Investigation of the Bulk Modulus of Silica Aerogel Using Molecular Dynamics Simulations of a Coarse-Grained Model

Structural and mechanical properties of silica aerogels are studied using a flexible coarse-grained model and a variety of simulation techniques. The model, introduced in a previous study ( J. Phys. Chem. C 2007, 111, 15792−15802 ), consists of spherical “primary” gel particles that interact through...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry. B Vol. 117; no. 23; pp. 7095 - 7105
Main Authors Ferreiro-Rangel, Carlos A, Gelb, Lev D
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 13.06.2013
Subjects
Online AccessGet full text
ISSN1520-6106
1520-5207
1520-5207
DOI10.1021/jp3128737

Cover

Loading…
Abstract Structural and mechanical properties of silica aerogels are studied using a flexible coarse-grained model and a variety of simulation techniques. The model, introduced in a previous study ( J. Phys. Chem. C 2007, 111, 15792−15802 ), consists of spherical “primary” gel particles that interact through weak nonbonded forces and through microscopically motivated interparticle bonds that may break and form during the simulations. Aerogel models are prepared using a three-stage protocol consisting of separate simulations of gelation, aging, and a final relaxation during which no further bond formation is permitted. Models of varying particle size, density, and size dispersity are considered. These are characterized in terms of fractal dimensions and pore size distributions, and generally good agreement with experimental data is obtained for these metrics. The bulk moduli of these materials are studied in detail. Two different techniques for obtaining the bulk modulus are considered, fluctuation analysis and direct compression/expansion simulations. We find that the fluctuation result can be subject to systematic error due to coupling with the simulation barostat but, if performed carefully, yields results equivalent with those of compression/expansion experiments. The dependence of the bulk modulus on density follows a power law with an exponent between 3.00 and 3.15, in agreement with reported experimental results. The best correlate for the bulk modulus appears to be the volumetric bond density, on which there is also a power law dependence. Polydisperse models exhibit lower bulk moduli than comparable monodisperse models, which is due to lower bond densities in the polydisperse materials.
AbstractList Structural and mechanical properties of silica aerogels are studied using a flexible coarse-grained model and a variety of simulation techniques. The model, introduced in a previous study (J. Phys. Chem. C 2007, 111, 15792−15802), consists of spherical “primary” gel particles that interact through weak nonbonded forces and through microscopically motivated interparticle bonds that may break and form during the simulations. Aerogel models are prepared using a three-stage protocol consisting of separate simulations of gelation, aging, and a final relaxation during which no further bond formation is permitted. Models of varying particle size, density, and size dispersity are considered. These are characterized in terms of fractal dimensions and pore size distributions, and generally good agreement with experimental data is obtained for these metrics. The bulk moduli of these materials are studied in detail. Two different techniques for obtaining the bulk modulus are considered, fluctuation analysis and direct compression/expansion simulations. We find that the fluctuation result can be subject to systematic error due to coupling with the simulation barostat but, if performed carefully, yields results equivalent with those of compression/expansion experiments. The dependence of the bulk modulus on density follows a power law with an exponent between 3.00 and 3.15, in agreement with reported experimental results. The best correlate for the bulk modulus appears to be the volumetric bond density, on which there is also a power law dependence. Polydisperse models exhibit lower bulk moduli than comparable monodisperse models, which is due to lower bond densities in the polydisperse materials.
Structural and mechanical properties of silica aerogels are studied using a flexible coarse-grained model and a variety of simulation techniques. The model, introduced in a previous study (J. Phys. Chem. C 2007, 111, 15792-15802), consists of spherical "primary" gel particles that interact through weak nonbonded forces and through microscopically motivated interparticle bonds that may break and form during the simulations. Aerogel models are prepared using a three-stage protocol consisting of separate simulations of gelation, aging, and a final relaxation during which no further bond formation is permitted. Models of varying particle size, density, and size dispersity are considered. These are characterized in terms of fractal dimensions and pore size distributions, and generally good agreement with experimental data is obtained for these metrics. The bulk moduli of these materials are studied in detail. Two different techniques for obtaining the bulk modulus are considered, fluctuation analysis and direct compression/expansion simulations. We find that the fluctuation result can be subject to systematic error due to coupling with the simulation barostat but, if performed carefully, yields results equivalent with those of compression/expansion experiments. The dependence of the bulk modulus on density follows a power law with an exponent between 3.00 and 3.15, in agreement with reported experimental results. The best correlate for the bulk modulus appears to be the volumetric bond density, on which there is also a power law dependence. Polydisperse models exhibit lower bulk moduli than comparable monodisperse models, which is due to lower bond densities in the polydisperse materials.
