Direct Z‑Scheme Water Splitting Photocatalyst Based on Two-Dimensional Van Der Waals Heterostructures

Mimicking the natural photosynthesis in plants, Z-scheme water splitting is a promising strategy to improve photocatalytic activity. Searching for the direct Z-scheme photocatalysts is urgent and the crucial factor for the photocatalytic efficiency is the photogenerated electron–hole (e–h) recombina...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry letters Vol. 9; no. 18; pp. 5419 - 5424
Main Authors Zhang, Ruiqi, Zhang, Lili, Zheng, Qijing, Gao, Pengfei, Zhao, Jin, Yang, Jinlong
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 20.09.2018
Online AccessGet full text

Cover

Loading…
Abstract Mimicking the natural photosynthesis in plants, Z-scheme water splitting is a promising strategy to improve photocatalytic activity. Searching for the direct Z-scheme photocatalysts is urgent and the crucial factor for the photocatalytic efficiency is the photogenerated electron–hole (e–h) recombination rate at the interface of two photosystems. In this report, based on time-dependent ab initio nonadiabatic molecular dynamics (NAMD) investigation, we first report a two-dimensional (2D) metal-free van der Waals (vdW) heterostructure consisting of monolayer BCN and C2N as a promising candidate for direct Z-scheme photocatalysts for water splitting. It is shown that the time scale of e–h recombination of BCN/C2N is within 2 ps. Among such e–h recombination events, more than 85% are through the e–h recombination at the interface. NAMD simulations based on frozen phonon method prove that such an ultrafast interlayer e–h recombination is assisted by intralayer optical phonon modes and the interlayer shear phonon mode induced by vdW interaction. In these crucial phonon modes, the interlayer relative movements which are lacking in traditional heterostructures with strong interactions, yet exist generally in various 2D vdW heterostructures, are significant. Our results prove that the 2D vdW heterostructure family is convincing for a new type of direct Z-scheme photocatalysts searching.
AbstractList Mimicking the natural photosynthesis in plants, Z-scheme water splitting is a promising strategy to improve photocatalytic activity. Searching for the direct Z-scheme photocatalysts is urgent and the crucial factor for the photocatalytic efficiency is the photogenerated electron-hole ( e-h) recombination rate at the interface of two photosystems. In this report, based on time-dependent ab initio nonadiabatic molecular dynamics (NAMD) investigation, we first report a two-dimensional (2D) metal-free van der Waals (vdW) heterostructure consisting of monolayer BCN and C2N as a promising candidate for direct Z-scheme photocatalysts for water splitting. It is shown that the time scale of e-h recombination of BCN/C2N is within 2 ps. Among such e-h recombination events, more than 85% are through the e-h recombination at the interface. NAMD simulations based on frozen phonon method prove that such an ultrafast interlayer e-h recombination is assisted by intralayer optical phonon modes and the interlayer shear phonon mode induced by vdW interaction. In these crucial phonon modes, the interlayer relative movements which are lacking in traditional heterostructures with strong interactions, yet exist generally in various 2D vdW heterostructures, are significant. Our results prove that the 2D vdW heterostructure family is convincing for a new type of direct Z-scheme photocatalysts searching.Mimicking the natural photosynthesis in plants, Z-scheme water splitting is a promising strategy to improve photocatalytic activity. Searching for the direct Z-scheme photocatalysts is urgent and the crucial factor for the photocatalytic efficiency is the photogenerated electron-hole ( e-h) recombination rate at the interface of two photosystems. In this report, based on time-dependent ab initio nonadiabatic molecular dynamics (NAMD) investigation, we first report a two-dimensional (2D) metal-free van der Waals (vdW) heterostructure consisting of monolayer BCN and C2N as a promising candidate for direct Z-scheme photocatalysts for water splitting. It is shown that the time scale of e-h recombination of BCN/C2N is within 2 ps. Among such e-h recombination events, more than 85% are through the e-h recombination at the interface. NAMD simulations based on frozen phonon method prove that such an ultrafast interlayer e-h recombination is assisted by intralayer optical phonon modes and the interlayer shear phonon mode induced by vdW interaction. In these crucial phonon modes, the interlayer relative movements which are lacking in traditional heterostructures with strong interactions, yet exist generally in various 2D vdW heterostructures, are significant. Our results prove that the 2D vdW heterostructure family is convincing for a new type of direct Z-scheme photocatalysts searching.
