Investigation of the Bulk Modulus of Silica Aerogel Using Molecular Dynamics Simulations of a Coarse-Grained Model
Structural and mechanical properties of silica aerogels are studied using a flexible coarse-grained model and a variety of simulation techniques. The model, introduced in a previous study ( J. Phys. Chem. C 2007, 111, 15792−15802 ), consists of spherical “primary” gel particles that interact through...
Saved in:
Published in | The journal of physical chemistry. B Vol. 117; no. 23; pp. 7095 - 7105 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
13.06.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 1520-6106 1520-5207 1520-5207 |
DOI | 10.1021/jp3128737 |
Cover
Loading…
Abstract | Structural and mechanical properties of silica aerogels are studied using a flexible coarse-grained model and a variety of simulation techniques. The model, introduced in a previous study ( J. Phys. Chem. C 2007, 111, 15792−15802 ), consists of spherical “primary” gel particles that interact through weak nonbonded forces and through microscopically motivated interparticle bonds that may break and form during the simulations. Aerogel models are prepared using a three-stage protocol consisting of separate simulations of gelation, aging, and a final relaxation during which no further bond formation is permitted. Models of varying particle size, density, and size dispersity are considered. These are characterized in terms of fractal dimensions and pore size distributions, and generally good agreement with experimental data is obtained for these metrics. The bulk moduli of these materials are studied in detail. Two different techniques for obtaining the bulk modulus are considered, fluctuation analysis and direct compression/expansion simulations. We find that the fluctuation result can be subject to systematic error due to coupling with the simulation barostat but, if performed carefully, yields results equivalent with those of compression/expansion experiments. The dependence of the bulk modulus on density follows a power law with an exponent between 3.00 and 3.15, in agreement with reported experimental results. The best correlate for the bulk modulus appears to be the volumetric bond density, on which there is also a power law dependence. Polydisperse models exhibit lower bulk moduli than comparable monodisperse models, which is due to lower bond densities in the polydisperse materials. |
---|---|
AbstractList | Structural and mechanical properties of silica aerogels are studied using a flexible coarse-grained model and a variety of simulation techniques. The model, introduced in a previous study (J. Phys. Chem. C 2007, 111, 15792−15802), consists of spherical “primary” gel particles that interact through weak nonbonded forces and through microscopically motivated interparticle bonds that may break and form during the simulations. Aerogel models are prepared using a three-stage protocol consisting of separate simulations of gelation, aging, and a final relaxation during which no further bond formation is permitted. Models of varying particle size, density, and size dispersity are considered. These are characterized in terms of fractal dimensions and pore size distributions, and generally good agreement with experimental data is obtained for these metrics. The bulk moduli of these materials are studied in detail. Two different techniques for obtaining the bulk modulus are considered, fluctuation analysis and direct compression/expansion simulations. We find that the fluctuation result can be subject to systematic error due to coupling with the simulation barostat but, if performed carefully, yields results equivalent with those of