Interrogating the Crucial Interactions at Play in the Chiral Cation-Directed Enantioselective Borylation of Arenes

Rendering a common ligand scaffold anionic and then pairing it with a chiral cation represents an alternative strategy for developing enantioselective versions of challenging transformations, as has been recently demonstrated in the enantioselective borylation of arenes using a quinine-derived chira...

Full description

Saved in:
Bibliographic Details
Published inACS catalysis Vol. 13; no. 19; pp. 13043 - 13055
Main Authors Ermanis, Kristaps, Gibson, David C., Genov, Georgi R., Phipps, Robert J.
Format Journal Article
LanguageEnglish
Published American Chemical Society 06.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rendering a common ligand scaffold anionic and then pairing it with a chiral cation represents an alternative strategy for developing enantioselective versions of challenging transformations, as has been recently demonstrated in the enantioselective borylation of arenes using a quinine-derived chiral cation. A significant barrier to the further generalization of this approach is the lack of understanding of the specific interactions involved between the cation, ligand, and substrate, given the complexity of the system. We have embarked on a detailed computational study probing the mechanism, the key noncovalent interactions involved, and potential origin of selectivity for the desymmetrizing borylation of two distinct classes of substrate. We describe a deconstructive, stepwise approach to tackling this complex challenge, which involves building up a detailed understanding of the pairwise components of the nominally three component system before combining together into the full 263-atom reactive complex. This approach has revealed substantial differences in the noncovalent interactions occurring at the stereodetermining transition state for C–H oxidative addition to iridium for the two substrate classes. Each substrate engages in a unique mixture of diverse interactions, a testament to the rich and privileged structure of the cinchona alkaloid-derived chiral cations. Throughout the study, experimental support is provided, and this culminates in the discovery that prochiral phosphine oxide substrates, lacking hydrogen bond donor functionality, can also give very encouraging levels of enantioselectivity, potentially through direct interactions with the chiral cation. We envisage that the findings in this study will spur further developments in using chiral cations as controllers in asymmetric transition-metal catalysis.
AbstractList Rendering a common ligand scaffold anionic and then pairing it with a chiral cation represents an alternative strategy for developing enantioselective versions of challenging transformations, as has been recently demonstrated in the enantioselective borylation of arenes using a quinine-derived chiral cation. A significant barrier to the further generalization of this approach is the lack of understanding of the specific interactions involved between the cation, ligand, and substrate, given the complexity of the system. We have embarked on a detailed computational study probing the mechanism, the key noncovalent interactions involved, and potential origin of selectivity for the desymmetrizing borylation of two distinct classes of substrate. We describe a deconstructive, stepwise approach to tackling this complex challenge, which involves building up a detailed understanding of the pairwise components of the nominally three component system before combining together into the full 263-atom reactive complex. This approach has revealed substantial differences in the noncovalent interactions occurring at the stereodetermining transition state for C–H oxidative addition to iridium for the two substrate classes. Each substrate engages in a unique mixture of diverse interactions, a testament to the rich and privileged structure of the cinchona alkaloid-derived chiral cations. Throughout the study, experimental support is provided, and this culminates in the discovery that prochiral phosphine oxide substrates, lacking hydrogen bond donor functionality, can also give very encouraging levels of enantioselectivity, potentially through direct interactions with the chiral cation. We envisage that the findings in this study will spur further developments in using chiral cations as controllers in asymmetric transition-metal catalysis.
