 54
Bradley P. M. (ref35/cit35) 2012
Slepova T. V. (ref36/cit36) 2007; 76
Duong C. N. (ref40/cit40) 2009; 76
Das B. S. (ref7/cit7) 2004; 38
Carter D. O. (ref38/cit38) 2007; 51
Bradley P. M. (ref5/cit5) 2009; 43
Brown J. R. (ref25/cit25) 1998
Gee G. W. (ref26/cit26) 1986
Zheng W. (ref24/cit24) 2008; 42
Kourtev P. S. (ref28/cit28) 2006; 72
Kourtev P. S. (ref29/cit29) 2009; 75
Fan Z. (ref12/cit12) 2007; 67
Marshall K. C. (ref31/cit31) 1976; 13
Turfitt G. E. (ref21/cit21) 1947; 42
Khanal S. K. (ref2/cit2) 2006; 40
Renwick A. G. C. (ref33/cit33) 1967; 146
Xuan R. (ref9/cit9) 2008; 56
Mashtare M. L. (ref10/cit10) 2013; 90
Czajka C. P. (ref17/cit17) 2006; 367
References_xml – volume: 13
  start-page: 357
  year: 1976
  ident: ref31/cit31
  publication-title: Annu. Rev. Phytopathol.
  doi: 10.1146/annurev.py.13.090175.002041
– volume: 90
  start-page: 647
  year: 2013
  ident: ref10/cit10
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2012.09.032
– volume: 46
  start-page: 5471
  year: 2012
  ident: ref22/cit22
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es301551h
– volume: 24
  start-page: 2640
  year: 2005
  ident: ref8/cit8
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1897/05-074R.1
– volume: 38
  start-page: 1460
  year: 2004
  ident: ref7/cit7
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es034898e
– volume: 41
  start-page: 738
  year: 2007
  ident: ref18/cit18
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es062234+
– volume-title: Methods of Soil Analysis, Part 1 – Physical and Mineralogical Methods
  year: 1986
  ident: ref26/cit26
– volume: 67
  start-page: 886
  year: 2007
  ident: ref12/cit12
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2006.11.040
– volume: 21
  start-page: 480
  year: 2002
  ident: ref14/cit14
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1002/etc.5620210302
– volume: 75
  start-page: 6249
  year: 2009
  ident: ref29/cit29
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00347-09
– volume: 43
  start-page: 1902
  year: 2009
  ident: ref5/cit5
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es802797j
– volume: 45
  start-page: 8811
  year: 2011
  ident: ref23/cit23
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es202072f
– volume: 72
  start-page: 628
  year: 2006
  ident: ref28/cit28
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.72.1.628-637.2006
– volume: 40
  start-page: 6537
  year: 2006
  ident: ref2/cit2
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0607739
– volume: 18
  start-page: 39
  year: 1989
  ident: ref30/cit30
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq1989.00472425001800010007x
– volume: 266
  start-page: 33
  year: 2003
  ident: ref39/cit39
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/S0021-9797(03)00597-6
– volume: 36
  start-page: 1202
  year: 2002
  ident: ref43/cit43
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es011055j
– volume: 80
  start-page: 47
  year: 2008
  ident: ref16/cit16
  publication-title: Water Environ Res.
  doi: 10.1002/j.1554-7531.2008.tb00348.x
– volume: 54
  start-page: 557
  year: 1947
  ident: ref20/cit20
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.54.5.557-562.1947
– volume: 56
  start-page: 152
  year: 2008
  ident: ref9/cit9
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf8016942
– volume-title: Recommended Chemical Soil Test Procedures for the North Central Region
  year: 1998
  ident: ref25/cit25
– volume: 82
  start-page: 1401
  year: 2011
  ident: ref27/cit27
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2010.11.068
– volume: 42
  start-page: 376
  year: 1947
  ident: ref21/cit21
  publication-title: J. Biochem.
  doi: 10.1042/bj0420376
– volume: 82
  start-page: 847
  year: 2011
  ident: ref41/cit41
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2010.11.021
– volume: 37
  start-page: 1256
  year: 2003
  ident: ref13/cit13
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0262232
– volume: 42
  start-page: 530
  year: 2008
  ident: ref24/cit24
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es071896b
– volume: 38
  start-page: 3047
  year: 2004
  ident: ref15/cit15
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0351488
– volume: 367
  start-page: 932
  year: 2006
  ident: ref17/cit17
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2006.01.021
– volume-title: Fate of Pharmaceuticals in the Environment and in Water Treatment Systems
  year: 2008
  ident: ref1/cit1
– volume: 46
  start-page: 5947
  year: 2012
  ident: ref34/cit34
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es300273k
– volume: 34
  start-page: 861
  year: 2005
  ident: ref32/cit32
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2004.0331
– start-page: 39
  volume-title: In Situ Remediation of Chlorinated Solvent Plumes
  year: 2012
  ident: ref35/cit35
– volume: 83
  start-page: 869
  year: 2009
  ident: ref19/cit19
  publication-title: Water Environ. Res.