compression/expansion experiments. The dependence of the bulk modulus on density follows a power law with an exponent between 3.00 and 3.15, in agreement with reported experimental results. The best correlate for the bulk modulus appears to be the volumetric bond density, on which there is also a power law dependence. Polydisperse models exhibit lower bulk moduli than comparable monodisperse models, which is due to lower bond densities in the polydisperse materials. Structural and mechanical properties of silica aerogels are studied using a flexible coarse-grained model and a variety of simulation techniques. The model, introduced in a previous study (J. Phys. Chem. C 2007, 111, 15792-15802), consists of spherical "primary" gel particles that interact through weak nonbonded forces and through microscopically motivated interparticle bonds that may break and form during the simulations. Aerogel models are prepared using a three-stage protocol consisting of separate simulations of gelation, aging, and a final relaxation during which no further bond formation is permitted. Models of varying particle size, density, and size dispersity are considered. These are characterized in terms of fractal dimensions and pore size distributions, and generally good agreement with experimental data is obtained for these metrics. The bulk moduli of these materials are studied in detail. Two different techniques for obtaining the bulk modulus are considered, fluctuation analysis and direct compression/expansion simulations. We find that the fluctuation result can be subject to systematic error due to coupling with the simulation barostat but, if performed carefully, yields results equivalent with those of compression/expansion experiments. The dependence of the bulk modulus on density follows a power law with an exponent between 3.00 and 3.15, in agreement with reported experimental results. The best correlate for the bulk modulus appears to be the volumetric bond density, on which there is also a power law dependence. Polydisperse models exhibit lower bulk moduli than comparable monodisperse models, which is due to lower bond densities in the polydisperse materials. Structural and mechanical properties of silica aerogels are studied using a flexible coarse-grained model and a variety of simulation techniques. The model, introduced in a previous study (J. Phys. Chem. C 2007, 111, 15792-15802), consists of spherical "primary" gel particles that interact through weak nonbonded forces and through microscopically motivated interparticle bonds that may break and form during the simulations. Aerogel models are prepared using a three-stage protocol consisting of separate simulations of gelation, aging, and a final relaxation during which no further bond formation is permitted. Models of varying particle size, density, and size dispersity are considered. These are characterized in terms of fractal dimensions and pore size distributions, and generally good agreement with experimental data is obtained for these metrics. The bulk moduli of these materials are studied in detail. Two different techniques for obtaining the bulk modulus are considered, fluctuation analysis and direct compression/expansion simulations. We find that the fluctuation result can be subject to systematic error due to coupling with the simulation barostat but, if performed carefully, yields results equivalent with those of compression/expansion experiments. The dependence of the bulk modulus on density follows a power law with an exponent between 3.00 and 3.15, in agreement with reported experimental results. The best correlate for the bulk modulus appears to be the volumetric bond density, on which