How Do Variably Striking Faults Reactivate During Rifting? Insights From Southern Malawi

Crustal extension is commonly thought to be accommodated by faults that strike orthogonal and obliquely to the regional trend of the minimum compressive stress (σ3). Activation of oblique faults can, however, be conceptually problematic as under Andersonian faulting, it requires preexisting crustal...

Full description

Saved in:
Bibliographic Details
Published inGeochemistry, geophysics, geosystems : G3 Vol. 20; no. 7; pp. 3588 - 3607
Main Authors Williams, Jack N., Fagereng, Åke, Wedmore, Luke N. J., Biggs, Juliet, Mphepo, Felix, Dulanya, Zuze, Mdala, Hassan, Blenkinsop, Thomas
Format Journal Article
LanguageEnglish
Published Washington John Wiley & Sons, Inc 01.07.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Crustal extension is commonly thought to be accommodated by faults that strike orthogonal and obliquely to the regional trend of the minimum compressive stress (σ3). Activation of oblique faults can, however, be conceptually problematic as under Andersonian faulting, it requires preexisting crustal weaknesses, high fluid pressures, and/or stress rotations. Furthermore, measurements of incremental fault displacements, which are typically used to identify oblique faulting, do not necessarily reflect regional stresses. Here, we assess oblique faulting by calculating the stress ratio (σ3/σ1, where σ1 is the maximum compressive stress), slip tendency, and effective coefficient of friction (μs′) required to reactivate variably striking normal faults under different trends of σ3. We apply this analysis to NW and NNE striking active faults at the southern end of the Malawi Rift, where NE‐SW, ENE‐WSW, E‐W, and SE‐NW σ3 trends have previously been proposed. A uniform σ3 trend is inferred for this region as recent joints sets do not rotate along the rift. With a NE‐SW trending σ3, NW‐striking faults are well oriented, however, NNE‐striking faults require μs′ < 0.6 to reactivate. This is inconsistent with a lack of frictionally weak phyllosilicates detected in the fault zone rocks. With an ENE‐WSW to E‐W trending σ3, all faults can reactivate at μs′ > 0.55. These σ3 trends are also comparable to a focal mechanism stress inversion, regional joint orientations, and previously reported geodetically derived extension directions. We therefore conclude that unlike typical models of oblique rifting, the southern Malawi Rift consists of faults that all strike slightly oblique to σ3. Plain Language Summary Stretching of the upper brittle part of the Earth's crust should be accommodated by fractures (faults) oriented at 90° to the stretching direction. However, this idealized scenario is rarely observed because of crustal heterogeneities, or because the stretching direction rotates over geological time. Thus, faults are often nonorthogonal (i.e., oblique) to the stretching direction. Here, we use a mechanical analysis to test the obliquity of faults in southern Malawi at the southern juvenile end of the East African Rift system where the crust is actively extending at ~2 mm/year. This section is of interest as fault orientation varies along the rift, and a range of stretching directions have been proposed previously. Our mechanical analysis indicates that extension is most likely accommodated in southern Malawi by faults that are all slightly oblique to an ENE‐WSW to E‐W stretching direction. This is in contrast to previous models of oblique extension, which suggest that stretching is accommodated by some faults at 90° to the stretching direction, while others are at a very low (<40°) angle to stretching. Key Points Proposed stress states for the southern end of the Malawi Rift are tested by assessing fault reactivation potential Variably oriented faults reactivate by all striking slightly obliquely to an ENE‐WSW to E‐W trending minimum principal compressive stress Faults may locally accommodate pure normal dip slip due to the presence of a deep seated crustal weakness
AbstractList Crustal extension is commonly thought to be accommodated by faults that strike orthogonal and obliquely to the regional trend of the minimum compressive stress (σ3). Activation of oblique faults can, however, be conceptually problematic as under Andersonian faulting, it requires preexisting crustal weaknesses, high fluid pressures, and/or stress rotations. Furthermore, measurements of incremental fault displacements, which are typically used to identify oblique faulting, do not necessarily reflect regional stresses. Here, we assess oblique faulting by calculating the stress ratio (σ3/σ1, where σ1 is the maximum compressive stress), slip tendency, and effective coefficient of friction (μs′) required to reactivate variably striking normal faults under different trends of σ3. We apply this analysis to NW and NNE striking active faults at the southern end of the Malawi Rift, where NE‐SW, ENE‐WSW, E‐W, and SE‐NW σ3 trends have previously been proposed. A uniform σ3 trend is inferred for this region as recent joints sets do not rotate along the rift. With a NE‐SW trending σ3, NW‐striking faults are well oriented, however, NNE‐striking faults require μs′ < 0.6 to reactivate. This is inconsistent with a lack of frictionally weak phyllosilicates detected in the fault zone rocks. With an ENE‐WSW to E‐W trending σ3, all faults can reactivate at μs′ > 0.55. These σ3 trends are also comparable to a focal mechanism stress inversion, regional joint orientations, and previously reported geodetically derived extension directions. We therefore conclude that unlike typical models of oblique rifting, the southern Malawi Rift consists of faults that all strike slightly oblique to σ3. Plain Language Summary Stretching of the upper brittle part of the Earth's crust should be accommodated by fractures (faults) oriented at 90° to the stretching direction. However, this idealized scenario is rarely observed because of crustal heterogeneities, or because the stretching direction rotates over geological time. Thus, faults are often nonorthogonal (i.e., oblique) to the stretching direction. Here, we use a mechanical analysis to test the obliquity of faults in southern Malawi at the southern juvenile end of the East African Rift system where the crust is actively extending at ~2 mm/year. This section is of interest as fault orientation varies along the rift, and a range of stretching directions have been proposed previously. Our mechanical analysis indicates that extension is most likely accommodated in southern Malawi by faults that are all slightly oblique to an ENE‐WSW to E‐W stretching direction. This is in contrast to previous models of oblique extension, which suggest that stretching is accommodated by some faults at 90° to the stretching direction, while others are at a very low (<40°) angle to stretching. Key Points Proposed stress states for the southern end of the Malawi Rift are tested by assessing fault reactivation potential Variably oriented faults reactivate by all striking slightly obliquely to an ENE‐WSW to E‐W trending minimum principal compressive stress Faults may locally accommodate pure normal dip slip due to the presence of a deep seated crustal weakness
Crustal extension is commonly thought to be accommodated by faults that strike orthogonal and obliquely to the regional trend of the minimum compressive stress (σ3). Activation of oblique faults can, however, be conceptually problematic as under Andersonian faulting, it requires preexisting crustal weaknesses, high fluid pressures, and/or stress rotations. Furthermore, measurements of incremental fault displacements, which are typically used to identify oblique faulting, do not necessarily reflect regional stresses. Here, we assess oblique faulting by calculating the stress ratio (σ3/σ1, where σ1 is the maximum compressive stress), slip tendency, and effective coefficient of friction (μs′) required to reactivate variably striking normal faults under different trends of σ3. We apply this analysis to NW and NNE striking active faults at the southern end of the Malawi Rift, where NE‐SW, ENE‐WSW, E‐W, and SE‐NW σ3 trends have previously been proposed. A uniform σ3 trend is inferred for this region as recent joints sets do not rotate along the rift. With a NE‐SW trending σ3, NW‐striking faults are well oriented, however, NNE‐striking faults require μs′ < 0.6 to reactivate. This is inconsistent with a lack of frictionally weak phyllosilicates detected in the fault zone rocks. With an ENE‐WSW to E‐W trending σ3, all faults can reactivate at μs′ > 0.55. These σ3 trends are also comparable to a focal mechanism stress inversion, regional joint orientations, and previously reported geodetically derived extension directions. We therefore conclude that unlike typical models of oblique rifting, the southern Malawi Rift consists of faults that all strike slightly oblique to σ3.