Structural and mechanical properties of silica aerogels are studied using a flexible coarse-grained model and a variety of simulation techniques. The model, introduced in a previous study (J. Phys. Chem. C 2007, 111, 15792-15802), consists of spherical "primary" gel particles that interact through weak nonbonded forces and through microscopically motivated interparticle bonds that may break and form during the simulations. Aerogel models are prepared using a three-stage protocol consisting of separate simulations of gelation, aging, and a final relaxation during which no further bond formation is permitted. Models of varying particle size, density, and size dispersity are considered. These are characterized in terms of fractal dimensions and pore size distributions, and generally good agreement with experimental data is obtained for these metrics. The bulk moduli of these materials are studied in detail. Two different techniques for obtaining the bulk modulus are considered, fluctuation analysis and direct compression/expansion simulations. We find that the fluctuation result can be subject to systematic error due to coupling with the simulation barostat but, if performed carefully, yields results equivalent with those of compression/expansion experiments. The dependence of the bulk modulus on density follows a power law with an exponent between 3.00 and 3.15, in agreement with reported experimental results. The best correlate for the bulk modulus appears to be the volumetric bond density, on which there is also a power law dependence. Polydisperse models exhibit lower bulk moduli than comparable monodisperse models, which is due to lower bond densities in the polydisperse materials.Structural and mechanical properties of silica aerogels are studied using a flexible coarse-grained model and a variety of simulation techniques. The model, introduced in a previous study (J. Phys. Chem. C 2007, 111, 15792-15802), consists of spherical "primary" gel particles that interact through weak nonbonded forces and through microscopically motivated interparticle bonds that may break and form during the simulations. Aerogel models are prepared using a three-stage protocol consisting of separate simulations of gelation, aging, and a final relaxation during which no further bond formation is permitted. Models of varying particle size, density, and size dispersity are considered. These are characterized in terms of fractal dimensions and pore size distributions, and generally good agreement with experimental data is obtained for these metrics. The bulk moduli of these materials are studied in detail. Two different techniques for obtaining the bulk modulus are considered, fluctuation analysis and direct compression/expansion simulations. We find that the fluctuation result can be subject to systematic error due to coupling with the simulation barostat but, if performed carefully, yields results equivalent with those of compression/expansion experiments. The dependence of the bulk modulus on density follows a power law with an exponent between 3.00 and 3.15, in agreement with reported experimental results. The best correlate for the bulk modulus appears to be the volumetric bond density, on which there is also a power law dependence. Polydisperse models exhibit lower bulk moduli than comparable monodisperse models, which is due to lower bond densities in the polydisperse materials.