there is also a power law dependence. Polydisperse models exhibit lower bulk moduli than comparable monodisperse models, which is due to lower bond densities in the polydisperse materials.Structural and mechanical properties of silica aerogels are studied using a flexible coarse-grained model and a variety of simulation techniques. The model, introduced in a previous study (J. Phys. Chem. C 2007, 111, 15792-15802), consists of spherical "primary" gel particles that interact through weak nonbonded forces and through microscopically motivated interparticle bonds that may break and form during the simulations. Aerogel models are prepared using a three-stage protocol consisting of separate simulations of gelation, aging, and a final relaxation during which no further bond formation is permitted. Models of varying particle size, density, and size dispersity are considered. These are characterized in terms of fractal dimensions and pore size distributions, and generally good agreement with experimental data is obtained for these metrics. The bulk moduli of these materials are studied in detail. Two different techniques for obtaining the bulk modulus are considered, fluctuation analysis and direct compression/expansion simulations. We find that the fluctuation result can be subject to systematic error due to coupling with the simulation barostat but, if performed carefully, yields results equivalent with those of compression/expansion experiments. The dependence of the bulk modulus on density follows a power law with an exponent between 3.00 and 3.15, in agreement with reported experimental results. The best correlate for the bulk modulus appears to be the volumetric bond density, on which there is also a power law dependence. Polydisperse models exhibit lower bulk moduli than comparable monodisperse models, which is due to lower bond densities in the polydisperse materials. |
Author | Ferreiro-Rangel, Carlos A Gelb, Lev D |
AuthorAffiliation | Department of Materials Science and Engineering University of Texas at Dallas |
AuthorAffiliation_xml | – name: University of Texas at Dallas – name: Department of Materials Science and Engineering |
Author_xml | – sequence: 1 givenname: Carlos A surname: Ferreiro-Rangel fullname: Ferreiro-Rangel, Carlos A – sequence: 2 givenname: Lev D surname: Gelb fullname: Gelb, Lev D email: lev.gelb@utdallas.edu |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27483902$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23631801$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0k9vFCEUAHBiauwfPfgFzFxM9DD2ATvAHOtaa5MaD9rz5C37ZmVlYIUZk377su1YE9OkBwJ5_Hh58DhmByEGYuw1hw8cBD_d7iQXRkv9jB3xRkBdhj6Y14qDOmTHOW8BRCOMesEOhVSSG-BHLF2GP5RHt8HRxVDFvhp_UvVx8r-qr3E9-SnvY9-ddxarM0pxQ766zi5syr4nO3lM1aebgIOzubihBPaZ7o5htYyYMtUXCV2g9T4l-ZfseY8-06t5PmHXn89_LL_UV98uLpdnVzUuOB_rVcsXRjZWKwmGQPNSft8aVIIauRLQohTWoO05koa2lwskEmKtwHJthJEn7N193l2Kv6dyyW5w2ZL3GChOuRMA0IDWC3iSct3IRgqu1NNUKm0MNEIX-mam02qgdbdLbsB00_19_QLezgCzRd8nDNblf06XB2hBFPf-3tkUc07UPxAO3f4HdA8_oNjT_6x1411LxtIE_-iJuQq0udvGKYXSlUfcLRG_uu4 |
CitedBy_id | crossref_primary_10_1016_j_mtla_2019_100315 crossref_primary_10_1021_acs_jpcb_0c06596 crossref_primary_10_1016_j_msea_2014_12_007 crossref_primary_10_1016_j_actamat_2021_116959 crossref_primary_10_1016_j_jnoncrysol_2018_06_005 crossref_primary_10_1016_j_polymer_2019_01_001 crossref_primary_10_1016_j_powtec_2017_01_067 crossref_primary_10_3390_ijms24031999 crossref_primary_10_3390_molecules24071336 crossref_primary_10_1021_acs_iecr_9b03781 crossref_primary_10_1039_C4SM01074D crossref_primary_10_1002_ange_201709014 crossref_primary_10_1016_j_jnoncrysol_2016_05_024 crossref_primary_10_1016_j_supflu_2019_02_018 