Influence of the Physical State of Phospholipid Monolayers on Protein Binding
Langmuir monolayers were used to characterize the influence of the physical state of phospholipid monolayers on the binding of protein Retinis Pigmentosa 2 (RP2). The binding parameters of RP2 (maximum insertion pressure (MIP), synergy and ΔΠ0) in monolayers were thus analyzed in the presence of pho...
Saved in:
Published in | Langmuir Vol. 28; no. 25; pp. 9680 - 9688 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
26.06.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Langmuir monolayers were used to characterize the influence of the physical state of phospholipid monolayers on the binding of protein Retinis Pigmentosa 2 (RP2). The binding parameters of RP2 (maximum insertion pressure (MIP), synergy and ΔΠ0) in monolayers were thus analyzed in the presence of phospholipids bearing increasing fatty acyl chain lengths at temperatures where their liquid-expanded (LE), liquid-condensed (LC), or solid-condensed (SC) states can be individually observed. The data show that a larger value of synergy is observed in the LC/SC states than in the LE state, independent of the fatty acyl chain length of phospholipids. Moreover, both the MIP and the ΔΠ0 increase with the fatty acyl chain length when phospholipids are in the LC/SC state, whereas those binding parameters remain almost unchanged when phospholipids are in the LE state. This effect of the phospholipid physical state on the binding of RP2 was further demonstrated by measurements performed in the presence of a phospholipid monolayer showing a phase transition from the LE to the LC state at room temperature. The data collected are showing that very similar values of MIP but very different values of synergy and ΔΠ0 are obtained in the LE (below the phase transition) and LC (above the phase transition) states. In addition, the binding parameters of RP2 in the LE (below the phase transition) as well as in the LC (above the phase transition) states were found to be indistinguishable from those where single LC and LE states are respectively observed. The preference of RP2 for binding phospholipids in the LC state was then confirmed by the observation of a large modification of the shape of the LC domains in the phase transition. Therefore, protein binding parameters can be strongly influenced by the physical state of phospholipid monolayers. Moreover, measurements performed with the α/β domain of RP2 strongly suggest that the β helix of RP2 plays a major role in the preferential binding of this protein to phospholipids in the LC state. |
---|---|
AbstractList | Langmuir monolayers were used to characterize the influence of the physical state of phospholipid monolayers on the binding of protein Retinis Pigmentosa 2 (RP2). The binding parameters of RP2 (maximum insertion pressure (MIP), synergy and ΔΠ0) in monolayers were thus analyzed in the presence of phospholipids bearing increasing fatty acyl chain lengths at temperatures where their liquid-expanded (LE), liquid-condensed (LC), or solid-condensed (SC) states can be individually observed. The data show that a larger value of synergy is observed in the LC/SC states than in the LE state, independent of the fatty acyl chain length of phospholipids. Moreover, both the MIP and the ΔΠ0 increase with