Rendering a common ligand scaffold anionic and then pairing it with a chiral cation represents an alternative strategy for developing enantioselective versions of challenging transformations, as has been recently demonstrated in the enantioselective borylation of arenes using a quinine-derived chiral cation. A significant barrier to the further generalization of this approach is the lack of understanding of the specific interactions involved between the cation, ligand, and substrate, given the complexity of the system. We have embarked on a detailed computational study probing the mechanism, the key noncovalent interactions involved, and potential origin of selectivity for the desymmetrizing borylation of two distinct classes of substrate. We describe a deconstructive, stepwise approach to tackling this complex challenge, which involves building up a detailed understanding of the pairwise components of the nominally three component system before combining together into the full 263-atom reactive complex. This approach has revealed substantial differences in the noncovalent interactions occurring at the stereodetermining transition state for C-H oxidative addition to iridium for the two substrate classes. Each substrate engages in a unique mixture of diverse interactions, a testament to the rich and privileged structure of the cinchona alkaloid-derived chiral cations. Throughout the study, experimental support is provided, and this culminates in the discovery that prochiral phosphine oxide substrates, lacking hydrogen bond donor functionality, can also give very encouraging levels of enantioselectivity, potentially through direct interactions with the chiral cation. We envisage that the findings in this study will spur further developments in using chiral cations as controllers in asymmetric transition-metal catalysis.Rendering a common ligand scaffold anionic and then pairing it with a chiral cation represents an alternative strategy for developing enantioselective versions of challenging transformations, as has been recently demonstrated in the enantioselective borylation of arenes using a quinine-derived chiral cation. A significant barrier to the further generalization of this approach is the lack of understanding of the specific interactions involved between the cation, ligand, and substrate, given the complexity of the system. We have embarked on a detailed computational study probing the mechanism, the key noncovalent interactions involved, and potential origin of selectivity for the desymmetrizing borylation of two distinct classes of substrate. We describe a deconstructive, stepwise approach to tackling this complex challenge, which involves building up a detailed understanding of the pairwise components of the nominally three component system before combining together into the full 263-atom reactive complex. This approach has revealed substantial differences in the noncovalent interactions occurring at the stereodetermining transition state for C-H oxidative addition to iridium for the two substrate classes. Each substrate engages in a unique mixture of diverse interactions, a testament to the rich and privileged structure of the cinchona alkaloid-derived chiral cations. Throughout the study, experimental support is provided, and this culminates in the discovery that prochiral phosphine oxide substrates, lacking hydrogen bond donor functionality, can also give very encouraging levels of enantioselectivity, potentially through direct interactions with the chiral cation. We envisage that the findings in this study will spur further developments in using chiral cations as controllers in asymmetric transition-metal catalysis.
Rendering a common ligand scaffold anionic and then pairing it with a chiral cation represents an alternative strategy for developing enantioselective versions of challenging transformations, as has been recently demonstrated in the enantioselective borylation of arenes using a quinine-derived chiral cation. A significant barrier to the further generalization of this approach is the lack of understanding of the specific interactions involved between the cation, ligand, and substrate, given the complexity of the system. We have embarked on a detailed computational study probing the mechanism, the key noncovalent interactions involved, and potential origin of selectivity for the desymmetrizing borylation of two distinct classes of substrate. We describe a deconstructive, stepwise approach to tackling this complex challenge, which involves building up a detailed understanding of the pairwise components of the nominally three component system before combining together into the full 263-atom reactive complex. This approach has revealed substantial differences in the noncovalent interactions occurring at the stereodetermining transition state for C–H oxidative addition to iridium for the two substrate classes. Each substrate engages in a unique mixture of diverse interactions, a testament to the rich and privileged structure of the cinchona alkaloid-derived chiral cations. Throughout the study, experimental support is provided, and this culminates in the discovery that prochiral phosphine oxide substrates, lacking hydrogen bond donor functionality, can also give very encouraging levels of enantioselectivity, potentially through direct interactions with the chiral cation. We envisage that the findings in this study will spur further developments in using chiral cations as controllers in asymmetric transition-metal catalysis.
Author Ermanis, Kristaps
Gibson, David C.
Genov, Georgi R.
Phipps, Robert J.
AuthorAffiliation Yusuf Hamied Department of Chemistry
School of Chemistry
AuthorAffiliation_xml – name: Yusuf Hamied Department of Chemistry
– name: School of Chemistry
Author_xml – sequence: 1
  givenname: Kristaps
  orcidid: 0000-0001-9703-8758
  surname: Ermanis
  fullname: Ermanis, Kristaps
  email: kristaps.ermanis@nottingham.ac.uk
  organization: School of Chemistry
– sequence: 2
  givenname: David C.
  surname: Gibson
  fullname: Gibson, David C.
  organization: Yusuf Hamied Department of Chemistry
– sequence: 3
  givenname: Georgi R.
  orcidid: 0000-0002-8039-3160
  surname: Genov
  fullname: Genov, Georgi R.