Mimicking the natural photosynthesis in plants, Z-scheme water splitting is a promising strategy to improve photocatalytic activity. Searching for the direct Z-scheme photocatalysts is urgent and the crucial factor for the photocatalytic efficiency is the photogenerated electron-hole ( e-h) recombination rate at the interface of two photosystems. In this report, based on time-dependent ab initio nonadiabatic molecular dynamics (NAMD) investigation, we first report a two-dimensional (2D) metal-free van der Waals (vdW) heterostructure consisting of monolayer BCN and C N as a promising candidate for direct Z-scheme photocatalysts for water splitting. It is shown that the time scale of e-h recombination of BCN/C N is within 2 ps. Among such e-h recombination events, more than 85% are through the e-h recombination at the interface. NAMD simulations based on frozen phonon method prove that such an ultrafast interlayer e-h recombination is assisted by intralayer optical phonon modes and the interlayer shear phonon mode induced by vdW interaction. In these crucial phonon modes, the interlayer relative movements which are lacking in traditional heterostructures with strong interactions, yet exist generally in various 2D vdW heterostructures, are significant. Our results prove that the 2D vdW heterostructure family is convincing for a new type of direct Z-scheme photocatalysts searching.
Mimicking the natural photosynthesis in plants, Z-scheme water splitting is a promising strategy to improve photocatalytic activity. Searching for the direct Z-scheme photocatalysts is urgent and the crucial factor for the photocatalytic efficiency is the photogenerated electron–hole (e–h) recombination rate at the interface of two photosystems. In this report, based on time-dependent ab initio nonadiabatic molecular dynamics (NAMD) investigation, we first report a two-dimensional (2D) metal-free van der Waals (vdW) heterostructure consisting of monolayer BCN and C2N as a promising candidate for direct Z-scheme photocatalysts for water splitting. It is shown that the time scale of e–h recombination of BCN/C2N is within 2 ps. Among such e–h recombination events, more than 85% are through the e–h recombination at the interface. NAMD simulations based on frozen phonon method prove that such an ultrafast interlayer e–h recombination is assisted by intralayer optical phonon modes and the interlayer shear phonon mode induced by vdW interaction. In these crucial phonon modes, the interlayer relative movements which are lacking in traditional heterostructures with strong interactions, yet exist generally in various 2D vdW heterostructures, are significant. Our results prove that the 2D vdW heterostructure family is convincing for a new type of direct Z-scheme photocatalysts searching.
Author Zhang, Lili
Gao, Pengfei
Zhao, Jin
Zhang, Ruiqi
Zheng, Qijing
Yang, Jinlong
AuthorAffiliation University of Science and Technology of China
Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, and Department of Physics
Hefei National Laboratory for Physical Sciences at the Microscale
Synergetic Innovation Center of Quantum Information & Quantum Physics