the fatty acyl chain length when phospholipids are in the LC/SC state, whereas those binding parameters remain almost unchanged when phospholipids are in the LE state. This effect of the phospholipid physical state on the binding of RP2 was further demonstrated by measurements performed in the presence of a phospholipid monolayer showing a phase transition from the LE to the LC state at room temperature. The data collected are showing that very similar values of MIP but very different values of synergy and ΔΠ0 are obtained in the LE (below the phase transition) and LC (above the phase transition) states. In addition, the binding parameters of RP2 in the LE (below the phase transition) as well as in the LC (above the phase transition) states were found to be indistinguishable from those where single LC and LE states are respectively observed. The preference of RP2 for binding phospholipids in the LC state was then confirmed by the observation of a large modification of the shape of the LC domains in the phase transition. Therefore, protein binding parameters can be strongly influenced by the physical state of phospholipid monolayers. Moreover, measurements performed with the α/β domain of RP2 strongly suggest that the β helix of RP2 plays a major role in the preferential binding of this protein to phospholipids in the LC state. Langmuir monolayers were used to characterize the influence of the physical state of phospholipid monolayers on the binding of protein Retinis Pigmentosa 2 (RP2). The binding parameters of RP2 (maximum insertion pressure (MIP), synergy and ΔΠ(0)) in monolayers were thus analyzed in the presence of phospholipids bearing increasing fatty acyl chain lengths at temperatures where their liquid-expanded (LE), liquid-condensed (LC), or solid-condensed (SC) states can be individually observed. The data show that a larger value of synergy is observed in the LC/SC states than in the LE state, independent of the fatty acyl chain length of phospholipids. Moreover, both the MIP and the ΔΠ(0) increase with the fatty acyl chain length when phospholipids are in the LC/SC state, whereas those binding parameters remain almost unchanged when phospholipids are in the LE state. This effect of the phospholipid physical state on the binding of RP2 was further demonstrated by measurements performed in the presence of a phospholipid monolayer showing a phase transition from the LE to the LC state at room temperature. The data collected are showing that very similar values of MIP but very different values of synergy and ΔΠ(0) are obtained in the LE (below the phase transition) and LC (above the phase transition) states. In addition, the binding parameters of RP2 in the LE (below the phase transition) as well as in the LC (above the phase transition) states were found to be indistinguishable from those where single LC and LE states are respectively observed. The preference of RP2 for binding phospholipids in the LC state was then confirmed by the observation of a large modification of the shape of the LC domains in the phase transition. Therefore, protein binding parameters can be strongly influenced by the physical state of phospholipid monolayers. Moreover, measurements performed with the α/β domain of RP2 strongly suggest that the β helix of RP2 plays a major role in the preferential binding of this protein to phospholipids in the LC state. |