  organization: Yusuf Hamied Department of Chemistry
– sequence: 4
  givenname: Robert J.
  orcidid: 0000-0002-7383-5469
  surname: Phipps
  fullname: Phipps, Robert J.
  email: rjp71@cam.ac.uk
  organization: Yusuf Hamied Department of Chemistry
BookMark eNp9UUtPJCEQJsZNfKx3jxw92ApNP08bHZ-Jye5hPZNqupjBMKBAm8y_F2dmjW6yywWK70FR3wHZdd4hIcecnXFW8nNQUUECeyYUE6Krdsh-yeu6qCtR734675GjGJ9YXlXddC3bJ-HeJQzBzyEZN6dpgXQWJmXA0jUCKhnvIoVEf1lYUeM2nIUJmTKDd7S4MgFVwpFeO3D5JqLNtXlFeunDyq5J1Gt6EdBh_E6-abARj7b7IXm8uf49uyseft7ezy4eCqg4T8XQDENfqYqzbhD5UyMMVduJvhx6Neq27KHnumcV18PY9Si06rEBwcdOq7LkWhySHxvf52lY4qjQpdyzfA5mCWElPRj5FXFmIef-VXJWN4KLNjucbB2Cf5kwJrk0UaG14NBPUZZd2zSi5i3PVLahquBjDKg_3uFMvmck_2QktxllSfOXRJm0nlXuxtj_CU83wozIJz8Fl8f4b_obbtWtFg
CitedBy_id crossref_primary_10_1021_acs_joc_4c01779
crossref_primary_10_1038_s41570_024_00642_x
crossref_primary_10_1021_acs_chemrev_4c00849
crossref_primary_10_1021_acs_orglett_4c00358
crossref_primary_10_1002_ange_202317489
crossref_primary_10_1021_jacs_4c07117
crossref_primary_10_1002_anie_202317489
Cites_doi 10.1002/anie.201601574
10.1021/acs.jctc.5b00864
10.1038/nchem.1796
10.1021/ja00314a045
10.1021/cr00032a009
10.1002/anie.202201285
10.1021/ja411699u
10.1021/ja053433g
10.1021/ja973174y
10.1021/jacs.2c08752
10.1021/ja303443m
10.1039/D1SC03517G
10.1103/PhysRevA.38.3098
10.1021/cs501369z
10.1038/nchem.1311
10.1021/ja0173019
10.1039/D1CS01012C
10.1039/b508541a
10.1002/anie.202115036
10.1039/D0SC05734G
10.1021/ja00004a083
10.1038/s41586-022-04531-5
10.1021/ja110534g
10.1007/s41061-019-0256-1
10.1002/anie.201206835
10.1055/s-2001-14560
10.1021/ar0300625
10.1021/ja312125a
10.1002/anie.200601737
10.1021/acscatal.6b02317
10.1126/science.1067074
10.1039/C8RA07886F
10.1021/jo00017a035
10.1021/jp810292n
10.1021/cr068368n
10.1002/9783527628179
10.1021/ol016567h
10.1021/ja9835739
10.1021/ja412563e
10.1021/acs.joc.2c00957
10.1038/ncomms13455
10.1021/acs.accounts.6b00604
10.1007/BF00533485
10.1021/acscatal.1c01671
10.1016/S0040-4039(97)10293-3
10.1063/1.452288
10.1021/ar030058t
10.1002/(SICI)1096-987X(19991130)20:15<1671::AID-JCC7>3.0.CO;2-Y
10.1002/anie.201612048
10.1063/1.464913
10.1021/jacs.3c00693
10.1063/1.1677527
10.1039/b515623h
10.1002/anie.201907366
10.1007/s00214-007-0310-x
10.1021/acs.organomet.7b00151
10.1002/anie.202214510
10.1055/s-0029-1218699
10.1002/anie.201411852
10.1021/ja0302937
10.1021/cr900206p
10.1021/acscatal.3c01742
10.1021/ja012417q
10.1021/jacs.1c05206
10.1103/PhysRevB.37.785
10.1021/ja952478m
10.1126/science.abm7599
10.1016/S0040-4020(01)00094-1
10.1021/ja00188a089
10.1021/ol0267679
10.1021/jacs.5b05792
10.1021/ar030060k
10.1021/acs.organomet.6b00562
10.1021/acscatal.8b04949
10.1126/science.aba1120
10.1021/acs.orglett.0c00946
10.1016/S0957-4166(01)00276-2
10.1002/anie.202203539
ContentType Journal Article
Copyright 2023 The Authors. Published by American Chemical Society
2023 The Authors. Published by American Chemical Society.
2023 The Authors. Published by American Chemical Society 2023 The Authors
Copyright_xml – notice: 2023 The Authors. Published by American Chemical Society
– notice: 2023 The Authors. Published by American Chemical Society.
– notice: 2023 The Authors. Published by American Chemical Society 2023 The Authors
DBID AAYXX
CITATION
7X8
5PM
DOI 10.1021/acscatal.3c03384
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2155-5435
EndPage 13055
ExternalDocumentID PMC10563137
10_1021_acscatal_3c03384
a652473513
GrantInformation_xml – fundername: ;
  grantid: NA
– fundername: ;
  grantid: 17.08(d)
– fundername: ;
  grantid: 757381
– fundername: ;
  grantid: ECF-2017-255
GroupedDBID .K2
55A
7~N
AABXI
ABFRP
ABMVS
ABQRX
ABUCX
ACGFO
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED~
GGK
GNL
IH9
JG~
RNS
ROL
UI2
VF5
VG9
W1F
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
BAANH
CITATION
CUPRZ
7X8
5PM
ID FETCH-LOGICAL-a411t-b6bb94c4108b3338dab478392b9cdf729a91f9041fbd89e3fc9e6a31d8fc221f3
IEDL.DBID ACS
ISSN 2155-5435
IngestDate Thu Aug 21 18:35:46 EDT 2025
Fri Jul 11 01:43:19 EDT 2025
Tue Jul 01 02:04:30 EDT 2025
Thu Apr 24 23:01:51 EDT 2025
Mon Oct 09 04:07:27 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords iridium
chiral cation
C–H borylation
noncovalent interaction
computational chemistry
Language English
License https://creativecommons.org/licenses/by/4.0
Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a411t-b6bb94c4108b3338dab478392b9cdf729a91f9041fbd89e3fc9e6a31d8fc221f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9703-8758
0000-0002-8039-3160
0000-0002-7383-5469
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC10563137
PQID 2876635171
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10563137
proquest_miscellaneous_2876635171
crossref_primary_10_1021_acscatal_3c03384
crossref_citationtrail_10_1021_acscatal_3c03384
acs_journals_10_1021_acscatal_3c03384
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-06
PublicationDateYYYYMMDD 2023-10-06
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-06
  day: 06
PublicationDecade 2020
PublicationTitle ACS catalysis
PublicationTitleAlternate ACS Catal
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref17/cit17b
ref27/cit27e
ref27/cit27d
ref27/cit27g
ref27/cit27f
ref17/cit17a
Song C. E. (ref2/cit2b) 2009
ref16/cit16
ref27/cit27a
ref27/cit27c
ref27/cit27b
ref12/cit12b
ref12/cit12a
ref23/cit23
ref2/cit2c
ref8/cit8
ref2/cit2a
ref1/cit1a
ref1/cit1c
ref1/cit1b
ref5/cit5b
ref26/cit26b
ref5/cit5a
ref21/cit21
ref7/cit7d
ref3/cit3b
ref3/cit3c
ref11/cit11b
ref3/cit3a
ref26/cit26a
ref3/cit3f
ref3/cit3g
ref3/cit3d
ref11/cit11a
ref3/cit3e
ref13/cit13
ref7/cit7c
ref7/cit7b
ref3/cit3h
ref7/cit7a
ref3/cit3i
ref19/cit19a
ref18/cit18
ref19/cit19c
ref19/cit19b
ref9/cit9c
ref9/cit9b
ref9/cit9a
ref25/cit25d
ref25/cit25b
ref10/cit10a
ref25/cit25c
ref10/cit10b
ref25/cit25a
ref28/cit28h
ref28/cit28i
ref28/cit28f
ref28/cit28g
ref6/cit6d
ref4/cit4a
ref4/cit4b
ref14/cit14a
ref24/cit24b
ref28/cit28a
ref14/cit14c
ref14/cit14b
ref15/cit15
ref28/cit28d
ref28/cit28e
ref24/cit24a
ref28/cit28b
ref28/cit28c
ref20/cit20a
ref22/cit22
ref20/cit20b
ref30/cit30
ref6/cit6a
ref6/cit6b
ref6/cit6c
References_xml – ident: ref6/cit6b
  doi: 10.1002/anie.201601574
– ident: ref16/cit16
  doi: 10.1021/acs.jctc.5b00864
– ident: ref5/cit5a
  doi: 10.1038/nchem.1796
– ident: ref3/cit3a
  doi: 10.1021/ja00314a045
– ident: ref8/cit8
  doi: 10.1021/cr00032a009
– ident: ref28/cit28e
  doi: 10.1002/anie.202201285
– ident: ref27/cit27b
  doi: 10.1021/ja411699u
– ident: ref26/cit26a
  doi: 10.1021/ja053433g
– ident: ref3/cit3c
  doi: 10.1021/ja973174y
– ident: ref10/cit10b
  doi: 10.1021/jacs.2c08752
– ident: ref28/cit28a
  doi: 10.1021/ja303443m
– ident: ref7/cit7d
  doi: 10.1039/D1SC03517G
– ident: ref19/cit19a
  doi: 10.1103/PhysRevA.38.3098
– ident: ref5/cit5b
  doi: 10.1021/cs501369z
– ident: ref11/cit11a
  doi: 10.1038/nchem.1311
– ident: ref25/cit25b
  doi: 10.1021/ja0173019
– ident: ref25/cit25d
  doi: 10.1039/D1CS01012C
– ident: ref24/cit24a
  doi: 10.1039/b508541a
– ident: ref30/cit30
  doi: 10.1002/anie.202115036
– ident: ref4/cit4b
  doi: 10.1039/D0SC05734G
– ident: ref14/cit14c
  doi: 10.1021/ja00004a083
– ident: ref15/cit15
  doi: 10.1038/s41586-022-04531-5
– ident: ref9/cit9a
  doi: 10.1021/ja110534g
– ident: ref4/cit4a
  doi: 10.1007/s41061-019-0256-1
– ident: ref1/cit1c
  doi: 10.1002/anie.201206835
– ident: ref2/cit2a
  doi: 10.1055/s-2001-14560
– ident: ref3/cit3h
  doi: 10.1021/ar0300625
– ident: ref11/cit11b
  doi: 10.1021/ja312125a
– ident: ref1/cit1b
  doi: 10.1002/anie.200601737
– ident: ref27/cit27c
  doi: 10.1021/acscatal.6b02317
– ident: ref25/cit25a
  doi: 10.1126/science.1067074
– ident: ref27/cit27f
  doi: 10.1039/C8RA07886F
– ident: ref14/cit14a
  doi: 10.1021/jo00017a035
– ident: ref22/cit22
  doi: 10.1021/jp810292n
– ident: ref1/cit1a
  doi: 10.1021/cr068368n
– start-page: 1
  volume-title: Cinchona Alkaloids in Synthesis and Catalysis
  year: 2009
  ident: ref2/cit2b
  doi: 10.1002/9783527628179
– ident: ref7/cit7b
  doi: 10.1021/ol016567h
– ident: ref3/cit3e
  doi: 10.1021/ja9835739
– ident: ref26/cit26b
  doi: 10.1021/ja412563e
– ident: ref27/cit27g
  doi: 10.1021/acs.joc.2c00957
– ident: ref6/cit6c
  doi: 10.1038/ncomms13455
– ident: ref6/cit6d
  doi: 10.1021/acs.accounts.6b00604
– ident: ref20/cit20b
  doi: 10.1007/BF00533485
– ident: ref28/cit28d
  doi: 10.1021/acscatal.1c01671
– ident: ref3/cit3d
  doi: 10.1016/S0040-4039(97)10293-3
– ident: ref21/cit21
  doi: 10.1063/1.452288
– ident: ref3/cit3g
  doi: 10.1021/ar030058t
– ident: ref17/cit17a
  doi: 10.1002/(SICI)1096-987X(19991130)20:15<1671::AID-JCC7>3.0.CO;2-Y
– ident: ref9/cit9c
  doi: 10.1002/anie.201612048
– ident: ref18/cit18
– ident: ref19/cit19c
  doi: 10.1063/1.464913
– ident: ref12/cit12b
  doi: 10.1021/jacs.3c00693
– ident: ref20/cit20a
  doi: 10.1063/1.1677527
– ident: ref24/cit24b
  doi: 10.1039/b515623h
– ident: ref28/cit28b
  doi: 10.1002/anie.201907366
– ident: ref23/cit23
  doi: 10.1007/s00214-007-0310-x
– ident: ref27/cit27e
  doi: 10.1021/acs.organomet.7b00151
– ident: ref28/cit28h
  doi: 10.1002/anie.202214510
– ident: ref2/cit2c
  doi: 10.1055/s-0029-1218699
– ident: ref9/cit9b
  doi: 10.1002/anie.201411852
– ident: ref27/cit27a
  doi: 10.1021/ja0302937
– ident: ref25/cit25c
  doi: 10.1021/cr900206p
– ident: ref28/cit28i
  doi: 10.1021/acscatal.3c01742
– ident: ref13/cit13
  doi: 10.1021/ja012417q
– ident: ref12/cit12a
  doi: 10.1021/jacs.1c05206
– ident: ref19/cit19b
  doi: 10.1103/PhysRevB.37.785
– ident: ref17/cit17b
  doi: 10.1021/ja952478m
– ident: ref28/cit28g
  doi: 10.1126/science.abm7599
– ident: ref14/cit14b
  doi: 10.1016/S0040-4020(01)00094-1
– ident: ref3/cit3b
  doi: 10.1021/ja00188a089
– ident: ref3/cit3f
  doi: 10.1021/ol0267679
– ident: ref6/cit6a
  doi: 10.1021/jacs.5b05792
– ident: ref3/cit3i
  doi: 10.1021/ar030060k
– ident: ref27/cit27d
  doi: 10.1021/acs.organomet.6b00562
– ident: ref7/cit7c
  doi: 10.1021/acscatal.8b04949
– ident: ref10/cit10a
  doi: 10.1126/science.aba1120
– ident: ref28/cit28c
  doi: 10.1021/acs.orglett.0c00946
– ident: ref7/cit7a
  doi: 10.1016/S0957-4166(01)00276-2
– ident: ref28/cit28f
  doi: 10.1002/anie.202203539
SSID ssj0000456870
Score 2.450944
Snippet Rendering a common ligand scaffold anionic and then pairing it with a chiral cation represents an alternative strategy for developing enantioselective versions...
Rendering a common ligand scaffold anionic and then pairing it with a chiral cation represents an alternative strategy for developing enantioselective versions...
SourceID pubmedcentral
proquest
crossref
acs
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 13043
Title Interrogating the Crucial Interactions at Play in the Chiral Cation-Directed Enantioselective Borylation of Arenes
URI http://dx.doi.org/10.1021/acscatal.3c03384
https://www.proquest.com/docview/2876635171
https://pubmed.ncbi.nlm.nih.gov/PMC10563137
