Direct Z‑Scheme Water Splitting Photocatalyst Based on Two-Dimensional Van Der Waals Heterostructures
Mimicking the natural photosynthesis in plants, Z-scheme water splitting is a promising strategy to improve photocatalytic activity. Searching for the direct Z-scheme photocatalysts is urgent and the crucial factor for the photocatalytic efficiency is the photogenerated electron–hole (e–h) recombina...
Saved in:
Published in | The journal of physical chemistry letters Vol. 9; no. 18; pp. 5419 - 5424 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
20.09.2018
|
Online Access | Get full text |
Cover
Loading…
Abstract | Mimicking the natural photosynthesis in plants, Z-scheme water splitting is a promising strategy to improve photocatalytic activity. Searching for the direct Z-scheme photocatalysts is urgent and the crucial factor for the photocatalytic efficiency is the photogenerated electron–hole (e–h) recombination rate at the interface of two photosystems. In this report, based on time-dependent ab initio nonadiabatic molecular dynamics (NAMD) investigation, we first report a two-dimensional (2D) metal-free van der Waals (vdW) heterostructure consisting of monolayer BCN and C2N as a promising candidate for direct Z-scheme photocatalysts for water splitting. It is shown that the time scale of e–h recombination of BCN/C2N is within 2 ps. Among such e–h recombination events, more than 85% are through the e–h recombination at the interface. NAMD simulations based on frozen phonon method prove that such an ultrafast interlayer e–h recombination is assisted by intralayer optical phonon modes and the interlayer shear phonon mode induced by vdW interaction. In these crucial phonon modes, the interlayer relative movements which are lacking in traditional heterostructures with strong interactions, yet exist generally in various 2D vdW heterostructures, are significant. Our results prove that the 2D vdW heterostructure family is convincing for a new type of direct Z-scheme photocatalysts searching. |
---|---|
AbstractList | Mimicking the natural photosynthesis in plants, Z-scheme water splitting is a promising strategy to improve photocatalytic activity. Searching for the direct Z-scheme photocatalysts is urgent and the crucial factor for the photocatalytic efficiency is the photogenerated electron-hole ( e-h) recombination rate at the interface of two photosystems. In this report, based on time-dependent ab initio nonadiabatic molecular dynamics (NAMD) investigation, we first report a two-dimensional (2D) metal-free van der Waals (vdW) heterostructure consisting of monolayer BCN and C2N as a promising candidate for direct Z-scheme photocatalysts for water splitting. It is shown that the time scale of e-h recombination of BCN/C2N is within 2 ps. Among such e-h recombination events, more than 85% are through the e-h recombination at the interface. NAMD simulations based on frozen phonon method prove that such an ultrafast interlayer e-h recombination is assisted by intralayer optical phonon modes and the interlayer shear phonon mode induced by vdW interaction. In these crucial phonon modes, the interlayer relative movements which are lacking in traditional heterostructures with strong interactions, yet exist generally in various 2D vdW heterostructures, are significant. Our results prove that the 2D vdW heterostructure family is convincing for a new type of direct Z-scheme