Author | Salesse, Christian Boisselier, Élodie Calvez, Philippe Demers, Éric Cantin, Line |
AuthorAffiliation | Université Laval |
AuthorAffiliation_xml | – name: Université Laval |
Author_xml | – sequence: 1 givenname: Élodie surname: Boisselier fullname: Boisselier, Élodie – sequence: 2 givenname: Philippe surname: Calvez fullname: Calvez, Philippe – sequence: 3 givenname: Éric surname: Demers fullname: Demers, Éric – sequence: 4 givenname: Line surname: Cantin fullname: Cantin, Line – sequence: 5 givenname: Christian surname: Salesse fullname: Salesse, Christian email: christian.salesse@fmed.ulaval.ca |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26073631$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22686284$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0E1LwzAYwPEgE_eiB7-A9CLooZqXNmmOOnwZbDhQzyVNE5vRJTVpD_PT27npLl7yQPjxPPAfg4F1VgFwjuANghjd1oJAhEj6dQRGKMUwTjPMBmAEWUJillAyBOMQVhBCThJ-AoYY04ziLBmBxczqulNWqsjpqK1UtKw2wUhRR6-taH9-l5ULTeVq05gyWjjrarFRPkTORkvvWmVsdG9saezHKTjWog7qbD8n4P3x4W36HM9fnmbTu3ksEoTa_iWcZ7RgEhPJOSwxRkwqpjVNiYJcZgQjSLRKJC-4ZozDJGMUlzwhmBWcTMDVbm_j3WenQpuvTZCqroVVrgt5XwUTRjne0usdld6F4JXOG2_Wwm96tHUo_6vX24v92q5Yq_JP_ubqweUeiNAn0l5YacLBUcgIJejghAz5ynXe9jX-OfgNlXGDDg |
CODEN | LANGD5 |
CitedBy_id | crossref_primary_10_1016_j_bpj_2021_02_011 crossref_primary_10_1016_j_colsurfb_2013_06_025 crossref_primary_10_1042_BCJ20170746 crossref_primary_10_1016_j_bbamem_2015_09_005 crossref_primary_10_1016_j_bbamem_2022_183979 crossref_primary_10_3390_polym9110612 crossref_primary_10_1016_j_lwt_2023_114672 crossref_primary_10_1021_acs_chemrev_1c00754 crossref_primary_10_1021_acs_jafc_1c04078 crossref_primary_10_1021_acs_langmuir_9b02973 crossref_primary_10_1016_j_ijbiomac_2013_03_057 crossref_primary_10_1021_la503867h crossref_primary_10_1016_j_str_2013_12_018 crossref_primary_10_1021_acs_jpcb_6b01558 crossref_primary_10_1021_acs_jpcc_6b05460 crossref_primary_10_1111_febs_14864 crossref_primary_10_1021_acs_langmuir_6b01574 crossref_primary_10_1074_jbc_RA119_011122 crossref_primary_10_1016_j_chemphyslip_2017_08_001 crossref_primary_10_1021_acs_langmuir_0c00649 crossref_primary_10_1016_j_jcis_2018_09_033 crossref_primary_10_1016_j_procbio_2021_02_009 crossref_primary_10_1016_j_cis_2017_03_004 crossref_primary_10_1016_j_ijbiomac_2019_03_169 crossref_primary_10_1073_pnas_2202295119 crossref_primary_10_1016_j_bbagen_2018_07_014 crossref_primary_10_1016_j_jcis_2013_06_041 crossref_primary_10_1111_tpj_13829 crossref_primary_10_1016_j_chemphyslip_2023_105364 crossref_primary_10_1016_j_biochi_2014_03_004 crossref_primary_10_1016_j_tsf_2015_09_047 crossref_primary_10_3389_fbioe_2020_00270 crossref_primary_10_1016_j_bpj_2017_10_010 crossref_primary_10_1021_acs_langmuir_1c00342 crossref_primary_10_1021_bc500047r crossref_primary_10_1007_s00396_014_3302_0 crossref_primary_10_1016_j_colsurfb_2020_111048 crossref_primary_10_1021_acs_langmuir_5b02882 crossref_primary_10_1016_j_bpj_2018_05_032 crossref_primary_10_1016_j_chemphyslip_2018_09_005 crossref_primary_10_1093_glycob_cwz106 crossref_primary_10_1016_j_bbamem_2014_10_026 crossref_primary_10_1021_acs_langmuir_0c02135 crossref_primary_10_1016_j_bbamem_2014_06_021 crossref_primary_10_1371_journal_ppat_1006814 crossref_primary_10_1016_j_colsurfb_2015_11_065 crossref_primary_10_1021_bi501517r crossref_primary_10_1016_j_ijbiomac_2016_10_031 crossref_primary_10_1021_acs_biomac_0c00736 crossref_primary_10_1016_j_cis_2014_01_015 crossref_primary_10_1088_1674_1056_25_9_090507 crossref_primary_10_1096_fj_14_250415 |