AuthorAffiliation_xml – name: University of Science and Technology of China
– name: Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, and Department of Physics
– name: Synergetic Innovation Center of Quantum Information & Quantum Physics
– name: Hefei National Laboratory for Physical Sciences at the Microscale
Author_xml – sequence: 1
  givenname: Ruiqi
  orcidid: 0000-0002-7820-6020
  surname: Zhang
  fullname: Zhang, Ruiqi
  organization: Hefei National Laboratory for Physical Sciences at the Microscale
– sequence: 2
  givenname: Lili
  surname: Zhang
  fullname: Zhang, Lili
  organization: Hefei National Laboratory for Physical Sciences at the Microscale
– sequence: 3
  givenname: Qijing
  orcidid: 0000-0003-0022-3442
  surname: Zheng
  fullname: Zheng, Qijing
  organization: Hefei National Laboratory for Physical Sciences at the Microscale
– sequence: 4
  givenname: Pengfei
  surname: Gao
  fullname: Gao, Pengfei
  organization: Hefei National Laboratory for Physical Sciences at the Microscale
– sequence: 5
  givenname: Jin
  orcidid: 0000-0003-1346-5280
  surname: Zhao
  fullname: Zhao, Jin
  email: zhaojin@ustc.edu.cn
  organization: University of Science and Technology of China
– sequence: 6
  givenname: Jinlong
  orcidid: 0000-0002-5651-5340
  surname: Yang
  fullname: Yang, Jinlong
  email: jlyang@ustc.edu.cn
  organization: University of Science and Technology of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30180588$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9O3DAQxq2KCljgCSpVPvaSxU6cjX0ElnaRkIrEn5W4WBNnshgl8dZ2VHHjFXjFPklddpEqDlzGo_H3-6SZb0J2BjcgIV84m3KW82MwYfq4Nh3GOJU1y4uZ-kT2uRIyq7gsd_7r98gkhEfGZorJapfsFYxLVkq5T1Zz69FEev_n-eXaPGCPdAkRPb1edzZGO6zo1YOLzkCE7ilEegoBG-oGevPbZXPb4xCsG6CjdzDQeQKXAF2gC0wmLkQ_mjh6DIfkc5vmeLR9D8jt9_Obs0V2-fPHxdnJZQaC85ipXLKqFczUFRayZHUjmlQNcFE3VQuiUVgJJkvOsClyjlKZRuQzEGWt2tIUB-Tbxnft3a8RQ9S9DQa7DgZ0Y9A5U0oqMSuLJP26lY51j41ee9uDf9Jvx0kCtRGYtEnw2GpjI8S0bvRgO82Z_heETkHobRB6G0Rii3fsm_3H1PGGev10o0-HDR8SfwGog6JX
CitedBy_id crossref_primary_10_1039_D1CP04352H
crossref_primary_10_1021_acs_jpclett_2c02196
crossref_primary_10_1016_j_ijhydene_2023_07_288
crossref_primary_10_1016_j_ijhydene_2020_08_008
crossref_primary_10_1016_j_mattod_2021_02_017
crossref_primary_10_1021_acs_jpcc_3c04506
crossref_primary_10_1039_D1NR05889D
crossref_primary_10_1021_jacs_0c00564
crossref_primary_10_2139_ssrn_4098270
crossref_primary_10_1021_acs_jpca_9b08726
crossref_primary_10_1039_D4TA07893D
crossref_primary_10_1039_D1CP00347J
crossref_primary_10_1021_acs_jpcc_4c03902
crossref_primary_10_1039_D3EE03282E
crossref_primary_10_1039_D4NR04545A
crossref_primary_10_1063_5_0160594
crossref_primary_10_1002_adma_202105195
crossref_primary_10_1021_acs_jpclett_2c02189
crossref_primary_10_1109_ACCESS_2020_3037036
crossref_primary_10_1063_5_0118013
crossref_primary_10_1039_D1NJ05279A
crossref_primary_10_1016_j_mtadv_2020_100059
crossref_primary_10_1103_PhysRevB_103_245411
crossref_primary_10_1016_j_ijhydene_2024_04_118
crossref_primary_10_1039_C9NR03469B
crossref_primary_10_1039_D0TA11510J
crossref_primary_10_1088_1361_6463_ac16a4
crossref_primary_10_1016_j_mattod_2024_10_006
crossref_primary_10_1021_acs_jpcc_2c06171
crossref_primary_10_1016_j_apsusc_2022_153025