crossref_primary_10_1021_acs_jpcb_7b03184 crossref_primary_10_1021_acs_jpcb_3c07026 crossref_primary_10_1039_C9RA01979K crossref_primary_10_1002_pamm_202400175 crossref_primary_10_1016_j_msea_2018_11_019 crossref_primary_10_1016_j_actamat_2017_12_005 crossref_primary_10_1016_j_compositesb_2020_107884 crossref_primary_10_1016_j_scriptamat_2019_10_010 crossref_primary_10_1016_j_commatsci_2018_09_043 crossref_primary_10_1016_j_jnoncrysol_2019_119646 crossref_primary_10_1039_C6SM01460G crossref_primary_10_1002_pamm_202300224 crossref_primary_10_1121_10_0026118 crossref_primary_10_3390_gels7020050 crossref_primary_10_1016_j_ceramint_2020_09_181 crossref_primary_10_1002_aic_14706 crossref_primary_10_1002_anie_201709014 crossref_primary_10_1021_jp512998w crossref_primary_10_1016_j_jcis_2021_03_180 crossref_primary_10_1021_acs_jpcb_0c10311 |
Cites_doi | 10.1016/j.jnoncrysol.2008.06.014 10.1063/1.474155 10.1016/j.actamat.2009.04.003 10.1021/j100376a035 10.1063/1.1857522 10.1007/s10450-005-5938-z 10.1063/1.1499225 10.1088/0022-3727/21/9/020 10.1016/0021-9991(76)90041-3 10.1007/978-1-4419-7589-8_1 10.1016/j.jnoncrysol.2011.02.049 10.1016/S0001-8686(97)90003-8 10.1006/jcis.2001.7917 10.1155/2010/409310 10.1016/j.jmatprotec.2007.10.060 10.1016/j.jnoncrysol.2011.05.009 10.1016/S0022-3093(01)00462-8 10.1103/PhysRevE.67.061404 10.1002/jctb.1996 10.1007/978-1-4419-7589-8_2 10.3390/ma3010704 10.1021/jp0737505 10.1007/978-1-4419-7589-8_23 10.1103/PhysRevB.48.9345 10.1063/1.124471 10.1021/jp073808f 10.1016/j.physa.2005.02.034 10.1016/j.micromeso.2008.08.025 10.1016/0022-3093(88)90286-4 10.1016/S0022-3093(01)00456-2 10.1016/j.jnoncrysol.2007.07.061 10.1016/S0022-3093(96)00621-7 10.1017/CBO9780511802843 10.1016/j.jnoncrysol.2011.12.005 10.1080/00268970410001726854 10.1016/j.jnoncrysol.2012.03.007 10.1016/S0304-3991(98)00061-8 10.1016/0022-3093(95)00074-7 10.1103/PhysRevE.74.021411 10.1016/j.jnoncrysol.2011.02.025 10.1063/1.455517 10.1063/1.467468 10.1016/S0022-3093(00)00304-5 10.1103/PhysRevLett.51.1119 10.1016/S0022-3093(98)00747-9 10.1103/PhysRevB.50.6006 10.1016/S0022-3093(00)00288-X 10.1021/jp049169f 10.1039/fd9950100051 10.1146/annurev.pc.39.100188.001321 10.1103/PhysRevB.37.6500 10.1080/08927028808080941 10.1021/la9808418 10.1023/A:1008731904082 |
ContentType | Journal Article |
Copyright | Copyright © 2013 American Chemical Society 2014 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2013 American Chemical Society – notice: 2014 INIST-CNRS |
DBID | AAYXX CITATION IQODW NPM 7X8 7SC 7SR 7U5 8BQ 8FD JG9 JQ2 L7M L~C L~D 7S9 L.6 |
DOI | 10.1021/jp3128737 |
DatabaseName | CrossRef Pascal-Francis PubMed MEDLINE - Academic Computer and Information Systems Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA PubMed Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Applied Sciences Physics |
EISSN | 1520-5207 |
EndPage | 7105 |
ExternalDocumentID | 23631801 27483902 10_1021_jp3128737 c393343930 |
Genre | Journal Article |
GroupedDBID | - .K2 02 123 29L 4.4 53G 55A 5VS 7~N 85S 8RP AABXI ABFLS ABMVS ABPTK ABUCX ACGFS ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F20 F5P GNL IH9 IHE JG JG~ K2 LG6 PZZ RNS ROL TAE TN5 UI2 UKR UPT VF5 VG9 VQA W1F WH7 X YZZ ZGI ZHY --- -~X .DC AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ GGK XSW YQT ~02 186 6TJ 9M8 ABDPE ACRPL ADNMO AETEA AEYZD AFFNX AI. ANPPW ANTXH IQODW MVM NHB UQL VH1 VOH VQP XOL ZCG NPM 7X8 7SC 7SR 7U5 8BQ 8FD JG9 JQ2 L7M L~C L~D 7S9 L.6 |
ID | FETCH-LOGICAL-a411t-b914835c76308e071002f98a62e53b209a32c8acf1ae709f34aee22d60c178283 |
IEDL.DBID | ACS |
ISSN | 1520-6106 1520-5207 |