– volume: 146
  start-page: 336
  year: 1967
  ident: ref33/cit33
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0005-2744(67)90220-3
– volume: 37
  start-page: 5471
  year: 2003
  ident: ref3/cit3
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es034410+
– volume: 156
  start-page: 1332
  year: 1983
  ident: ref37/cit37
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.156.3.1332-1337.1983
– volume: 51
  start-page: 295
  year: 2007
  ident: ref38/cit38
  publication-title: Pedobiologia
  doi: 10.1016/j.pedobi.2007.05.002
– volume: 216
  start-page: 633
  year: 2011
  ident: ref11/cit11
  publication-title: Water, Air, Soil Pollut.
  doi: 10.1007/s11270-010-0558-y
– volume: 76
  start-page: 395
  year: 2009
  ident: ref40/cit40
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2009.03.024
– volume: 56
  start-page: 1547
  year: 2006
  ident: ref44/cit44
  publication-title: Int. J. Syst. Evol. Microbiol.
  doi: 10.1099/ijs.0.63672-0
– volume: 30
  start-page: 2070
  year: 2001
  ident: ref6/cit6
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2001.2070
– volume: 45
  start-page: 8755
  year: 2011
  ident: ref42/cit42
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es2011435
– volume-title: Aquatic Ecosystem Research Trends
  year: 2009
  ident: ref4/cit4
– volume: 76
  start-page: 523
  year: 2007
  ident: ref36/cit36
  publication-title: Microbiology
  doi: 10.1134/S0026261707050025
SSID ssj0002308
Score 2.3077018
Snippet The natural manure-borne hormones, 17α-estradiol (17α-E2), 17β-estradiol (17β-E2), and estrone (E1), are routinely detected in surface water near agricultural...
The natural manure-borne hormones, 17 alpha -estradiol (17 alpha -E2), 17 beta -estradiol (17 beta -E2), and estrone (E1), are routinely detected in surface...
SourceID proquest
pubmed
pascalfrancis
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7178
SubjectTerms agricultural land
anaerobic conditions
Anaerobiosis
Analysis methods
Applied sciences
autoclaving
Earth sciences
Earth, ocean, space
electrospray ionization mass spectrometry
Engineering and environment geology. Geothermics
estradiol
Estradiol - metabolism
estrone
Estrone - metabolism
Exact sciences and technology
Geologic Sediments - microbiology
half life
isomers
metabolites
Nitrates - metabolism
Oxidation-Reduction
Pollution
Pollution, environment geology
risk management
sediments
Soil and sediments pollution
streams
Sulfates - metabolism
surface water
wastewater treatment
Water Pollutants, Chemical - metabolism
Title Transformation of 17α-Estradiol, 17β-Estradiol, and Estrone in Sediments Under Nitrate- and Sulfate-Reducing Conditions
URI http://dx.doi.org/10.1021/es4008382
https://www.ncbi.nlm.nih.gov/pubmed/23706021
https://www.proquest.com/docview/1381100875
https://www.proquest.com/docview/1419362006