Abstract Crustal extension is commonly thought to be accommodated by faults that strike orthogonal and obliquely to the regional trend of the minimum compressive stress ( σ 3 ). Activation of oblique faults can, however, be conceptually problematic as under Andersonian faulting, it requires preexisting crustal weaknesses, high fluid pressures, and/or stress rotations. Furthermore, measurements of incremental fault displacements, which are typically used to identify oblique faulting, do not necessarily reflect regional stresses. Here, we assess oblique faulting by calculating the stress ratio ( σ 3 / σ 1 , where σ 1 is the maximum compressive stress), slip tendency, and effective coefficient of friction ( μ s ′) required to reactivate variably striking normal faults under different trends of σ 3 . We apply this analysis to NW and NNE striking active faults at the southern end of the Malawi Rift, where NE‐SW, ENE‐WSW, E‐W, and SE‐NW σ 3 trends have previously been proposed. A uniform σ 3 trend is inferred for this region as recent joints sets do not rotate along the rift. With a NE‐SW trending σ 3 , NW‐striking faults are well oriented, however, NNE‐striking faults require μ s ′ < 0.6 to reactivate. This is inconsistent with a lack of frictionally weak phyllosilicates detected in the fault zone rocks. With an ENE‐WSW to E‐W trending σ 3 , all faults can reactivate at μ s ′ > 0.55. These σ 3 trends are also comparable to a focal mechanism stress inversion, regional joint orientations, and previously reported geodetically derived extension directions. We therefore conclude that unlike typical models of oblique rifting, the southern Malawi Rift consists of faults that all strike slightly oblique to σ 3 . Plain Language Summary Stretching of the upper brittle part of the Earth's crust should be accommodated by fractures (faults) oriented at 90° to the stretching direction. However, this idealized scenario is rarely observed because of crustal heterogeneities, or because the stretching direction rotates over geological time. Thus, faults are often nonorthogonal (i.e., oblique) to the stretching direction. Here, we use a mechanical analysis to test the obliquity of faults in southern Malawi at the southern juvenile end of the East African Rift system where the crust is actively extending at ~2 mm/year. This section is of interest as fault orientation varies along the rift, and a range of stretching directions have been proposed previously. Our mechanical analysis indicates that extension is most likely accommodated in southern Malawi by faults that are all slightly oblique to an ENE‐WSW to E‐W stretching direction. This is in contrast to previous models of oblique extension, which suggest that stretching is accommodated by some faults at 90° to the stretching direction, while others are at a very low (<40°) angle to stretching. Key Points Proposed stress states for the southern end of the Malawi Rift are tested by assessing fault reactivation potential Variably oriented faults reactivate by all striking slightly obliquely to an ENE‐WSW to E‐W trending minimum principal compressive stress Faults may locally accommodate pure normal dip slip due to the presence of a deep seated crustal weakness
Author Biggs, Juliet
Wedmore, Luke N. J.
Mphepo, Felix
Williams, Jack N.
Dulanya, Zuze
Fagereng, Åke
Blenkinsop, Thomas
Mdala, Hassan
Author_xml – sequence: 1
  givenname: Jack N.
  orcidid: 0000-0001-6669-308X
  surname: Williams
  fullname: Williams, Jack N.
  email: williamsj132@cardiff.ac.uk
  organization: Cardiff University
– sequence: 2
  givenname: Åke
  orcidid: 0000-0001-6335-8534
  surname: Fagereng
  fullname: Fagereng, Åke
  organization: Cardiff University
– sequence: 3
  givenname: Luke N. J.
  orcidid: 0000-0003-3654-1637
  surname: Wedmore
  fullname: Wedmore, Luke N. J.
  organization: University of Bristol
– sequence: 4
  givenname: Juliet
  orcidid: 0000-0002-4855-039X
  surname: Biggs
  fullname: Biggs, Juliet
  organization: University of Bristol
– sequence: 5
  givenname: Felix
  surname: Mphepo
  fullname: Mphepo, Felix
  organization: Mzuzu Regional Office
– sequence: 6
  givenname: Zuze
  surname: Dulanya
  fullname: Dulanya, Zuze
  organization: University of Malawi
– sequence: 7
  givenname: Hassan
  surname: Mdala
  fullname: Mdala, Hassan
  organization: Mzuzu Regional Office
– sequence: 8
  givenname: Thomas
  orcidid: 0000-0001-9684-0749
  surname: Blenkinsop
  fullname: Blenkinsop, Thomas
  organization: Cardiff University
BookMark eNp9kE1Lw0AQhhepYFu9-QMWvBrd2WRM9iTSj7RQEVoVb2ETN-3WNFt3E0v_vVvqoSdPz_DOwwy8PdKpTa0IuQZ2B4yLe85ApAPGEg7ijHQBOQac8bhzMl-QnnNrxiBCTLrkY2J2dGjou7Ra5tWeLhqrv3S9pGPZVo2jcyWLRv_IRtFhaw-LuS4bz0c6rZ1errwztmZDF6ZtVsrW9FlWcqcvyXkpK6eu_tgnb-PR62ASzF7S6eBpFsgIIA5EiIDyE4TMeV4WkEQCRMxK7tM8lphEjCdFFEc5K0JEH3HxgAoBVCEwj8I-uTne3Vrz3SrXZGvT2tq_zDiPGaJIBHrr9mgV1jhnVZltrd5Iu8-AZYfustPuvB4e9Z2u1P5fN0vTdOSJcfgLsAdv4g
CitedBy_id crossref_primary_10_1093_gji_ggad060
crossref_primary_10_1111_bre_12687
crossref_primary_10_1029_2023GC011305
crossref_primary_10_1029_2021GL095286
crossref_primary_10_3389_feart_2022_808503
crossref_primary_10_1016_j_earscirev_2023_104568
crossref_primary_10_1029_2019TC006019
crossref_primary_10_1029_2021GL093785
crossref_primary_10_1016_j_tecto_2022_229678
crossref_primary_10_1029_2021TC006970
crossref_primary_10_1016_j_jsg_2019_103896
crossref_primary_10_1016_j_tecto_2022_229499
crossref_primary_10_1029_2021TC007166
crossref_primary_10_1130_GES02228_1
crossref_primary_10_1029_2022GC010425
crossref_primary_10_1111_bre_12592
crossref_primary_10_1029_2020TC006654
crossref_primary_10_3389_feart_2021_641346
crossref_primary_10_5194_nhess_22_3607_2022
crossref_primary_10_1007_s11600_020_00457_6
crossref_primary_10_1029_2019TC005633
crossref_primary_10_1029_2019TC005834
crossref_primary_10_1029_2019TC005933
crossref_primary_10_5194_se_13_1731_2022
crossref_primary_10_1029_2020GL091466
crossref_primary_10_5194_se_12_187_2021
crossref_primary_10_1029_2019JB018926
crossref_primary_10_1111_bre_12660
Cites_doi 10.1093/gji/ggz119
10.1029/98JB00612
10.1111/j.1365-246X.2011.04950.x
10.1016/j.jsg.2006.03.012
10.1130/0091-7613(1992)020<1015:NVSSFD>2.3.CO;2
10.1029/2010GL043179
10.1007/BF00876528
10.1016/0191-8141(85)90049-5
10.1029/2018GL077343
10.1016/S0191-8141(98)00116-3
10.1002/2014GC005446
10.1016/0899-5362(95)00054-W
10.1029/2003JB002582
10.1130/G36208.1
10.2113/gssgfbull.S7-XIX.6.1309
10.1016/j.jsg.2012.11.004
10.1038/337354a0
10.1016/S0301-9268(03)00066-4
10.1086/625831
10.1130/G33927.1
10.1046/j.1365-3121.1999.00238.x
10.1130/0016-7606(1995)107<0231:OOSSSA>2.3.CO;2
10.31223/OSF.IO/NU7RQ
10.1029/2005JB004122
10.1016/j.jsg.2010.03.004
10.1046/j.1365-246X.2003.01965.x
10.1016/j.gr.2018.11.004
10.1130/0016-7606(1992)104<1015:OETITM>2.3.CO;2
10.1029/2006TC001977
10.1130/G33614.1
10.1038/s41598-017-19097-w
10.1017/S0016756800059987
10.1007/s11069-014-1572-y
10.1007/BF00876057
10.1017/CBO9780511920202
10.1002/2017TC004628
10.1111/j.1365-246X.2012.05673.x
10.1029/2011EO280002
10.1038/ngeo1432
10.1016/0191-8141(93)90176-B
10.1016/0040-1951(87)90187-9
10.1016/j.jsg.2004.02.014
10.1029/96TC02494
10.31223/OSF.IO/UJCHX
10.1016/j.jafrearsci.2013.06.004
10.1016/j.jsg.2015.08.013
10.1029/2018TC005379
10.1016/j.epsl.2010.07.022
10.1016/j.jsg.2018.06.003
10.1111/j.1365-246X.1995.tb03510.x
10.1144/GSL.SP.2003.212.01.06
10.1016/0264-8172(95)92835-K
10.1002/2015TC003953
10.1098/rsta.1986.0031
10.1130/0016-7606(1989)101<0885:TDOTWB>2.3.CO;2
10.1016/S0301-9268(01)00150-4
10.1016/j.epsl.2016.08.040
10.1029/92TC00821
10.1016/j.tecto.2018.03.010
10.1029/JZ064i011p01891
10.1111/j.1365-2117.2007.00332.x
10.1016/j.jsg.2015.02.005
10.1016/j.epsl.2011.04.041
10.1016/0301-9268(84)90031-7
10.3319/TAO.2007.18.2.183(TCDP)
10.1130/0091-7613(1996)024<0275:STAAFR>2.3.CO;2
10.1029/RF003p0127
10.1016/j.tecto.2009.05.009
10.1016/j.tecto.2013.05.012
10.1016/0040-1951(91)90232-H
10.1029/JB091iB02p01753
10.1016/0899-5362(90)90104-M
10.1002/2013JB010901
10.1016/j.jsg.2012.01.008
10.1016/0191-8141(85)90150-6
10.1029/93TC02314
10.1016/j.tecto.2011.06.010
10.1130/G20408.1
10.1017/S0016756800060040
10.5194/se-10-27-2019
10.1016/j.jsg.2006.03.010
10.1029/96TC00624
10.1016/0040-1951(86)90222-2
10.1029/93JB00190
10.1029/92TC01710
10.1016/S0191-8141(96)80016-2
10.1111/ter.12049
10.1029/2007GL032781
10.1016/j.jafrearsci.2017.02.016
10.1029/2004TC001626
10.1016/j.jsg.2018.10.012
10.5194/se-9-469-2018
ContentType Journal Article
Copyright 2019. American Geophysical Union. All Rights Reserved.
Copyright_xml – notice: 2019. American Geophysical Union. All Rights Reserved.
DBID AAYXX
CITATION
7TG
7TN
F1W
H96
KL.
L.G
DOI 10.1029/2019GC008219
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1525-2027
EndPage 3607
ExternalDocumentID 10_1029_2019GC008219
GGGE21957
Genre article
GeographicLocations Malawi
GeographicLocations_xml – name: Malawi
GrantInformation_xml – fundername: RCUK | Engineering and Physical Sciences Research Council (EPSRC)
  funderid: EP/P028233/1
GroupedDBID 05W
0R~
1OC
24P
31~
3V.
50Y
5GY
8-1
88I
8CJ
8FE
8FH
8G5
8R4
8R5
A00
AAESR
AAHHS
AAZKR
ABCUV
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACGFS
ACGOD
ACPOU
ACXQS
ADBBV
ADEOM
ADIYS
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AFGKR
AFKRA
AFPWT
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
AVWKF
AZFZN
AZQEC
AZVAB
BDRZF
BENPR
BFHJK
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
CCPQU
CS3
D1J
DCZOG
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
FEDTE
G-S
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HVGLF
HZ~
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M2O
M2P
M7R
MSFUL
MSSTM
MXFUL
MXSTM
MY~
M~E
O9-
OK1
P-X
P2W
PCBAR
PQQKQ
PROAC
Q2X
R.K
ROL
SUPJJ
UB1
WBKPD
WYJ
ZZTAW
~02
~OA
AAYXX
CITATION
7TG
7TN
F1W
H96
KL.
L.G
ID FETCH-LOGICAL-a4117-93515ad19ab2bfc18491970f215ab7a584028c474b0c355b7a2965e511ec95b43
ISSN 1525-2027
IngestDate Sun Oct 27 05:01:11 EDT 2024
Fri Aug 23 03:26:30 EDT 2024
Sat Aug 24 01:11:23 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a4117-93515ad19ab2bfc18491970f215ab7a584028c474b0c355b7a2965e511ec95b43
ORCID 0000-0001-6669-308X
0000-0002-4855-039X
0000-0001-9684-0749
0000-0001-6335-8534
0000-0003-3654-1637
OpenAccessLink https://orca.cardiff.ac.uk/id/eprint/124968/1/Williams_et_al-2019-Geochemistry%2C_Geophysics%2C_Geosystems.pdf
PQID 2270559895
PQPubID 54722
PageCount 20
ParticipantIDs proquest_journals_2270559895
crossref_primary_10_1029_2019GC008219
wiley_primary_10_1029_2019GC008219_GGGE21957
PublicationCentury 2000
PublicationDate July 2019
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: July 2019
PublicationDecade 2010
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geochemistry, geophysics, geosystems : G3
PublicationYear 2019
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2019; 10
2015; 74
2004; 26
1991; 191
2015; 76
1973
2008; 35
1972
2015; 80
2018; 45
2003; 154
1995; 20
2004; 32
2018; 9
2018; 8
1989; 101
1994; 142
2006; 28
2006; 25
2014; 15
1995; 121
2018; 37
2007; 18
2010; 32
2007; 19
1986; 91
1996; 18
2010; 37
2013; 86
2019; 38
2012; 37
2003; 212
1995; 3
1996; 15
2006; 111
2011; 307
1986; 126
2012; 191
2011; 92
2018; 114
2010; 297
1994; 13
2019; 217
2016; 455
1992; 20
2012; 40
1987; 141
2015; 34
1990; 10
1959; 64
2013; 25
1984; 25
2013; 601
1992; 11
2001; 109
2018; 731‐732
2001
2019; 68
2015; 43
1999; 11
1997; 16
2012; 522‐523
2019; 118
1996; 24
2003; 123
2017; 129
2014; 119
1986; 317
2013; 48
1989; 337
2011
1995; 12
1985; 7
1992; 104
2013; 41
2010; 482
2007
2004; 109
1978; 116
1998; 20
1958
1993; 15
1959; 96
1993; 12
1993; 98
1965
2019
1995; 107
1963
2018
2017
1998; 103
2014
1951; 59
2011; 185
2012; 5
1977; 7
1968
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_40_1
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_6_1
e_1_2_10_55_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_78_1
e_1_2_10_13_1
e_1_2_10_32_1
e_1_2_10_51_1
e_1_2_10_82_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_105_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_101_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_41_1
e_1_2_10_90_1
e_1_2_10_71_1
e_1_2_10_94_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_10_1
e_1_2_10_33_1
Jaeger J. C. (e_1_2_10_53_1) 2007
e_1_2_10_60_1
e_1_2_10_106_1
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_102_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_42_1
e_1_2_10_91_1
e_1_2_10_72_1
e_1_2_10_95_1
e_1_2_10_4_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_8_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_30_1
e_1_2_10_80_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_107_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_103_1
e_1_2_10_24_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_92_1
e_1_2_10_73_1
e_1_2_10_96_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_104_1
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_100_1
e_1_2_10_47_1
e_1_2_10_89_1
References_xml – year: 2011
– volume: 129
  start-page: 728
  year: 2017
  end-page: 738
  article-title: A review of the geomorphotectonic evolution of the south Malawi rift
  publication-title: Journal of African Earth Sciences
– volume: 109
  start-page: 257
  issue: 3–4
  year: 2001
  end-page: 291
  article-title: Single zircon ages, PT evolution and Nd isotopic systematics of high‐grade gneisses in southern Malawi and their bearing on the evolution of the Mozambique belt in southeastern Africa
  publication-title: Precambrian Research
– volume: 25
  start-page: 396
  issue: 5
  year: 2013
  end-page: 404
  article-title: Re‐orientation of the extension direction and pure extensional faulting at oblique rift margins: Comparison between the Main Ethiopian Rift and laboratory experiments
  publication-title: Terra Nova
– volume: 64
  start-page: 1891
  issue: 11
  year: 1959
  end-page: 1909
  article-title: Ice petrofabric observations from Blue Glacier, Washington, in relation to theory and experiment
  publication-title: Journal of Geophysical Research
– volume: 111
  year: 2006
  article-title: Cohesive strengthening of fault zones during the interseismic period: An experimental study
  publication-title: Journal of Geophysical Research
– volume: 601
  start-page: 216
  year: 2013
  end-page: 225
  article-title: Fault segmentation, deep rift earthquakes and crustal rheology: Insights from the 2009 Karonga sequence and seismicity in the Rukwa‐Malawi rift zone
  publication-title: Tectonophysics
– volume: 154
  start-page: 584
  issue: 2
  year: 2003
  end-page: 594
  article-title: Stress, fluid pressure and structural permeability in seismogenic crust, North Island, New Zealand
  publication-title: Geophysical Journal International
– volume: 41
  start-page: 299
  issue: 3
  year: 2013
  end-page: 302
  article-title: Contrasting strike‐slip motions on thrust and normal faults: Implications for space‐geodetic monitoring of surface deformation
  publication-title: Geology
– volume: 9
  start-page: 469
  issue: 2
  year: 2018
  end-page: 489
  article-title: Controls on fault zone structure and brittle fracturing in the foliated hanging wall of the Alpine Fault
  publication-title: Solid Earth
– volume: 59
  start-page: 118
  issue: 2
  year: 1951
  end-page: 130
  article-title: Geometry of shearing stress and relation to faulting
  publication-title: The Journal of Geology
– year: 2014
– volume: 37
  year: 2010
  article-title: Breaking up the hanging wall of a rift‐border fault: The 2009 Karonga earthquakes, Malawi
  publication-title: Geophysical Research Letters
– volume: 482
  start-page: 105
  issue: 1–4
  year: 2010
  end-page: 128
  article-title: African stress pattern from formal inversion of focal mechanism data
  publication-title: Tectonophysics
– volume: 24
  start-page: 275
  issue: 3
  year: 1996
  article-title: Slip‐tendency analysis and fault reactivation
  publication-title: Geology.
– volume: 8
  start-page: 732
  issue: 1
  year: 2018
  article-title: A geodetic strain rate model for the East African Rift System
  publication-title: Scientific Reports
– volume: 119
  start-page: 3584
  year: 2014
  end-page: 3600
  article-title: Present‐day kinematics of the East African Rift
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 11
  start-page: 998
  issue: 5
  year: 1992
  end-page: 1009
  article-title: Oblique‐slip deformation in extensional terrains: A case study of the lakes Tanganyika and Malawi Rift Zones
  publication-title: Tectonics
– volume: 25
  year: 2006
  article-title: Fault reactivation and rift localization: Northeastern Gulf of Aden margin
  publication-title: Tectonics
– year: 1972
– volume: 37
  start-page: 683
  year: 2018
  end-page: 704
  article-title: Active deformation of Malawi Rift's North Basin hinge zone modulated by reactivation of preexisting Precambrian shear zone fabric
  publication-title: Tectonics
– volume: 141
  start-page: 215
  issue: 1–3
  year: 1987
  end-page: 235
  article-title: Tectonic model of the Malaŵi rift, Africa
  publication-title: Tectonophysics
– volume: 68
  start-page: 93
  year: 2019
  end-page: 107
  article-title: Evolution of the Mozambique Belt in Malawi constrained by granitoid U‐Pb, Sm‐Nd and Lu‐Hf isotopic data
  publication-title: Gondwana Research
– volume: 3
  start-page: 127
  year: 1995
  end-page: 147
– volume: 40
  start-page: 1143
  issue: 12
  year: 2012
  end-page: 1146
  article-title: Drilling reveals fluid control on architecture and rupture of the Alpine fault, New Zealand
  publication-title: Geology
– year: 2019
– volume: 92
  start-page: 234
  issue: 28
  year: 2011
  article-title: Open radar interferometry software for mapping surface Deformation
  publication-title: Eos, Transactions American Geophysical Union.
– year: 1958
– volume: 101
  start-page: 885
  issue: 7
  year: 1989
  end-page: 903
  article-title: Tectonic development of the western branch of the East African rift system
  publication-title: Geological Society of America Bulletin
– volume: 10
  start-page: 27
  issue: 1
  year: 2019
  end-page: 57
  article-title: A semi‐automated algorithm to quantify scarp morphology (SPARTA): Application to normal faults in southern Malawi
  publication-title: Solid Earth
– volume: 522‐523
  start-page: 1
  year: 2012
  end-page: 33
  article-title: Evolution and characteristics of continental rifting: Analog modeling‐inspired view and comparison with examples from the East African Rift System
  publication-title: Tectonophysics
– volume: 20
  start-page: 275
  issue: 3–4
  year: 1995
  end-page: 288
  article-title: Geochronology and cooling history of the northern part of the Chilwa Alkaline Province, Malawi
  publication-title: Journal of African Earth Sciences
– volume: 12
  start-page: 591
  issue: 2
  year: 1993
  end-page: 606
  article-title: Crustal heterogeneity and basement influence on the development of the Kenya Rift, East Africa
  publication-title: Tectonics
– year: 2007
– year: 1973
– volume: 455
  start-page: 62
  year: 2016
  end-page: 72
  article-title: Spatio‐temporal trends in normal‐fault segmentation recorded by low‐temperature thermochronology: Livingstone fault scarp, Malawi Rift, East African Rift System
  publication-title: Earth and Planetary Science Letters
– volume: 48
  start-page: 153
  year: 2013
  end-page: 161
  article-title: A new three‐dimensional method of fault reactivation analysis
  publication-title: Journal of Structural Geology
– volume: 10
  start-page: 519
  issue: 3
  year: 1990
  end-page: 548
  article-title: The seismic stratigraphy of Lake Malawi, Africa: Implications for interpreting geological processes in lacustrine rifts
  publication-title: Journal of African Earth Sciences
– volume: 217
  start-page: 1767
  issue: 3
  year: 2019
  end-page: 1782
  article-title: Faulting processes during early‐stage rifting: Seismic and geodetic analysis of the 2009‐2010 Northern Malawi earthquake sequence
  publication-title: Geophysical Journal International
– volume: 37
  start-page: 161
  year: 2012
  end-page: 180
  article-title: Geodynamic significance of the TRM segment in the East African Rift (W‐Tanzania): Active tectonics and paleostress in the Ufipa plateau and Rukwa basin
  publication-title: Journal of Structural Geology
– volume: 26
  start-page: 1803
  issue: 10
  year: 2004
  end-page: 1829
  article-title: Activation of rift oblique and rift parallel pre‐existing fabrics during extension and their effect on deformation style: Examples from the rifts of Thailand
  publication-title: Journal of Structural Geology
– volume: 96
  start-page: 149
  issue: 2
  year: 1959
  end-page: 167
  article-title: Mechanics of jointing in rocks
  publication-title: Geological Magazine
– volume: 191
  start-page: 898
  issue: 3
  year: 2012
  end-page: 908
  article-title: Seismic and aseismic slip evolution and deformation associated with the 2009‐2010 northern Malawi earthquake swarm, East African Rift
  publication-title: Geophysical Journal International
– volume: 43
  start-page: 147
  issue: 2
  year: 2015
  end-page: 150
  article-title: Slip re‐orientation in oblique rifts
  publication-title: Geology
– volume: 7
  start-page: 1309
  issue: 6
  year: 1977
  end-page: 1318
  article-title: Sur une méthode graphice de recherche des contraintes principales également utilisable en tectonique et en séismologie: La méthode des dièdres droits
  publication-title: Bulletin de La Société Géologique de France
– volume: 15
  start-page: 1171
  issue: 6
  year: 1996
  end-page: 1191
  article-title: Present‐day stress field changes along the Baikal rift and tectonic implications
  publication-title: Tectonics
– volume: 15
  start-page: 1045
  issue: 8
  year: 1993
  end-page: 1054
  article-title: Stress inversion methods: Are they based on faulty assumptions?
  publication-title: Journal of Structural Geology
– volume: 11
  start-page: 149
  issue: 4
  year: 1999
  end-page: 156
  article-title: Sand‐box modelling of basement‐controlled transfer zones in extensional domains
  publication-title: Terra Nova
– volume: 126
  start-page: 99
  issue: 2–4
  year: 1986
  end-page: 124
  article-title: Deformation produced by oblique rifting
  publication-title: Tectonophysics
– volume: 80
  start-page: 57
  year: 2015
  end-page: 71
  article-title: Polymodal faulting: Time for a new angle on shear failure
  publication-title: Journal of Structural Geology
– volume: 25
  year: 2006
  article-title: U‐Pb sensitive high‐resolution ion microprobe (SHRIMP) zircon geochronology of granitoid rocks in eastern Zambia: Terrane subdivision of the Mesoproterozoic Southern Irumide Belt
  publication-title: Tectonics
– volume: 86
  start-page: 65
  year: 2013
  end-page: 106
  article-title: Orogen styles in the East African Orogen: A review of the Neoproterozoic to Cambrian tectonic evolution
  publication-title: Journal of African Earth Sciences
– volume: 123
  start-page: 159
  issue: 2‐4
  year: 2003
  end-page: 186
  article-title: Tectonic evolution of the Zambezi orogenic belt: Geochronological, structural, and petrological constraints from northern Zimbabwe
  publication-title: Precambrian Research.
– volume: 142
  start-page: 609
  issue: 3‐4
  year: 1994
  end-page: 644
  article-title: Fracturing and hydrothermal alteration in normal fault zones
  publication-title: Pure and Applied Geophysics
– volume: 20
  start-page: 1015
  issue: 11
  year: 1992
  end-page: 1018
  article-title: Normal vs. strike‐slip faulting during rift development in East Africa: The Malawi rift
  publication-title: Geology
– volume: 96
  start-page: 109
  issue: 2
  year: 1959
  end-page: 117
  article-title: The mechanics of oblique slip faulting
  publication-title: Geological Magazine
– volume: 28
  start-page: 1028
  issue: 6
  year: 2006
  end-page: 1039
  article-title: Kinematic analysis of the Upper Rhine Graben boundary fault system
  publication-title: Journal of Structural Geology
– volume: 7
  start-page: 751
  issue: 6
  year: 1985
  end-page: 754
  article-title: A note on fault reactivation
  publication-title: Journal of Structural Geology
– volume: 15
  start-page: 3392
  year: 2014
  end-page: 3415
  article-title: Evolution of stress and fault patterns in oblique rift systems: 3‐D numerical lithospheric‐scale experiments from rift to breakup
  publication-title: Geochemistry, Geophysics, Geosystems
– volume: 104
  start-page: 1015
  issue: 8
  year: 1992
  end-page: 1023
  article-title: Oblique extensional tectonics in the Malawi Rift, Africa
  publication-title: Geological Society of America Bulletin
– volume: 12
  start-page: 137
  issue: 2
  year: 1995
  end-page: 151
  article-title: Analogue modelling of orthogonal and oblique rifting
  publication-title: Marine and Petroleum Geology
– volume: 118
  start-page: 236
  year: 2019
  end-page: 249
  article-title: Structural controls on the interaction between basin fluids and a rift flank fault: Constraints from the Bwamba Fault, East African Rift
  publication-title: Journal of Structural Geology
– year: 2001
– volume: 32
  start-page: 569
  issue: 7
  year: 2004
  article-title: Test of the frictional reactivation theory for faults and validity of fault‐slip analysis
  publication-title: Geology
– volume: 28
  start-page: 1051
  issue: 6
  year: 2006
  end-page: 1066
  article-title: Favoured states of palaeostress in the Earth's crust: Evidence from fault‐slip data
  publication-title: Journal of Structural Geology
– volume: 45
  start-page: 3896
  year: 2018
  end-page: 3905
  article-title: Controls on early‐rift geometry: New perspectives from the Bilila‐Mtakataka Fault, Malawi
  publication-title: Geophysical Research Letters
– volume: 98
  start-page: 14,339
  issue: B8
  year: 1993
  end-page: 14,351
  article-title: Transfer faults and pull‐apart model in the rhinegraben from analysis of multisource data
  publication-title: Journal of Geophysical Research
– volume: 19
  start-page: 393
  issue: 3
  year: 2007
  end-page: 407
  article-title: Orthogonal to oblique rifting: Effect of rift basin orientation in the evolution of the North basin, Malawi Rift, East Africa
  publication-title: Basin Research
– volume: 18
  start-page: 183
  issue: 2
  year: 2007
  article-title: Structural, mineralogical, and geochemical characterization of the Chelungpu Thrust Fault, Taiwan
  publication-title: Terrestrial, Atmospheric and Oceanic Sciences
– year: 2018
– volume: 25
  start-page: 161
  issue: 1–3
  year: 1984
  end-page: 186
  article-title: Petrochemistry, tectonic evolution and metasomatic mineralisations of Mozambique belt granulites from S Malawi and Tete (Mozambique)
  publication-title: Precambrian Research
– volume: 107
  start-page: 231
  issue: 2
  year: 1995
  end-page: 240
  article-title: Origin of small‐scale segmentation and transpressional thrusting along the Alpine Fault, New Zealand
  publication-title: Geological Society of America Bulletin
– volume: 103
  start-page: 12,205
  issue: B6
  year: 1998
  end-page: 12,222
  article-title: Analysis of fault slip inversions: Do they constrain stress or strain rate?
  publication-title: Journal of Geophysical Research
– volume: 13
  start-page: 303
  issue: 2
  year: 1994
  end-page: 312
  article-title: Geometry of the Livingstone Mountains Border Fault, Nyasa (Malawi) Rift, East Africa
  publication-title: Tectonics
– year: 1965
– volume: 38
  start-page: 842
  year: 2019
  end-page: 862
  article-title: Depth extent and kinematics of Faulting in the Southern Tanganyika Rift, Africa
  publication-title: Tectonics
– volume: 317
  start-page: 179
  issue: 1539
  year: 1986
  end-page: 194
  article-title: On the reactivation of extensional fault systems
  publication-title: Philosophical Transactions ‐ Royal Society of London, Series A
– volume: 297
  start-page: 667
  issue: 3–4
  year: 2010
  end-page: 673
  article-title: Stress re‐orientation along zones of weak fabrics in rifts: An explanation for pure extension in “oblique” rift segments?
  publication-title: Earth and Planetary Science Letters
– volume: 337
  start-page: 354
  issue: 6205
  year: 1989
  end-page: 357
  article-title: Relationships between pre‐rift structure and rift architecture in Lakes Tanganyika and Malawi, East Africa
  publication-title: Nature
– volume: 109
  year: 2004
  article-title: Crystallographic controls on the frictional behavior of dry and water‐saturated sheet structure minerals
  publication-title: Journal of Geophysical Research
– volume: 18
  start-page: 835
  issue: 6
  year: 1996
  end-page: 845
  article-title: Variation in fault‐slip directions along active and segmented normal fault systems
  publication-title: Journal of Structural Geology
– year: 1968
– volume: 121
  start-page: 49
  issue: 1
  year: 1995
  end-page: 62
  article-title: East African earthquakes below 20 km depth and their implications for crustal structure
  publication-title: Geophysical Journal International
– volume: 114
  start-page: 43
  year: 2018
  end-page: 54
  article-title: Frictional properties and 3‐D stress analysis of the southern Alpine Fault, New Zealand
  publication-title: Journal of Structural Geology
– volume: 185
  start-page: 403
  issue: 1
  year: 2011
  end-page: 434
  article-title: Earthquake distribution patterns in Africa: Their relationship to variations in lithospheric and geological structure, and their rheological implications
  publication-title: Geophysical Journal International
– volume: 32
  start-page: 1576
  issue: 11
  year: 2010
  end-page: 1589
  article-title: Internal structure, fault rocks, and inferences regarding deformation, fluid flow, and mineralization in the seismogenic Stillwater normal fault, Dixie Valley, Nevada
  publication-title: Journal of Structural Geology
– year: 1963
– volume: 16
  start-page: 137
  issue: 1
  year: 1997
  end-page: 150
  article-title: The Bilila‐Mtakataka fault in Malawi: An active, 100‐km long, normal fault segment in thick seismogenic crust
  publication-title: Tectonics
– volume: 34
  start-page: 2399
  year: 2015
  end-page: 2417
  article-title: Hierarchical segmentation of the Malawi Rift: The influence of inherited lithospheric heterogeneity and kinematics in the evolution of continental rifts
  publication-title: Tectonics
– volume: 731‐732
  start-page: 172
  year: 2018
  end-page: 180
  article-title: Constraints on fault and crustal strength of the Main Ethiopian Rift from formal inversion of earthquake focal mechanism data
  publication-title: Tectonophysics
– volume: 76
  start-page: 1781
  issue: 3
  year: 2015
  end-page: 1806
  article-title: Assessing infrequent large earthquakes using geomorphology and geodesy: The Malawi Rift
  publication-title: Natural Hazards
– volume: 116
  start-page: 615
  issue: 4–5
  year: 1978
  end-page: 626
  article-title: Friction of rocks
  publication-title: Pure and Applied Geophysics PAGEOPH
– volume: 7
  start-page: 459
  issue: 3–4
  year: 1985
  end-page: 476
  article-title: Loading paths to joint propagation during a tectonic cycle: An example from the Appalachian Plateau, U.S.A
  publication-title: Journal of Structural Geology
– volume: 191
  start-page: 55
  issue: 1–2
  year: 1991
  end-page: 73
  article-title: Post‐Pan‐African tectonic evolution of South Malawi in relation to the Karroo and recent East African rift systems
  publication-title: Tectonophysics
– volume: 212
  start-page: 75
  issue: 1
  year: 2003
  end-page: 100
  article-title: New aspects of tectonic stress inversion with reference to the TENSOR program
  publication-title: Geological Society, London, Special Publications
– year: 2017
– volume: 5
  start-page: 289
  issue: 4
  year: 2012
  end-page: 294
  article-title: Initiation of the western branch of the East African Rift coeval with the eastern branch
  publication-title: Nature Geoscience
– volume: 307
  start-page: 233
  issue: 1–2
  year: 2011
  end-page: 239
  article-title: Misoriented faults in exhumed metamorphic complexes: Rule or exception?
  publication-title: Earth and Planetary Science Letters
– volume: 91
  start-page: 1753
  issue: B2
  year: 1986
  article-title: Tectonics of the Jemez lineament in the Jemez Mountains and Rio Grande Rift (USA)
  publication-title: Journal of Geophysical Research
– volume: 74
  start-page: 45
  year: 2015
  end-page: 63
  article-title: Evolution of a major segmented normal fault during multiphase rifting: The origin of plan‐view zigzag geometry
  publication-title: Journal of Structural Geology
– volume: 35
  year: 2008
  article-title: A kinematic model for the East African Rift
  publication-title: Geophysical Research Letters
– volume: 20
  start-page: 655
  issue: 5
  year: 1998
  end-page: 660
  article-title: Brittle failure mode plots for compressional and extensional tectonic regimes
  publication-title: Journal of Structural Geology
– ident: e_1_2_10_38_1
  doi: 10.1093/gji/ggz119
– ident: e_1_2_10_98_1
  doi: 10.1029/98JB00612
– ident: e_1_2_10_23_1
  doi: 10.1111/j.1365-246X.2011.04950.x
– ident: e_1_2_10_61_1
  doi: 10.1016/j.jsg.2006.03.012
– ident: e_1_2_10_84_1
  doi: 10.1130/0091-7613(1992)020<1015:NVSSFD>2.3.CO;2
– ident: e_1_2_10_8_1
  doi: 10.1029/2010GL043179
– ident: e_1_2_10_16_1
  doi: 10.1007/BF00876528
– ident: e_1_2_10_33_1
  doi: 10.1016/0191-8141(85)90049-5
– ident: e_1_2_10_49_1
  doi: 10.1029/2018GL077343
– ident: e_1_2_10_91_1
  doi: 10.1016/S0191-8141(98)00116-3
– ident: e_1_2_10_15_1
  doi: 10.1002/2014GC005446
– ident: e_1_2_10_32_1
  doi: 10.1016/0899-5362(95)00054-W
– ident: e_1_2_10_70_1
  doi: 10.1029/2003JB002582
– ident: e_1_2_10_81_1
  doi: 10.1130/G36208.1
– ident: e_1_2_10_6_1
  doi: 10.2113/gssgfbull.S7-XIX.6.1309
– ident: e_1_2_10_60_1
  doi: 10.1016/j.jsg.2012.11.004
– ident: e_1_2_10_100_1
  doi: 10.1038/337354a0
– ident: e_1_2_10_43_1
  doi: 10.1016/S0301-9268(03)00066-4
– ident: e_1_2_10_102_1
  doi: 10.1086/625831
– ident: e_1_2_10_42_1
  doi: 10.1130/G33927.1
– ident: e_1_2_10_103_1
– ident: e_1_2_10_2_1
  doi: 10.1046/j.1365-3121.1999.00238.x
– ident: e_1_2_10_78_1
  doi: 10.1130/0016-7606(1995)107<0231:OOSSSA>2.3.CO;2
– ident: e_1_2_10_45_1
  doi: 10.31223/OSF.IO/NU7RQ
– ident: e_1_2_10_39_1
– ident: e_1_2_10_97_1
  doi: 10.1029/2005JB004122
– ident: e_1_2_10_17_1
  doi: 10.1016/j.jsg.2010.03.004
– ident: e_1_2_10_92_1
  doi: 10.1046/j.1365-246X.2003.01965.x
– ident: e_1_2_10_77_1
– ident: e_1_2_10_65_1
  doi: 10.1016/j.gr.2018.11.004
– ident: e_1_2_10_20_1
  doi: 10.1130/0016-7606(1992)104<1015:OETITM>2.3.CO;2
– ident: e_1_2_10_54_1
  doi: 10.1029/2006TC001977
– ident: e_1_2_10_40_1
– ident: e_1_2_10_96_1
  doi: 10.1130/G33614.1
– ident: e_1_2_10_95_1
  doi: 10.1038/s41598-017-19097-w
– ident: e_1_2_10_24_1
– ident: e_1_2_10_12_1
  doi: 10.1017/S0016756800059987
– ident: e_1_2_10_48_1
  doi: 10.1007/s11069-014-1572-y
– ident: e_1_2_10_14_1
  doi: 10.1007/BF00876057
– ident: e_1_2_10_4_1
  doi: 10.1017/CBO9780511920202
– ident: e_1_2_10_9_1
– ident: e_1_2_10_56_1
  doi: 10.1002/2017TC004628
– ident: e_1_2_10_41_1
  doi: 10.1111/j.1365-246X.2012.05673.x
– ident: e_1_2_10_87_1
  doi: 10.1029/2011EO280002
– ident: e_1_2_10_85_1
  doi: 10.1038/ngeo1432
– ident: e_1_2_10_82_1
  doi: 10.1016/0191-8141(93)90176-B
– ident: e_1_2_10_11_1
– ident: e_1_2_10_31_1
  doi: 10.1016/0040-1951(87)90187-9
– ident: e_1_2_10_72_1
  doi: 10.1016/j.jsg.2004.02.014
– ident: e_1_2_10_52_1
  doi: 10.1029/96TC02494
– ident: e_1_2_10_104_1
  doi: 10.31223/OSF.IO/UJCHX
– ident: e_1_2_10_37_1
  doi: 10.1016/j.jafrearsci.2013.06.004
– ident: e_1_2_10_44_1
  doi: 10.1016/j.jsg.2015.08.013
– ident: e_1_2_10_59_1
  doi: 10.1029/2018TC005379
– ident: e_1_2_10_71_1
  doi: 10.1016/j.epsl.2010.07.022
– ident: e_1_2_10_13_1
  doi: 10.1016/j.jsg.2018.06.003
– ident: e_1_2_10_79_1
  doi: 10.1111/j.1365-246X.1995.tb03510.x
– ident: e_1_2_10_28_1
  doi: 10.1144/GSL.SP.2003.212.01.06
– ident: e_1_2_10_66_1
– ident: e_1_2_10_68_1
  doi: 10.1016/0264-8172(95)92835-K
– ident: e_1_2_10_58_1
  doi: 10.1002/2015TC003953
– ident: e_1_2_10_34_1
  doi: 10.1098/rsta.1986.0031
– ident: e_1_2_10_30_1
  doi: 10.1130/0016-7606(1989)101<0885:TDOTWB>2.3.CO;2
– ident: e_1_2_10_57_1
  doi: 10.1016/S0301-9268(01)00150-4
– ident: e_1_2_10_74_1
  doi: 10.1016/j.epsl.2016.08.040
– ident: e_1_2_10_89_1
  doi: 10.1029/92TC00821
– ident: e_1_2_10_99_1
– ident: e_1_2_10_76_1
  doi: 10.1016/j.tecto.2018.03.010
– ident: e_1_2_10_55_1
  doi: 10.1029/JZ064i011p01891
– ident: e_1_2_10_75_1
  doi: 10.1111/j.1365-2117.2007.00332.x
– ident: e_1_2_10_46_1
  doi: 10.1016/j.jsg.2015.02.005
– ident: e_1_2_10_67_1
  doi: 10.1016/j.epsl.2011.04.041
– ident: e_1_2_10_5_1
  doi: 10.1016/0301-9268(84)90031-7
– ident: e_1_2_10_51_1
  doi: 10.3319/TAO.2007.18.2.183(TCDP)
– ident: e_1_2_10_73_1
  doi: 10.1130/0091-7613(1996)024<0275:STAAFR>2.3.CO;2
– ident: e_1_2_10_63_1
  doi: 10.1029/RF003p0127
– ident: e_1_2_10_26_1
  doi: 10.1016/j.tecto.2009.05.009
– ident: e_1_2_10_10_1
– ident: e_1_2_10_35_1
  doi: 10.1016/j.tecto.2013.05.012
– ident: e_1_2_10_18_1
  doi: 10.1016/0040-1951(91)90232-H
– ident: e_1_2_10_101_1
– ident: e_1_2_10_3_1
  doi: 10.1029/JB091iB02p01753
– ident: e_1_2_10_36_1
  doi: 10.1016/0899-5362(90)90104-M
– ident: e_1_2_10_69_1
– ident: e_1_2_10_88_1
  doi: 10.1002/2013JB010901
– ident: e_1_2_10_27_1
  doi: 10.1016/j.jsg.2012.01.008
– ident: e_1_2_10_90_1
  doi: 10.1016/0191-8141(85)90150-6
– ident: e_1_2_10_105_1
  doi: 10.1029/93TC02314
– ident: e_1_2_10_21_1
  doi: 10.1016/j.tecto.2011.06.010
– ident: e_1_2_10_62_1
  doi: 10.1130/G20408.1
– ident: e_1_2_10_83_1
  doi: 10.1017/S0016756800060040
– ident: e_1_2_10_47_1
  doi: 10.5194/se-10-27-2019
– ident: e_1_2_10_64_1
  doi: 10.1016/j.jsg.2006.03.010
– ident: e_1_2_10_80_1
  doi: 10.1029/96TC00624
– ident: e_1_2_10_107_1
  doi: 10.1016/0040-1951(86)90222-2
– ident: e_1_2_10_19_1
  doi: 10.1029/93JB00190
– ident: e_1_2_10_93_1
  doi: 10.1029/92TC01710
– ident: e_1_2_10_86_1
  doi: 10.1016/S0191-8141(96)80016-2
– ident: e_1_2_10_25_1
– ident: e_1_2_10_22_1
  doi: 10.1111/ter.12049
– ident: e_1_2_10_94_1
  doi: 10.1029/2007GL032781
– ident: e_1_2_10_29_1
  doi: 10.1016/j.jafrearsci.2017.02.016
– ident: e_1_2_10_7_1
  doi: 10.1029/2004TC001626
– ident: e_1_2_10_50_1
  doi: 10.1016/j.jsg.2018.10.012
– ident: e_1_2_10_106_1
  doi: 10.5194/se-9-469-2018
– volume-title: Fundamentals of rock mechanics
  year: 2007
  ident: e_1_2_10_53_1
  contributor:
    fullname: Jaeger J. C.
SSID ssj0014558
Score 2.4654267
Snippet Crustal extension is commonly thought to be accommodated by faults that strike orthogonal and obliquely to the regional trend of the minimum compressive stress...
Abstract Crustal extension is commonly thought to be accommodated by faults that strike orthogonal and obliquely to the regional trend of the minimum...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 3588
SubjectTerms continental rift
Direction
Earth
Earth crust
East African Rift
Fault lines
fault reactivation
Fault zones
Faults
Fractures
Geological time
Joints (timber)
normal faults
Obliquity
Orientation
Rifting
stress inversions
tectonic stress
Trends
Title How Do Variably Striking Faults Reactivate During Rifting? Insights From Southern Malawi
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2019GC008219
https://www.proquest.com/docview/2270559895
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIiQuiKcoLMgHOIWU1LGT-ITQts1qRXtAu6i3yHGdVUVpEG1By4G_xF9kxnbSrFitWC5V67pW6_k6_mY8D0Je8cikLEkxpoqbkCtRhplWYKWAMaGrVGtua3dOZ8nxGT-Zi3mv97sTtbTblgP988q8kv-RKoyBXDFL9gaSbReFAXgO8oVHkDA8_pOMsR_cqA4-gb2rytUFXjEv0fUdTNRutcUMEExb-A50Mhi5dMSPy8qlOE8wTAAN8w1w1_pLYFvpYVe0qVqpH8suZ80NdtVybeFQIuemdv6QjX_lqkFvrHchb_VI15ODmfzBbNCCBQtnGKdl8KY-E587V0SLJvb3A0aOzAbBSfvB1pWPad0-ddu7LGyWVOOy8FqWiRC9Lu4QumLMq2YWdSCYdvRsLFwzQH9mx4lrnfvXeRAxLKeK3yE_Qrbj1fOlstvtPHHdTHvk53k-hndEeovcZqDZUKVOf43baysubEPY9rf4TAtY_W135cscaG_YdM0jy29O75N73jCh7x3KHpCeWT8kd3Lb-PniEZkD1uiopg3WaIM16rBG91ijDmvUY-0dbZBGEWm0QRp1SHtMzibj06Pj0HflCBUfAqWRMVBgtRhKVbKy0sOMy6FMowq4oypTBYQWKKvmKS8jDWQWhphMhAFib7QUJY-fkIN1vTZPCdVKmoVEFpmVXDMlYW6cRYmuFNNxlfbJ62afiq-u-EphgyaYLLr72SeHzSYW_u-5KRjDQlEyk6JP3tiNvXaNopXts5tNf07u7jF-SA6233bmBRDVbfnSguMPwXGHVg
link.rule.ids 315,783,787,27936,27937
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+Do+Variably+Striking+Faults+Reactivate+During+Rifting%3F+Insights+From+Southern+Malawi&rft.jtitle=Geochemistry%2C+geophysics%2C+geosystems+%3A+G3&rft.au=Williams%2C+Jack+N.&rft.au=Fagereng%2C+%C3%85ke&rft.au=Wedmore%2C+Luke+N.+J.&rft.au=Biggs%2C+Juliet&rft.date=2019-07-01&rft.issn=1525-2027&rft.eissn=1525-2027&rft.volume=20&rft.issue=7&rft.spage=3588&rft.epage=3607&rft_id=info:doi/10.1029%2F2019GC008219&rft.externalDBID=10.1029%252F2019GC008219&rft.externalDocID=GGGE21957
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1525-2027&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1525-2027&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1525-2027&client=summon