IngestDate | Fri Jul 11 00:41:20 EDT 2025 Fri Jul 11 05:40:32 EDT 2025 Fri Jul 11 01:36:49 EDT 2025 Thu Apr 03 07:09:39 EDT 2025 Wed Apr 02 07:23:35 EDT 2025 Tue Jul 01 00:21:50 EDT 2025 Thu Apr 24 22:50:57 EDT 2025 Thu Aug 27 13:42:43 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | Particle size Fluctuations Experimental data Ageing Molecular dynamics method Theoretical study Mechanical properties Silica Relaxation Pore size Experimental result Fractal dimension Numerical simulation Metric Spherical particle Microstructure Power law Distributed parameter system Bulk modulus |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a411t-b914835c76308e071002f98a62e53b209a32c8acf1ae709f34aee22d60c178283 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 23631801 |
PQID | 1367880527 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2000507740 proquest_miscellaneous_1753532166 proquest_miscellaneous_1367880527 pubmed_primary_23631801 pascalfrancis_primary_27483902 crossref_primary_10_1021_jp3128737 crossref_citationtrail_10_1021_jp3128737 acs_journals_10_1021_jp3128737 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-06-13 |
PublicationDateYYYYMMDD | 2013-06-13 |
PublicationDate_xml | – month: 06 year: 2013 text: 2013-06-13 day: 13 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States |
PublicationTitle | The journal of physical chemistry. B |
PublicationTitleAlternate | J. Phys. Chem. B |
PublicationYear | 2013 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Vacher R. (ref57/cit57) 1988; 37 Bhattacharya S. (ref23/cit23) 2008; 112 Davison A. (ref59/cit59) 1997 Ng T. Y. (ref24/cit24) 2012; 358 Ebert H. P. (ref7/cit7) 2011 Olivi-Tran N. (ref35/cit35) 2005; 354 Ma H.-S. (ref37/cit37) 2001; 285 Álvarez Arenas T. E. G. (ref10/cit10) 2002; 81 Scherer G. W. (ref8/cit8) 1995; 186 Meakin P. (ref28/cit28) 1988; 89 Gelb L. D. (ref44/cit44) 2007; 111 Morales-Flórez V. (ref41/cit41) 2008; 354 Rzepiela A. A. (ref47/cit47) 2001; 244 Gurav J. L. (ref2/cit2) 2010; 2010 Dorcheh S. (ref6/cit6) 2008; 199 Mukhopadhyay M. (ref40/cit40) 2008; 83 Martyna G. J. (ref52/cit52) 1994; 101 Campo F. A. (ref42/cit42) 2011; 357 Nadargi D. Y. (ref17/cit17) 2009; 117 Kieffer J. (ref25/cit25) 1988; 106 Reichenauer G. (ref60/cit60) 2000; 277 Pierre A. C. (ref5/cit5) 2011 Meakin P. (ref29/cit29) 1999; 15 Bijsterbosch B. H. (ref45/cit45) 1995; 101 van Gunsteren W. F. (ref50/cit50) 1988; 1 Grimvall G. (ref58/cit58) 1999 Woignier T. (ref12/cit12) 1998; 241 Hogg R. (ref53/cit53) 2005 Salazar R. (ref56/cit56) 2004; 102 Gross J. (ref13/cit13) 1988; 21 Barbero E. J. (ref43/cit43) 2012; 358 Ma H.-S. (ref36/cit36) 2000; 277 Gelb L. D. (ref54/cit54) 1999; 15 Kucheyev S. O. (ref18/cit18) 2009; 57 Rao N. Z. (ref21/cit21) 2004; 108 Gelb L. D. (ref55/cit55) 2005; 11 Pierre A. C. (ref1/cit1) 2011 Fu B. (ref39/cit39) 2011; 357 Nikel O. (ref19/cit19) 2011; 357 Whittle M. (ref46/cit46) 1997; 107 Brinker C. J. (ref4/cit4) 1990 Gross J. (ref14/cit14) 1997; 211 Lu H. (ref38/cit38) 2008; 49 Jullien R. (ref33/cit33) 1997; 8 Feuston B. P. (ref20/cit20) 1990; 94 Pierce F. (ref34/cit34) 2006; 74 d’Arjuzon R. J. M. (ref48/cit48) 2003; 67 Woignier T. (ref11/cit11) 1989; 24 Moner-Girona M. (ref16/cit16) 2001; 285 Meakin P. (ref26/cit26) 1983; 51 Bhattacharya S. (ref22/cit22) 2005; 122 Sinkó K. (ref3/cit3) 2010; 3 Poon W. C. K. (ref32/cit32) 1997; 73 Gillespie D. T. (ref49/cit49) 1976; 22 Moner-Girona M. (ref9/cit9) 1999; 75 Meakin P. (ref27/cit27) 1988; 39 Stark R. W. (ref15/cit15) 1998; 75 Allen M. P. (ref51/cit51) 1987 Alaoui A. H. (ref61/cit61) 2008; 354 Hasmy A. (ref30/cit30) 1993; 48 Hasmy A. (ref31/cit31) 1994; 50 |