Cites_doi | 10.1016/S0006-3495(95)79971-4 10.1016/j.colsurfb.2012.01.008 10.1016/j.str.2005.11.008 10.1167/iovs.04-1207 10.1016/j.colsurfb.2011.11.022 10.1042/BJ20100516 10.1051/jphys:01978003903030100 10.1146/annurev.pc.42.100191.001131 10.1016/S0001-8686(02)00071-4 10.1021/la104097n 10.1002/bbpc.19830871004 10.1016/S0927-7765(02)00096-6 10.1016/j.cis.2010.01.003 10.1016/j.biochi.2009.03.018 10.1021/j100165a003 10.1016/0014-5793(89)80892-0 10.1007/BF01566239 10.1016/S0959-440X(99)80061-X 10.1111/j.1471-4159.2007.04971.x 10.1016/S0005-2736(99)00203-5 10.1016/0005-2736(95)80029-F 10.1103/RevModPhys.71.779 10.1016/S0001-8686(00)00034-8 10.1021/jp9118953 10.1021/la980144f 10.1021/bi201857v 10.1021/la102616h 10.1016/0005-2736(75)90269-2 10.1016/j.colsurfb.2007.03.019 10.1063/1.1140264 10.1021/la204473t 10.1063/1.1142032 10.1073/pnas.84.12.4089 |
ContentType | Journal Article |
Copyright | Copyright © 2012 American Chemical Society 2015 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2012 American Chemical Society – notice: 2015 INIST-CNRS |
DBID | IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
DOI | 10.1021/la301135z |
DatabaseName | Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5827 |
EndPage | 9688 |
ExternalDocumentID | 10_1021_la301135z 22686284 26073631 c887511454 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Canadian Institutes of Health Research |
GroupedDBID | - .K2 02 4.4 53G 55A 5GY 5VS 7~N AABXI ABFLS ABMVS ABPTK ABUCX ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 LG6 RNS ROL TN5 UI2 UPT VF5 VG9 W1F X --- -~X .HR 186 1WB 6TJ ABFRP ABHMW ABQRX ADHLV AFFNX AGXLV AHGAQ ANTXH GGK IQODW YQT ~02 AAHBH ABJNI CGR CUPRZ CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-a411t-a439986b7c23c990d2217ce7ff653e09c832103fe4c9b9f779048762d94327b93 |
IEDL.DBID | ACS |
ISSN | 0743-7463 |
IngestDate | Fri Aug 16 04:33:05 EDT 2024 Fri Aug 23 01:54:24 EDT 2024 Sat Sep 28 07:55:08 EDT 2024 Sun Oct 22 16:04:01 EDT 2023 Thu Aug 27 13:42:35 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 25 |
Keywords | Binding Monolayer Modification Shape Chain length Insertion Phospholipid Phase transitions Protein Solid state Liquid Transition state Room temperature |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a411t-a439986b7c23c990d2217ce7ff653e09c832103fe4c9b9f779048762d94327b93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 22686284 |
PQID | 1022376929 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1022376929 crossref_primary_10_1021_la301135z pubmed_primary_22686284 pascalfrancis_primary_26073631 acs_journals_10_1021_la301135z |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2012-06-26 |
PublicationDateYYYYMMDD | 2012-06-26 |
PublicationDate_xml | – month: 06 year: 2012 text: 2012-06-26 day: 26 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States |
PublicationTitle | Langmuir |
PublicationTitleAlternate | Langmuir |
