Phase Transformation Mechanism of Amorphous Calcium Phosphate to Hydroxyapatite Investigated by Liquid-Cell Transmission Electron Microscopy
Crystallization via phase transformation of a metastable precursor is a ubiquitous and effective strategy used by living systems to direct the growth of crystalline nanomaterials with remarkable functional properties. However, determining the exact process by which transformation occurs at the nanos...
Saved in:
Published in | Crystal growth & design Vol. 21; no. 9; pp. 5126 - 5134 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
01.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Crystallization via phase transformation of a metastable precursor is a ubiquitous and effective strategy used by living systems to direct the growth of crystalline nanomaterials with remarkable functional properties. However, determining the exact process by which transformation occurs at the nanoscale is a difficult challenge. Here, the recrystallization process of amorphous calcium phosphate (ACP) to hydroxyapatite (HAP) is explored by liquid-cell transmission electron microscopy. The effect of confinement in the liquid-cell is found to increase the size of ACP nanoparticles. In the presence of Mg2+, these large ACP nanoparticles transform to HAP by first dissolving from the interior to create a hollow structure, after which HAP forms preferentially on the surface and then subsequently in the bulk solution. We propose that the preferential dissolution within ACP particles is due to a change in the structure and/or chemistry of the ACP surface, likely associated with dehydration before crystallization of HAP. These results imply an important role of the confined environment of the liquid-cell in regulating the size of ACP particles, which then affects the surface structure and the detailed dissolution–recrystallization pathway. Moreover, we stress the key role of Mg2+ in controlling HAP formation by stabilizing ACP via reduction in ACP solubility. This work provides a better understanding of the roles of additives and confinement during the phase transformation of ACP to HAP through dissolution and recrystallization. |
---|---|
AbstractList | Crystallization via phase transformation of a metastable precursor is a ubiquitous and effective strategy used by living systems to direct the growth of crystalline nanomaterials with remarkable functional properties. However, determining the exact process by which transformation occurs at the nanoscale is a difficult challenge. Here, the recrystallization process of amorphous calcium phosphate (ACP) to hydroxyapatite (HAP) is explored by liquid-cell transmission electron microscopy. The effect of confinement in the liquid-cell is found to increase the size of ACP nanoparticles. In the presence of Mg2+, these large ACP nanoparticles transform to HAP by first dissolving from the interior to create a hollow structure, after which HAP forms preferentially on the surface and then subsequently in the bulk solution. We propose that the preferential dissolution within ACP particles is due to a change in the structure and/or chemistry of the ACP surface, likely associated with dehydration before crystallization of HAP. These results imply an important role of the confined environment of the liquid-cell in regulating the size of ACP particles, which then affects the surface structure and the detailed dissolution–recrystallization pathway. Moreover, we stress the key role of Mg2+ in controlling HAP formation by stabilizing ACP via reduction in ACP solubility. This work provides a better understanding of the roles