How Do Variably Striking Faults Reactivate During Rifting? Insights From Southern Malawi
Crustal extension is commonly thought to be accommodated by faults that strike orthogonal and obliquely to the regional trend of the minimum compressive stress (σ3). Activation of oblique faults can, however, be conceptually problematic as under Andersonian faulting, it requires preexisting crustal...
Saved in:
Published in | Geochemistry, geophysics, geosystems : G3 Vol. 20; no. 7; pp. 3588 - 3607 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington
John Wiley & Sons, Inc
01.07.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Crustal extension is commonly thought to be accommodated by faults that strike orthogonal and obliquely to the regional trend of the minimum compressive stress (σ3). Activation of oblique faults can, however, be conceptually problematic as under Andersonian faulting, it requires preexisting crustal weaknesses, high fluid pressures, and/or stress rotations. Furthermore, measurements of incremental fault displacements, which are typically used to identify oblique faulting, do not necessarily reflect regional stresses. Here, we assess oblique faulting by calculating the stress ratio (σ3/σ1, where σ1 is the maximum compressive stress), slip tendency, and effective coefficient of friction (μs′) required to reactivate variably striking normal faults under different trends of σ3. We apply this analysis to NW and NNE striking active faults at the southern end of the Malawi Rift, where NE‐SW, ENE‐WSW, E‐W, and SE‐NW σ3 trends have previously been proposed. A uniform σ3 trend is inferred for this region as recent joints sets do not rotate along the rift. With a NE‐SW trending σ3, NW‐striking faults are well oriented, however, NNE‐striking faults require μs′ < 0.6 to reactivate. This is inconsistent with a lack of frictionally weak phyllosilicates detected in the fault zone rocks. With an ENE‐WSW to E‐W trending σ3, all faults can reactivate at μs′ > 0.55. These σ3 trends are also comparable to a focal mechanism stress inversion, regional joint orientations, and previously reported geodetically derived extension directions. We therefore conclude that unlike typical models of oblique rifting, the southern Malawi Rift consists of faults that all strike slightly oblique to σ3.
Plain Language Summary
Stretching of the upper brittle part of the Earth's crust should be accommodated by fractures (faults) oriented at 90° to the stretching direction. However, this idealized scenario is rarely observed because of crustal heterogeneities, or because the stretching direction rotates over geological time. Thus, faults are often nonorthogonal (i.e., oblique) to the stretching direction. Here, we use a mechanical analysis to test the obliquity of faults in southern Malawi at the southern juvenile end of the East African Rift system where the crust is actively extending at ~2 mm/year. This section is of interest as fault orientation varies along the rift, and a range of stretching directions have been proposed previously. Our mechanical analysis indicates that extension is most likely accommodated in southern Malawi by faults that are all slightly oblique to an ENE‐WSW to E‐W stretching direction. This is in contrast to previous models of oblique extension, which suggest that stretching is accommodated by some faults at 90° to the stretching direction, while others are at a very low (<40°) angle to stretching.
Key Points
Proposed stress states for the southern end of the Malawi Rift are tested by assessing fault reactivation potential
Variably oriented faults reactivate by all striking slightly obliquely to an ENE‐WSW to E‐W trending minimum principal compressive stress
Faults may locally accommodate pure normal dip slip due to the presence of a deep seated crustal weakness |
---|---|
AbstractList | Crustal extension is commonly thought to be accommodated by faults that strike orthogonal and obliquely to the regional trend of the minimum compressive stress (σ3). Activation of oblique faults can, however, be conceptually problematic as under Andersonian faulting, it requires preexisting crustal weaknesses, high fluid pressures, and/or stress rotations. Furthermore, measurements of incremental fault displacements, which are typically used to identify oblique faulting, do not necessarily reflect regional stresses. Here, we assess oblique faulting by calculating the stress ratio (σ3/σ1, where σ1 is the maximum compressive stress), slip tendency, and effective coefficient of friction (μs′) required to reactivate variably striking normal faults under different trends of σ3. We apply this analysis to NW and NNE striking active faults at the southern end of the Malawi Rift, where NE‐SW, ENE‐WSW, E‐W, and SE‐NW σ3 trends have previously been proposed. A uniform σ3 trend is inferred for this region as recent joints sets do not rotate along the rift. With a NE‐SW trending σ3, NW‐striking faults are well oriented, however, NNE‐striking faults require μs′ < 0.6 to reactivate. This is inconsistent with a lack of frictionally weak phyllosilicates detected in the fault zone rocks. With an ENE‐WSW to E‐W trending σ3, all faults can reactivate at μs′ > 0.55. These σ3 trends are also comparable to a focal mechanism stress inversion, regional joint orientations, and previously reported geodetically derived extension directions. We therefore conclude that unlike typical models of oblique rifting, the southern Malawi Rift consists of faults that all strike slightly oblique to σ3.