PublicationYear | 2012 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Grainger D. W. (ref31/cit31) 1989; 252 Calvez P. (ref23/cit23) 2009; 91 Kundu S. (ref2/cit2) 2012; 93 Hoenig D. (ref20/cit20) 1991; 95 Elliott M. H. (ref32/cit32) 2008; 104 Vollhardt D. (ref22/cit22) 2000; 86 Vollhardt D. (ref14/cit14) 2010; 154 Albrecht O. (ref17/cit17) 1978; 39 Marsh D. (ref27/cit27) 1990 Tiemeyer S. (ref5/cit5) 2010; 26 Kaganer V. M. (ref12/cit12) 1999; 71 Kühnel K. (ref25/cit25) 2006; 14 Si-shen F. (ref10/cit10) 1999; 15 Lösche M. (ref21/cit21) 1983; 87 Brezesinski G. (ref6/cit6) 2003; 100 Calvez P. (ref24/cit24) 2011; 27 Martin R. E. (ref33/cit33) 2005; 46 Boucher J. (ref8/cit8) 2007; 58 Hénon S. (ref19/cit19) 1991; 62 Toimil P. (ref3/cit3) 2012; 92 MacDonald R. C. (ref11/cit11) 1987; 84 Brockman H. (ref7/cit7) 1999; 9 Subirade S. (ref34/cit34) 1995; 69 Hui S. W. (ref18/cit18) 1975; 382 Juhasz J. (ref16/cit16) 2010; 430 Jones E. M. (ref4/cit4) 2012; 51 Arriaga L. R. (ref15/cit15) 2010; 114 Meller P. (ref29/cit29) 1988; 59 McConnell H. M. (ref13/cit13) 1991; 42 Dörfler H. D. (ref28/cit28) 1980; 258 Maget-Dana R. (ref9/cit9) 1999; 1462 Chou T. (ref26/cit26) 2003; 27 Maloney K. M. (ref30/cit30) 1995; 1235 Brehmer T. (ref1/cit1) 2012; 28 |
References_xml | – volume: 69 start-page: 974 year: 1995 ident: ref34/cit34 publication-title: Biophys. J. doi: 10.1016/S0006-3495(95)79971-4 contributor: fullname: Subirade S. – volume: 93 start-page: 215 year: 2012 ident: ref2/cit2 publication-title: Colloids Surf., B doi: 10.1016/j.colsurfb.2012.01.008 contributor: fullname: Kundu S. – volume: 14 start-page: 367 year: 2006 ident: ref25/cit25 publication-title: Structure doi: 10.1016/j.str.2005.11.008 contributor: fullname: Kühnel K. – volume: 46 start-page: 1147 year: 2005 ident: ref33/cit33 publication-title: Invest. Ophthal. Vis. Sci. doi: 10.1167/iovs.04-1207 contributor: fullname: Martin R. E. – volume: 92 start-page: 64 year: 2012 ident: ref3/cit3 publication-title: Colloids Surf., B doi: 10.1016/j.colsurfb.2011.11.022 contributor: fullname: Toimil P. – volume: 430 start-page: 415 year: 2010 ident: ref16/cit16 publication-title: Biochem. J. doi: 10.1042/BJ20100516 contributor: fullname: Juhasz J. – volume: 39 start-page: 301 year: 1978 ident: ref17/cit17 publication-title: J. Phys. (Paris) doi: 10.1051/jphys:01978003903030100 contributor: fullname: Albrecht O. – volume: 42 start-page: 171 year: 1991 ident: ref13/cit13 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev.pc.42.100191.001131 contributor: fullname: McConnell H. M. – volume: 100 start-page: 563 year: 2003 ident: ref6/cit6 publication-title: Adv. Colloid Interface Sci. doi: 10.1016/S0001-8686(02)00071-4 contributor: fullname: Brezesinski G. – volume: 27 start-page: 1373 year: 2011 ident: ref24/cit24 publication-title: Langmuir doi: 10.1021/la104097n contributor: fullname: Calvez P. – volume: 87 start-page: 848 year: 1983 ident: ref21/cit21 publication-title: Ber Bunsen-Ges. Phys. Chem. doi: 10.1002/bbpc.19830871004 contributor: fullname: Lösche M. – volume: 27 start-page: 333 year: 2003 ident: ref26/cit26 publication-title: Colloids Surf., B doi: 10.1016/S0927-7765(02)00096-6 contributor: fullname: Chou T. – volume: 154 start-page: 1 year: 2010 ident: ref14/cit14 publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2010.01.003 contributor: fullname: Vollhardt D. – volume: 91 start-page: 718 year: 2009 ident: ref23/cit23 publication-title: Biochimie doi: 