of additives and confinement during the phase transformation of ACP to HAP through dissolution and recrystallization. Crystallization via phase transformation of a metastable precursor is a ubiquitous and effective strategy used by living systems to direct the growth of crystalline nanomaterials with remarkable functional properties. However, determining the exact process by which transformation occurs at the nanoscale is a difficult challenge. In this work, the recrystallization process of amorphous calcium phosphate (ACP) to hydroxyapatite (HAP) is explored by liquid-cell transmission electron microscopy. The effect of confinement in the liquid-cell is found to increase the size of ACP nanoparticles. In the presence of Mg2+, these large ACP nanoparticles transform to HAP by first dissolving from the interior to create a hollow structure, after which HAP forms preferentially on the surface and then subsequently in the bulk solution. We propose that the preferential dissolution within ACP particles is due to a change in the structure and/or chemistry of the ACP surface, likely associated with dehydration before crystallization of HAP. These results imply an important role of the confined environment of the liquid-cell in regulating the size of ACP particles, which then affects the surface structure and the detailed dissolution–recrystallization pathway. Moreover, we stress the key role of Mg2+ in controlling HAP formation by stabilizing ACP via reduction in ACP solubility. This work provides a better understanding of the roles of additives and confinement during the phase transformation of ACP to HAP through dissolution and recrystallization. |
Author | Jin, Biao Liu, Zhaoming Liu, Lili Shao, Changyu Chen, Jiajun Tang, Ruikang De Yoreo, James J |
AuthorAffiliation | Department of Chemistry Physical Sciences Division Department of Materials Science and Engineering University of Washington |
AuthorAffiliation_xml | – name: Department of Chemistry – name: Physical Sciences Division – name: Department of Materials Science and Engineering – name: University of Washington |
Author_xml | – sequence: 1 givenname: Biao surname: Jin fullname: Jin, Biao organization: Physical Sciences Division – sequence: 2 givenname: Zhaoming orcidid: 0000-0002-7564-6207 surname: Liu fullname: Liu, Zhaoming organization: Department of Chemistry – sequence: 3 givenname: Changyu surname: Shao fullname: Shao, Changyu organization: Department of Chemistry – sequence: 4 givenname: Jiajun surname: Chen fullname: Chen, Jiajun organization: Physical Sciences Division – sequence: 5 givenname: Lili orcidid: 0000-0002-9595-4303 surname: Liu fullname: Liu, Lili organization: Physical Sciences Division – sequence: 6 givenname: Ruikang orcidid: 0000-0001-5277-7338 surname: Tang fullname: Tang, Ruikang email: rtang@zju.edu.cn organization: Department of Chemistry – sequence: 7 givenname: James J orcidid: 0000-0002-9194-6699 surname: De Yoreo fullname: De Yoreo, James J email: James.DeYoreo@pnnl.gov organization: University of Washington |
BackLink | https://www.osti.gov/servlets/purl/1824302$$D View this record in Osti.gov |
BookMark | eNp9kL1OwzAUhS1UJNrCzGqxohT_hSQjqoAiFdEB5ujiOMRVYgc7QeQdeGgcAgsSTLZ8z7nn-FugmbFGIXRKyYoSRi9A-pV8KVZUEhITfoDmNGZplMQknv3cRcqP0ML7PSEkueR8jj52FXiFHx0YX1rXQKetwfdKVmC0b7At8VVjXVvZ3uM11FL3Dd5V1rcVdAp3Fm-Gwtn3AdpgDS935k35Tr-EaYGfB7zVr70uorWq6yml0d6PGde1kp0bw7R01kvbDsfosITaq5Pvc4mebq4f15to-3B7t77aRiAo7aIkS4TKFKci41AIBSmRlJVFyotMMpYwKVhKVJyBiCFOmVQyA0bZsygFL5jiS3Q27bWhae5l6C0raY0JjXKaMsEJC6KLSTS2806Veet0A27IKclH4nkgngfi-Tfx4Ih_OcLmL6CdA13_4zuffONgb3tnwuf_VH8CezGa5A |