Plain Language Summary
Stretching of the upper brittle part of the Earth's crust should be accommodated by fractures (faults) oriented at 90° to the stretching direction. However, this idealized scenario is rarely observed because of crustal heterogeneities, or because the stretching direction rotates over geological time. Thus, faults are often nonorthogonal (i.e., oblique) to the stretching direction. Here, we use a mechanical analysis to test the obliquity of faults in southern Malawi at the southern juvenile end of the East African Rift system where the crust is actively extending at ~2 mm/year. This section is of interest as fault orientation varies along the rift, and a range of stretching directions have been proposed previously. Our mechanical analysis indicates that extension is most likely accommodated in southern Malawi by faults that are all slightly oblique to an ENE‐WSW to E‐W stretching direction. This is in contrast to previous models of oblique extension, which suggest that stretching is accommodated by some faults at 90° to the stretching direction, while others are at a very low (<40°) angle to stretching.
Key Points
Proposed stress states for the southern end of the Malawi Rift are tested by assessing fault reactivation potential
Variably oriented faults reactivate by all striking slightly obliquely to an ENE‐WSW to E‐W trending minimum principal compressive stress
Faults may locally accommodate pure normal dip slip due to the presence of a deep seated crustal weakness Crustal extension is commonly thought to be accommodated by faults that strike orthogonal and obliquely to the regional trend of the minimum compressive stress (σ3). Activation of oblique faults can, however, be conceptually problematic as under Andersonian faulting, it requires preexisting crustal weaknesses, high fluid pressures, and/or stress rotations. Furthermore, measurements of incremental fault displacements, which are typically used to identify oblique faulting, do not necessarily reflect regional stresses. Here, we assess oblique faulting by calculating the stress ratio (σ3/σ1, where σ1 is the maximum compressive stress), slip tendency, and effective coefficient of friction (μs′) required to reactivate variably striking normal faults under different trends of σ3. We apply this analysis to NW and NNE striking active faults at the southern end of the Malawi Rift, where NE‐SW, ENE‐WSW, E‐W, and SE‐NW σ3 trends have previously been proposed. A uniform σ3 trend is inferred for this region as recent joints sets do not rotate along the rift. With a NE‐SW trending σ3, NW‐striking faults are well oriented, however, NNE‐striking faults require μs′ < 0.6 to reactivate. This is inconsistent with a lack of frictionally weak phyllosilicates detected in the fault zone rocks. With an ENE‐WSW to E‐W trending σ3, all faults can reactivate at μs′ > 0.55. These σ3 trends are also comparable to a focal mechanism stress inversion, regional joint orientations, and previously reported geodetically derived extension directions. We therefore conclude that unlike typical models of oblique rifting, the southern Malawi Rift consists of faults that all strike slightly oblique to σ3. Abstract Crustal extension is commonly thought to be accommodated by faults that strike orthogonal and obliquely to the regional trend of the minimum compressive stress ( σ 3 ). Activation of oblique faults can, however, be conceptually problematic as under Andersonian faulting, it requires preexisting crustal weaknesses, high fluid pressures, and/or stress rotations. Furthermore, measurements of incremental fault displacements, which are typically used to identify oblique faulting, do not necessarily reflect regional stresses. Here, we assess oblique faulting by calculating the stress ratio ( σ 3 / σ 1 , where σ 1 is the maximum compressive stress), slip tendency, and effective coefficient of friction ( μ s ′) required to reactivate variably striking normal faults under different trends of σ 3 . We apply this analysis to NW and NNE striking active faults at the southern end of the Malawi Rift, where NE‐SW, ENE‐WSW, E‐W, and SE‐NW σ 3 trends have previously been proposed. A uniform σ 3 trend is inferred for this region as recent joints sets do not rotate along the rift. With a NE‐SW trending σ 3 , NW‐striking faults are well oriented, however, NNE‐striking faults require μ s ′ < 0.6 to reactivate. This is inconsistent with a lack of frictionally weak phyllosilicates detected in the fault zone rocks. With an ENE‐WSW to E‐W trending σ 3 , all faults can reactivate at μ s ′ > 0.55. These σ 3 trends are also comparable to a focal mechanism stress inversion, regional joint orientations, and previously reported geodetically derived extension directions. We therefore conclude that unlike typical models of oblique rifting, the southern Malawi Rift consists of faults that all strike slightly oblique to σ 3 . Plain Language Summary Stretching of the upper brittle part of the Earth's crust should be accommodated by fractures (faults) oriented at 90° to the stretching direction. However, this idealized scenario is rarely observed because of crustal heterogeneities, or because the stretching direction rotates over geological time. Thus, faults are often nonorthogonal (i.e., oblique) to the stretching direction. Here, we use a mechanical analysis to test the obliquity of faults in southern Malawi at the southern juvenile end of the East African Rift system where the crust is actively extending at ~2 mm/year. This section is of interest as fault orientation varies along the rift, and a range of stretching directions have been proposed previously. Our mechanical analysis indicates that extension is most likely accommodated in southern Malawi by faults that are all slightly oblique to an ENE‐WSW to E‐W stretching direction. This is in contrast to previous models of oblique extension, which suggest that stretching is accommodated by some faults at 90° to the stretching direction, while others are at a very low (<40°) angle to stretching. Key Points Proposed stress states for the southern end of the Malawi Rift are tested by assessing fault reactivation potential Variably oriented faults reactivate by all striking slightly obliquely to an ENE‐WSW to E‐W trending minimum principal compressive stress Faults may locally accommodate pure normal dip slip due to the presence of a deep seated crustal weakness |
Author | Biggs, Juliet Wedmore, Luke N. J. Mphepo, Felix Williams, Jack N. Dulanya, Zuze Fagereng, Åke Blenkinsop, Thomas Mdala, Hassan |
Author_xml | – sequence: 1 givenname: Jack N. orcidid: 0000-0001-6669-308X surname: Williams fullname: Williams, Jack N. email: williamsj132@cardiff.ac.uk organization: Cardiff University – sequence: 2 givenname: Åke orcidid: 0000-0001-6335-8534 surname: Fagereng fullname: Fagereng, Åke organization: Cardiff University – sequence: 3 givenname: Luke N. J. orcidid: 0000-0003-3654-1637 surname: Wedmore fullname: Wedmore, Luke N. J. organization: University of Bristol – sequence: 4 givenname: Juliet orcidid: 0000-0002-4855-039X surname: Biggs fullname: Biggs, Juliet organization: University of Bristol – sequence: 5 givenname: Felix surname: Mphepo fullname: Mphepo, Felix organization: Mzuzu Regional Office – sequence: 6 givenname: Zuze surname: Dulanya fullname: Dulanya, Zuze organization: University of Malawi – sequence: 7 givenname: Hassan surname: Mdala fullname: Mdala, Hassan organization: Mzuzu Regional Office – sequence: 8 givenname: Thomas orcidid: 0000-0001-9684-0749 surname: Blenkinsop fullname: Blenkinsop, Thomas organization: Cardiff University |
BookMark | eNp9kE1Lw0AQhhepYFu9-QMWvBrd2WRM9iTSj7RQEVoVb2ETN-3WNFt3E0v_vVvqoSdPz_DOwwy8PdKpTa0IuQZ2B4yLe85ApAPGEg7ijHQBOQac8bhzMl-QnnNrxiBCTLrkY2J2dGjou7Ra5tWeLhqrv3S9pGPZVo2jcyWLRv_IRtFhaw-LuS4bz0c6rZ1errwztmZDF6ZtVsrW9FlWcqcvyXkpK6eu_tgnb-PR62ASzF7S6eBpFsgIIA5EiIDyE4TMeV4WkEQCRMxK7tM8lphEjCdFFEc5K0JEH3HxgAoBVCEwj8I-uTne3Vrz3SrXZGvT2tq_zDiPGaJIBHrr9mgV1jhnVZltrd5Iu8-AZYfustPuvB4e9Z2u1P5fN0vTdOSJcfgLsAdv4g |
CitedBy_id | crossref_primary_10_1093_gji_ggad060 crossref_primary_10_1111_bre_12687 crossref_primary_10_1029_2023GC011305 crossref_primary_10_1029_2021GL095286 crossref_primary_10_3389_feart_2022_808503 crossref_primary_10_1016_j_earscirev_2023_104568 crossref_primary_10_1029_2019TC006019 crossref_primary_10_1029_2021GL093785 crossref_primary_10_1016_j_tecto_2022_229678 crossref_primary_10_1029_2021TC006970 crossref_primary_10_1016_j_jsg_2019_103896 crossref_primary_10_1016_j_tecto_2022_229499 crossref_primary_10_1029_2021TC007166 crossref_primary_10_1130_GES02228_1 crossref_primary_10_1029_2022GC010425 crossref_primary_10_1111_bre_12592 crossref_primary_10_1029_2020TC006654 crossref_primary_10_3389_feart_2021_641346 crossref_primary_10_5194_nhess_22_3607_2022 crossref_primary_10_1007_s11600_020_00457_6 crossref_primary_10_1029_2019TC005633 crossref_primary_10_1029_2019TC005834 crossref_primary_10_1029_2019TC005933 crossref_primary_10_5194_se_13_1731_2022 crossref_primary_10_1029_2020GL091466 crossref_primary_10_5194_se_12_187_2021 crossref_primary_10_1029_2019JB018926 crossref_primary_10_1111_bre_12660 |