Author Ferreiro-Rangel, Carlos A
Gelb, Lev D
AuthorAffiliation Department of Materials Science and Engineering
University of Texas at Dallas
AuthorAffiliation_xml – name: University of Texas at Dallas
– name: Department of Materials Science and Engineering
Author_xml – sequence: 1
  givenname: Carlos A
  surname: Ferreiro-Rangel
  fullname: Ferreiro-Rangel, Carlos A
– sequence: 2
  givenname: Lev D
  surname: Gelb
  fullname: Gelb, Lev D
  email: lev.gelb@utdallas.edu
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27483902$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23631801$$D View this record in MEDLINE/PubMed
BookMark eNqF0k9vFCEUAHBiauwfPfgFzFxM9DD2ATvAHOtaa5MaD9rz5C37ZmVlYIUZk377su1YE9OkBwJ5_Hh58DhmByEGYuw1hw8cBD_d7iQXRkv9jB3xRkBdhj6Y14qDOmTHOW8BRCOMesEOhVSSG-BHLF2GP5RHt8HRxVDFvhp_UvVx8r-qr3E9-SnvY9-ddxarM0pxQ766zi5syr4nO3lM1aebgIOzubihBPaZ7o5htYyYMtUXCV2g9T4l-ZfseY8-06t5PmHXn89_LL_UV98uLpdnVzUuOB_rVcsXRjZWKwmGQPNSft8aVIIauRLQohTWoO05koa2lwskEmKtwHJthJEn7N193l2Kv6dyyW5w2ZL3GChOuRMA0IDWC3iSct3IRgqu1NNUKm0MNEIX-mam02qgdbdLbsB00_19_QLezgCzRd8nDNblf06XB2hBFPf-3tkUc07UPxAO3f4HdA8_oNjT_6x1411LxtIE_-iJuQq0udvGKYXSlUfcLRG_uu4
CitedBy_id crossref_primary_10_1016_j_mtla_2019_100315
crossref_primary_10_1021_acs_jpcb_0c06596
crossref_primary_10_1016_j_msea_2014_12_007
crossref_primary_10_1016_j_actamat_2021_116959
crossref_primary_10_1016_j_jnoncrysol_2018_06_005
crossref_primary_10_1016_j_polymer_2019_01_001
crossref_primary_10_1016_j_powtec_2017_01_067
crossref_primary_10_3390_ijms24031999
crossref_primary_10_3390_molecules24071336
crossref_primary_10_1021_acs_iecr_9b03781
crossref_primary_10_1039_C4SM01074D
crossref_primary_10_1002_ange_201709014
crossref_primary_10_1016_j_jnoncrysol_2016_05_024
crossref_primary_10_1016_j_supflu_2019_02_018
crossref_primary_10_1021_acs_jpcb_7b03184
crossref_primary_10_1021_acs_jpcb_3c07026
crossref_primary_10_1039_C9RA01979K
crossref_primary_10_1002_pamm_202400175
crossref_primary_10_1016_j_msea_2018_11_019
crossref_primary_10_1016_j_actamat_2017_12_005
crossref_primary_10_1016_j_compositesb_2020_107884
crossref_primary_10_1016_j_scriptamat_2019_10_010
crossref_primary_10_1016_j_commatsci_2018_09_043
crossref_primary_10_1016_j_jnoncrysol_2019_119646
crossref_primary_10_1039_C6SM01460G
crossref_primary_10_1002_pamm_202300224
crossref_primary_10_1121_10_0026118
crossref_primary_10_3390_gels7020050
crossref_primary_10_1016_j_ceramint_2020_09_181
crossref_primary_10_1002_aic_14706
crossref_primary_10_1002_anie_201709014
crossref_primary_10_1021_jp512998w
crossref_primary_10_1016_j_jcis_2021_03_180
crossref_primary_10_1021_acs_jpcb_0c10311
Cites_doi 10.1016/j.jnoncrysol.2008.06.014
10.1063/1.474155
10.1016/j.actamat.2009.04.003
10.1021/j100376a035
10.1063/1.1857522
10.1007/s10450-005-5938-z
10.1063/1.1499225
10.1088/0022-3727/21/9/020
10.1016/0021-9991(76)90041-3
10.1007/978-1-4419-7589-8_1
10.1016/j.jnoncrysol.2011.02.049
10.1016/S0001-8686(97)90003-8
10.1006/jcis.2001.7917
10.1155/2010/409310
10.1016/j.jmatprotec.2007.10.060
10.1016/j.jnoncrysol.2011.05.009
10.1016/S0022-3093(01)00462-8
10.1103/PhysRevE.67.061404
10.1002/jctb.1996
10.1007/978-1-4419-7589-8_2
10.3390/ma3010704
10.1021/jp0737505
10.1007/978-1-4419-7589-8_23
10.1103/PhysRevB.48.9345
10.1063/1.124471
10.1021/jp073808f
10.1016/j.physa.2005.02.034
10.1016/j.micromeso.2008.08.025
10.1016/0022-3093(88)90286-4
10.1016/S0022-3093(01)00456-2
10.1016/j.jnoncrysol.2007.07.061
10.1016/S0022-3093(96)00621-7
10.1017/CBO9780511802843
10.1016/j.jnoncrysol.2011.12.005
10.1080/00268970410001726854
10.1016/j.jnoncrysol.2012.03.007
10.1016/S0304-3991(98)00061-8