CitedBy_id | crossref_primary_10_1021_jacs_3c01494 crossref_primary_10_1007_s11665_024_09492_6 crossref_primary_10_1021_acs_cgd_2c00296 crossref_primary_10_1016_j_colsurfb_2023_113290 crossref_primary_10_1039_D1BM01239H crossref_primary_10_1017_S1431927622007176 crossref_primary_10_1007_s13369_024_09572_8 crossref_primary_10_1002_ange_202408429 crossref_primary_10_1016_j_conbuildmat_2024_137372 crossref_primary_10_2147_IJN_S464998 crossref_primary_10_1021_acs_cgd_3c00300 crossref_primary_10_1021_acsbiomaterials_4c01680 crossref_primary_10_1021_acsami_4c03978 crossref_primary_10_1021_acsomega_3c07743 crossref_primary_10_1039_D2NR05630E crossref_primary_10_1002_smll_202207951 crossref_primary_10_1039_D4RA04078C crossref_primary_10_1016_j_jcis_2023_12_002 crossref_primary_10_1002_anie_202408429 crossref_primary_10_1002_smll_202407539 crossref_primary_10_1021_acs_jpcb_2c01627 crossref_primary_10_1021_acs_nanolett_3c02344 crossref_primary_10_3390_ma17092035 crossref_primary_10_1557_s43580_024_00860_x crossref_primary_10_1016_j_palwor_2023_06_010 crossref_primary_10_1002_adma_202413626 crossref_primary_10_1016_j_ceramint_2024_11_153 crossref_primary_10_1016_j_cemconres_2023_107135 crossref_primary_10_1038_s41467_024_47721_7 crossref_primary_10_1016_j_jcrysgro_2022_126989 crossref_primary_10_1039_D2QM00510G crossref_primary_10_1016_j_scriptamat_2022_114856 crossref_primary_10_1021_acs_nanolett_4c01525 crossref_primary_10_1039_D2CE00390B crossref_primary_10_3389_fbioe_2023_1329752 crossref_primary_10_1021_acs_cgd_4c00132 crossref_primary_10_1039_D3RA02580B crossref_primary_10_1016_j_nxmate_2023_100095 crossref_primary_10_59717_j_xinn_mater_2024_100111 crossref_primary_10_2139_ssrn_4095728 crossref_primary_10_1021_acs_cgd_3c01426 crossref_primary_10_1007_s11595_024_2943_1 crossref_primary_10_1002_adfm_202306900 crossref_primary_10_1107_S1600577523002783 crossref_primary_10_1177_00220345251323869 crossref_primary_10_3390_jfb14040227 crossref_primary_10_1016_j_ceramint_2024_02_157 crossref_primary_10_1002_adhm_202302418 crossref_primary_10_1021_acs_cgd_3c00851 |
Cites_doi | 10.1002/crat.200310070 10.1126/science.aaa6760 10.1021/acs.cgd.9b00887 10.1063/1.5084248 10.1021/jacs.9b01883 10.1038/nmat4193 10.1021/acs.cgd.9b00061 10.1021/jacs.6b09442 10.1021/acs.cgd.9b00274 10.1021/cg401619s 10.1073/pnas.1914813117 10.1021/acs.cgd.8b01066 10.1021/acs.cgd.5b01180 10.1039/c0cc00971g 10.1021/jp507400n 10.1039/C8CP06460A 10.1063/1.1744540 10.1126/science.1258950 10.1073/pnas.1009959107 10.1021/acsami.8b02520 10.1021/jacs.8b11972 10.1002/1521-3773(20020902)41:17<3130::AID-ANIE3130>3.0.CO;2-1 10.1038/s41467-020-14719-w 10.1021/acs.cgd.0c01245 10.1126/science.1219643 10.1016/j.jcrysgro.2011.09.039 10.2147/IJN.S107624 10.1021/jp804371u 10.1038/natrevmats.2016.34 10.1021/jacs.0c05591 10.1126/sciadv.aaz7524 10.1038/nature02397 10.1016/0025-5408(74)90169-X 10.1021/acs.cgd.8b00908 10.1021/j100638a011 10.1002/anie.201703158 10.1002/chem.201405428 10.1155/2013/490946 10.1038/s42004-018-0081-4 10.1002/cphc.201800976 10.1021/jacs.0c12100 10.1021/jacs.9b11371 10.1126/science.1254051 10.1021/jp404403k |
ContentType | Journal Article |
Copyright | 2021 American Chemical Society |
Copyright_xml | – notice: 2021 American Chemical Society |
CorporateAuthor | Pacific Northwest National Lab. (PNNL), Richland, WA (United States) |
CorporateAuthor_xml | – name: Pacific Northwest National Lab. (PNNL), Richland, WA (United States) |
DBID | AAYXX CITATION OIOZB OTOTI |
DOI | 10.1021/acs.cgd.1c00503 |
DatabaseName | CrossRef OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1528-7505 |
EndPage | 5134 |