crossref_primary_10_1021_acs_jpca_0c10897
crossref_primary_10_1039_D4NR03384A
crossref_primary_10_1109_ACCESS_2021_3102190
crossref_primary_10_1021_acs_jpclett_3c02784
crossref_primary_10_1021_jacs_2c08054
crossref_primary_10_1039_D2CP03764E
crossref_primary_10_1021_acs_jpclett_1c00023
crossref_primary_10_1039_D1NA00154J
crossref_primary_10_1039_D3NR00429E
crossref_primary_10_1002_qua_26120
crossref_primary_10_1002_sstr_202000061
crossref_primary_10_1016_j_ijhydene_2022_04_059
crossref_primary_10_1039_D1RA05521F
crossref_primary_10_1039_D0CP04219F
crossref_primary_10_1016_j_nanoen_2022_107401
crossref_primary_10_1039_D2EY00031H
crossref_primary_10_1088_1361_6463_ac5771
crossref_primary_10_1002_pssr_201900582
crossref_primary_10_1063_5_0079803
crossref_primary_10_1103_PhysRevB_99_165309
crossref_primary_10_1039_D3TA01479G
crossref_primary_10_1103_PhysRevApplied_22_034064
crossref_primary_10_1016_j_apsusc_2024_161057
crossref_primary_10_1002_adfm_202004293
crossref_primary_10_3390_molecules29122793
crossref_primary_10_1016_j_cclet_2023_108724
crossref_primary_10_1021_acs_jpclett_4c01162
crossref_primary_10_1021_acsami_4c14255
crossref_primary_10_1016_j_jes_2021_11_040
crossref_primary_10_1021_acs_jpcc_1c00861
crossref_primary_10_1063_5_0070269
crossref_primary_10_1039_D4NJ00204K
crossref_primary_10_1039_C9NR03218E
crossref_primary_10_1039_D0TC00852D
crossref_primary_10_1039_D3CC05976F
crossref_primary_10_1080_02603594_2023_2285064
crossref_primary_10_1103_PhysRevResearch_1_033153
crossref_primary_10_1021_acsami_9b02771
crossref_primary_10_1021_acs_jpclett_2c00765
crossref_primary_10_1016_j_cplett_2021_138594
crossref_primary_10_1021_acs_jpclett_9b02620
crossref_primary_10_1021_acscatal_2c01959
crossref_primary_10_1016_j_mssp_2023_107779
crossref_primary_10_1039_D2CP03595B
crossref_primary_10_1063_5_0155086
crossref_primary_10_1016_j_cclet_2023_108270
crossref_primary_10_1016_j_mtadv_2020_100096
crossref_primary_10_1021_acs_nanolett_4c05033
crossref_primary_10_1016_j_ijhydene_2024_02_136
crossref_primary_10_1038_s41524_021_00669_4
crossref_primary_10_1039_D1TA01978C
crossref_primary_10_1039_D4TA08157A
crossref_primary_10_1039_D2TA04935J
crossref_primary_10_1039_D0RA05579D
crossref_primary_10_1016_j_ceja_2021_100148
crossref_primary_10_1039_D1YA00047K
crossref_primary_10_1039_D0TA07437C
crossref_primary_10_1088_1361_6463_ac2cac
crossref_primary_10_1016_j_physb_2025_416898
crossref_primary_10_1021_acscatal_9b04753
crossref_primary_10_1088_2399_1984_abacab
crossref_primary_10_1016_j_jallcom_2023_171075
crossref_primary_10_1016_j_susc_2024_122553
crossref_primary_10_1021_acs_jpclett_2c03742
crossref_primary_10_1016_j_jallcom_2024_174682
crossref_primary_10_1103_PhysRevMaterials_6_034010
crossref_primary_10_1063_1674_0068_cjcp2006081
crossref_primary_10_1016_j_cej_2023_144239
crossref_primary_10_1021_acs_jpcc_0c06833
crossref_primary_10_1016_j_ccr_2024_216177
crossref_primary_10_1016_j_trechm_2022_06_002
crossref_primary_10_1016_j_fuel_2023_127682
crossref_primary_10_1016_j_jssc_2020_121730
crossref_primary_10_1016_j_mtsust_2024_100989
crossref_primary_10_1021_acs_jpclett_9b00909
crossref_primary_10_1103_PhysRevB_107_155306
crossref_primary_10_1039_D1RA05840A