10.1016/0022-3093(95)00074-7
10.1103/PhysRevE.74.021411
10.1016/j.jnoncrysol.2011.02.025
10.1063/1.455517
10.1063/1.467468
10.1016/S0022-3093(00)00304-5
10.1103/PhysRevLett.51.1119
10.1016/S0022-3093(98)00747-9
10.1103/PhysRevB.50.6006
10.1016/S0022-3093(00)00288-X
10.1021/jp049169f
10.1039/fd9950100051
10.1146/annurev.pc.39.100188.001321
10.1103/PhysRevB.37.6500
10.1080/08927028808080941
10.1021/la9808418
10.1023/A:1008731904082
ContentType Journal Article
Copyright Copyright © 2013 American Chemical Society
2014 INIST-CNRS
Copyright_xml – notice: Copyright © 2013 American Chemical Society
– notice: 2014 INIST-CNRS
DBID AAYXX
CITATION
IQODW
NPM
7X8
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7S9
L.6
DOI 10.1021/jp3128737
DatabaseName CrossRef
Pascal-Francis
PubMed
MEDLINE - Academic
Computer and Information Systems Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
PubMed

Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Applied Sciences
Physics
EISSN 1520-5207
EndPage 7105
ExternalDocumentID 23631801
27483902
10_1021_jp3128737
c393343930
Genre Journal Article
GroupedDBID -
.K2
02
123
29L
4.4
53G
55A
5VS
7~N
85S
8RP
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ACGFS
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F20
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
PZZ
RNS
ROL
TAE
TN5
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
YZZ
ZGI
ZHY
---
-~X
.DC
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
XSW
YQT
~02
186
6TJ
9M8
ABDPE
ACRPL
ADNMO
AETEA
AEYZD
AFFNX
AI.
ANPPW
ANTXH
IQODW
MVM
NHB
UQL
VH1
VOH
VQP
XOL
ZCG
NPM
7X8
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7S9
L.6
ID FETCH-LOGICAL-a411t-b914835c76308e071002f98a62e53b209a32c8acf1ae709f34aee22d60c178283
IEDL.DBID ACS
ISSN 1520-6106
1520-5207
IngestDate Fri Jul 11 00:41:20 EDT 2025
Fri Jul 11 05:40:32 EDT 2025
Fri Jul 11 01:36:49 EDT 2025
Thu Apr 03 07:09:39 EDT 2025
Wed Apr 02 07:23:35 EDT 2025
Tue Jul 01 00:21:50 EDT 2025
Thu Apr 24 22:50:57 EDT 2025
Thu Aug 27 13:42:43 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords Particle size
Fluctuations
Experimental data
Ageing
Molecular dynamics method
Theoretical study
Mechanical properties
Silica
Relaxation
Pore size
Experimental result
Fractal dimension
Numerical simulation
Metric
Spherical particle
Microstructure
Power law
Distributed parameter system
Bulk modulus
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a411t-b914835c76308e071002f98a62e53b209a32c8acf1ae709f34aee22d60c178283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 23631801
PQID 1367880527
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2000507740
proquest_miscellaneous_1753532166
proquest_miscellaneous_1367880527
pubmed_primary_23631801
pascalfrancis_primary_27483902
crossref_primary_10_1021_jp3128737
crossref_citationtrail_10_1021_jp3128737
acs_journals_10_1021_jp3128737
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-06-13
PublicationDateYYYYMMDD 2013-06-13
PublicationDate_xml – month: 06
  year: 2013
  text: 2013-06-13
  day: 13
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
PublicationTitle The journal of physical chemistry. B
PublicationTitleAlternate J. Phys. Chem. B
PublicationYear 2013
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Vacher R. (ref57/cit57) 1988; 37
Bhattacharya S. (ref23/cit23) 2008; 112
Davison A. (ref59/cit59) 1997
Ng T. Y. (ref24/cit24) 2012; 358
Ebert H. P. (ref7/cit7) 2011
Olivi-Tran N. (ref35/cit35) 2005; 354
Ma H.-S. (ref37/cit37) 2001; 285
Álvarez Arenas T. E. G. (ref10/cit10) 2002; 81
Scherer G. W. (ref8/cit8) 1995; 186
Meakin P. (ref28/cit28) 1988; 89
Gelb L. D. (ref44/cit44) 2007; 111