Cites_doi | 10.1093/gji/ggz119 10.1029/98JB00612 10.1111/j.1365-246X.2011.04950.x 10.1016/j.jsg.2006.03.012 10.1130/0091-7613(1992)020<1015:NVSSFD>2.3.CO;2 10.1029/2010GL043179 10.1007/BF00876528 10.1016/0191-8141(85)90049-5 10.1029/2018GL077343 10.1016/S0191-8141(98)00116-3 10.1002/2014GC005446 10.1016/0899-5362(95)00054-W 10.1029/2003JB002582 10.1130/G36208.1 10.2113/gssgfbull.S7-XIX.6.1309 10.1016/j.jsg.2012.11.004 10.1038/337354a0 10.1016/S0301-9268(03)00066-4 10.1086/625831 10.1130/G33927.1 10.1046/j.1365-3121.1999.00238.x 10.1130/0016-7606(1995)107<0231:OOSSSA>2.3.CO;2 10.31223/OSF.IO/NU7RQ 10.1029/2005JB004122 10.1016/j.jsg.2010.03.004 10.1046/j.1365-246X.2003.01965.x 10.1016/j.gr.2018.11.004 10.1130/0016-7606(1992)104<1015:OETITM>2.3.CO;2 10.1029/2006TC001977 10.1130/G33614.1 10.1038/s41598-017-19097-w 10.1017/S0016756800059987 10.1007/s11069-014-1572-y 10.1007/BF00876057 10.1017/CBO9780511920202 10.1002/2017TC004628 10.1111/j.1365-246X.2012.05673.x 10.1029/2011EO280002 10.1038/ngeo1432 10.1016/0191-8141(93)90176-B 10.1016/0040-1951(87)90187-9 10.1016/j.jsg.2004.02.014 10.1029/96TC02494 10.31223/OSF.IO/UJCHX 10.1016/j.jafrearsci.2013.06.004 10.1016/j.jsg.2015.08.013 10.1029/2018TC005379 10.1016/j.epsl.2010.07.022 10.1016/j.jsg.2018.06.003 10.1111/j.1365-246X.1995.tb03510.x 10.1144/GSL.SP.2003.212.01.06 10.1016/0264-8172(95)92835-K 10.1002/2015TC003953 10.1098/rsta.1986.0031 10.1130/0016-7606(1989)101<0885:TDOTWB>2.3.CO;2 10.1016/S0301-9268(01)00150-4 10.1016/j.epsl.2016.08.040 10.1029/92TC00821 10.1016/j.tecto.2018.03.010 10.1029/JZ064i011p01891 10.1111/j.1365-2117.2007.00332.x 10.1016/j.jsg.2015.02.005 10.1016/j.epsl.2011.04.041 10.1016/0301-9268(84)90031-7 10.3319/TAO.2007.18.2.183(TCDP) 10.1130/0091-7613(1996)024<0275:STAAFR>2.3.CO;2 10.1029/RF003p0127 10.1016/j.tecto.2009.05.009 10.1016/j.tecto.2013.05.012 10.1016/0040-1951(91)90232-H 10.1029/JB091iB02p01753 10.1016/0899-5362(90)90104-M 10.1002/2013JB010901 10.1016/j.jsg.2012.01.008 10.1016/0191-8141(85)90150-6 10.1029/93TC02314 10.1016/j.tecto.2011.06.010 10.1130/G20408.1 10.1017/S0016756800060040 10.5194/se-10-27-2019 10.1016/j.jsg.2006.03.010 10.1029/96TC00624 10.1016/0040-1951(86)90222-2 10.1029/93JB00190 10.1029/92TC01710 10.1016/S0191-8141(96)80016-2 10.1111/ter.12049 10.1029/2007GL032781 10.1016/j.jafrearsci.2017.02.016 10.1029/2004TC001626 10.1016/j.jsg.2018.10.012 10.5194/se-9-469-2018 |
ContentType | Journal Article |
Copyright | 2019. American Geophysical Union. All Rights Reserved. |
Copyright_xml | – notice: 2019. American Geophysical Union. All Rights Reserved. |
DBID | AAYXX CITATION 7TG 7TN F1W H96 KL. L.G |
DOI | 10.1029/2019GC008219 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Meteorological & Geoastrophysical Abstracts - Academic ASFA: Aquatic Sciences and Fisheries Abstracts |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 1525-2027 |
EndPage | 3607 |
ExternalDocumentID | 10_1029_2019GC008219 GGGE21957 |
Genre | article |
GeographicLocations | Malawi |
GeographicLocations_xml | – name: Malawi |
GrantInformation_xml | – fundername: RCUK | Engineering and Physical Sciences Research Council (EPSRC) funderid: EP/P028233/1 |
GroupedDBID | 05W 0R~ 1OC 24P 31~ 3V. 50Y 5GY 8-1 88I 8CJ 8FE 8FH 8G5 8R4 8R5 A00 AAESR AAHHS AAZKR ABCUV ABUWG ACAHQ ACBWZ ACCFJ ACGFS ACGOD ACPOU ACXQS ADBBV ADEOM ADIYS ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AFGKR AFKRA AFPWT AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ASPBG AVWKF AZFZN AZQEC AZVAB BDRZF BENPR BFHJK BHPHI BKSAR BMXJE BPHCQ BRXPI CCPQU CS3 D1J DCZOG DPXWK DRFUL DRSTM DU5 DWQXO EBS EJD FEDTE G-S GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HVGLF HZ~ LATKE LEEKS LITHE LK5 LOXES LUTES LYRES M2O M2P M7R MSFUL MSSTM MXFUL MXSTM MY~ M~E O9- OK1 P-X P2W PCBAR PQQKQ PROAC Q2X R.K ROL SUPJJ UB1 WBKPD WYJ ZZTAW ~02 ~OA AAYXX CITATION 7TG 7TN F1W H96 KL. L.G |
ID | FETCH-LOGICAL-a4117-93515ad19ab2bfc18491970f215ab7a584028c474b0c355b7a2965e511ec95b43 |
ISSN | 1525-2027 |
IngestDate | Sun Oct 27 05:01:11 EDT 2024 Fri Aug 23 03:26:30 EDT 2024 Sat Aug 24 01:11:23 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a4117-93515ad19ab2bfc18491970f215ab7a584028c474b0c355b7a2965e511ec95b43 |
ORCID | 0000-0001-6669-308X 0000-0002-4855-039X 0000-0001-9684-0749 0000-0001-6335-8534 0000-0003-3654-1637 |
OpenAccessLink | https://orca.cardiff.ac.uk/id/eprint/124968/1/Williams_et_al-2019-Geochemistry%2C_Geophysics%2C_Geosystems.pdf |
PQID | 2270559895 |
PQPubID | 54722 |
PageCount | 20 |
ParticipantIDs | proquest_journals_2270559895 crossref_primary_10_1029_2019GC008219 wiley_primary_10_1029_2019GC008219_GGGE21957 |
PublicationCentury | 2000 |
PublicationDate | July 2019 |
PublicationDateYYYYMMDD | 2019-07-01 |
PublicationDate_xml | – month: 07 year: 2019 text: July 2019 |
PublicationDecade | 2010 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Geochemistry, geophysics, geosystems : G3 |
PublicationYear | 2019 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2019; 10 2015; 74 2004; 26 1991; 191 2015; 76 1973 2008; 35 1972 2015; 80 2018; 45 2003; 154 1995; 20 2004; 32 2018; 9 2018; 8 1989; 101 1994; 142 2006; 28 2006; 25 2014; 15 1995; 121 2018; 37 2007; 18 2010; 32 2007; 19 1986; 91 1996; 18 2010; 37 2013; 86 2019; 38 2012; 37 2003; 212 1995; 3 1996; 15 2006; 111 2011; 307 1986; 126 2012; 191 2011; 92 2018; 114 2010; 297 1994; 13 2019; 217 2016; 455 1992; 20 2012; 40 1987; 141 2015; 34 1990; 10 1959; 64 2013; 25 1984; 25 2013; 601 1992; 11 2001; 109 2018; 731‐732 2001 2019; 68 2015; 43 1999; 11 1997; 16 2012; 522‐523 2019; 118 1996; 24 2003; 123 2017; 129 2014; 119 1986; 317 2013; 48 1989; 337 2011 1995; 12 1985; 7 1992; 104 2013; 41 2010; 482 2007 2004; 109 1978; 116 1998; 20 1958 1993; 15 1959; 96 1993; 12 1993; 98 1965 2019 1995; 107 1963 2018 2017 1998; 103 2014 1951; 59 2011; 185 2012; 5 1977; 7 1968 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_40_1 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_6_1 e_1_2_10_55_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_78_1 e_1_2_10_13_1 e_1_2_10_32_1 e_1_2_10_51_1 e_1_2_10_82_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_105_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_101_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_41_1 e_1_2_10_90_1 e_1_2_10_71_1 e_1_2_10_94_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_10_1 e_1_2_10_33_1 Jaeger J. C. (e_1_2_10_53_1) 2007 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_83_1 e_1_2_10_64_1 e_1_2_10_102_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_42_1 e_1_2_10_91_1 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_4_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_8_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_30_1 e_1_2_10_80_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_107_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_103_1 e_1_2_10_24_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_92_1 e_1_2_10_73_1 e_1_2_10_96_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_104_1 e_1_2_10_85_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_100_1 e_1_2_10_47_1 e_1_2_10_89_1 |
References_xml | – year: 2011 – volume: 129 start-page: 728 year: 2017 end-page: 738 article-title: A review of the geomorphotectonic evolution of the south Malawi rift publication-title: Journal of African Earth Sciences – volume: 109 start-page: 257 issue: 3–4 year: 2001 end-page: 291 article-title: Single zircon ages, PT evolution and Nd isotopic systematics of high‐grade gneisses in southern Malawi and their bearing on the evolution of the Mozambique belt in southeastern Africa publication-title: Precambrian Research – volume: 25 start-page: 396 issue: 5 year: 2013 end-page: 404 article-title: Re‐orientation of the extension direction and pure extensional faulting at oblique rift margins: Comparison between the Main Ethiopian Rift and laboratory experiments publication-title: Terra Nova – volume: 64 start-page: 1891 issue: 11 year: 1959 end-page: 1909 article-title: Ice petrofabric observations from Blue Glacier, Washington, in relation to theory and experiment publication-title: Journal of Geophysical Research – volume: 111 year: 2006 article-title: Cohesive strengthening of fault zones during the interseismic period: An experimental study publication-title: Journal of Geophysical Research – volume: 601 start-page: 216 year: 2013 end-page: 225 