ExternalDocumentID | 1824302 10_1021_acs_cgd_1c00503 b442303140 |
GroupedDBID | 4.4 55A 5GY 5VS 7~N AABXI ABFRP ABMVS ABPTK ABUCX ACGFS ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 DU5 EBS ED ED~ F5P GGK GNL IH9 JG JG~ P2P RNS ROL TN5 UI2 VF5 VG9 W1F X -~X 6J9 AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV BAANH CITATION CUPRZ OIOZB OTOTI |
ID | FETCH-LOGICAL-a411t-7974e9e31493ad4ea80c12fd83d9c2272c4280e59a45a582cec9a212b4f43d2e3 |
IEDL.DBID | ACS |
ISSN | 1528-7483 |
IngestDate | Thu May 18 22:29:17 EDT 2023 Tue Jul 01 02:26:25 EDT 2025 Thu Apr 24 23:09:39 EDT 2025 Fri Sep 03 15:43:01 EDT 2021 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a411t-7974e9e31493ad4ea80c12fd83d9c2272c4280e59a45a582cec9a212b4f43d2e3 |
Notes | AC05-76RL01830; 21625105; 21805241 USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division National Natural Science Foundation of China (NSFC) PNNL-SA-164157 |
ORCID | 0000-0001-5277-7338 0000-0002-9595-4303 0000-0002-9194-6699 0000-0002-7564-6207 0000000291946699 0000000152777338 0000000275646207 0000000295954303 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1824302 |
PageCount | 9 |
ParticipantIDs | osti_scitechconnect_1824302 crossref_primary_10_1021_acs_cgd_1c00503 crossref_citationtrail_10_1021_acs_cgd_1c00503 acs_journals_10_1021_acs_cgd_1c00503 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 GGK W1F ABFRP ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-01 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Crystal growth & design |
PublicationTitleAlternate | Cryst. Growth Des |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref33/cit33 doi: 10.1002/crat.200310070 – ident: ref3/cit3 doi: 10.1126/science.aaa6760 – ident: ref25/cit25 doi: 10.1021/acs.cgd.9b00887 – ident: ref9/cit9 doi: 10.1063/1.5084248 – ident: ref1/cit1 doi: 10.1021/jacs.9b01883 – ident: ref11/cit11 doi: 10.1038/nmat4193 – ident: ref17/cit17 doi: 10.1021/acs.cgd.9b00061 – ident: ref20/cit20 doi: 10.1021/jacs.6b09442 – ident: ref29/cit29 doi: 10.1021/acs.cgd.9b00274 – ident: ref18/cit18 doi: 10.1021/cg401619s – ident: ref28/cit28 doi: 10.1073/pnas.1914813117 – ident: ref24/cit24 doi: 10.1021/acs.cgd.8b01066 – ident: ref4/cit4 doi: 10.1021/acs.cgd.5b01180 – ident: ref23/cit23 doi: 10.1039/c0cc00971g – ident: ref31/cit31 doi: 10.1021/jp507400n – ident: ref37/cit37 doi: 10.1039/C8CP06460A – ident: ref41/cit41 doi: 10.1063/1.1744540 – ident: ref26/cit26 doi: 10.1126/science.1258950 – ident: ref38/cit38 doi: 10.1073/pnas.1009959107 – ident: ref16/cit16 doi: 10.1021/acsami.8b02520 – ident: ref14/cit14 doi: 10.1021/jacs.8b11972 – ident: ref21/cit21 doi: 10.1002/1521-3773(20020902)41:17<3130::AID-ANIE3130>3.0.CO;2-1 – ident: ref35/cit35 doi: 10.1038/s41467-020-14719-w – ident: ref43/cit43 doi: 10.1021/acs.cgd.0c01245 – ident: ref34/cit34 doi: 10.1126/science.1219643 – ident: ref40/cit40 doi: 10.1016/j.jcrysgro.2011.09.039 – ident: ref22/cit22 doi: 10.2147/IJN.S107624 – ident: ref39/cit39 doi: 10.1021/jp804371u – ident: ref2/cit2 doi: 10.1038/natrevmats.2016.34 – ident: ref7/cit7 doi: 10.1021/jacs.0c05591 – ident: ref12/cit12 doi: 10.1126/sciadv.aaz7524 – ident: ref42/cit42 doi: 10.1038/nature02397 – ident: ref44/cit44 doi: 10.1016/0025-5408(74)90169-X – ident: ref19/cit19 doi: 10.1021/acs.cgd.8b00908 – ident: ref36/cit36 doi: 10.1021/j100638a011 – ident: ref5/cit5 doi: 10.1002/anie.201703158 – ident: ref27/cit27 doi: 10.1002/chem.201405428 – ident: ref30/cit30 doi: 10.1155/2013/490946 – ident: ref13/cit13 doi: 10.1038/s42004-018-0081-4 – ident: ref10/cit10 doi: 10.1002/cphc.201800976 – ident: ref6/cit6 doi: 10.1021/jacs.0c12100 – ident: ref8/cit8 doi: 10.1021/jacs.9b11371 – ident: ref15/cit15 doi: 10.1126/science.1254051 – ident: ref32/cit32 doi: 10.1021/jp404403k |
