Phase Transformation Mechanism of Amorphous Calcium Phosphate to Hydroxyapatite Investigated by Liquid-Cell Transmission Electron Microscopy

Crystallization via phase transformation of a metastable precursor is a ubiquitous and effective strategy used by living systems to direct the growth of crystalline nanomaterials with remarkable functional properties. However, determining the exact process by which transformation occurs at the nanos...

Full description

Saved in:
Bibliographic Details
Published inCrystal growth & design Vol. 21; no. 9; pp. 5126 - 5134
Main Authors Jin, Biao, Liu, Zhaoming, Shao, Changyu, Chen, Jiajun, Liu, Lili, Tang, Ruikang, De Yoreo, James J
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 01.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Crystallization via phase transformation of a metastable precursor is a ubiquitous and effective strategy used by living systems to direct the growth of crystalline nanomaterials with remarkable functional properties. However, determining the exact process by which transformation occurs at the nanoscale is a difficult challenge. Here, the recrystallization process of amorphous calcium phosphate (ACP) to hydroxyapatite (HAP) is explored by liquid-cell transmission electron microscopy. The effect of confinement in the liquid-cell is found to increase the size of ACP nanoparticles. In the presence of Mg2+, these large ACP nanoparticles transform to HAP by first dissolving from the interior to create a hollow structure, after which HAP forms preferentially on the surface and then subsequently in the bulk solution. We propose that the preferential dissolution within ACP particles is due to a change in the structure and/or chemistry of the ACP surface, likely associated with dehydration before crystallization of HAP. These results imply an important role of the confined environment of the liquid-cell in regulating the size of ACP particles, which then affects the surface structure and the detailed dissolution–recrystallization pathway. Moreover, we stress the key role of Mg2+ in controlling HAP formation by stabilizing ACP via reduction in ACP solubility. This work provides a better understanding of the roles of additives and confinement during the phase transformation of ACP to HAP through dissolution and recrystallization.
AbstractList Crystallization via phase transformation of a metastable precursor is a ubiquitous and effective strategy used by living systems to direct the growth of crystalline nanomaterials with remarkable functional properties. However, determining the exact process by which transformation occurs at the nanoscale is a difficult challenge. Here, the recrystallization process of amorphous calcium phosphate (ACP) to hydroxyapatite (HAP) is explored by liquid-cell transmission electron microscopy. The effect of confinement in the liquid-cell is found to increase the size of ACP nanoparticles. In the presence of Mg2+, these large ACP nanoparticles transform to HAP by first dissolving from the interior to create a hollow structure, after which HAP forms preferentially on the surface and then subsequently in the bulk solution. We propose that the preferential dissolution within ACP particles is due to a change in the structure and/or chemistry of the ACP surface, likely associated with dehydration before crystallization of HAP. These results imply an important role of the confined environment of the liquid-cell in regulating the size of ACP particles, which then affects the surface structure and the detailed dissolution–recrystallization pathway. Moreover, we stress the key role of Mg2+ in controlling HAP formation by stabilizing ACP via reduction in ACP solubility. This work provides a better understanding of the roles of additives and confinement during the phase transformation of ACP to HAP through dissolution and recrystallization.
Crystallization via phase transformation of a metastable precursor is a ubiquitous and effective strategy used by living systems to direct the growth of crystalline nanomaterials with remarkable functional properties. However, determining the exact process by which transformation occurs at the nanoscale is a difficult challenge. In this work, the recrystallization process of amorphous calcium phosphate (ACP) to hydroxyapatite (HAP) is explored by liquid-cell transmission electron microscopy. The effect of confinement in the liquid-cell is found to increase the size of ACP nanoparticles. In the presence of Mg2+, these large ACP nanoparticles transform to HAP by first dissolving from the interior to create a hollow structure, after which HAP forms preferentially on the surface and then subsequently in the bulk solution. We propose that the preferential dissolution within ACP particles is due to a change in the structure and/or chemistry of the ACP surface, likely associated with dehydration before crystallization of HAP. These results imply an important role of the confined environment of the liquid-cell in regulating the size of ACP particles, which then affects the surface structure and the detailed dissolution–recrystallization pathway. Moreover, we stress the key role of Mg2+ in controlling HAP formation by stabilizing ACP via reduction in ACP solubility. This work provides a better understanding of the roles of additives and confinement during the phase transformation of ACP to HAP through dissolution and recrystallization.