Morales-Flórez V. (ref41/cit41) 2008; 354
Rzepiela A. A. (ref47/cit47) 2001; 244
Gurav J. L. (ref2/cit2) 2010; 2010
Dorcheh S. (ref6/cit6) 2008; 199
Mukhopadhyay M. (ref40/cit40) 2008; 83
Martyna G. J. (ref52/cit52) 1994; 101
Campo F. A. (ref42/cit42) 2011; 357
Nadargi D. Y. (ref17/cit17) 2009; 117
Kieffer J. (ref25/cit25) 1988; 106
Reichenauer G. (ref60/cit60) 2000; 277
Pierre A. C. (ref5/cit5) 2011
Meakin P. (ref29/cit29) 1999; 15
Bijsterbosch B. H. (ref45/cit45) 1995; 101
van Gunsteren W. F. (ref50/cit50) 1988; 1
Grimvall G. (ref58/cit58) 1999
Woignier T. (ref12/cit12) 1998; 241
Hogg R. (ref53/cit53) 2005
Salazar R. (ref56/cit56) 2004; 102
Gross J. (ref13/cit13) 1988; 21
Barbero E. J. (ref43/cit43) 2012; 358
Ma H.-S. (ref36/cit36) 2000; 277
Gelb L. D. (ref54/cit54) 1999; 15
Kucheyev S. O. (ref18/cit18) 2009; 57
Rao N. Z. (ref21/cit21) 2004; 108
Gelb L. D. (ref55/cit55) 2005; 11
Pierre A. C. (ref1/cit1) 2011
Fu B. (ref39/cit39) 2011; 357
Nikel O. (ref19/cit19) 2011; 357
Whittle M. (ref46/cit46) 1997; 107
Brinker C. J. (ref4/cit4) 1990
Gross J. (ref14/cit14) 1997; 211
Lu H. (ref38/cit38) 2008; 49
Jullien R. (ref33/cit33) 1997; 8
Feuston B. P. (ref20/cit20) 1990; 94
Pierce F. (ref34/cit34) 2006; 74
d’Arjuzon R. J. M. (ref48/cit48) 2003; 67
Woignier T. (ref11/cit11) 1989; 24
Moner-Girona M. (ref16/cit16) 2001; 285
Meakin P. (ref26/cit26) 1983; 51
Bhattacharya S. (ref22/cit22) 2005; 122
Sinkó K. (ref3/cit3) 2010; 3
Poon W. C. K. (ref32/cit32) 1997; 73
Gillespie D. T. (ref49/cit49) 1976; 22
Moner-Girona M. (ref9/cit9) 1999; 75
Meakin P. (ref27/cit27) 1988; 39
Stark R. W. (ref15/cit15) 1998; 75
Allen M. P. (ref51/cit51) 1987
Alaoui A. H. (ref61/cit61) 2008; 354
Hasmy A. (ref30/cit30) 1993; 48
Hasmy A. (ref31/cit31) 1994; 50
References_xml – volume: 354
  start-page: 4556
  year: 2008
  ident: ref61/cit61
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2008.06.014
– volume: 107
  start-page: 10191
  year: 1997
  ident: ref46/cit46
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.474155
– volume: 57
  start-page: 3472
  year: 2009
  ident: ref18/cit18
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2009.04.003
– volume: 94
  start-page: 5351
  year: 1990
  ident: ref20/cit20
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100376a035
– volume: 122
  start-page: 094715
  year: 2005
  ident: ref22/cit22
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1857522
– volume: 11
  start-page: 283
  year: 2005
  ident: ref55/cit55
  publication-title: Adsorption
  doi: 10.1007/s10450-005-5938-z
– volume-title: Sol-Gel Science
  year: 1990
  ident: ref4/cit4
– volume: 81
  start-page: 1198
  year: 2002
  ident: ref10/cit10
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1499225
– volume: 21
  start-page: 1447
  year: 1988
  ident: ref13/cit13
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/21/9/020
– volume: 22
  start-page: 403
  year: 1976
  ident: ref49/cit49
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(76)90041-3
– start-page: 3
  volume-title: Aerogels Handbook
  year: 2011
  ident: ref1/cit1
  doi: 10.1007/978-1-4419-7589-8_1
– volume: 357
  start-page: 2063
  year: 2011
  ident: ref39/cit39
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2011.02.049
– volume: 73
  start-page: 71
  year: 1997
  ident: ref32/cit32
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/S0001-8686(97)90003-8
– volume: 244
  start-page: 43
  year: 2001
  ident: ref47/cit47
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.2001.7917
– volume: 2010
  start-page: 1
  year: 2010
  ident: ref2/cit2
  publication-title: J. Nanomater.