SSID | ssj0007633 |
Score | 2.537181 |
Snippet | Crystallization via phase transformation of a metastable precursor is a ubiquitous and effective strategy used by living systems to direct the growth of... |
SourceID | osti crossref acs |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 5126 |
SubjectTerms | Dissolution Hollow structures INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Nanoparticles Nucleation Phase transitions |
Title | Phase Transformation Mechanism of Amorphous Calcium Phosphate to Hydroxyapatite Investigated by Liquid-Cell Transmission Electron Microscopy |
URI | http://dx.doi.org/10.1021/acs.cgd.1c00503 https://www.osti.gov/servlets/purl/1824302 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9tAEF216YH2UFpaVApUe-DAxan3w4l9RBYoQgQhARI3a7I7biKSGGr7kP6G_ujOOCakINRerd31aHfH88b79o0QB2gBNXCZVAsmsKAhoFwlCRAIG-QqAkz4NvLwvDe4tqc30c2jWPTTE3ytvoOjyf_hu8o12iWvxRvdIxdmFJRerj665CYNlz7SjTymWan4PBuAw5Ar_wpDnYLcaS2snGwuCVllo0bIbJLbbl2Nuu7Xc63Gf1v8QbxvwaU8Wu6Gj-IVzrfERvpQ021LvFuTH_wkfl-MKYbJqzXsWszlEPky8KScySKXR7OCFqKoS5nC1E3qmbwYF-XdmBCqrAo5WHg2HJiWTU8eRTvQy9FCnk3u64kPUpxOl28hO_jvnDxui-_IIfMB-WbM4rO4Pjm-SgdBW50hAKtUFfQpE8EEDaVYBrxFiEOndO5j4xOndV87ymxCjBKwEUSxdugSoEA5srk1XqPZFp15MccvQiog3BEmxlNrGigEiBU624tNaCHvw444oDnNWu8qs-bgXKuMH9JEZ-1E74juw5pmrlU450Ib05c7HK463C3FPV5uusubJCNcwuK6jllIrsooO7Mm1F__z8Bd8VYzJaahqO2JTvWzxn3CNNXoW7Ob_wCqwPNk |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6VcCgceBQQpTz20AMXB-_DjX2MrFYBkqqIVOrNmuyuSUQSF2wfwm_gRzPjOGkAVYLranc92p3d-cY78w3AsTfoFXKZVIM6MKgwIF8lCTwSNshlhD7hbOTR-cng0ny4iq72INzkwpAQJc1UNo_4N-wC8h232S-uK21DYXIH7hIUUazT_fTz9u6l09KE1EeqYcnUWzKfvyZga2TL36xRp6BTtWNdzh7Cp61cTVDJ125dTbr2xx-Ujf8j-CN40EJN0V_rxmPY88sD2E83Fd4O4P4OGeET-HkxJYsmxjtItliKkefU4Fm5EEUu-ouCtqWoS5Hi3M7qhbiYFuX1lPCqqAoxWDmWHzlIm1puKDy8E5OVGM6-1TMXpH4-X3-F5OB_deK0LcUjRhwdyHkyq6dweXY6TgdBW6shQCNlFfTIL_GJ1-RwaXTGYxxaqXIXa5dYpXrKkp8T-ihBE2EUK-ttgmQ2JyY32imvn0FnWSz9cxASCYWEiXbUmyYKEWPprTmJdWgw7-EhHNOaZu1ZK7PmGV3JjBtpobN2oQ-hu9nazLZ851x2Y377gLfbAddrqo_bux6xrmSEUphq13JMkq0y8tWMDtWLfxPwDewPxqNhNnx__vEI7ikOlmmC115Cp_pe-1eEdqrJ60bBfwElCfvF |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9NADLagSDwOPBYQy_KYwx64pGQe2SbHKmxVYLuqxFbaW-TOTGhF2xSSHMpv4Edjp9lSQCvBdTQzcTx2bGfszwDH3qBXyG1SDerAoMKAYpUk8Ei-QS4j9AlXI4_OT4YT8-EyumyLwrgWhogoaaeyucRnrV67vEUYkG953H52XWkbGJObcIsv7Viu--mn3feXNKZJq49Ug5Spd4A-f23AFsmWv1mkTkGatWdhBg9gsqOtSSz50q2radd-_wO28X-Jfwj3W5dT9Lcy8ghu-NUB3EmvOr0dwL09UMLH8GM8I8smLvY82mIlRp5LhOflUhS56C8LOp6iLkWKCzuvl2I8K8r1jPxWURViuHH8DsjJ2jTyC8rDOzHdiLP513rugtQvFtunEB38z06cti15xIizBLleZvMEJoPTi3QYtD0bAjRSVkGP4hOfeE2Bl0ZnPMahlSp3sXaJVaqnLMU7oY8SNBFGsbLeJkjmc2pyo53y-il0VsXKPwMhkbyRMNGOZtNGIWIsvTUnsQ4N5j08hGPiadbqXJk11-lKZjxIjM5aRh9C9-p4M9vinnP7jcX1C97sFqy3kB_XTz1iecnIW2HIXcu5SbbKKGYzOlTP_43A13B7_G6Qnb0__3gEdxXnzDQ5bC-gU32r_Utyeqrpq0bGfwJCJv5I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase+Transformation+Mechanism+of+Amorphous+Calcium+Phosphate+to+Hydroxyapatite+Investigated+by+Liquid-Cell+Transmission+Electron+Microscopy&rft.jtitle=Crystal+growth+%26+design&rft.au=Jin%2C+Biao&rft.au=Liu%2C+Zhaoming&rft.au=Shao%2C+Changyu&rft.au=Chen%2C+Jiajun&rft.date=2021-09-01&rft.pub=American+Chemical+Society&rft.issn=1528-7483&rft.eissn=1528-7505&rft.volume=21&rft.issue=9&rft_id=info:doi/10.1021%2Facs.cgd.1c00503&rft.externalDocID=1824302 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1528-7483&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1528-7483&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1528-7483&client=summon |