crossref_primary_10_3390_ma15062221
crossref_primary_10_1021_acscatal_2c04527
crossref_primary_10_1002_adma_201802106
crossref_primary_10_1088_2516_1075_ab3b28
crossref_primary_10_1021_acs_jpclett_9b00107
crossref_primary_10_1016_j_colsurfa_2021_127360
crossref_primary_10_1016_j_cej_2021_128911
crossref_primary_10_1039_D0CP03925J
crossref_primary_10_1021_acsami_2c07278
crossref_primary_10_1021_acs_jpclett_1c03586
crossref_primary_10_1021_acs_nanolett_4c00042
crossref_primary_10_1039_D1NJ02366G
crossref_primary_10_1016_j_apcatb_2019_118179
crossref_primary_10_3389_fchem_2022_879402
crossref_primary_10_1039_D0SC06132H
crossref_primary_10_1039_D1CP04679A
crossref_primary_10_1002_mgea_76
crossref_primary_10_1016_j_apcata_2020_117737
crossref_primary_10_3389_fchem_2024_1425306
crossref_primary_10_1039_D1CP04248C
crossref_primary_10_1088_1361_648X_ab5246
crossref_primary_10_1007_s11467_021_1054_0
crossref_primary_10_1039_D3MA00998J
crossref_primary_10_1016_j_jphotochem_2022_114263
crossref_primary_10_1021_acsami_4c03567
crossref_primary_10_1039_C9TA06407A
Cites_doi 10.1103/PhysRevLett.77.3865
10.1002/advs.201500389
10.1021/ja400238r
10.1126/science.aac9439
10.1038/nphoton.2012.175
10.1038/238037a0
10.1039/C3CS60425J
10.1021/cr00033a004
10.1021/cs4002089
10.1021/jp5069973
10.1021/jz502646d
10.1063/1.2204597
10.1038/nmat4205
10.1002/adma.201400288
10.1021/jacs.6b08725
10.1016/0927-0256(96)00008-0
10.1039/C6TA08769H
10.1021/jz400668d
10.1021/acs.jpclett.8b00446
10.1021/acs.jpclett.6b01802
10.1021/la100722w
10.1021/acs.nanolett.7b00748
10.1103/PhysRevLett.112.018301
10.1021/acs.nanolett.7b03429
10.1103/PhysRevB.96.134308
10.1103/PhysRevB.97.205417
10.1039/C5CS00729A
10.1039/C5NR00023H
10.1021/ct400641n
10.1021/jz1007966
10.1021/acs.jpclett.7b02779
10.1021/acsnano.6b08136
10.1021/acs.nanolett.5b05264
10.1038/ncomms5966
10.1016/0047-2670(79)80037-4
10.1038/nature12385
10.1002/jcc.20495
10.1021/ct400934c
10.1038/ncomms7486
10.1021/acs.jpclett.6b00757
10.1021/acs.nanolett.7b03933
10.1103/PhysRevB.50.17953
10.1103/PhysRevLett.95.163001
10.1103/PhysRevB.59.1758
10.1063/1.1564060
10.1038/nnano.2014.167
10.1038/nmat1734
10.1103/PhysRevB.54.11169
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acs.jpclett.8b02369
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1948-7185
EndPage 5424
ExternalDocumentID 30180588
10_1021_acs_jpclett_8b02369
c614501544
Genre Journal Article
GroupedDBID 53G
55A
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
DU5
EBS
ED
ED~
EJD
GNL
IH9
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
5VS
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
ID FETCH-LOGICAL-a411t-92807f40cb7e3850bd4d50bca14bd7fa4d9e7408510ed321e89cd426a45b9f5c3
IEDL.DBID ACS
ISSN 1948-7185
IngestDate Fri Jul 11 01:27:37 EDT 2025
Thu Apr 03 06:59:12 EDT 2025
Thu Apr 24 23:03:11 EDT 2025
Tue Jul 01 03:24:25 EDT 2025
Thu Aug 27 13:42:35 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a411t-92807f40cb7e3850bd4d50bca14bd7fa4d9e7408510ed321e89cd426a45b9f5c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5651-5340
0000-0003-0022-3442
0000-0002-7820-6020
0000-0003-1346-5280
PMID 30180588
PQID 2099894653
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_2099894653