  doi: 10.1155/2010/409310
– volume-title: Thermophysical Properties of Materials
  year: 1999
  ident: ref58/cit58
– volume: 199
  start-page: 10
  year: 2008
  ident: ref6/cit6
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2007.10.060
– volume: 357
  start-page: 3176
  year: 2011
  ident: ref19/cit19
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2011.05.009
– volume: 285
  start-page: 244
  year: 2001
  ident: ref16/cit16
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/S0022-3093(01)00462-8
– volume: 67
  start-page: 061404
  year: 2003
  ident: ref48/cit48
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.67.061404
– volume: 83
  start-page: 1101
  year: 2008
  ident: ref40/cit40
  publication-title: J. Chem. Technol. Biotechnol.
  doi: 10.1002/jctb.1996
– volume: 49
  start-page: 564
  year: 2008
  ident: ref38/cit38
  publication-title: Polym. Prepr.
– start-page: 21
  volume-title: Aerogels Handbook
  year: 2011
  ident: ref5/cit5
  doi: 10.1007/978-1-4419-7589-8_2
– volume: 3
  start-page: 704
  year: 2010
  ident: ref3/cit3
  publication-title: Materials
  doi: 10.3390/ma3010704
– volume: 111
  start-page: 15792
  year: 2007
  ident: ref44/cit44
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp0737505
– start-page: 537
  volume-title: Aerogels Handbook
  year: 2011
  ident: ref7/cit7
  doi: 10.1007/978-1-4419-7589-8_23
– volume: 48
  start-page: 9345
  year: 1993
  ident: ref30/cit30
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.48.9345
– volume: 75
  start-page: 653
  year: 1999
  ident: ref9/cit9
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.124471
– volume: 112
  start-page: 1764
  year: 2008
  ident: ref23/cit23
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp073808f
– volume: 354
  start-page: 10
  year: 2005
  ident: ref35/cit35
  publication-title: Phys. A
  doi: 10.1016/j.physa.2005.02.034
– volume: 117
  start-page: 617
  year: 2009
  ident: ref17/cit17
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2008.08.025
– volume: 106
  start-page: 336
  year: 1988
  ident: ref25/cit25
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/0022-3093(88)90286-4
– volume: 285
  start-page: 216
  year: 2001
  ident: ref37/cit37
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/S0022-3093(01)00456-2
– volume: 354
  start-page: 193
  year: 2008
  ident: ref41/cit41
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2007.07.061
– volume: 211
  start-page: 132
  year: 1997
  ident: ref14/cit14
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/S0022-3093(96)00621-7
– volume-title: Bootstrap Methods and Their Application
  year: 1997
  ident: ref59/cit59
  doi: 10.1017/CBO9780511802843
– volume: 24
  start-page: 179
  year: 1989
  ident: ref11/cit11
  publication-title: Rev. Phys. Appl.
– volume: 358
  start-page: 728
  year: 2012
  ident: ref43/cit43
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2011.12.005
– volume: 102
  start-page: 1015
  year: 2004
  ident: ref56/cit56
  publication-title: Mol. Phys.
  doi: 10.1080/00268970410001726854
– volume: 358
  start-page: 1350
  year: 2012
  ident: ref24/cit24
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2012.03.007
– volume: 75
  start-page: 161
  year: 1998
  ident: ref15/cit15
  publication-title: Ultramicroscopy
  doi: 10.1016/S0304-3991(98)00061-8
– volume: 8
  start-page: 819
  year: 1997
  ident: ref33/cit33
  publication-title: J. Sol-Gel Sci. Technol.