https://www.proquest.com/docview/2000199844
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9NAEF5V5QJCPAqF8IiWx4EDLt71eu09opCqQqIH0kq5WfuUIiK7wskB_hX8EH4TM2s7TUVTjiNN5PHuzM6XHc83hLxlKrfSI_Ul03kijNIJsqYleemVzUuV5xrvIb-cypNz8Xmez_fImx0VfM4--FYgTijhnL3FJQQv4p_JbHPcAoYuhzEFKpPzgT5o-6eYemx7JfXcvdAtrELoxlfsxpcxzxzfJ5-Gbp3u85JvR-uVObI__yVvvOkVHpB7Pc6kHzvHeEj2fH1A7myxDx6Qw-llkxuo9lHePiI_zrbQbFPTJlBW_PmVTPFaxC2a5XuUf2_LunYUxab2dFHTGaTE2DtH41wlerqIJLhJ1JutlwGFr8gaC5bQSYN1c_T_x-T8eHo2OUn6EQ2JFoytkmCcSjOLjZgONscGbwX8PeeIK1IjXVpwF1zmbSm0deAP0nrhlU4LqQsFWOmQ7Ndg2lNCTWCOgUdJFgoRUmO4Fj63ZQankGLajMgY9rDqQ6ytYvWcs2qzuCPybtjeyvYE5zhnY3md6uuN6kXH6nGd0viKj2w0eYHdvpkYkVeD01QQlFhp0bVv1mAb4CAWhwXcoCMAO0u80dmtwyMEV6WAZz3pvPLSigyJjzh79r91eU5u8zjDo0hS_oLsr76v_UtAUiszjpH0F3rLF4Y
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELbQcgCEeCwslEcxiAMHvMSO8_BxVXVVYLcH2pV6i2zHlqqtkhVpD_Cv4Ifwm5hx0seiXeBoaZpMJzOeL57MN4S85SqxqUPqS64TJo3SDFnTWJI7ZZNcJYnGc8jTcTo6k59myayjycFeGFCigSs1oYi_ZRfgH1wjES7ksN3eBBAi0JuPBpPNrgtQOl9PK1BxOluzCO3-FDOQbS5loLsXugFj-HaKxfUwM6Sb4_vt3KKgaPjK5PxwtTSH9vsfHI7_908ekHsd6qRHrZs8JDdctU_u7HAR7pOD4bblDUS7mG8ekW_THWxbV7T2lGe_frAhHpKU83rxHtc_d9e6Kiku68rReUUnkCBDJx0NU5boeB4ocVmQm6wWHhdfkEMWNKGDGqvoGA2PydnxcDoYsW5gA9OS8yXzplRRbLEtsxRpbr2zEl7WBaKMyKRllInSl7GzudS2BO9IrZNO6ShLdaYAOR2QvQpUe0qo8bzk4F8p95n0kTFCS5fYPIY9SXFteqQPti26gGuKUEsXvNgYt0ferZ9yYTu6c5y6sbhK9M1G9KLl-LhKqH_JVTaSIsPe31j2yOu17xQQolh30ZWrV6AboCIeRgf8RUYCkk7xfOd6GREAucol3OtJ65xbLWKkQRL82b_s8orcGk1PT4qTj-PPz8ltEaZ7ZCwSL8je8uvKvQSMtTT9EFy_ARgMH-c
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELbQIiHQisfCQnkUgzhwwEvsOA8fV6XV8iqI7kq9RY4fUrVVUpH2AP8Kfgi_iRk3zXbRLnC0NEkmkxn7syfzDSEvuEpM6pD6kuuEyVJphqxpLMmdMkmukkTjOeTHcXp0It9Nk2m7UcRaGFCigTs1IYmPUb2wvmUY4K9dIxEy5DDlXsV0HXr04WDSzbwAp_NNxwIVp9MNk9D2pbgKmebcKrS70A0YxK87WVwONcOSM7pFPnXKhj9NTg9Wy_LAfP-Dx_H_3-Y2udmiT3q4dpc75Iqr9siNLU7CPbI_PCt9A9E29pu75NvxFsatK1p7yrNfP9gQD0vsrJ6_wvHP7bGuLMVhXTk6q-gEFspQUUdDtyU6ngVqXBbkJqu5x8EX5JIFTeigxmw6RsU9cjIaHg-OWNu4gWnJ-ZL50qooNlieaUWaG--MhE27QLQRlamNMmG9jZ3JpTYWvCQ1TjqloyzVmQIEtU92KlDtAaGl55aDn6XcZ9JHZSm0dInJY5ibFNdlj_TBvkUbeE0RcuqCF51xe-Tl5ksXpqU9x-4b84tEn3eiizXXx0VC_XPu0kmKDGuAY9kjzzb-U0CoYv5FV65egW6AjnhoIfAXGQmIOsVznstlRADmKpfwrPtrBz3TIkY6JMEf_ssuT8m1z29GxYe34_ePyHURmnxkLBKPyc7y68o9Aai1LPshvn4DW6giag
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transformation+of+17%CE%B1-estradiol%2C+17%CE%B2-estradiol%2C+and+estrone+in+sediments+under+nitrate-+and+sulfate-reducing+conditions&rft.jtitle=Environmental+science+%26+technology&rft.au=Mashtare%2C+Michael+L&rft.au=Lee%2C+Linda+S&rft.au=Nies%2C+Loring+F&rft.au=Turco%2C+Ronald+F&rft.date=2013-07-02&rft.eissn=1520-5851&rft.volume=47&rft.issue=13&rft.spage=7178&rft_id=info:doi/10.1021%2Fes4008382&rft_id=info%3Apmid%2F23706021&rft.externalDocID=23706021
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon