Interrogating the Crucial Interactions at Play in the Chiral Cation-Directed Enantioselective Borylation of Arenes
Rendering a common ligand scaffold anionic and then pairing it with a chiral cation represents an alternative strategy for developing enantioselective versions of challenging transformations, as has been recently demonstrated in the enantioselective borylation of arenes using a quinine-derived chira...
Saved in:
Published in | ACS catalysis Vol. 13; no. 19; pp. 13043 - 13055 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
06.10.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rendering a common ligand scaffold anionic and then pairing it with a chiral cation represents an alternative strategy for developing enantioselective versions of challenging transformations, as has been recently demonstrated in the enantioselective borylation of arenes using a quinine-derived chiral cation. A significant barrier to the further generalization of this approach is the lack of understanding of the specific interactions involved between the cation, ligand, and substrate, given the complexity of the system. We have embarked on a detailed computational study probing the mechanism, the key noncovalent interactions involved, and potential origin of selectivity for the desymmetrizing borylation of two distinct classes of substrate. We describe a deconstructive, stepwise approach to tackling this complex challenge, which involves building up a detailed understanding of the pairwise components of the nominally three component system before combining together into the full 263-atom reactive complex. This approach has revealed substantial differences in the noncovalent interactions occurring at the stereodetermining transition state for C–H oxidative addition to iridium for the two substrate classes. Each substrate engages in a unique mixture of diverse interactions, a testament to the rich and privileged structure of the cinchona alkaloid-derived chiral cations. Throughout the study, experimental support is provided, and this culminates in the discovery that prochiral phosphine oxide substrates, lacking hydrogen bond donor functionality, can also give very encouraging levels of enantioselectivity, potentially through direct interactions with the chiral cation. We envisage that the findings in this study will spur further developments in using chiral cations as controllers in asymmetric transition-metal catalysis. |
---|---|
AbstractList | Rendering a common ligand scaffold anionic and then pairing it with a chiral cation represents an alternative strategy for developing enantioselective versions of challenging transformations, as has been recently demonstrated in the enantioselective borylation of arenes using a quinine-derived chiral cation. A significant barrier to the further generalization of this approach is the lack of understanding of the specific interactions involved between the cation, ligand, and substrate, given the complexity of the system. We have embarked on a detailed computational study probing the mechanism, the key noncovalent interactions involved, and potential origin of selectivity for the desymmetrizing borylation of two distinct classes of substrate. We describe a deconstructive, stepwise approach to tackling this complex challenge, which involves building up a detailed understanding of the pairwise components of the nominally three component system before combining together into the full 263-atom reactive complex. This approach has revealed substantial differences in the noncovalent interactions occurring at the stereodetermining transition state for C–H oxidative addition to iridium for the two substrate classes. Each substrate engages in a unique mixture of diverse interactions, a testament to the rich and privileged structure of the cinchona alkaloid-derived chiral cations. Throughout the study, experimental support is provided, and this culminates in the discovery that prochiral phosphine oxide substrates, lacking hydrogen bond donor functionality, can also give very encouraging levels of enantioselectivity, potentially through direct interactions with the chiral cation. We envisage that the findings in this study will spur further developments in using chiral cations as controllers in asymmetric transition-metal catalysis. Rendering a common ligand scaffold anionic and then pairing it with a chiral cation represents an alternative strategy for developing enantioselective versions of challenging transformations, as has been recently demonstrated in the enantioselective borylation of arenes using a quinine-derived chiral cation. A significant barrier to the further generalization of this approach is the lack of understanding of the specific interactions involved between the cation, ligand, and substrate, given the complexity of the system. We have embarked on a detailed computational study probing the mechanism, the key noncovalent interactions involved, and potential origin of selectivity for the desymmetrizing borylation of two distinct classes of substrate. We describe a deconstructive, stepwise approach to tackling this complex challenge, which involves building up a detailed understanding of the pairwise components of the nominally three component system before combining together into the full 263-atom reactive complex. This approach has revealed substantial differences in the noncovalent interactions occurring at the stereodetermining transition state for C-H oxidative addition to iridium for the two substrate classes. Each substrate engages in a unique mixture of diverse interactions, a testament to the rich and privileged structure of the cinchona alkaloid-derived chiral cations. Throughout the study, experimental support is provided, and this culminates in the discovery that prochiral phosphine oxide substrates, lacking hydrogen bond donor functionality, can also give very encouraging levels of enantioselectivity, potentially through direct interactions with the chiral cation. We envisage that the findings in this study will spur further developments in using chiral cations as controllers in asymmetric transition-metal catalysis.Rendering a common ligand scaffold anionic and then pairing it with a chiral cation represents an alternative strategy for developing enantioselective versions of challenging transformations, as has been recently demonstrated in the enantioselective borylation of arenes using a quinine-derived chiral cation. A significant barrier to the further generalization of this approach is the lack of understanding of the specific interactions involved between the cation, ligand, and substrate, given the complexity of the system. We have embarked on a detailed computational study probing the mechanism, the key noncovalent interactions involved, and potential origin of selectivity for the desymmetrizing borylation of two distinct classes of substrate. We describe a deconstructive, stepwise approach to tackling this complex challenge, which involves building up a detailed understanding of the pairwise components of the nominally three component system before combining together into the full 263-atom reactive complex. This approach has revealed substantial differences in the noncovalent interactions occurring at the stereodetermining transition state for C-H oxidative addition to iridium for the two substrate classes. Each substrate engages in a unique mixture of diverse interactions, a testament to the rich and privileged structure of the cinchona alkaloid-derived chiral cations. Throughout the study, experimental support is provided, and this culminates in the discovery that prochiral phosphine oxide substrates, lacking hydrogen bond donor functionality, can also give very encouraging levels of enantioselectivity, potentially through direct interactions with the chiral cation. We envisage that the findings in this study will spur further developments in using chiral cations as controllers in asymmetric transition-metal catalysis. Rendering a common ligand scaffold anionic and then pairing it with a chiral cation represents an alternative strategy for developing enantioselective versions of challenging transformations, as has been recently demonstrated in the enantioselective borylation of arenes using a quinine-derived chiral cation. A significant barrier to the further generalization of this approach is the lack of understanding of the specific interactions involved between the cation, ligand, and substrate, given the complexity of the system. We have embarked on a detailed computational study probing the mechanism, the key noncovalent interactions involved, and potential origin of selectivity for the desymmetrizing borylation of two distinct classes of substrate. We describe a deconstructive, stepwise approach to tackling this complex challenge, which involves building up a detailed understanding of the pairwise components of the nominally three component system before combining together into the full 263-atom reactive complex. This approach has revealed substantial differences in the noncovalent interactions occurring at the stereodetermining transition state for C–H oxidative addition to iridium for the two substrate classes. Each substrate engages in a unique mixture of diverse interactions, a testament to the rich and privileged structure of the cinchona alkaloid-derived chiral cations. Throughout the study, experimental support is provided, and this culminates in the discovery that prochiral phosphine oxide substrates, lacking hydrogen bond donor functionality, can also give very encouraging levels of enantioselectivity, potentially through direct interactions with the chiral cation. We envisage that the findings in this study will spur further developments in using chiral cations as controllers in asymmetric transition-metal catalysis. |
Author | Ermanis, Kristaps Gibson, David C. Genov, Georgi R. Phipps, Robert J. |
AuthorAffiliation | Yusuf Hamied Department of Chemistry School of Chemistry |
AuthorAffiliation_xml | – name: Yusuf Hamied Department of Chemistry – name: School of Chemistry |
Author_xml | – sequence: 1 givenname: Kristaps orcidid: 0000-0001-9703-8758 surname: Ermanis fullname: Ermanis, Kristaps email: kristaps.ermanis@nottingham.ac.uk organization: School of Chemistry – sequence: 2 givenname: David C. surname: Gibson fullname: Gibson, David C. organization: Yusuf Hamied Department of Chemistry – sequence: 3 givenname: Georgi R. orcidid: 0000-0002-8039-3160 surname: Genov fullname: Genov, Georgi R. organization: Yusuf Hamied Department of Chemistry – sequence: 4 givenname: Robert J. orcidid: 0000-0002-7383-5469 surname: Phipps fullname: Phipps, Robert J. email: rjp71@cam.ac.uk organization: Yusuf Hamied Department of Chemistry |
BookMark | eNp9UUtPJCEQJsZNfKx3jxw92ApNP08bHZ-Jye5hPZNqupjBMKBAm8y_F2dmjW6yywWK70FR3wHZdd4hIcecnXFW8nNQUUECeyYUE6Krdsh-yeu6qCtR734675GjGJ9YXlXddC3bJ-HeJQzBzyEZN6dpgXQWJmXA0jUCKhnvIoVEf1lYUeM2nIUJmTKDd7S4MgFVwpFeO3D5JqLNtXlFeunDyq5J1Gt6EdBh_E6-abARj7b7IXm8uf49uyseft7ezy4eCqg4T8XQDENfqYqzbhD5UyMMVduJvhx6Neq27KHnumcV18PY9Si06rEBwcdOq7LkWhySHxvf52lY4qjQpdyzfA5mCWElPRj5FXFmIef-VXJWN4KLNjucbB2Cf5kwJrk0UaG14NBPUZZd2zSi5i3PVLahquBjDKg_3uFMvmck_2QktxllSfOXRJm0nlXuxtj_CU83wozIJz8Fl8f4b_obbtWtFg |
CitedBy_id | crossref_primary_10_1021_acs_joc_4c01779 crossref_primary_10_1038_s41570_024_00642_x crossref_primary_10_1021_acs_chemrev_4c00849 crossref_primary_10_1021_acs_orglett_4c00358 crossref_primary_10_1002_ange_202317489 crossref_primary_10_1021_jacs_4c07117 crossref_primary_10_1002_anie_202317489 |
Cites_doi | 10.1002/anie.201601574 10.1021/acs.jctc.5b00864 10.1038/nchem.1796 10.1021/ja00314a045 10.1021/cr00032a009 10.1002/anie.202201285 10.1021/ja411699u 10.1021/ja053433g 10.1021/ja973174y 10.1021/jacs.2c08752 10.1021/ja303443m 10.1039/D1SC03517G 10.1103/PhysRevA.38.3098 10.1021/cs501369z 10.1038/nchem.1311 10.1021/ja0173019 10.1039/D1CS01012C 10.1039/b508541a 10.1002/anie.202115036 10.1039/D0SC05734G 10.1021/ja00004a083 10.1038/s41586-022-04531-5 10.1021/ja110534g 10.1007/s41061-019-0256-1 10.1002/anie.201206835 10.1055/s-2001-14560 10.1021/ar0300625 10.1021/ja312125a 10.1002/anie.200601737 10.1021/acscatal.6b02317 10.1126/science.1067074 10.1039/C8RA07886F 10.1021/jo00017a035 10.1021/jp810292n 10.1021/cr068368n 10.1002/9783527628179 10.1021/ol016567h 10.1021/ja9835739 10.1021/ja412563e 10.1021/acs.joc.2c00957 10.1038/ncomms13455 10.1021/acs.accounts.6b00604 10.1007/BF00533485 10.1021/acscatal.1c01671 10.1016/S0040-4039(97)10293-3 10.1063/1.452288 10.1021/ar030058t 10.1002/(SICI)1096-987X(19991130)20:15<1671::AID-JCC7>3.0.CO;2-Y 10.1002/anie.201612048 10.1063/1.464913 10.1021/jacs.3c00693 10.1063/1.1677527 10.1039/b515623h 10.1002/anie.201907366 10.1007/s00214-007-0310-x 10.1021/acs.organomet.7b00151 10.1002/anie.202214510 10.1055/s-0029-1218699 10.1002/anie.201411852 10.1021/ja0302937 10.1021/cr900206p 10.1021/acscatal.3c01742 10.1021/ja012417q 10.1021/jacs.1c05206 10.1103/PhysRevB.37.785 10.1021/ja952478m 10.1126/science.abm7599 10.1016/S0040-4020(01)00094-1 10.1021/ja00188a089 10.1021/ol0267679 10.1021/jacs.5b05792 10.1021/ar030060k 10.1021/acs.organomet.6b00562 10.1021/acscatal.8b04949 10.1126/science.aba1120 10.1021/acs.orglett.0c00946 10.1016/S0957-4166(01)00276-2 10.1002/anie.202203539 |
ContentType | Journal Article |
Copyright | 2023 The Authors. Published by American Chemical Society 2023 The Authors. Published by American Chemical Society. 2023 The Authors. Published by American Chemical Society 2023 The Authors |
Copyright_xml | – notice: 2023 The Authors. Published by American Chemical Society – notice: 2023 The Authors. Published by American Chemical Society. – notice: 2023 The Authors. Published by American Chemical Society 2023 The Authors |
DBID | AAYXX CITATION 7X8 5PM |
DOI | 10.1021/acscatal.3c03384 |
DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2155-5435 |
EndPage | 13055 |
ExternalDocumentID | PMC10563137 10_1021_acscatal_3c03384 a652473513 |
GrantInformation_xml | – fundername: ; grantid: NA – fundername: ; grantid: 17.08(d) – fundername: ; grantid: 757381 – fundername: ; grantid: ECF-2017-255 |
GroupedDBID | .K2 55A 7~N AABXI ABFRP ABMVS ABQRX ABUCX ACGFO ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED~ GGK GNL IH9 JG~ RNS ROL UI2 VF5 VG9 W1F AAHBH AAYXX ABBLG ABJNI ABLBI BAANH CITATION CUPRZ 7X8 5PM |
ID | FETCH-LOGICAL-a411t-b6bb94c4108b3338dab478392b9cdf729a91f9041fbd89e3fc9e6a31d8fc221f3 |
IEDL.DBID | ACS |
ISSN | 2155-5435 |
IngestDate | Thu Aug 21 18:35:46 EDT 2025 Fri Jul 11 01:43:19 EDT 2025 Tue Jul 01 02:04:30 EDT 2025 Thu Apr 24 23:01:51 EDT 2025 Mon Oct 09 04:07:27 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Keywords | iridium chiral cation C–H borylation noncovalent interaction computational chemistry |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a411t-b6bb94c4108b3338dab478392b9cdf729a91f9041fbd89e3fc9e6a31d8fc221f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9703-8758 0000-0002-8039-3160 0000-0002-7383-5469 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC10563137 |
PQID | 2876635171 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10563137 proquest_miscellaneous_2876635171 crossref_primary_10_1021_acscatal_3c03384 crossref_citationtrail_10_1021_acscatal_3c03384 acs_journals_10_1021_acscatal_3c03384 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-06 |
PublicationDateYYYYMMDD | 2023-10-06 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-06 day: 06 |
PublicationDecade | 2020 |
PublicationTitle | ACS catalysis |
PublicationTitleAlternate | ACS Catal |
PublicationYear | 2023 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref17/cit17b ref27/cit27e ref27/cit27d ref27/cit27g ref27/cit27f ref17/cit17a Song C. E. (ref2/cit2b) 2009 ref16/cit16 ref27/cit27a ref27/cit27c ref27/cit27b ref12/cit12b ref12/cit12a ref23/cit23 ref2/cit2c ref8/cit8 ref2/cit2a ref1/cit1a ref1/cit1c ref1/cit1b ref5/cit5b ref26/cit26b ref5/cit5a ref21/cit21 ref7/cit7d ref3/cit3b ref3/cit3c ref11/cit11b ref3/cit3a ref26/cit26a ref3/cit3f ref3/cit3g ref3/cit3d ref11/cit11a ref3/cit3e ref13/cit13 ref7/cit7c ref7/cit7b ref3/cit3h ref7/cit7a ref3/cit3i ref19/cit19a ref18/cit18 ref19/cit19c ref19/cit19b ref9/cit9c ref9/cit9b ref9/cit9a ref25/cit25d ref25/cit25b ref10/cit10a ref25/cit25c ref10/cit10b ref25/cit25a ref28/cit28h ref28/cit28i ref28/cit28f ref28/cit28g ref6/cit6d ref4/cit4a ref4/cit4b ref14/cit14a ref24/cit24b ref28/cit28a ref14/cit14c ref14/cit14b ref15/cit15 ref28/cit28d ref28/cit28e ref24/cit24a ref28/cit28b ref28/cit28c ref20/cit20a ref22/cit22 ref20/cit20b ref30/cit30 ref6/cit6a ref6/cit6b ref6/cit6c |
References_xml | – ident: ref6/cit6b doi: 10.1002/anie.201601574 – ident: ref16/cit16 doi: 10.1021/acs.jctc.5b00864 – ident: ref5/cit5a doi: 10.1038/nchem.1796 – ident: ref3/cit3a doi: 10.1021/ja00314a045 – ident: ref8/cit8 doi: 10.1021/cr00032a009 – ident: ref28/cit28e doi: 10.1002/anie.202201285 – ident: ref27/cit27b doi: 10.1021/ja411699u – ident: ref26/cit26a doi: 10.1021/ja053433g – ident: ref3/cit3c doi: 10.1021/ja973174y – ident: ref10/cit10b doi: 10.1021/jacs.2c08752 – ident: ref28/cit28a doi: 10.1021/ja303443m – ident: ref7/cit7d doi: 10.1039/D1SC03517G – ident: ref19/cit19a doi: 10.1103/PhysRevA.38.3098 – ident: ref5/cit5b doi: 10.1021/cs501369z – ident: ref11/cit11a doi: 10.1038/nchem.1311 – ident: ref25/cit25b doi: 10.1021/ja0173019 – ident: ref25/cit25d doi: 10.1039/D1CS01012C – ident: ref24/cit24a doi: 10.1039/b508541a – ident: ref30/cit30 doi: 10.1002/anie.202115036 – ident: ref4/cit4b doi: 10.1039/D0SC05734G – ident: ref14/cit14c doi: 10.1021/ja00004a083 – ident: ref15/cit15 doi: 10.1038/s41586-022-04531-5 – ident: ref9/cit9a doi: 10.1021/ja110534g – ident: ref4/cit4a doi: 10.1007/s41061-019-0256-1 – ident: ref1/cit1c doi: 10.1002/anie.201206835 – ident: ref2/cit2a doi: 10.1055/s-2001-14560 – ident: ref3/cit3h doi: 10.1021/ar0300625 – ident: ref11/cit11b doi: 10.1021/ja312125a – ident: ref1/cit1b doi: 10.1002/anie.200601737 – ident: ref27/cit27c doi: 10.1021/acscatal.6b02317 – ident: ref25/cit25a doi: 10.1126/science.1067074 – ident: ref27/cit27f doi: 10.1039/C8RA07886F – ident: ref14/cit14a doi: 10.1021/jo00017a035 – ident: ref22/cit22 doi: 10.1021/jp810292n – ident: ref1/cit1a doi: 10.1021/cr068368n – start-page: 1 volume-title: Cinchona Alkaloids in Synthesis and Catalysis year: 2009 ident: ref2/cit2b doi: 10.1002/9783527628179 – ident: ref7/cit7b doi: 10.1021/ol016567h – ident: ref3/cit3e doi: 10.1021/ja9835739 – ident: ref26/cit26b doi: 10.1021/ja412563e – ident: ref27/cit27g doi: 10.1021/acs.joc.2c00957 – ident: ref6/cit6c doi: 10.1038/ncomms13455 – ident: ref6/cit6d doi: 10.1021/acs.accounts.6b00604 – ident: ref20/cit20b doi: 10.1007/BF00533485 – ident: ref28/cit28d doi: 10.1021/acscatal.1c01671 – ident: ref3/cit3d doi: 10.1016/S0040-4039(97)10293-3 – ident: ref21/cit21 doi: 10.1063/1.452288 – ident: ref3/cit3g doi: 10.1021/ar030058t – ident: ref17/cit17a doi: 10.1002/(SICI)1096-987X(19991130)20:15<1671::AID-JCC7>3.0.CO;2-Y – ident: ref9/cit9c doi: 10.1002/anie.201612048 – ident: ref18/cit18 – ident: ref19/cit19c doi: 10.1063/1.464913 – ident: ref12/cit12b doi: 10.1021/jacs.3c00693 – ident: ref20/cit20a doi: 10.1063/1.1677527 – ident: ref24/cit24b doi: 10.1039/b515623h – ident: ref28/cit28b doi: 10.1002/anie.201907366 – ident: ref23/cit23 doi: 10.1007/s00214-007-0310-x – ident: ref27/cit27e doi: 10.1021/acs.organomet.7b00151 – ident: ref28/cit28h doi: 10.1002/anie.202214510 – ident: ref2/cit2c doi: 10.1055/s-0029-1218699 – ident: ref9/cit9b doi: 10.1002/anie.201411852 – ident: ref27/cit27a doi: 10.1021/ja0302937 – ident: ref25/cit25c doi: 10.1021/cr900206p – ident: ref28/cit28i doi: 10.1021/acscatal.3c01742 – ident: ref13/cit13 doi: 10.1021/ja012417q – ident: ref12/cit12a doi: 10.1021/jacs.1c05206 – ident: ref19/cit19b doi: 10.1103/PhysRevB.37.785 – ident: ref17/cit17b doi: 10.1021/ja952478m – ident: ref28/cit28g doi: 10.1126/science.abm7599 – ident: ref14/cit14b doi: 10.1016/S0040-4020(01)00094-1 – ident: ref3/cit3b doi: 10.1021/ja00188a089 – ident: ref3/cit3f doi: 10.1021/ol0267679 – ident: ref6/cit6a doi: 10.1021/jacs.5b05792 – ident: ref3/cit3i doi: 10.1021/ar030060k – ident: ref27/cit27d doi: 10.1021/acs.organomet.6b00562 – ident: ref7/cit7c doi: 10.1021/acscatal.8b04949 – ident: ref10/cit10a doi: 10.1126/science.aba1120 – ident: ref28/cit28c doi: 10.1021/acs.orglett.0c00946 – ident: ref7/cit7a doi: 10.1016/S0957-4166(01)00276-2 – ident: ref28/cit28f doi: 10.1002/anie.202203539 |
SSID | ssj0000456870 |
Score | 2.450944 |
Snippet | Rendering a common ligand scaffold anionic and then pairing it with a chiral cation represents an alternative strategy for developing enantioselective versions... Rendering a common ligand scaffold anionic and then pairing it with a chiral cation represents an alternative strategy for developing enantioselective versions... |
SourceID | pubmedcentral proquest crossref acs |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 13043 |
Title | Interrogating the Crucial Interactions at Play in the Chiral Cation-Directed Enantioselective Borylation of Arenes |
URI | http://dx.doi.org/10.1021/acscatal.3c03384 https://www.proquest.com/docview/2876635171 https://pubmed.ncbi.nlm.nih.gov/PMC10563137 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8QgECY-DnrxbVxfwUQPHrqWlqVw1EZjTDQmauKtAQq6cdOabfegv96BdldXjfHYUAgwA3zDDN8gdBgBzFUhpwHtCTBQFI0CQd1DYOei48wmoefSu75hlw_06rH3-EmT892DH5ETqSt_k9GNdQj2FJ1F8xHjiTO0TtO7yX2Kgybc54aDQ6wX9AAGtF7J3xpxZ5Gups-iT4A5HR755by5WG4SF1WeptCFmbx0R7Xq6vefJI7_GMoKWmphJz5t9GQVzZhiDS2k42xv62jorwaHpSPcKJ4wwEKcgthBO7Evad4_VFjW-HYg33C_aP557kPfcerlGzT7p8nxuQuv6ZeVT7ID-yk-K4dvTdQdLi10w-2wG-jh4vw-vQzafAyBpITUgWJKCaopCbmKof-5VDRxAEsJnVtA6VIQK0JKrMq5MLHVwjAZk5xbDTph4000V5SF2UI4h89QsdgYZqgVRjEqIiudMcQTa1QHHcFkZe16qjLvKo9INp7BrJ3BDjoZSzDTLam5y60x-KPG8aTGa0Po8ce_B2OlyEAczpUiC1OOqgzsTAfVSEI6iE9py6RRx9s9XVL0nz1_N0BaFpM42f7nIHfQokty70MI2S6aq4cjswdQqFb7fg18ANpXB0Q |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-V8lBeGJ-iMJiR4IGHdHHiOvFjiVp1o5sQtNLeojixt4oqQU360P31OztJSxGaxmPiD53ts-93vvMdwCcPYa50Q-awoUAFRTLPEcw8BDYmupDrwLWx9C4u-XTBzq-GVx2g7VsYJKLEnkprxN9HF6Cn-M9eaAz81EW1ij2Cx4hFPKNvjaKfu2sVg1BCmyIOZdnQGSIaaIyT_-rEiKS0PBRJe5x56CX5h9iZHMGPHcHW2-TXYFPJQXr7VyzH_xrRM3jagFAyqrnmOXRU_gJ6UZv77SWs7UXhujDhN_JrgiCRRMgEyKvEltSvIUqSVOT7KtmSZV7XuVniEEhkV9upT1OVkbFxtlkWpU25g6cr-Vqst7UPHik0kmHO21ewmIzn0dRpsjM4CaO0ciSXUrCUUTeUPtKfJZIFBm5JkWYaMXsiqBYuo1pmoVC-ToXiiU-zUKfIIdp_Dd28yNUbIBl-upL7SnHFtFCSM-HpxKhGYaCV7MNnnKy42V1lbA3nHo3bGYybGezDabuQcdqEODeZNlb3tPiya_G7Du9xT92PLW_EuBzGsJLkqtiUMWqdBrjRgPYhPGCaXacmivdhSb68sdG8EeByn_rB2wcO8gR60_nFLJ6dXX57B088BF3WuZAfQ7dab9R7BEmV_GC3xR1SPQ-l |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4BlYBLoRTEUqCuBIceshsnjhMfIbCiDxASD3GL4sSGFShBm-yB_vqOnWRhEULtMfFDY3vs-cYzngHY8xDmSjdiDgsEKiiSeY5g5iGwMdFFXIeujaV3esZPrtjPm-BmDoLuLQwSUWFPlTXim139mOs2wgAd4H97qdH3MxdVKzYPH4zVzuhcB_HF9GrFoJTIpolDeRY4ASKC1kD5VidGLGXVrFh6xpqznpIvRM9wBa6nRFuPk_v-pJb97M-reI7_PapV-NiCUXLQcM8nmFPFGizFXQ64zzC2F4bj0oThKG4JgkUSIzMgzxJb0ryKqEhak_OH9ImMiqbO3QiHQWK76k5zqqqcHBunm1FZ2dQ7eMqSw3L81PjikVIjGebcXYer4fFlfOK0WRqclFFaO5JLKVjGqBtJH-nPU8lCA7ukyHKN2D0VVAuXUS3zSChfZ0Lx1Kd5pDPkFO1vwEJRFmoTSI6fruS-UlwxLZTkTHg6NSpSFGole7CPk5W0u6xKrAHdo0k3g0k7gz0YdIuZZG2oc5Nx4-GdFt-nLR6bMB_v1P3W8UeCy2EMLGmhykmVoPZpABwNaQ-iGcaZdmqiec-WFKM7G9UbgS73qR9u_eMgv8Li-dEw-f3j7NcXWPYQe1kfQ74NC_V4onYQK9Vy1-6Mv-xrEig |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interrogating+the+Crucial+Interactions+at+Play+in+the+Chiral+Cation-Directed+Enantioselective+Borylation+of+Arenes&rft.jtitle=ACS+catalysis&rft.au=Ermanis%2C+Kristaps&rft.au=Gibson%2C+David+C&rft.au=Genov%2C+Georgi+R&rft.au=Phipps%2C+Robert+J&rft.date=2023-10-06&rft.issn=2155-5435&rft.eissn=2155-5435&rft.volume=13&rft.issue=19&rft.spage=13043&rft_id=info:doi/10.1021%2Facscatal.3c03384&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2155-5435&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2155-5435&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2155-5435&client=summon |