photocatalysts searching.Mimicking the natural photosynthesis in plants, Z-scheme water splitting is a promising strategy to improve photocatalytic activity. Searching for the direct Z-scheme photocatalysts is urgent and the crucial factor for the photocatalytic efficiency is the photogenerated electron-hole ( e-h) recombination rate at the interface of two photosystems. In this report, based on time-dependent ab initio nonadiabatic molecular dynamics (NAMD) investigation, we first report a two-dimensional (2D) metal-free van der Waals (vdW) heterostructure consisting of monolayer BCN and C2N as a promising candidate for direct Z-scheme photocatalysts for water splitting. It is shown that the time scale of e-h recombination of BCN/C2N is within 2 ps. Among such e-h recombination events, more than 85% are through the e-h recombination at the interface. NAMD simulations based on frozen phonon method prove that such an ultrafast interlayer e-h recombination is assisted by intralayer optical phonon modes and the interlayer shear phonon mode induced by vdW interaction. In these crucial phonon modes, the interlayer relative movements which are lacking in traditional heterostructures with strong interactions, yet exist generally in various 2D vdW heterostructures, are significant. Our results prove that the 2D vdW heterostructure family is convincing for a new type of direct Z-scheme photocatalysts searching. Mimicking the natural photosynthesis in plants, Z-scheme water splitting is a promising strategy to improve photocatalytic activity. Searching for the direct Z-scheme photocatalysts is urgent and the crucial factor for the photocatalytic efficiency is the photogenerated electron-hole ( e-h) recombination rate at the interface of two photosystems. In this report, based on time-dependent ab initio nonadiabatic molecular dynamics (NAMD) investigation, we first report a two-dimensional (2D) metal-free van der Waals (vdW) heterostructure consisting of monolayer BCN and C N as a promising candidate for direct Z-scheme photocatalysts for water splitting. It is shown that the time scale of e-h recombination of BCN/C N is within 2 ps. Among such e-h recombination events, more than 85% are through the e-h recombination at the interface. NAMD simulations based on frozen phonon method prove that such an ultrafast interlayer e-h recombination is assisted by intralayer optical phonon modes and the interlayer shear phonon mode induced by vdW interaction. In these crucial phonon modes, the interlayer relative movements which are lacking in traditional heterostructures with strong interactions, yet exist generally in various 2D vdW heterostructures, are significant. Our results prove that the 2D vdW heterostructure family is convincing for a new type of direct Z-scheme photocatalysts searching. Mimicking the natural photosynthesis in plants, Z-scheme water splitting is a promising strategy to improve photocatalytic activity. Searching for the direct Z-scheme photocatalysts is urgent and the crucial factor for the photocatalytic efficiency is the photogenerated electron–hole (e–h) recombination rate at the interface of two photosystems. In this report, based on time-dependent ab initio nonadiabatic molecular dynamics (NAMD) investigation, we first report a two-dimensional (2D) metal-free van der Waals (vdW) heterostructure consisting of monolayer BCN and C2N as a promising candidate for direct Z-scheme photocatalysts for water splitting. It is shown that the time scale of e–h recombination of BCN/C2N is within 2 ps. Among such e–h recombination events, more than 85% are through the e–h recombination at the interface. NAMD simulations based on frozen phonon method prove that such an ultrafast interlayer e–h recombination is assisted by intralayer optical phonon modes and the interlayer shear phonon mode induced by vdW interaction. In these crucial phonon modes, the interlayer relative movements which are lacking in traditional heterostructures with strong interactions, yet exist generally in various 2D vdW heterostructures, are significant. Our results prove that the 2D vdW heterostructure family is convincing for a new type of direct Z-scheme photocatalysts searching. |
Author | Zhang, Lili Gao, Pengfei Zhao, Jin Zhang, Ruiqi Zheng, Qijing Yang, Jinlong |
AuthorAffiliation | University of Science and Technology of China Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, and Department of Physics Hefei National Laboratory for Physical Sciences at the Microscale Synergetic Innovation Center of Quantum Information & Quantum Physics |
AuthorAffiliation_xml | – name: University of Science and Technology of China – name: Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, and Department of Physics – name: Synergetic Innovation Center of Quantum Information & Quantum Physics – name: Hefei National Laboratory for Physical Sciences at the Microscale |
Author_xml | – sequence: 1 givenname: Ruiqi orcidid: 0000-0002-7820-6020 surname: Zhang fullname: Zhang, Ruiqi organization: Hefei National Laboratory for Physical Sciences at the Microscale – sequence: 2 givenname: Lili surname: Zhang fullname: Zhang, Lili organization: Hefei National Laboratory for Physical Sciences at the Microscale – sequence: 3 givenname: Qijing orcidid: 0000-0003-0022-3442 surname: Zheng fullname: Zheng, Qijing organization: Hefei National Laboratory for Physical Sciences at the Microscale – sequence: 4 givenname: Pengfei surname: Gao fullname: Gao, Pengfei organization: Hefei National Laboratory for Physical Sciences at the Microscale – sequence: 5 givenname: Jin orcidid: 0000-0003-1346-5280 surname: Zhao fullname: Zhao, Jin email: zhaojin@ustc.edu.cn organization: University of Science and Technology of China – sequence: 6 givenname: Jinlong orcidid: 0000-0002-5651-5340 surname: Yang fullname: Yang, Jinlong email: jlyang@ustc.edu.cn organization: University of Science and Technology of China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30180588$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc9O3DAQxq2KCljgCSpVPvaSxU6cjX0ElnaRkIrEn5W4WBNnshgl8dZ2VHHjFXjFPklddpEqDlzGo_H3-6SZb0J2BjcgIV84m3KW82MwYfq4Nh3GOJU1y4uZ-kT2uRIyq7gsd_7r98gkhEfGZorJapfsFYxLVkq5T1Zz69FEev_n-eXaPGCPdAkRPb1edzZGO6zo1YOLzkCE7ilEegoBG-oGevPbZXPb4xCsG6CjdzDQeQKXAF2gC0wmLkQ_mjh6DIfkc5vmeLR9D8jt9_Obs0V2-fPHxdnJZQaC85ipXLKqFczUFRayZHUjmlQNcFE3VQuiUVgJJkvOsClyjlKZRuQzEGWt2tIUB-Tbxnft3a8RQ9S9DQa7DgZ0Y9A5U0oqMSuLJP26lY51j41ee9uDf9Jvx0kCtRGYtEnw2GpjI8S0bvRgO82Z_heETkHobRB6G0Rii3fsm_3H1PGGev10o0-HDR8SfwGog6JX |
CitedBy_id | crossref_primary_10_1039_D1CP04352H crossref_primary_10_1021_acs_jpclett_2c02196 crossref_primary_10_1016_j_ijhydene_2023_07_288 crossref_primary_10_1016_j_ijhydene_2020_08_008 crossref_primary_10_1016_j_mattod_2021_02_017 crossref_primary_10_1021_acs_jpcc_3c04506 crossref_primary_10_1039_D1NR05889D crossref_primary_10_1021_jacs_0c00564 crossref_primary_10_2139_ssrn_4098270 crossref_primary_10_1021_acs_jpca_9b08726 crossref_primary_10_1039_D4TA07893D crossref_primary_10_1039_D1CP00347J crossref_primary_10_1021_acs_jpcc_4c03902 crossref_primary_10_1039_D3EE03282E crossref_primary_10_1039_D4NR04545A crossref_primary_10_1063_5_0160594 crossref_primary_10_1002_adma_202105195 crossref_primary_10_1021_acs_jpclett_2c02189 crossref_primary_10_1109_ACCESS_2020_3037036 crossref_primary_10_1063_5_0118013 crossref_primary_10_1039_D1NJ05279A crossref_primary_10_1016_j_mtadv_2020_100059 crossref_primary_10_1103_PhysRevB_103_245411 crossref_primary_10_1016_j_ijhydene_2024_04_118 crossref_primary_10_1039_C9NR03469B crossref_primary_10_1039_D0TA11510J crossref_primary_10_1088_1361_6463_ac16a4 crossref_primary_10_1016_j_mattod_2024_10_006 crossref_primary_10_1021_acs_jpcc_2c06171 crossref_primary_10_1016_j_apsusc_2022_153025 crossref_primary_10_1021_acs_jpca_0c10897 crossref_primary_10_1039_D4NR03384A crossref_primary_10_1109_ACCESS_2021_3102190 crossref_primary_10_1021_acs_jpclett_3c02784 crossref_primary_10_1021_jacs_2c08054 crossref_primary_10_1039_D2CP03764E crossref_primary_10_1021_acs_jpclett_1c00023 crossref_primary_10_1039_D1NA00154J crossref_primary_10_1039_D3NR00429E crossref_primary_10_1002_qua_26120 crossref_primary_10_1002_sstr_202000061 crossref_primary_10_1016_j_ijhydene_2022_04_059 crossref_primary_10_1039_D1RA05521F crossref_primary_10_1039_D0CP04219F crossref_primary_10_1016_j_nanoen_2022_107401 crossref_primary_10_1039_D2EY00031H crossref_primary_10_1088_1361_6463_ac5771 crossref_primary_10_1002_pssr_201900582 crossref_primary_10_1063_5_0079803 crossref_primary_10_1103_PhysRevB_99_165309 crossref_primary_10_1039_D3TA01479G crossref_primary_10_1103_PhysRevApplied_22_034064 crossref_primary_10_1016_j_apsusc_2024_161057 crossref_primary_10_1002_adfm_202004293 crossref_primary_10_3390_molecules29122793 crossref_primary_10_1016_j_cclet_2023_108724 crossref_primary_10_1021_acs_jpclett_4c01162 crossref_primary_10_1021_acsami_4c14255 crossref_primary_10_1016_j_jes_2021_11_040 crossref_primary_10_1021_acs_jpcc_1c00861 crossref_primary_10_1063_5_0070269 crossref_primary_10_1039_D4NJ00204K crossref_primary_10_1039_C9NR03218E crossref_primary_10_1039_D0TC00852D crossref_primary_10_1039_D3CC05976F crossref_primary_10_1080_02603594_2023_2285064 crossref_primary_10_1103_PhysRevResearch_1_033153 crossref_primary_10_1021_acsami_9b02771 crossref_primary_10_1021_acs_jpclett_2c00765 crossref_primary_10_1016_j_cplett_2021_138594 crossref_primary_10_1021_acs_jpclett_9b02620 crossref_primary_10_1021_acscatal_2c01959 crossref_primary_10_1016_j_mssp_2023_107779 crossref_primary_10_1039_D2CP03595B crossref_primary_10_1063_5_0155086 crossref_primary_10_1016_j_cclet_2023_108270 crossref_primary_10_1016_j_mtadv_2020_100096 crossref_primary_10_1021_acs_nanolett_4c05033 crossref_primary_10_1016_j_ijhydene_2024_02_136 crossref_primary_10_1038_s41524_021_00669_4 crossref_primary_10_1039_D1TA01978C crossref_primary_10_1039_D4TA08157A crossref_primary_10_1039_D2TA04935J crossref_primary_10_1039_D0RA05579D crossref_primary_10_1016_j_ceja_2021_100148 crossref_primary_10_1039_D1YA00047K crossref_primary_10_1039_D0TA07437C crossref_primary_10_1088_1361_6463_ac2cac crossref_primary_10_1016_j_physb_2025_416898 crossref_primary_10_1021_acscatal_9b04753 crossref_primary_10_1088_2399_1984_abacab crossref_primary_10_1016_j_jallcom_2023_171075 crossref_primary_10_1016_j_susc_2024_122553 crossref_primary_10_1021_acs_jpclett_2c03742 crossref_primary_10_1016_j_jallcom_2024_174682 crossref_primary_10_1103_PhysRevMaterials_6_034010 crossref_primary_10_1063_1674_0068_cjcp2006081 crossref_primary_10_1016_j_cej_2023_144239 crossref_primary_10_1021_acs_jpcc_0c06833 crossref_primary_10_1016_j_ccr_2024_216177 crossref_primary_10_1016_j_trechm_2022_06_002 crossref_primary_10_1016_j_fuel_2023_127682 crossref_primary_10_1016_j_jssc_2020_121730 crossref_primary_10_1016_j_mtsust_2024_100989 crossref_primary_10_1021_acs_jpclett_9b00909 crossref_primary_10_1103_PhysRevB_107_155306 crossref_primary_10_1039_D1RA05840A crossref_primary_10_3390_ma15062221 crossref_primary_10_1021_acscatal_2c04527 crossref_primary_10_1002_adma_201802106 crossref_primary_10_1088_2516_1075_ab3b28 crossref_primary_10_1021_acs_jpclett_9b00107 crossref_primary_10_1016_j_colsurfa_2021_127360 crossref_primary_10_1016_j_cej_2021_128911 crossref_primary_10_1039_D0CP03925J crossref_primary_10_1021_acsami_2c07278 crossref_primary_10_1021_acs_jpclett_1c03586 crossref_primary_10_1021_acs_nanolett_4c00042 crossref_primary_10_1039_D1NJ02366G crossref_primary_10_1016_j_apcatb_2019_118179 crossref_primary_10_3389_fchem_2022_879402 crossref_primary_10_1039_D0SC06132H crossref_primary_10_1039_D1CP04679A crossref_primary_10_1002_mgea_76 crossref_primary_10_1016_j_apcata_2020_117737 crossref_primary_10_3389_fchem_2024_1425306 crossref_primary_10_1039_D1CP04248C crossref_primary_10_1088_1361_648X_ab5246 crossref_primary_10_1007_s11467_021_1054_0 crossref_primary_10_1039_D3MA00998J crossref_primary_10_1016_j_jphotochem_2022_114263 crossref_primary_10_1021_acsami_4c03567 crossref_primary_10_1039_C9TA06407A |
Cites_doi | 10.1103/PhysRevLett.77.3865 10.1002/advs.201500389 10.1021/ja400238r 10.1126/science.aac9439 10.1038/nphoton.2012.175 10.1038/238037a0 10.1039/C3CS60425J 10.1021/cr00033a004 10.1021/cs4002089 10.1021/jp5069973 10.1021/jz502646d 10.1063/1.2204597 10.1038/nmat4205 10.1002/adma.201400288 10.1021/jacs.6b08725 10.1016/0927-0256(96)00008-0 10.1039/C6TA08769H 10.1021/jz400668d 10.1021/acs.jpclett.8b00446 10.1021/acs.jpclett.6b01802 10.1021/la100722w 10.1021/acs.nanolett.7b00748 10.1103/PhysRevLett.112.018301 10.1021/acs.nanolett.7b03429 10.1103/PhysRevB.96.134308 10.1103/PhysRevB.97.205417 10.1039/C5CS00729A 10.1039/C5NR00023H 10.1021/ct400641n 10.1021/jz1007966 10.1021/acs.jpclett.7b02779 10.1021/acsnano.6b08136 10.1021/acs.nanolett.5b05264 10.1038/ncomms5966 10.1016/0047-2670(79)80037-4 10.1038/nature12385 10.1002/jcc.20495 10.1021/ct400934c 10.1038/ncomms7486 10.1021/acs.jpclett.6b00757 10.1021/acs.nanolett.7b03933 10.1103/PhysRevB.50.17953 10.1103/PhysRevLett.95.163001 10.1103/PhysRevB.59.1758 10.1063/1.1564060 10.1038/nnano.2014.167 10.1038/nmat1734 10.1103/PhysRevB.54.11169 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acs.jpclett.8b02369 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1948-7185 |
EndPage | 5424 |
ExternalDocumentID | 30180588 10_1021_acs_jpclett_8b02369 c614501544 |
Genre | Journal Article |
GroupedDBID | 53G 55A 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ DU5 EBS ED ED~ EJD GNL IH9 JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ 5VS AAYXX ABBLG ABJNI ABLBI ABQRX ACGFO ADHLV AHGAQ BAANH CITATION CUPRZ GGK NPM 7X8 |
ID | FETCH-LOGICAL-a411t-92807f40cb7e3850bd4d50bca14bd7fa4d9e7408510ed321e89cd426a45b9f5c3 |
IEDL.DBID | ACS |
ISSN | 1948-7185 |
IngestDate | Fri Jul 11 01:27:37 EDT 2025 Thu Apr 03 06:59:12 EDT 2025 Thu Apr 24 23:03:11 EDT 2025 Tue Jul 01 03:24:25 EDT 2025 Thu Aug 27 13:42:35 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a411t-92807f40cb7e3850bd4d50bca14bd7fa4d9e7408510ed321e89cd426a45b9f5c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5651-5340 0000-0003-0022-3442 0000-0002-7820-6020 0000-0003-1346-5280 |
PMID | 30180588 |
PQID | 2099894653 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2099894653 pubmed_primary_30180588 crossref_citationtrail_10_1021_acs_jpclett_8b02369 crossref_primary_10_1021_acs_jpclett_8b02369 acs_journals_10_1021_acs_jpclett_8b02369 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-09-20 |
PublicationDateYYYYMMDD | 2018-09-20 |
PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The journal of physical chemistry letters |
PublicationTitleAlternate | J. Phys. Chem. Lett |
PublicationYear | 2018 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref46/cit46 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref24/cit24 ref38/cit38 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref32/cit32 doi: 10.1103/PhysRevLett.77.3865 – ident: ref13/cit13 doi: 10.1002/advs.201500389 – ident: ref15/cit15 doi: 10.1021/ja400238r – ident: ref21/cit21 doi: 10.1126/science.aac9439 – ident: ref4/cit4 doi: 10.1038/nphoton.2012.175 – ident: ref3/cit3 doi: 10.1038/238037a0 – ident: ref2/cit2 doi: 10.1039/C3CS60425J – ident: ref1/cit1 doi: 10.1021/cr00033a004 – ident: ref9/cit9 doi: 10.1021/cs4002089 – ident: ref17/cit17 doi: 10.1021/jp5069973 – ident: ref6/cit6 doi: 10.1021/jz502646d – ident: ref35/cit35 doi: 10.1063/1.2204597 – ident: ref18/cit18 doi: 10.1038/nmat4205 – ident: ref12/cit12 doi: 10.1002/adma.201400288 – ident: ref38/cit38 doi: 10.1021/jacs.6b08725 – ident: ref31/cit31 doi: 10.1016/0927-0256(96)00008-0 – ident: ref27/cit27 doi: 10.1039/C6TA08769H – ident: ref19/cit19 doi: 10.1021/jz400668d – ident: ref45/cit45 doi: 10.1021/acs.jpclett.8b00446 – ident: ref14/cit14 doi: 10.1021/acs.jpclett.6b01802 – ident: ref16/cit16 doi: 10.1021/la100722w – ident: ref24/cit24 doi: 10.1021/acs.nanolett.7b00748 – ident: ref8/cit8 doi: 10.1103/PhysRevLett.112.018301 – ident: ref26/cit26 doi: 10.1021/acs.nanolett.7b03429 – ident: ref42/cit42 doi: 10.1103/PhysRevB.96.134308 – ident: ref43/cit43 doi: 10.1103/PhysRevB.97.205417 – ident: ref7/cit7 doi: 10.1039/C5CS00729A – ident: ref48/cit48 doi: 10.1039/C5NR00023H – ident: ref40/cit40 doi: 10.1021/ct400641n – ident: ref5/cit5 doi: 10.1021/jz1007966 – ident: ref22/cit22 doi: 10.1021/acs.jpclett.7b02779 – ident: ref28/cit28 doi: 10.1021/acsnano.6b08136 – ident: ref25/cit25 doi: 10.1021/acs.nanolett.5b05264 – ident: ref47/cit47 doi: 10.1038/ncomms5966 – ident: ref11/cit11 doi: 10.1016/0047-2670(79)80037-4 – ident: ref20/cit20 doi: 10.1038/nature12385 – ident: ref37/cit37 doi: 10.1002/jcc.20495 – ident: ref41/cit41 doi: 10.1021/ct400934c – ident: ref29/cit29 doi: 10.1038/ncomms7486 – ident: ref44/cit44 doi: 10.1021/acs.jpclett.6b00757 – ident: ref46/cit46 doi: 10.1021/acs.nanolett.7b03933 – ident: ref33/cit33 doi: 10.1103/PhysRevB.50.17953 – ident: ref39/cit39 doi: 10.1103/PhysRevLett.95.163001 – ident: ref34/cit34 doi: 10.1103/PhysRevB.59.1758 – ident: ref36/cit36 doi: 10.1063/1.1564060 – ident: ref23/cit23 doi: 10.1038/nnano.2014.167 – ident: ref10/cit10 doi: 10.1038/nmat1734 – ident: ref30/cit30 doi: 10.1103/PhysRevB.54.11169 |
SSID | ssj0069087 |
Score | 2.5840058 |
Snippet | Mimicking the natural photosynthesis in plants, Z-scheme water splitting is a promising strategy to improve photocatalytic activity. Searching for the direct... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5419 |
Title | Direct Z‑Scheme Water Splitting Photocatalyst Based on Two-Dimensional Van Der Waals Heterostructures |
URI | http://dx.doi.org/10.1021/acs.jpclett.8b02369 https://www.ncbi.nlm.nih.gov/pubmed/30180588 https://www.proquest.com/docview/2099894653 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEF7RcGgvUEpbAhRtpR56wKl3veusjyFpFFVqVClQol6sfbmIh42wIwQn_gJ_kV_CrB9Ry0u5-GB5V9qZ2Xl4Zr5B6EsoBCNWMc-nSegx48OV4sR4jFOThCq0QeSak3-Ow9EB-zHl03-a1R9k8Cn5JnXeOT4HGhZFRygHeB69Qss0FF0Xa_X6k0bxQpxXzsODsFx4oHJ5AzL09CbOHOn8f3P0jI9Z2prhKho3HTtViclJZ1aojr5-DOC42DHeopXa68S9SkzW0JJN36HX_WbY2zr6W6k-_Ofu5nYCfDyz-BC80As8ASe1LI3Gv46yIiv_9lzlBd4D62dwluL9y8wbuBEBFbwH_i1TPICFhxIEG49ctU1WgdTOILJ_jw6G3_f7I6-eweBJRkjhRQ4tJ2G-Vl0bCO4rwww8tSRMmW4imYls16GkEd-agBIrIm3A6kvGVZRwHXxArTRL7QbCiiZCJ1SyJJKgKbTUjAcgCzyURJLQtNFXIFJc36E8LtPjlMTly4pycU25NqIN12JdY5m7kRqnLy_anS86r6A8Xv78cyMOMTDD5VFkarNZHrtuYxE5YLo2-ljJyXzDwAGicSE2Fz_MFnoDXlhZhEL9bdQClthP4OkUaqeU73tICvyr |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LbtQwFLVKWZQN5c1QHkYCiQUZYsfO2AsWZYZqSh9Cmimtugl-BcQjqZqMqrLiF_gHfoUf6Zf02kkGgaBiU4lNFlZsOb6v4_j6XIQepUIw4jSLYpqnEbMxmBQnNmKc2jzVqUukv5y8tZ2Od9irPb63gL53d2FgEhWMVIVD_J_sAuSZb_twAEtZ132hPe-5bFMpN9zxEWzUqufrI5DqY0rXXk6H46itJRApRkgdSc_6krPY6IFLBI-1ZRaeRhGm7SBXzEo38GxfJHY2ocQJaSxEL8W4ljk3CYx7AV0E-EP9Fm91OOn8PWwvQxk-IpmIwNPzjtvoz5P2UdBUv0bBv0DbEOLWltGP-eKEzJaP_Vmt--bLb7yR__vqXUGXW4yNVxujuIoWXHENLQ270nbX0bvG0eP9k6_fJqC1nx3eBcx9iCcAyUMiOH79vqzL8G_ruKrxC4j1FpcFnh6V0cgXRGjITPAbVeARdNxVYMZ47HOLyoaSd3boqhto51y-8yZaLMrC3UZY01yYnCqWSwV-0SjDeAKaz1NFFEltDz0BoWStx6iykAxASRYaG0llraR6iHbKkpmWud0XEPl0dqen804HDXHJ2a8_7LQwA2H4UyNVuHJWZf5utZCehq-HbjXqOR8w8fRvXIg7__4xD9DSeLq1mW2ub2-soEuAP0P6DY3vokUQj7sHGK_W94OJYfT2vLXyFOAzX2g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKkYBNecOUl5FAYkGG2LEz9oJFmWE0pVBVmpZW3QS_AoI2GTUZVWXFL_AX_Aq_wZdw7SQjgaBi0wWbLKzYsu_b9vW5CD1KhWDEaRbFNE8jZmNQKU5sxDi1eapTl0j_OPnNZjrZYa_2-N4S-ta9hYFJVDBSFS7xvVbPbN4iDJBnvv3jDMhZ132hPfa5bNMpN9zJMWzWqufrI-DsY0rHL7eHk6itJxApRkgdSY_8krPY6IFLBI-1ZRa-RhGm7SBXzEo38IhfJHY2ocQJaSx4MMW4ljk3CYx7Dp33F4V-m7c2nHY2H7aYoRQfkUxEYO15h2_050l7T2iqXz3hX8Lb4ObGl9H3BYFCdsun_rzWffP5N-zI_4GCV9BKG2vjtUY5rqIlV1xDF4ddibvr6H1j8PH-jy9fpyC9hw7vQux9hKcQmoeEcLz1oazLcMZ1UtX4Bfh8i8sCbx-X0cgXRmhATfBbVeARdNxVoM544nOMygaad37kqhto50zWeRMtF2XhbiOsaS5MThXLpQL7aJRhPAEN4KkiiqS2h54AU7LWclRZSAqgJAuNDaeyllM9RDuByUyL4O4LiRyc3unpotOsATA5_feHnSRmwAx_e6QKV86rzL-xFtLD8fXQrUZEFwMmHgaOC7H674t5gC5sjcbZ6_XNjTvoEoShIQuHxnfRMnDH3YNQr9b3g5Zh9O6shfInT6hh6w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+Z-Scheme+Water+Splitting+Photocatalyst+Based+on+Two-Dimensional+Van+Der+Waals+Heterostructures&rft.jtitle=The+journal+of+physical+chemistry+letters&rft.au=Zhang%2C+Ruiqi&rft.au=Zhang%2C+Lili&rft.au=Zheng%2C+Qijing&rft.au=Gao%2C+Pengfei&rft.date=2018-09-20&rft.issn=1948-7185&rft.eissn=1948-7185&rft.volume=9&rft.issue=18&rft.spage=5419&rft_id=info:doi/10.1021%2Facs.jpclett.8b02369&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1948-7185&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1948-7185&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1948-7185&client=summon |