Author Jin, Biao
Liu, Zhaoming
Liu, Lili
Shao, Changyu
Chen, Jiajun
Tang, Ruikang
De Yoreo, James J
AuthorAffiliation Department of Chemistry
Physical Sciences Division
Department of Materials Science and Engineering
University of Washington
AuthorAffiliation_xml – name: Department of Chemistry
– name: Physical Sciences Division
– name: Department of Materials Science and Engineering
– name: University of Washington
Author_xml – sequence: 1
  givenname: Biao
  surname: Jin
  fullname: Jin, Biao
  organization: Physical Sciences Division
– sequence: 2
  givenname: Zhaoming
  orcidid: 0000-0002-7564-6207
  surname: Liu
  fullname: Liu, Zhaoming
  organization: Department of Chemistry
– sequence: 3
  givenname: Changyu
  surname: Shao
  fullname: Shao, Changyu
  organization: Department of Chemistry
– sequence: 4
  givenname: Jiajun
  surname: Chen
  fullname: Chen, Jiajun
  organization: Physical Sciences Division
– sequence: 5
  givenname: Lili
  orcidid: 0000-0002-9595-4303
  surname: Liu
  fullname: Liu, Lili
  organization: Physical Sciences Division
– sequence: 6
  givenname: Ruikang
  orcidid: 0000-0001-5277-7338
  surname: Tang
  fullname: Tang, Ruikang
  email: rtang@zju.edu.cn
  organization: Department of Chemistry
– sequence: 7
  givenname: James J
  orcidid: 0000-0002-9194-6699
  surname: De Yoreo
  fullname: De Yoreo, James J
  email: James.DeYoreo@pnnl.gov
  organization: University of Washington
BackLink https://www.osti.gov/servlets/purl/1824302$$D View this record in Osti.gov
BookMark eNp9kL1OwzAUhS1UJNrCzGqxohT_hSQjqoAiFdEB5ujiOMRVYgc7QeQdeGgcAgsSTLZ8z7nn-FugmbFGIXRKyYoSRi9A-pV8KVZUEhITfoDmNGZplMQknv3cRcqP0ML7PSEkueR8jj52FXiFHx0YX1rXQKetwfdKVmC0b7At8VVjXVvZ3uM11FL3Dd5V1rcVdAp3Fm-Gwtn3AdpgDS935k35Tr-EaYGfB7zVr70uorWq6yml0d6PGde1kp0bw7R01kvbDsfosITaq5Pvc4mebq4f15to-3B7t77aRiAo7aIkS4TKFKci41AIBSmRlJVFyotMMpYwKVhKVJyBiCFOmVQyA0bZsygFL5jiS3Q27bWhae5l6C0raY0JjXKaMsEJC6KLSTS2806Veet0A27IKclH4nkgngfi-Tfx4Ih_OcLmL6CdA13_4zuffONgb3tnwuf_VH8CezGa5A
CitedBy_id crossref_primary_10_1021_jacs_3c01494
crossref_primary_10_1007_s11665_024_09492_6
crossref_primary_10_1021_acs_cgd_2c00296
crossref_primary_10_1016_j_colsurfb_2023_113290
crossref_primary_10_1039_D1BM01239H
crossref_primary_10_1017_S1431927622007176
crossref_primary_10_1007_s13369_024_09572_8
crossref_primary_10_1002_ange_202408429
crossref_primary_10_1016_j_conbuildmat_2024_137372
crossref_primary_10_2147_IJN_S464998
crossref_primary_10_1021_acs_cgd_3c00300
crossref_primary_10_1021_acsbiomaterials_4c01680
crossref_primary_10_1021_acsami_4c03978
crossref_primary_10_1021_acsomega_3c07743
crossref_primary_10_1039_D2NR05630E
crossref_primary_10_1002_smll_202207951
crossref_primary_10_1039_D4RA04078C
crossref_primary_10_1016_j_jcis_2023_12_002
crossref_primary_10_1002_anie_202408429
crossref_primary_10_1002_smll_202407539
crossref_primary_10_1021_acs_jpcb_2c01627
crossref_primary_10_1021_acs_nanolett_3c02344
crossref_primary_10_3390_ma17092035
crossref_primary_10_1557_s43580_024_00860_x
crossref_primary_10_1016_j_palwor_2023_06_010
crossref_primary_10_1002_adma_202413626
crossref_primary_10_1016_j_ceramint_2024_11_153
crossref_primary_10_1016_j_cemconres_2023_107135
crossref_primary_10_1038_s41467_024_47721_7
crossref_primary_10_1016_j_jcrysgro_2022_126989
crossref_primary_10_1039_D2QM00510G
crossref_primary_10_1016_j_scriptamat_2022_114856
crossref_primary_10_1021_acs_nanolett_4c01525
crossref_primary_10_1039_D2CE00390B
crossref_primary_10_3389_fbioe_2023_1329752
crossref_primary_10_1021_acs_cgd_4c00132
crossref_primary_10_1039_D3RA02580B
crossref_primary_10_1016_j_nxmate_2023_100095
crossref_primary_10_59717_j_xinn_mater_2024_100111
crossref_primary_10_2139_ssrn_4095728
crossref_primary_10_1021_acs_cgd_3c01426
crossref_primary_10_1007_s11595_024_2943_1
crossref_primary_10_1002_adfm_202306900
crossref_primary_10_1107_S1600577523002783
crossref_primary_10_1177_00220345251323869
crossref_primary_10_3390_jfb14040227
crossref_primary_10_1016_j_ceramint_2024_02_157
crossref_primary_10_1002_adhm_202302418
crossref_primary_10_1021_acs_cgd_3c00851
Cites_doi 10.1002/crat.200310070
10.1126/science.aaa6760
10.1021/acs.cgd.9b00887
10.1063/1.5084248
10.1021/jacs.9b01883
10.1038/nmat4193
10.1021/acs.cgd.9b00061
10.1021/jacs.6b09442
10.1021/acs.cgd.9b00274
10.1021/cg401619s
10.1073/pnas.1914813117
10.1021/acs.cgd.8b01066
10.1021/acs.cgd.5b01180
10.1039/c0cc00971g
10.1021/jp507400n
10.1039/C8CP06460A
10.1063/1.1744540
10.1126/science.1258950
10.1073/pnas.1009959107
10.1021/acsami.8b02520
10.1021/jacs.8b11972
10.1002/1521-3773(20020902)41:17<3130::AID-ANIE3130>3.0.CO;2-1
10.1038/s41467-020-14719-w
10.1021/acs.cgd.0c01245
10.1126/science.1219643
10.1016/j.jcrysgro.2011.09.039
10.2147/IJN.S107624
10.1021/jp804371u
10.1038/natrevmats.2016.34
10.1021/jacs.0c05591
10.1126/sciadv.aaz7524
10.1038/nature02397
10.1016/0025-5408(74)90169-X
10.1021/acs.cgd.8b00908
10.1021/j100638a011
10.1002/anie.201703158
10.1002/chem.201405428
10.1155/2013/490946
10.1038/s42004-018-0081-4
10.1002/cphc.201800976
10.1021/jacs.0c12100
10.1021/jacs.9b11371
10.1126/science.1254051
10.1021/jp404403k
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright_xml – notice: 2021 American Chemical Society
CorporateAuthor Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
CorporateAuthor_xml – name: Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
DBID AAYXX
CITATION
OIOZB
OTOTI
DOI 10.1021/acs.cgd.1c00503
DatabaseName CrossRef
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1528-7505
EndPage 5134
ExternalDocumentID 1824302
10_1021_acs_cgd_1c00503
b442303140
GroupedDBID 4.4
55A
5GY
5VS
7~N
AABXI
ABFRP
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
DU5
EBS
ED
ED~
F5P
GGK
GNL
IH9
JG
JG~
P2P
RNS
ROL
TN5
UI2
VF5
VG9
W1F
X
-~X
6J9
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
BAANH
CITATION
CUPRZ
OIOZB
OTOTI
ID FETCH-LOGICAL-a411t-7974e9e31493ad4ea80c12fd83d9c2272c4280e59a45a582cec9a212b4f43d2e3
IEDL.DBID ACS
ISSN 1528-7483
IngestDate Thu May 18 22:29:17 EDT 2023
Tue Jul 01 02:26:25 EDT 2025
Thu Apr 24 23:09:39 EDT 2025
Fri Sep 03 15:43:01 EDT 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a411t-7974e9e31493ad4ea80c12fd83d9c2272c4280e59a45a582cec9a212b4f43d2e3
Notes AC05-76RL01830; 21625105; 21805241
USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division
National Natural Science Foundation of China (NSFC)
PNNL-SA-164157
ORCID 0000-0001-5277-7338
0000-0002-9595-4303
0000-0002-9194-6699
0000-0002-7564-6207
0000000291946699
0000000152777338
0000000275646207
0000000295954303
OpenAccessLink https://www.osti.gov/servlets/purl/1824302
PageCount 9
ParticipantIDs osti_scitechconnect_1824302
crossref_primary_10_1021_acs_cgd_1c00503
crossref_citationtrail_10_1021_acs_cgd_1c00503
acs_journals_10_1021_acs_cgd_1c00503
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
GGK
W1F
ABFRP
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Crystal growth & design
PublicationTitleAlternate Cryst. Growth Des
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
References_xml – ident: ref33/cit33
  doi: 10.1002/crat.200310070
– ident: ref3/cit3
  doi: 10.1126/science.aaa6760
– ident: ref25/cit25
  doi: 10.1021/acs.cgd.9b00887
– ident: ref9/cit9
  doi: 10.1063/1.5084248
– ident: ref1/cit1
  doi: 10.1021/jacs.9b01883
– ident: ref11/cit11
  doi: 10.1038/nmat4193
– ident: ref17/cit17
  doi: 10.1021/acs.cgd.9b00061
– ident: ref20/cit20
  doi: 10.1021/jacs.6b09442
– ident: ref29/cit29
  doi: 10.1021/acs.cgd.9b00274
– ident: ref18/cit18
  doi: 10.1021/cg401619s
– ident: ref28/cit28
  doi: 10.1073/pnas.1914813117
– ident: ref24/cit24
  doi: 10.1021/acs.cgd.8b01066
– ident: ref4/cit4