10.1016/j.biochi.2009.03.018 contributor: fullname: Calvez P. – volume: 95 start-page: 4590 year: 1991 ident: ref20/cit20 publication-title: J. Phys. Chem. doi: 10.1021/j100165a003 contributor: fullname: Hoenig D. – volume: 252 start-page: 73 year: 1989 ident: ref31/cit31 publication-title: FEBS Lett. doi: 10.1016/0014-5793(89)80892-0 contributor: fullname: Grainger D. W. – volume: 258 start-page: 839 year: 1980 ident: ref28/cit28 publication-title: Colloid Polym. Sci. doi: 10.1007/BF01566239 contributor: fullname: Dörfler H. D. – volume: 9 start-page: 438 year: 1999 ident: ref7/cit7 publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/S0959-440X(99)80061-X contributor: fullname: Brockman H. – volume: 104 start-page: 336 year: 2008 ident: ref32/cit32 publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.2007.04971.x contributor: fullname: Elliott M. H. – volume: 1462 start-page: 109 year: 1999 ident: ref9/cit9 publication-title: Biochim. Biophys. Acta doi: 10.1016/S0005-2736(99)00203-5 contributor: fullname: Maget-Dana R. – volume: 1235 start-page: 395 year: 1995 ident: ref30/cit30 publication-title: Biochim. Biophys. Acta, Biomembr. doi: 10.1016/0005-2736(95)80029-F contributor: fullname: Maloney K. M. – volume: 71 start-page: 779 year: 1999 ident: ref12/cit12 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.71.779 contributor: fullname: Kaganer V. M. – volume: 86 start-page: 103 year: 2000 ident: ref22/cit22 publication-title: Adv. Colloid Interface Sci. doi: 10.1016/S0001-8686(00)00034-8 contributor: fullname: Vollhardt D. – volume: 114 start-page: 4509 year: 2010 ident: ref15/cit15 publication-title: J. Phys. Chem. B doi: 10.1021/jp9118953 contributor: fullname: Arriaga L. R. – volume: 15 start-page: 998 year: 1999 ident: ref10/cit10 publication-title: Langmuir doi: 10.1021/la980144f contributor: fullname: Si-shen F. – volume: 51 start-page: 2539 year: 2012 ident: ref4/cit4 publication-title: Biochemistry doi: 10.1021/bi201857v contributor: fullname: Jones E. M. – volume: 26 start-page: 14064 year: 2010 ident: ref5/cit5 publication-title: Langmuir doi: 10.1021/la102616h contributor: fullname: Tiemeyer S. – volume: 382 start-page: 265 year: 1975 ident: ref18/cit18 publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2736(75)90269-2 contributor: fullname: Hui S. W. – volume: 58 start-page: 73 year: 2007 ident: ref8/cit8 publication-title: Colloids Surf., B doi: 10.1016/j.colsurfb.2007.03.019 contributor: fullname: Boucher J. – volume-title: CRC Handbook of Lipid Bilayers year: 1990 ident: ref27/cit27 contributor: fullname: Marsh D. – volume: 59 start-page: 2225 year: 1988 ident: ref29/cit29 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1140264 contributor: fullname: Meller P. – volume: 28 start-page: 3534 year: 2012 ident: ref1/cit1 publication-title: Langmuir doi: 10.1021/la204473t contributor: fullname: Brehmer T. – volume: 62 start-page: 936 year: 1991 ident: ref19/cit19 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1142032 contributor: fullname: Hénon S. – volume: 84 start-page: 4089 year: 1987 ident: ref11/cit11 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.84.12.4089 contributor: fullname: MacDonald R. C. |
SSID | ssj0009349 |
Score | 2.3479848 |
Snippet | Langmuir monolayers were used to characterize the influence of the physical state of phospholipid monolayers on the binding of protein Retinis Pigmentosa 2... |
SourceID | proquest crossref pubmed pascalfrancis acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 9680 |
SubjectTerms | 1,2-Dipalmitoylphosphatidylcholine - chemistry 1,2-Dipalmitoylphosphatidylcholine - metabolism Adsorption Chemistry Exact sciences and technology General and physical chemistry Membrane Proteins - chemistry Membrane Proteins - metabolism Phospholipids - chemistry Phospholipids - metabolism Physical Phenomena Protein Binding Protein Structure, Tertiary |
Title | Influence of the Physical State of Phospholipid Monolayers on Protein Binding |
URI | http://dx.doi.org/10.1021/la301135z https://www.ncbi.nlm.nih.gov/pubmed/22686284 https://search.proquest.com/docview/1022376929 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT4NAEJ7UetDE-H7UR7M-rijsi3LUalNNappok94ILBCJBoi0l_56Z6G0Nlq9cCC7WZjZmfkmO_sNwJXggcUtJQ0mHd_gigvDcYRpcGYLr6UwQBWkPr1n2R3wp6EY1uByyQk-tW4-PL0HmZiswCq10Sg0_mm_zJl1WYlxNdemzSWr6IO-T9WhR-ULoWcj83KUQlS2r1iOL4s409mC--q2Tlle8n49HvnXavKTvPGvX9iGzSnOJLflxtiBWpjswlq7au-2B73Hqj0JSSOCMJD0pyojBQDVb_tvaZ6he4yzOCBo_ZgGa4RO0oT0Nb9DnJC7uLgWsw-DzsNru2tMeysYHresET4RmbSkbyvKFEakgGJuokI7iqRgoeko3cHIZFHIleM7kWYl5NpxBg5n1PYddgD1JE3CIyCBZaOPNKWH0Erzs_voQ01FRSS8IJTMa0AThe9ObSN3i2NvarkzqTTgotKLm5UcG78Nai5obDYSEzKbSWY14LxSoYui1OceXhKmY70g1bU_CAQbcFjqdj6b6isyLX7830eewDpiJaqrxKg8hfrocxyeIR4Z-c1iP34B2T_WFA |
link.rule.ids | 315,783,787,2772,27088,27936,27937,57066,57116 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb5tAEB417iGRoqSPJHXSutuqVxLYF-aYWLXsNo4s1ZZ8Q7CAYrUCq-CLf31mFrCbKlV64YB2YZgZZr7V7H4D8EXJxJOe0Y7QQexII5UTBMp1pPBV1DeYoCypz-ROj-by20ItGpocOguDQpT4pNIW8XfsAt7Vr4hcUajNHrxUPiZKgkGDHzuCXVFDXaLc9KUWLYvQn1MpA5nyUQY6XEUlKiOru1j8G2badDM8rvsWWUHtLpOfl-sqvjSbvzgc_-9LXsFRgzrZde0mr-FFmr-B_UHb7O0tTMZtsxJWZAxBIZs2BmQWjtLd6X1RrjBYLlfLhGEswEUx4XVW5GxKbA_LnN0s7SGZE5gPv84GI6fptOBE0vMqvCJO6evYN1wYzE8Jx5WKSf0s00qkbmCon5ErslSaIA4y4iiUFEaTQArux4E4hU5e5Ok7YInnY8R0dYRAi9jaY4yoruEqU1GSahF1oYdKCZs_pQxtEZx74VYrXfjcmidc1YwbTw3qPTLcdiQuz3yhhdeFT60lQ1QlVUGiPC3W9EJOO4EQFnbhrDbxbjanAzN9ef6ckB9hfzSb3Ia347vvF3CAKIrT_jGu30On-r1OPyBSqeKeddEHc5zeeQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7xkACpok_KQllcxDU0fmZzhC0rKAVWokjcosRJxIoqicjuhV_fGSdZSkUFlxwiO7Fn7JlvNPY3APtapVxxazxpwsRTVmkvDLXvKRnoeGDRQTlSn_MLc3KtftzomzZQpLswOIgav1S7JD7t6irNW4YB_u13TMtR6odFWNYBd2nZw-HVI8mubOAu0W4GysiOSejvruSFbP3EC72p4hoFkjeVLP4PNZ3LGb2Fy_lg3UmTu4PZNDmwD__wOL5-Nu9gvUWf7LBZLu9hISs-wOqwK_r2Ec5Pu6IlrMwZgkM2bhXJHCylt-Pbsq7QaE6qScrQJmBwTLidlQUbE-vDpGBHE3dZ5hNcj45_DU-8tuKCFyvOp_hEvDIwSWCFtOinUoERi82CPDdaZn5oqa6RL_NM2TAJc-IqVGRO01BJESSh3ICloiyyTWApD9By-iZGwEWs7QlaVt8Knes4zYyMe9BHwUTtjqkjlwwXPJpLpQd7nYqiqmHeeK5R_4ny5i0xTAukkbwHXzttRihKyobERVbO6IeCTgQhPOzB50bNj70FXZwZqK2XBrkLK-Pvo-jn6cXZNqwhmBJ0jEyYL7A0vZ9lOwhYpknfrdI_yDLg8w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+the+physical+state+of+phospholipid+monolayers+on+protein+binding&rft.jtitle=Langmuir&rft.au=Boisselier%2C+%C3%89lodie&rft.au=Calvez%2C+Philippe&rft.au=Demers%2C+%C3%89ric&rft.au=Cantin%2C+Line&rft.date=2012-06-26&rft.eissn=1520-5827&rft.volume=28&rft.issue=25&rft.spage=9680&rft_id=info:doi/10.1021%2Fla301135z&rft_id=info%3Apmid%2F22686284&rft.externalDocID=22686284 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7463&client=summon |