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8QgECY-DnrxbVxfwUQPHrqWlqVw1EZjTDQmauKtAQq6cdOabfegv96BdldXjfHYUAgwA3zDDN8gdBgBzFUhpwHtCTBQFI0CQd1DYOei48wmoefSu75hlw_06rH3-EmT892DH5ETqSt_k9GNdQj2FJ1F8xHjiTO0TtO7yX2Kgybc54aDQ6wX9AAGtF7J3xpxZ5Gups-iT4A5HR755by5WG4SF1WeptCFmbx0R7Xq6vefJI7_GMoKWmphJz5t9GQVzZhiDS2k42xv62jorwaHpSPcKJ4wwEKcgthBO7Evad4_VFjW-HYg33C_aP557kPfcerlGzT7p8nxuQuv6ZeVT7ID-yk-K4dvTdQdLi10w-2wG-jh4vw-vQzafAyBpITUgWJKCaopCbmKof-5VDRxAEsJnVtA6VIQK0JKrMq5MLHVwjAZk5xbDTph4000V5SF2UI4h89QsdgYZqgVRjEqIiudMcQTa1QHHcFkZe16qjLvKo9INp7BrJ3BDjoZSzDTLam5y60x-KPG8aTGa0Po8ce_B2OlyEAczpUiC1OOqgzsTAfVSEI6iE9py6RRx9s9XVL0nz1_N0BaFpM42f7nIHfQokty70MI2S6aq4cjswdQqFb7fg18ANpXB0Q
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-V8lBeGJ-iMJiR4IGHdHHiOvFjiVp1o5sQtNLeojixt4oqQU360P31OztJSxGaxmPiD53ts-93vvMdwCcPYa50Q-awoUAFRTLPEcw8BDYmupDrwLWx9C4u-XTBzq-GVx2g7VsYJKLEnkprxN9HF6Cn-M9eaAz81EW1ij2Cx4hFPKNvjaKfu2sVg1BCmyIOZdnQGSIaaIyT_-rEiKS0PBRJe5x56CX5h9iZHMGPHcHW2-TXYFPJQXr7VyzH_xrRM3jagFAyqrnmOXRU_gJ6UZv77SWs7UXhujDhN_JrgiCRRMgEyKvEltSvIUqSVOT7KtmSZV7XuVniEEhkV9upT1OVkbFxtlkWpU25g6cr-Vqst7UPHik0kmHO21ewmIzn0dRpsjM4CaO0ciSXUrCUUTeUPtKfJZIFBm5JkWYaMXsiqBYuo1pmoVC-ToXiiU-zUKfIIdp_Dd28yNUbIBl-upL7SnHFtFCSM-HpxKhGYaCV7MNnnKy42V1lbA3nHo3bGYybGezDabuQcdqEODeZNlb3tPiya_G7Du9xT92PLW_EuBzGsJLkqtiUMWqdBrjRgPYhPGCaXacmivdhSb68sdG8EeByn_rB2wcO8gR60_nFLJ6dXX57B088BF3WuZAfQ7dab9R7BEmV_GC3xR1SPQ-l
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4BlYBLoRTEUqCuBIceshsnjhMfIbCiDxASD3GL4sSGFShBm-yB_vqOnWRhEULtMfFDY3vs-cYzngHY8xDmSjdiDgsEKiiSeY5g5iGwMdFFXIeujaV3esZPrtjPm-BmDoLuLQwSUWFPlTXim139mOs2wgAd4H97qdH3MxdVKzYPH4zVzuhcB_HF9GrFoJTIpolDeRY4ASKC1kD5VidGLGXVrFh6xpqznpIvRM9wBa6nRFuPk_v-pJb97M-reI7_PapV-NiCUXLQcM8nmFPFGizFXQ64zzC2F4bj0oThKG4JgkUSIzMgzxJb0ryKqEhak_OH9ImMiqbO3QiHQWK76k5zqqqcHBunm1FZ2dQ7eMqSw3L81PjikVIjGebcXYer4fFlfOK0WRqclFFaO5JLKVjGqBtJH-nPU8lCA7ukyHKN2D0VVAuXUS3zSChfZ0Lx1Kd5pDPkFO1vwEJRFmoTSI6fruS-UlwxLZTkTHg6NSpSFGole7CPk5W0u6xKrAHdo0k3g0k7gz0YdIuZZG2oc5Nx4-GdFt-nLR6bMB_v1P3W8UeCy2EMLGmhykmVoPZpABwNaQ-iGcaZdmqiec-WFKM7G9UbgS73qR9u_eMgv8Li-dEw-f3j7NcXWPYQe1kfQ74NC_V4onYQK9Vy1-6Mv-xrEig
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interrogating+the+Crucial+Interactions+at+Play+in+the+Chiral+Cation-Directed+Enantioselective+Borylation+of+Arenes&rft.jtitle=ACS+catalysis&rft.au=Ermanis%2C+Kristaps&rft.au=Gibson%2C+David+C&rft.au=Genov%2C+Georgi+R&rft.au=Phipps%2C+Robert+J&rft.date=2023-10-06&rft.issn=2155-5435&rft.eissn=2155-5435&rft.volume=13&rft.issue=19&rft.spage=13043&rft_id=info:doi/10.1021%2Facscatal.3c03384&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2155-5435&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2155-5435&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2155-5435&client=summon