  doi: 10.1021/acs.cgd.5b01180
– ident: ref23/cit23
  doi: 10.1039/c0cc00971g
– ident: ref31/cit31
  doi: 10.1021/jp507400n
– ident: ref37/cit37
  doi: 10.1039/C8CP06460A
– ident: ref41/cit41
  doi: 10.1063/1.1744540
– ident: ref26/cit26
  doi: 10.1126/science.1258950
– ident: ref38/cit38
  doi: 10.1073/pnas.1009959107
– ident: ref16/cit16
  doi: 10.1021/acsami.8b02520
– ident: ref14/cit14
  doi: 10.1021/jacs.8b11972
– ident: ref21/cit21
  doi: 10.1002/1521-3773(20020902)41:17<3130::AID-ANIE3130>3.0.CO;2-1
– ident: ref35/cit35
  doi: 10.1038/s41467-020-14719-w
– ident: ref43/cit43
  doi: 10.1021/acs.cgd.0c01245
– ident: ref34/cit34
  doi: 10.1126/science.1219643
– ident: ref40/cit40
  doi: 10.1016/j.jcrysgro.2011.09.039
– ident: ref22/cit22
  doi: 10.2147/IJN.S107624
– ident: ref39/cit39
  doi: 10.1021/jp804371u
– ident: ref2/cit2
  doi: 10.1038/natrevmats.2016.34
– ident: ref7/cit7
  doi: 10.1021/jacs.0c05591
– ident: ref12/cit12
  doi: 10.1126/sciadv.aaz7524
– ident: ref42/cit42
  doi: 10.1038/nature02397
– ident: ref44/cit44
  doi: 10.1016/0025-5408(74)90169-X
– ident: ref19/cit19
  doi: 10.1021/acs.cgd.8b00908
– ident: ref36/cit36
  doi: 10.1021/j100638a011
– ident: ref5/cit5
  doi: 10.1002/anie.201703158
– ident: ref27/cit27
  doi: 10.1002/chem.201405428
– ident: ref30/cit30
  doi: 10.1155/2013/490946
– ident: ref13/cit13
  doi: 10.1038/s42004-018-0081-4
– ident: ref10/cit10
  doi: 10.1002/cphc.201800976
– ident: ref6/cit6
  doi: 10.1021/jacs.0c12100
– ident: ref8/cit8
  doi: 10.1021/jacs.9b11371
– ident: ref15/cit15
  doi: 10.1126/science.1254051
– ident: ref32/cit32
  doi: 10.1021/jp404403k
SSID ssj0007633
Score 2.537181
Snippet Crystallization via phase transformation of a metastable precursor is a ubiquitous and effective strategy used by living systems to direct the growth of...
SourceID osti
crossref
acs
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 5126
SubjectTerms Dissolution
Hollow structures
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Nanoparticles
Nucleation
Phase transitions
Title Phase Transformation Mechanism of Amorphous Calcium Phosphate to Hydroxyapatite Investigated by Liquid-Cell Transmission Electron Microscopy
URI http://dx.doi.org/10.1021/acs.cgd.1c00503
https://www.osti.gov/servlets/purl/1824302