pubmed_primary_30180588
crossref_citationtrail_10_1021_acs_jpclett_8b02369
crossref_primary_10_1021_acs_jpclett_8b02369
acs_journals_10_1021_acs_jpclett_8b02369
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-09-20
PublicationDateYYYYMMDD 2018-09-20
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-20
  day: 20
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The journal of physical chemistry letters
PublicationTitleAlternate J. Phys. Chem. Lett
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref46/cit46
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
References_xml – ident: ref32/cit32
  doi: 10.1103/PhysRevLett.77.3865
– ident: ref13/cit13
  doi: 10.1002/advs.201500389
– ident: ref15/cit15
  doi: 10.1021/ja400238r
– ident: ref21/cit21
  doi: 10.1126/science.aac9439
– ident: ref4/cit4
  doi: 10.1038/nphoton.2012.175
– ident: ref3/cit3
  doi: 10.1038/238037a0
– ident: ref2/cit2
  doi: 10.1039/C3CS60425J
– ident: ref1/cit1
  doi: 10.1021/cr00033a004
– ident: ref9/cit9
  doi: 10.1021/cs4002089
– ident: ref17/cit17
  doi: 10.1021/jp5069973
– ident: ref6/cit6
  doi: 10.1021/jz502646d
– ident: ref35/cit35
  doi: 10.1063/1.2204597
– ident: ref18/cit18
  doi: 10.1038/nmat4205
– ident: ref12/cit12
  doi: 10.1002/adma.201400288
– ident: ref38/cit38
  doi: 10.1021/jacs.6b08725
– ident: ref31/cit31
  doi: 10.1016/0927-0256(96)00008-0
– ident: ref27/cit27
  doi: 10.1039/C6TA08769H
– ident: ref19/cit19
  doi: 10.1021/jz400668d
– ident: ref45/cit45
  doi: 10.1021/acs.jpclett.8b00446
– ident: ref14/cit14
  doi: 10.1021/acs.jpclett.6b01802
– ident: ref16/cit16
  doi: 10.1021/la100722w
– ident: ref24/cit24
  doi: 10.1021/acs.nanolett.7b00748
– ident: ref8/cit8
  doi: 10.1103/PhysRevLett.112.018301
– ident: ref26/cit26
  doi: 10.1021/acs.nanolett.7b03429
– ident: ref42/cit42
  doi: 10.1103/PhysRevB.96.134308
– ident: ref43/cit43
  doi: 10.1103/PhysRevB.97.205417
– ident: ref7/cit7
  doi: 10.1039/C5CS00729A
– ident: ref48/cit48
  doi: 10.1039/C5NR00023H
– ident: ref40/cit40
  doi: 10.1021/ct400641n
– ident: ref5/cit5
  doi: 10.1021/jz1007966
– ident: ref22/cit22
  doi: 10.1021/acs.jpclett.7b02779
– ident: ref28/cit28
  doi: 10.1021/acsnano.6b08136
– ident: ref25/cit25
  doi: 10.1021/acs.nanolett.5b05264
– ident: ref47/cit47
  doi: 10.1038/ncomms5966
– ident: ref11/cit11
  doi: 10.1016/0047-2670(79)80037-4
– ident: ref20/cit20
  doi: 10.1038/nature12385
– ident: ref37/cit37
  doi: 10.1002/jcc.20495
– ident: ref41/cit41
  doi: 10.1021/ct400934c
– ident: ref29/cit29
  doi: 10.1038/ncomms7486
– ident: ref44/cit44
  doi: 10.1021/acs.jpclett.6b00757
– ident: ref46/cit46
  doi: 10.1021/acs.nanolett.7b03933
– ident: ref33/cit33
  doi: 10.1103/PhysRevB.50.17953
– ident: ref39/cit39
  doi: 10.1103/PhysRevLett.95.163001
– ident: ref34/cit34
  doi: 10.1103/PhysRevB.59.1758
– ident: ref36/cit36
  doi: 10.1063/1.1564060
– ident: ref23/cit23
  doi: 10.1038/nnano.2014.167
– ident: ref10/cit10
  doi: 10.1038/nmat1734
– ident: ref30/cit30
  doi: 10.1103/PhysRevB.54.11169
SSID ssj0069087
Score 2.5840058
Snippet Mimicking the natural photosynthesis in plants, Z-scheme water splitting is a promising strategy to improve photocatalytic activity. Searching for the direct...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5419