article-title: Fault segmentation, deep rift earthquakes and crustal rheology: Insights from the 2009 Karonga sequence and seismicity in the Rukwa‐Malawi rift zone publication-title: Tectonophysics – volume: 154 start-page: 584 issue: 2 year: 2003 end-page: 594 article-title: Stress, fluid pressure and structural permeability in seismogenic crust, North Island, New Zealand publication-title: Geophysical Journal International – volume: 41 start-page: 299 issue: 3 year: 2013 end-page: 302 article-title: Contrasting strike‐slip motions on thrust and normal faults: Implications for space‐geodetic monitoring of surface deformation publication-title: Geology – volume: 9 start-page: 469 issue: 2 year: 2018 end-page: 489 article-title: Controls on fault zone structure and brittle fracturing in the foliated hanging wall of the Alpine Fault publication-title: Solid Earth – volume: 59 start-page: 118 issue: 2 year: 1951 end-page: 130 article-title: Geometry of shearing stress and relation to faulting publication-title: The Journal of Geology – year: 2014 – volume: 37 year: 2010 article-title: Breaking up the hanging wall of a rift‐border fault: The 2009 Karonga earthquakes, Malawi publication-title: Geophysical Research Letters – volume: 482 start-page: 105 issue: 1–4 year: 2010 end-page: 128 article-title: African stress pattern from formal inversion of focal mechanism data publication-title: Tectonophysics – volume: 24 start-page: 275 issue: 3 year: 1996 article-title: Slip‐tendency analysis and fault reactivation publication-title: Geology. – volume: 8 start-page: 732 issue: 1 year: 2018 article-title: A geodetic strain rate model for the East African Rift System publication-title: Scientific Reports – volume: 119 start-page: 3584 year: 2014 end-page: 3600 article-title: Present‐day kinematics of the East African Rift publication-title: Journal of Geophysical Research: Solid Earth – volume: 11 start-page: 998 issue: 5 year: 1992 end-page: 1009 article-title: Oblique‐slip deformation in extensional terrains: A case study of the lakes Tanganyika and Malawi Rift Zones publication-title: Tectonics – volume: 25 year: 2006 article-title: Fault reactivation and rift localization: Northeastern Gulf of Aden margin publication-title: Tectonics – year: 1972 – volume: 37 start-page: 683 year: 2018 end-page: 704 article-title: Active deformation of Malawi Rift's North Basin hinge zone modulated by reactivation of preexisting Precambrian shear zone fabric publication-title: Tectonics – volume: 141 start-page: 215 issue: 1–3 year: 1987 end-page: 235 article-title: Tectonic model of the Malaŵi rift, Africa publication-title: Tectonophysics – volume: 68 start-page: 93 year: 2019 end-page: 107 article-title: Evolution of the Mozambique Belt in Malawi constrained by granitoid U‐Pb, Sm‐Nd and Lu‐Hf isotopic data publication-title: Gondwana Research – volume: 3 start-page: 127 year: 1995 end-page: 147 – volume: 40 start-page: 1143 issue: 12 year: 2012 end-page: 1146 article-title: Drilling reveals fluid control on architecture and rupture of the Alpine fault, New Zealand publication-title: Geology – year: 2019 – volume: 92 start-page: 234 issue: 28 year: 2011 article-title: Open radar interferometry software for mapping surface Deformation publication-title: Eos, Transactions American Geophysical Union. – year: 1958 – volume: 101 start-page: 885 issue: 7 year: 1989 end-page: 903 article-title: Tectonic development of the western branch of the East African rift system publication-title: Geological Society of America Bulletin – volume: 10 start-page: 27 issue: 1 year: 2019 end-page: 57 article-title: A semi‐automated algorithm to quantify scarp morphology (SPARTA): Application to normal faults in southern Malawi publication-title: Solid Earth – volume: 522‐523 start-page: 1 year: 2012 end-page: 33 article-title: Evolution and characteristics of continental rifting: Analog modeling‐inspired view and comparison with examples from the East African Rift System publication-title: Tectonophysics – volume: 20 start-page: 275 issue: 3–4 year: 1995 end-page: 288 article-title: Geochronology and cooling history of the northern part of the Chilwa Alkaline Province, Malawi publication-title: Journal of African Earth Sciences – volume: 12 start-page: 591 issue: 2 year: 1993 end-page: 606 article-title: Crustal heterogeneity and basement influence on the development