– volume: 186
  start-page: 316
  year: 1995
  ident: ref8/cit8
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/0022-3093(95)00074-7
– volume: 74
  start-page: 021411
  year: 2006
  ident: ref34/cit34
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.74.021411
– volume: 357
  start-page: 2046
  year: 2011
  ident: ref42/cit42
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2011.02.025
– volume-title: Computer Simulation of Liquids
  year: 1987
  ident: ref51/cit51
– volume: 89
  start-page: 246
  year: 1988
  ident: ref28/cit28
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.455517
– volume: 101
  start-page: 4177
  year: 1994
  ident: ref52/cit52
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.467468
– volume: 277
  start-page: 162
  year: 2000
  ident: ref60/cit60
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/S0022-3093(00)00304-5
– volume: 51
  start-page: 1119
  year: 1983
  ident: ref26/cit26
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.51.1119
– volume: 241
  start-page: 45
  year: 1998
  ident: ref12/cit12
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/S0022-3093(98)00747-9
– volume: 50
  start-page: 6006
  year: 1994
  ident: ref31/cit31
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.6006
– volume: 277
  start-page: 127
  year: 2000
  ident: ref36/cit36
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/S0022-3093(00)00288-X
– volume: 108
  start-page: 12418
  year: 2004
  ident: ref21/cit21
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp049169f
– volume: 101
  start-page: 51
  year: 1995
  ident: ref45/cit45
  publication-title: Faraday Discuss.
  doi: 10.1039/fd9950100051
– volume: 39
  start-page: 237
  year: 1988
  ident: ref27/cit27
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev.pc.39.100188.001321
– volume: 37
  start-page: 6500
  year: 1988
  ident: ref57/cit57
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.37.6500
– volume: 1
  start-page: 173
  year: 1988
  ident: ref50/cit50
  publication-title: Mol. Simul.
  doi: 10.1080/08927028808080941
– volume-title: Introduction to Mathematical Statistics
  year: 2005
  ident: ref53/cit53
– volume: 15
  start-page: 305
  year: 1999
  ident: ref54/cit54
  publication-title: Langmuir
  doi: 10.1021/la9808418
– volume: 15
  start-page: 97
  year: 1999
  ident: ref29/cit29
  publication-title: J. Sol-Gel Sci. Technol.
  doi: 10.1023/A:1008731904082
SSID ssj0025286
Score 2.274978
Snippet Structural and mechanical properties of silica aerogels are studied using a flexible coarse-grained model and a variety of simulation techniques. The model,...
SourceID proquest
pubmed
pascalfrancis
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7095
SubjectTerms Applied sciences
Bulk modulus
Compressing
Computer simulation
Condensed matter: structure, mechanical and thermal properties
Density
Elasticity, elastic constants
Exact sciences and technology
Fluctuation
fractal dimensions
gelation
gels
Mechanical and acoustical properties of condensed matter
mechanical properties
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Mechanical properties of solids
Metals. Metallurgy
molecular dynamics