Title Direct Z‑Scheme Water Splitting Photocatalyst Based on Two-Dimensional Van Der Waals Heterostructures
URI http://dx.doi.org/10.1021/acs.jpclett.8b02369
https://www.ncbi.nlm.nih.gov/pubmed/30180588
https://www.proquest.com/docview/2099894653
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEF7RcGgvUEpbAhRtpR56wKl3veusjyFpFFVqVClQol6sfbmIh42wIwQn_gJ_kV_CrB9Ry0u5-GB5V9qZ2Xl4Zr5B6EsoBCNWMc-nSegx48OV4sR4jFOThCq0QeSak3-Ow9EB-zHl03-a1R9k8Cn5JnXeOT4HGhZFRygHeB69Qss0FF0Xa_X6k0bxQpxXzsODsFx4oHJ5AzL09CbOHOn8f3P0jI9Z2prhKho3HTtViclJZ1aojr5-DOC42DHeopXa68S9SkzW0JJN36HX_WbY2zr6W6k-_Ofu5nYCfDyz-BC80As8ASe1LI3Gv46yIiv_9lzlBd4D62dwluL9y8wbuBEBFbwH_i1TPICFhxIEG49ctU1WgdTOILJ_jw6G3_f7I6-eweBJRkjhRQ4tJ2G-Vl0bCO4rwww8tSRMmW4imYls16GkEd-agBIrIm3A6kvGVZRwHXxArTRL7QbCiiZCJ1SyJJKgKbTUjAcgCzyURJLQtNFXIFJc36E8LtPjlMTly4pycU25NqIN12JdY5m7kRqnLy_anS86r6A8Xv78cyMOMTDD5VFkarNZHrtuYxE5YLo2-ljJyXzDwAGicSE2Fz_MFnoDXlhZhEL9bdQClthP4OkUaqeU73tICvyr
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LbtQwFLVKWZQN5c1QHkYCiQUZYsfO2AsWZYZqSh9Cmimtugl-BcQjqZqMqrLiF_gHfoUf6Zf02kkGgaBiU4lNFlZsOb6v4_j6XIQepUIw4jSLYpqnEbMxmBQnNmKc2jzVqUukv5y8tZ2Od9irPb63gL53d2FgEhWMVIVD_J_sAuSZb_twAEtZ132hPe-5bFMpN9zxEWzUqufrI5DqY0rXXk6H46itJRApRkgdSc_6krPY6IFLBI-1ZRaeRhGm7SBXzEo38GxfJHY2ocQJaSxEL8W4ljk3CYx7AV0E-EP9Fm91OOn8PWwvQxk-IpmIwNPzjtvoz5P2UdBUv0bBv0DbEOLWltGP-eKEzJaP_Vmt--bLb7yR__vqXUGXW4yNVxujuIoWXHENLQ270nbX0bvG0eP9k6_fJqC1nx3eBcx9iCcAyUMiOH79vqzL8G_ruKrxC4j1FpcFnh6V0cgXRGjITPAbVeARdNxVYMZ47HOLyoaSd3boqhto51y-8yZaLMrC3UZY01yYnCqWSwV-0SjDeAKaz1NFFEltDz0BoWStx6iykAxASRYaG0llraR6iHbKkpmWud0XEPl0dqen804HDXHJ2a8_7LQwA2H4UyNVuHJWZf5utZCehq-HbjXqOR8w8fRvXIg7__4xD9DSeLq1mW2ub2-soEuAP0P6DY3vokUQj7sHGK_W94OJYfT2vLXyFOAzX2g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKkYBNecOUl5FAYkGG2LEz9oJFmWE0pVBVmpZW3QS_AoI2GTUZVWXFL_AX_Aq_wZdw7SQjgaBi0wWbLKzYsu_b9vW5CD1KhWDEaRbFNE8jZmNQKU5sxDi1eapTl0j_OPnNZjrZYa_2-N4S-ta9hYFJVDBSFS7xvVbPbN4iDJBnvv3jDMhZ132hPfa5bNMpN9zJMWzWqufrI-DsY0rHL7eHk6itJxApRkgdSY_8krPY6IFLBI-1ZRa-RhGm7SBXzEo38IhfJHY2ocQJaSx4MMW4ljk3CYx7Dp33F4V-m7c2nHY2H7aYoRQfkUxEYO15h2_050l7T2iqXz3hX8Lb4ObGl9H3BYFCdsun_rzWffP5N-zI_4GCV9BKG2vjtUY5rqIlV1xDF4ddibvr6H1j8PH-jy9fpyC9hw7vQux9hKcQmoeEcLz1oazLcMZ1UtX4Bfh8i8sCbx-X0cgXRmhATfBbVeARdNxVoM544nOMygaad37kqhto50zWeRMtF2XhbiOsaS5MThXLpQL7aJRhPAEN4KkiiqS2h54AU7LWclRZSAqgJAuNDaeyllM9RDuByUyL4O4LiRyc3unpotOsATA5_feHnSRmwAx_e6QKV86rzL-xFtLD8fXQrUZEFwMmHgaOC7H674t5gC5sjcbZ6_XNjTvoEoShIQuHxnfRMnDH3YNQr9b3g5Zh9O6shfInT6hh6w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+Z-Scheme+Water+Splitting+Photocatalyst+Based+on+Two-Dimensional+Van+Der+Waals+Heterostructures&rft.jtitle=The+journal+of+physical+chemistry+letters&rft.au=Zhang%2C+Ruiqi&rft.au=Zhang%2C+Lili&rft.au=Zheng%2C+Qijing&rft.au=Gao%2C+Pengfei&rft.date=2018-09-20&rft.issn=1948-7185&rft.eissn=1948-7185&rft.volume=9&rft.issue=18&rft.spage=5419&rft_id=info:doi/10.1021%2Facs.jpclett.8b02369&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1948-7185&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1948-7185&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1948-7185&client=summon