of the Kenya Rift, East Africa publication-title: Tectonics – year: 2007 – year: 1973 – volume: 455 start-page: 62 year: 2016 end-page: 72 article-title: Spatio‐temporal trends in normal‐fault segmentation recorded by low‐temperature thermochronology: Livingstone fault scarp, Malawi Rift, East African Rift System publication-title: Earth and Planetary Science Letters – volume: 48 start-page: 153 year: 2013 end-page: 161 article-title: A new three‐dimensional method of fault reactivation analysis publication-title: Journal of Structural Geology – volume: 10 start-page: 519 issue: 3 year: 1990 end-page: 548 article-title: The seismic stratigraphy of Lake Malawi, Africa: Implications for interpreting geological processes in lacustrine rifts publication-title: Journal of African Earth Sciences – volume: 217 start-page: 1767 issue: 3 year: 2019 end-page: 1782 article-title: Faulting processes during early‐stage rifting: Seismic and geodetic analysis of the 2009‐2010 Northern Malawi earthquake sequence publication-title: Geophysical Journal International – volume: 37 start-page: 161 year: 2012 end-page: 180 article-title: Geodynamic significance of the TRM segment in the East African Rift (W‐Tanzania): Active tectonics and paleostress in the Ufipa plateau and Rukwa basin publication-title: Journal of Structural Geology – volume: 26 start-page: 1803 issue: 10 year: 2004 end-page: 1829 article-title: Activation of rift oblique and rift parallel pre‐existing fabrics during extension and their effect on deformation style: Examples from the rifts of Thailand publication-title: Journal of Structural Geology – volume: 96 start-page: 149 issue: 2 year: 1959 end-page: 167 article-title: Mechanics of jointing in rocks publication-title: Geological Magazine – volume: 191 start-page: 898 issue: 3 year: 2012 end-page: 908 article-title: Seismic and aseismic slip evolution and deformation associated with the 2009‐2010 northern Malawi earthquake swarm, East African Rift publication-title: Geophysical Journal International – volume: 43 start-page: 147 issue: 2 year: 2015 end-page: 150 article-title: Slip re‐orientation in oblique rifts publication-title: Geology – volume: 7 start-page: 1309 issue: 6 year: 1977 end-page: 1318 article-title: Sur une méthode graphice de recherche des contraintes principales également utilisable en tectonique et en séismologie: La méthode des dièdres droits publication-title: Bulletin de La Société Géologique de France – volume: 15 start-page: 1171 issue: 6 year: 1996 end-page: 1191 article-title: Present‐day stress field changes along the Baikal rift and tectonic implications publication-title: Tectonics – volume: 15 start-page: 1045 issue: 8 year: 1993 end-page: 1054 article-title: Stress inversion methods: Are they based on faulty assumptions? publication-title: Journal of Structural Geology – volume: 11 start-page: 149 issue: 4 year: 1999 end-page: 156 article-title: Sand‐box modelling of basement‐controlled transfer zones in extensional domains publication-title: Terra Nova – volume: 126 start-page: 99 issue: 2–4 year: 1986 end-page: 124 article-title: Deformation produced by oblique rifting publication-title: Tectonophysics – volume: 80 start-page: 57 year: 2015 end-page: 71 article-title: Polymodal faulting: Time for a new angle on shear failure publication-title: Journal of Structural Geology – volume: 25 year: 2006 article-title: U‐Pb sensitive high‐resolution ion microprobe (SHRIMP) zircon geochronology of granitoid rocks in eastern Zambia: Terrane subdivision of the Mesoproterozoic Southern Irumide Belt publication-title: Tectonics – volume: 86 start-page: 65 year: 2013 end-page: 106 article-title: Orogen styles in the East African Orogen: A review of the Neoproterozoic to Cambrian tectonic evolution publication-title: Journal of African Earth Sciences – volume: 123 start-page: 159 issue: 2‐4 year: 2003 end-page: 186 article-title: Tectonic evolution of the Zambezi orogenic belt: Geochronological, structural, and petrological constraints from northern Zimbabwe publication-title: Precambrian Research. – volume: 142 start-page: 609 issue: 3‐4 year: 1994 end-page: 644 article-title: Fracturing and hydrothermal alteration in normal fault zones publication-title: Pure and Applied Geophysics – volume: 20 start-page: 1015 issue: 11 year: 1992 end-page: 1018 article-title: Normal vs. strike‐slip faulting during