particle size
Physics
porosity
Power law
silica
Silica aerogels
Simulation
Title Investigation of the Bulk Modulus of Silica Aerogel Using Molecular Dynamics Simulations of a Coarse-Grained Model
URI http://dx.doi.org/10.1021/jp3128737
https://www.ncbi.nlm.nih.gov/pubmed/23631801
https://www.proquest.com/docview/1367880527
https://www.proquest.com/docview/1753532166
https://www.proquest.com/docview/2000507740
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB6VcgAJ8S5sCyvzOHBJa4_zcI5lS6mQyqVU6m1lJxMEDclqs7nw6xnnsbSiWy45xOMoscee74vt-QDeO0qNjQsd5KiLIEyyKLCKLyZ0TD64UBt_Gvn0a3xyHn65iC624N2GFXxUBz8XmufQRCd34C7GDK89_pmdrVlVhJ2cI8chz4NkPKYPulrVh56suRZ6Hixsw61Q9PIVm_FlF2eOH8HReFqn315yud-u3H72-9_kjbd9wmN4OOBMcdg7xhPYouop3JuN8m7PYHklw0ZdiboQDAXFx7a8FKd13pZt4--d_fA_9cQhLevvVIpugwGXD5K64qjXs2_Y7tegA9ZVs2JWM2Om4LNXoKDcP5LK53B-_Onb7CQYBBgCGyq1ClzKZElHGc9B0lCXCAgL37dIkXYoU6sxMzYrlKVEpoUOLRFiHstMMfIwege2q7qilyBU7iJKQmeUZsaTG2dQu9AqwoI5l0wnMOUemg8DqJl3a-PI3GRsugl8GDtvng3py72KRnmT6du16aLP2XGT0fSaB6wtmaYzaJQ4gTejS8y5a_w6iq2obvndNEd4LwWR3GLDNDDSqOJ4sw122XcYf8sJvOh97u9b6JhnW6l2_9cue3Afe4WOQOlXsL1atvSacdLKTbtx8gfM3Qkm
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELZaeqASgtIHbEsXt-qhl1A_8nCOy1K6UJYLIHGL7GRSFUKy2mwu_fUdO8kCFbS95BCPLcevmS-2v4-QTwZipcNcepmQuedHaeBpjg_lGwQfmCiVvY08PQ0nF_7xZXDZ0eTYuzBYiRpLqt0m_i27AP9yNZO4lEYyekqeYRAi7PG90fhsCa4C4VQd0R1ZOMTCnkXoblbrgdL6ngdam-kaGyNvVSweDzOduzncaHWLXEXdKZPrvWZh9tJff3A4_t-XvCDrXdRJR-0w2SRPoHxJVse92NsrMr_Dt1GVtMopBoZ0vymu6bTKmqKp7buzn_YXHx3BvPoBBXXHDTC9E9ilB626fY12N50qmMum6bhC_AzeN6tHAZktEorX5OLw6_l44nVyDJ72OV94JkboJIMUVySmwNECidz2tIBAGsFiLUWqdJpzDRGLc-lrACGykKUc4xAl35CVsiphm1CemQAi3yguEf9kyighja85iBwRGIsHZIgtl3TTqU7cTrlApNI33YB87vswSTsyc6upUTxk-nFpOmsZPB4yGt4bCEtLBO0YQjIxIB_6kZFg19hdFV1C1WDdJPp7KwwR_cUGQWEgBQ_Dx22E4-LBaJwNyFY79G5rIUNcexl_-6922SWrk_PpSXJydPr9HXkuWu0Oj8sdsrKYN_AeI6iFGbqp8xsNVRGH
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VVgIkBJTn8lhcxIFLih95OMdl26VQ2iKVSr1FdmIjaEhWm82FX8_YSZa2aoFLDvHYmvg182Xs-QDeaJNKFVsRFFzYIEzyKFAMHzLUCD6wUEh3G_ngMN47CT-dRqc9UHR3YVCJBltqfBDfrep5YfsMA-zdj7nA7TQRyQ3YcOE6d4RvMj1eAayIe2ZHNEkOEtF4yCR0vqqzQnlzwQrdmasGO8R2TBbXu5re5MzuwdFKWX_S5Gy7Xert_NelPI7__zX34W7vfZJJN102Yc1UD-DWdCB9ewiLc3k36orUlqCDSN635Rk5qIu2bBv37vi7-9VHJmZRfzMl8ccOsLwn2iU7Hct9g3I_e3YwX02RaY042gQfHC-FKVyTpnwEJ7Pdr9O9oKdlCFTI2DLQKUIoEeW4M1FpfHogbt2IcxMJzWmqBM-lyi1TJqGpFaEyhvMipjlDf0SKx7Be1ZV5CoQVOjJJqCUTiIMKqSUXOlTMcItIjKYjGGPvZf2yajIfMeeIWIauG8HbYRyzvE9q7rg1yqtEX69E510mj6uExhcmw0oSwTu6kpSPYGuYHRkOjYuuqMrULeom0O47gojkLzIIDiPBWRxfL8N9Th70yukInnTT748WIsY9mLJn_-qXV3Dzy84s-_zxcP853OYdhUfAxAtYXy5a8xIdqaUe-9XzGwM0FAo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+of+the+bulk+modulus+of+silica+aerogel+using+molecular+dynamics+simulations+of+a+coarse-grained+model&rft.jtitle=The+journal+of+physical+chemistry.+B&rft.au=Ferreiro-Rangel%2C+Carlos+A&rft.au=Gelb%2C+Lev+D&rft.date=2013-06-13&rft.issn=1520-5207&rft.eissn=1520-5207&rft.volume=117&rft.issue=23&rft.spage=7095&rft_id=info:doi/10.1021%2Fjp3128737&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6106&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6106&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6106&client=summon