References_xml | – volume: 354 start-page: 4556 year: 2008 ident: ref61/cit61 publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2008.06.014 – volume: 107 start-page: 10191 year: 1997 ident: ref46/cit46 publication-title: J. Chem. Phys. doi: 10.1063/1.474155 – volume: 57 start-page: 3472 year: 2009 ident: ref18/cit18 publication-title: Acta Mater. doi: 10.1016/j.actamat.2009.04.003 – volume: 94 start-page: 5351 year: 1990 ident: ref20/cit20 publication-title: J. Phys. Chem. doi: 10.1021/j100376a035 – volume: 122 start-page: 094715 year: 2005 ident: ref22/cit22 publication-title: J. Chem. Phys. doi: 10.1063/1.1857522 – volume: 11 start-page: 283 year: 2005 ident: ref55/cit55 publication-title: Adsorption doi: 10.1007/s10450-005-5938-z – volume-title: Sol-Gel Science year: 1990 ident: ref4/cit4 – volume: 81 start-page: 1198 year: 2002 ident: ref10/cit10 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1499225 – volume: 21 start-page: 1447 year: 1988 ident: ref13/cit13 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/21/9/020 – volume: 22 start-page: 403 year: 1976 ident: ref49/cit49 publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(76)90041-3 – start-page: 3 volume-title: Aerogels Handbook year: 2011 ident: ref1/cit1 doi: 10.1007/978-1-4419-7589-8_1 – volume: 357 start-page: 2063 year: 2011 ident: ref39/cit39 publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2011.02.049 – volume: 73 start-page: 71 year: 1997 ident: ref32/cit32 publication-title: Adv. Colloid Interface Sci. doi: 10.1016/S0001-8686(97)90003-8 – volume: 244 start-page: 43 year: 2001 ident: ref47/cit47 publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.2001.7917 – volume: 2010 start-page: 1 year: 2010 ident: ref2/cit2 publication-title: J. Nanomater. doi: 10.1155/2010/409310 – volume-title: Thermophysical Properties of Materials year: 1999 ident: ref58/cit58 – volume: 199 start-page: 10 year: 2008 ident: ref6/cit6 publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2007.10.060 – volume: 357 start-page: 3176 year: 2011 ident: ref19/cit19 publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2011.05.009 – volume: 285 start-page: 244 year: 2001 ident: ref16/cit16 publication-title: J. Non-Cryst. Solids doi: 10.1016/S0022-3093(01)00462-8 – volume: 67 start-page: 061404 year: 2003 ident: ref48/cit48 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.67.061404 – volume: 83 start-page: 1101 year: 2008 ident: ref40/cit40 publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.1996 – volume: 49 start-page: 564 year: 2008 ident: ref38/cit38 publication-title: Polym. Prepr. – start-page: 21 volume-title: Aerogels Handbook year: 2011 ident: ref5/cit5 doi: 10.1007/978-1-4419-7589-8_2 – volume: 3 start-page: 704 year: 2010 ident: ref3/cit3 publication-title: Materials doi: 10.3390/ma3010704 – volume: 111 start-page: 15792 year: 2007 ident: ref44/cit44 publication-title: J. Phys. Chem. C doi: 10.1021/jp0737505 – start-page: 537 volume-title: Aerogels Handbook year: 2011 ident: ref7/cit7 doi: 10.1007/978-1-4419-7589-8_23 – volume: 48 start-page: 9345 year: 1993 ident: ref30/cit30 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.48.9345 – volume: 75 start-page: 653 year: 1999 ident: ref9/cit9 publication-title: Appl. Phys. Lett. doi: 10.1063/1.124471 – volume: 112 start-page: 1764 year: 2008 ident: ref23/cit23 publication-title: J. Phys. Chem. C doi: 10.1021/jp073808f – volume: 354 start-page: 10 year: 2005 ident: ref35/cit35 publication-title: Phys. A doi: 10.1016/j.physa.2005.02.034 – volume: 117 start-page: 617 year: 2009 ident: ref17/cit17 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2008.08.025 – volume: 106 start-page: 336 year: 1988 ident: ref25/cit25 publication-title: J. Non-Cryst. Solids doi: 10.1016/0022-3093(88)90286-4 – volume: 285 start-page: 216 year: 2001 ident: ref37/cit37 publication-title: J. Non-Cryst. Solids doi: 10.1016/S0022-3093(01)00456-2 – volume: 354 start-page: 193 year: 2008 ident: ref41/cit41 publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2007.07.061 – volume: 211 start-page: 132 year: 1997 ident: ref14/cit14 publication-title: J. Non-Cryst. Solids doi: 10.1016/S0022-3093(96)00621-7 – volume-title: Bootstrap Methods and Their Application year: 1997 ident: ref59/cit59 doi: 10.1017/CBO9780511802843 – volume: 24 start-page: 179 year: 1989 ident: ref11/cit11 publication-title: Rev. Phys. Appl. – volume: 358 start-page: 728 year: 2012 ident: ref43/cit43 publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2011.12.005 – volume: 102 start-page: 1015 year: 2004 ident: ref56/cit56 publication-title: Mol. Phys. doi: 10.1080/00268970410001726854 – volume: 358 start-page: 1350 year: 2012 ident: ref24/cit24 publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2012.03.007 – volume: 75 start-page: 161 year: 1998 ident: ref15/cit15 publication-title: Ultramicroscopy doi: 10.1016/S0304-3991(98)00061-8 – volume: 8 start-page: 819 year: 1997 ident: ref33/cit33 publication-title: J. Sol-Gel Sci. Technol. – volume: 186 start-page: 316 year: 1995 ident: ref8/cit8 publication-title: J. Non-Cryst. Solids doi: 10.1016/0022-3093(95)00074-7 – volume: 74 start-page: 021411 year: 2006 ident: ref34/cit34 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.74.021411 – volume: 357 start-page: 2046 year: 2011 ident: ref42/cit42 publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2011.02.025 – volume-title: Computer Simulation of Liquids year: 1987 ident: ref51/cit51 – volume: 89 start-page: 246 year: 1988 ident: ref28/cit28 publication-title: J. Chem. Phys. doi: 10.1063/1.455517 – volume: 101 start-page: 4177 year: 1994 ident: ref52/cit52 publication-title: J. Chem. Phys. doi: 10.1063/1.467468 – volume: 277 start-page: 162 year: 2000 ident: ref60/cit60 publication-title: J. Non-Cryst. Solids doi: 10.1016/S0022-3093(00)00304-5 – volume: 51 start-page: 1119 year: 1983 ident: ref26/cit26 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.51.1119 – volume: 241 start-page: 45 year: 1998 ident: ref12/cit12 publication-title: J. Non-Cryst. Solids doi: 10.1016/S0022-3093(98)00747-9 – volume: 50 start-page: 6006 year: 1994 ident: ref31/cit31 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.6006 – volume: 277 start-page: 127 year: 2000 ident: ref36/cit36 publication-title: J. Non-Cryst. Solids doi: 10.1016/S0022-3093(00)00288-X – volume: 108 start-page: 12418 year: 2004 ident: ref21/cit21 publication-title: J. Phys. Chem. B doi: 10.1021/jp049169f – volume: 101 start-page: 51 year: 1995 ident: ref45/cit45 publication-title: Faraday Discuss. doi: 10.1039/fd9950100051 – volume: 39 start-page: 237 year: 1988 ident: ref27/cit27 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev.pc.39.100188.001321 – volume: 37 start-page: 6500 year: 1988 ident: ref57/cit57 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.37.6500 – volume: 1 start-page: 173 year: 1988 ident: ref50/cit50 publication-title: Mol. Simul. doi: 10.1080/08927028808080941 – volume-title: Introduction to Mathematical Statistics year: 2005 ident: ref53/cit53 – volume: 15 start-page: 305 year: 1999 ident: ref54/cit54 publication-title: Langmuir doi: 10.1021/la9808418 – volume: 15 start-page: 97 year: 1999 ident: ref29/cit29 publication-title: J. Sol-Gel Sci. Technol. doi: 10.1023/A:1008731904082 |
SSID | ssj0025286 |
Score | 2.274978 |
Snippet | Structural and mechanical properties of silica aerogels are studied using a flexible coarse-grained model and a variety of simulation techniques. The model,... |