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9tAEF216YH2UFpaVApUe-DAxan3w4l9RBYoQgQhARI3a7I7biKSGGr7kP6G_ujOOCakINRerd31aHfH88b79o0QB2gBNXCZVAsmsKAhoFwlCRAIG-QqAkz4NvLwvDe4tqc30c2jWPTTE3ytvoOjyf_hu8o12iWvxRvdIxdmFJRerj665CYNlz7SjTymWan4PBuAw5Ar_wpDnYLcaS2snGwuCVllo0bIbJLbbl2Nuu7Xc63Gf1v8QbxvwaU8Wu6Gj-IVzrfERvpQ021LvFuTH_wkfl-MKYbJqzXsWszlEPky8KScySKXR7OCFqKoS5nC1E3qmbwYF-XdmBCqrAo5WHg2HJiWTU8eRTvQy9FCnk3u64kPUpxOl28hO_jvnDxui-_IIfMB-WbM4rO4Pjm-SgdBW50hAKtUFfQpE8EEDaVYBrxFiEOndO5j4xOndV87ymxCjBKwEUSxdugSoEA5srk1XqPZFp15MccvQiog3BEmxlNrGigEiBU624tNaCHvw444oDnNWu8qs-bgXKuMH9JEZ-1E74juw5pmrlU450Ib05c7HK463C3FPV5uusubJCNcwuK6jllIrsooO7Mm1F__z8Bd8VYzJaahqO2JTvWzxn3CNNXoW7Ob_wCqwPNk
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6VcCgceBQQpTz20AMXB-_DjX2MrFYBkqqIVOrNmuyuSUQSF2wfwm_gRzPjOGkAVYLranc92p3d-cY78w3AsTfoFXKZVIM6MKgwIF8lCTwSNshlhD7hbOTR-cng0ny4iq72INzkwpAQJc1UNo_4N-wC8h232S-uK21DYXIH7hIUUazT_fTz9u6l09KE1EeqYcnUWzKfvyZga2TL36xRp6BTtWNdzh7Cp61cTVDJ125dTbr2xx-Ujf8j-CN40EJN0V_rxmPY88sD2E83Fd4O4P4OGeET-HkxJYsmxjtItliKkefU4Fm5EEUu-ouCtqWoS5Hi3M7qhbiYFuX1lPCqqAoxWDmWHzlIm1puKDy8E5OVGM6-1TMXpH4-X3-F5OB_deK0LcUjRhwdyHkyq6dweXY6TgdBW6shQCNlFfTIL_GJ1-RwaXTGYxxaqXIXa5dYpXrKkp8T-ihBE2EUK-ttgmQ2JyY32imvn0FnWSz9cxASCYWEiXbUmyYKEWPprTmJdWgw7-EhHNOaZu1ZK7PmGV3JjBtpobN2oQ-hu9nazLZ851x2Y377gLfbAddrqo_bux6xrmSEUphq13JMkq0y8tWMDtWLfxPwDewPxqNhNnx__vEI7ikOlmmC115Cp_pe-1eEdqrJ60bBfwElCfvF
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9NADLagSDwOPBYQy_KYwx64pGQe2SbHKmxVYLuqxFbaW-TOTGhF2xSSHMpv4Edjp9lSQCvBdTQzcTx2bGfszwDH3qBXyG1SDerAoMKAYpUk8Ei-QS4j9AlXI4_OT4YT8-EyumyLwrgWhogoaaeyucRnrV67vEUYkG953H52XWkbGJObcIsv7Viu--mn3feXNKZJq49Ug5Spd4A-f23AFsmWv1mkTkGatWdhBg9gsqOtSSz50q2radd-_wO28X-Jfwj3W5dT9Lcy8ghu-NUB3EmvOr0dwL09UMLH8GM8I8smLvY82mIlRp5LhOflUhS56C8LOp6iLkWKCzuvl2I8K8r1jPxWURViuHH8DsjJ2jTyC8rDOzHdiLP513rugtQvFtunEB38z06cti15xIizBLleZvMEJoPTi3QYtD0bAjRSVkGP4hOfeE2Bl0ZnPMahlSp3sXaJVaqnLMU7oY8SNBFGsbLeJkjmc2pyo53y-il0VsXKPwMhkbyRMNGOZtNGIWIsvTUnsQ4N5j08hGPiadbqXJk11-lKZjxIjM5aRh9C9-p4M9vinnP7jcX1C97sFqy3kB_XTz1iecnIW2HIXcu5SbbKKGYzOlTP_43A13B7_G6Qnb0__3gEdxXnzDQ5bC-gU32r_Utyeqrpq0bGfwJCJv5I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase+Transformation+Mechanism+of+Amorphous+Calcium+Phosphate+to+Hydroxyapatite+Investigated+by+Liquid-Cell+Transmission+Electron+Microscopy&rft.jtitle=Crystal+growth+%26+design&rft.au=Jin%2C+Biao&rft.au=Liu%2C+Zhaoming&rft.au=Shao%2C+Changyu&rft.au=Chen%2C+Jiajun&rft.date=2021-09-01&rft.pub=American+Chemical+Society&rft.issn=1528-7483&rft.eissn=1528-7505&rft.volume=21&rft.issue=9&rft_id=info:doi/10.1021%2Facs.cgd.1c00503&rft.externalDocID=1824302
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1528-7483&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1528-7483&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1528-7483&client=summon