SourceID | proquest pubmed pascalfrancis crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7095 |
SubjectTerms | Applied sciences Bulk modulus Compressing Computer simulation Condensed matter: structure, mechanical and thermal properties Density Elasticity, elastic constants Exact sciences and technology Fluctuation fractal dimensions gelation gels Mechanical and acoustical properties of condensed matter mechanical properties Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology Mechanical properties of solids Metals. Metallurgy molecular dynamics particle size Physics porosity Power law silica Silica aerogels Simulation |
Title | Investigation of the Bulk Modulus of Silica Aerogel Using Molecular Dynamics Simulations of a Coarse-Grained Model |
URI | http://dx.doi.org/10.1021/jp3128737 https://www.ncbi.nlm.nih.gov/pubmed/23631801 https://www.proquest.com/docview/1367880527 https://www.proquest.com/docview/1753532166 https://www.proquest.com/docview/2000507740 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB6VcgAJ8S5sCyvzOHBJa4_zcI5lS6mQyqVU6m1lJxMEDclqs7nw6xnnsbSiWy45xOMoscee74vt-QDeO0qNjQsd5KiLIEyyKLCKLyZ0TD64UBt_Gvn0a3xyHn65iC624N2GFXxUBz8XmufQRCd34C7GDK89_pmdrVlVhJ2cI8chz4NkPKYPulrVh56suRZ6Hixsw61Q9PIVm_FlF2eOH8HReFqn315yud-u3H72-9_kjbd9wmN4OOBMcdg7xhPYouop3JuN8m7PYHklw0ZdiboQDAXFx7a8FKd13pZt4--d_fA_9cQhLevvVIpugwGXD5K64qjXs2_Y7tegA9ZVs2JWM2Om4LNXoKDcP5LK53B-_Onb7CQYBBgCGyq1ClzKZElHGc9B0lCXCAgL37dIkXYoU6sxMzYrlKVEpoUOLRFiHstMMfIwege2q7qilyBU7iJKQmeUZsaTG2dQu9AqwoI5l0wnMOUemg8DqJl3a-PI3GRsugl8GDtvng3py72KRnmT6du16aLP2XGT0fSaB6wtmaYzaJQ4gTejS8y5a_w6iq2obvndNEd4LwWR3GLDNDDSqOJ4sw122XcYf8sJvOh97u9b6JhnW6l2_9cue3Afe4WOQOlXsL1atvSacdLKTbtx8gfM3Qkm |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELZaeqASgtIHbEsXt-qhl1A_8nCOy1K6UJYLIHGL7GRSFUKy2mwu_fUdO8kCFbS95BCPLcevmS-2v4-QTwZipcNcepmQuedHaeBpjg_lGwQfmCiVvY08PQ0nF_7xZXDZ0eTYuzBYiRpLqt0m_i27AP9yNZO4lEYyekqeYRAi7PG90fhsCa4C4VQd0R1ZOMTCnkXoblbrgdL6ngdam-kaGyNvVSweDzOduzncaHWLXEXdKZPrvWZh9tJff3A4_t-XvCDrXdRJR-0w2SRPoHxJVse92NsrMr_Dt1GVtMopBoZ0vymu6bTKmqKp7buzn_YXHx3BvPoBBXXHDTC9E9ilB626fY12N50qmMum6bhC_AzeN6tHAZktEorX5OLw6_l44nVyDJ72OV94JkboJIMUVySmwNECidz2tIBAGsFiLUWqdJpzDRGLc-lrACGykKUc4xAl35CVsiphm1CemQAi3yguEf9kyighja85iBwRGIsHZIgtl3TTqU7cTrlApNI33YB87vswSTsyc6upUTxk-nFpOmsZPB4yGt4bCEtLBO0YQjIxIB_6kZFg19hdFV1C1WDdJPp7KwwR_cUGQWEgBQ_Dx22E4-LBaJwNyFY79G5rIUNcexl_-6922SWrk_PpSXJydPr9HXkuWu0Oj8sdsrKYN_AeI6iFGbqp8xsNVRGH |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VVgIkBJTn8lhcxIFLih95OMdl26VQ2iKVSr1FdmIjaEhWm82FX8_YSZa2aoFLDvHYmvg182Xs-QDeaJNKFVsRFFzYIEzyKFAMHzLUCD6wUEh3G_ngMN47CT-dRqc9UHR3YVCJBltqfBDfrep5YfsMA-zdj7nA7TQRyQ3YcOE6d4RvMj1eAayIe2ZHNEkOEtF4yCR0vqqzQnlzwQrdmasGO8R2TBbXu5re5MzuwdFKWX_S5Gy7Xert_NelPI7__zX34W7vfZJJN102Yc1UD-DWdCB9ewiLc3k36orUlqCDSN635Rk5qIu2bBv37vi7-9VHJmZRfzMl8ccOsLwn2iU7Hct9g3I_e3YwX02RaY042gQfHC-FKVyTpnwEJ7Pdr9O9oKdlCFTI2DLQKUIoEeW4M1FpfHogbt2IcxMJzWmqBM-lyi1TJqGpFaEyhvMipjlDf0SKx7Be1ZV5CoQVOjJJqCUTiIMKqSUXOlTMcItIjKYjGGPvZf2yajIfMeeIWIauG8HbYRyzvE9q7rg1yqtEX69E510mj6uExhcmw0oSwTu6kpSPYGuYHRkOjYuuqMrULeom0O47gojkLzIIDiPBWRxfL8N9Th70yukInnTT748WIsY9mLJn_-qXV3Dzy84s-_zxcP853OYdhUfAxAtYXy5a8xIdqaUe-9XzGwM0FAo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+of+the+bulk+modulus+of+silica+aerogel+using+molecular+dynamics+simulations+of+a+coarse-grained+model&rft.jtitle=The+journal+of+physical+chemistry.+B&rft.au=Ferreiro-Rangel%2C+Carlos+A&rft.au=Gelb%2C+Lev+D&rft.date=2013-06-13&rft.issn=1520-5207&rft.eissn=1520-5207&rft.volume=117&rft.issue=23&rft.spage=7095&rft_id=info:doi/10.1021%2Fjp3128737&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6106&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6106&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6106&client=summon |