rift development in East Africa: The Malawi rift publication-title: Geology – volume: 96 start-page: 109 issue: 2 year: 1959 end-page: 117 article-title: The mechanics of oblique slip faulting publication-title: Geological Magazine – volume: 28 start-page: 1028 issue: 6 year: 2006 end-page: 1039 article-title: Kinematic analysis of the Upper Rhine Graben boundary fault system publication-title: Journal of Structural Geology – volume: 7 start-page: 751 issue: 6 year: 1985 end-page: 754 article-title: A note on fault reactivation publication-title: Journal of Structural Geology – volume: 15 start-page: 3392 year: 2014 end-page: 3415 article-title: Evolution of stress and fault patterns in oblique rift systems: 3‐D numerical lithospheric‐scale experiments from rift to breakup publication-title: Geochemistry, Geophysics, Geosystems – volume: 104 start-page: 1015 issue: 8 year: 1992 end-page: 1023 article-title: Oblique extensional tectonics in the Malawi Rift, Africa publication-title: Geological Society of America Bulletin – volume: 12 start-page: 137 issue: 2 year: 1995 end-page: 151 article-title: Analogue modelling of orthogonal and oblique rifting publication-title: Marine and Petroleum Geology – volume: 118 start-page: 236 year: 2019 end-page: 249 article-title: Structural controls on the interaction between basin fluids and a rift flank fault: Constraints from the Bwamba Fault, East African Rift publication-title: Journal of Structural Geology – year: 2001 – volume: 32 start-page: 569 issue: 7 year: 2004 article-title: Test of the frictional reactivation theory for faults and validity of fault‐slip analysis publication-title: Geology – volume: 28 start-page: 1051 issue: 6 year: 2006 end-page: 1066 article-title: Favoured states of palaeostress in the Earth's crust: Evidence from fault‐slip data publication-title: Journal of Structural Geology – volume: 45 start-page: 3896 year: 2018 end-page: 3905 article-title: Controls on early‐rift geometry: New perspectives from the Bilila‐Mtakataka Fault, Malawi publication-title: Geophysical Research Letters – volume: 98 start-page: 14,339 issue: B8 year: 1993 end-page: 14,351 article-title: Transfer faults and pull‐apart model in the rhinegraben from analysis of multisource data publication-title: Journal of Geophysical Research – volume: 19 start-page: 393 issue: 3 year: 2007 end-page: 407 article-title: Orthogonal to oblique rifting: Effect of rift basin orientation in the evolution of the North basin, Malawi Rift, East Africa publication-title: Basin Research – volume: 18 start-page: 183 issue: 2 year: 2007 article-title: Structural, mineralogical, and geochemical characterization of the Chelungpu Thrust Fault, Taiwan publication-title: Terrestrial, Atmospheric and Oceanic Sciences – year: 2018 – volume: 25 start-page: 161 issue: 1–3 year: 1984 end-page: 186 article-title: Petrochemistry, tectonic evolution and metasomatic mineralisations of Mozambique belt granulites from S Malawi and Tete (Mozambique) publication-title: Precambrian Research – volume: 107 start-page: 231 issue: 2 year: 1995 end-page: 240 article-title: Origin of small‐scale segmentation and transpressional thrusting along the Alpine Fault, New Zealand publication-title: Geological Society of America Bulletin – volume: 103 start-page: 12,205 issue: B6 year: 1998 end-page: 12,222 article-title: Analysis of fault slip inversions: Do they constrain stress or strain rate? publication-title: Journal of Geophysical Research – volume: 13 start-page: 303 issue: 2 year: 1994 end-page: 312 article-title: Geometry of the Livingstone Mountains Border Fault, Nyasa (Malawi) Rift, East Africa publication-title: Tectonics – year: 1965 – volume: 38 start-page: 842 year: 2019 end-page: 862 article-title: Depth extent and kinematics of Faulting in the Southern Tanganyika Rift, Africa publication-title: Tectonics – volume: 317 start-page: 179 issue: 1539 year: 1986 end-page: 194 article-title: On the reactivation of extensional fault systems publication-title: Philosophical Transactions ‐ Royal Society of London, Series A – volume: 297 start-page: 667 issue: 3–4 year: 2010 end-page: 673 article-title: Stress re‐orientation along zones of weak fabrics in rifts: An explanation for pure extension in “oblique” rift segments? publication-title: Earth and Planetary Science Letters – volume: 337 start-page: 354 issue: 6205 year: 1989 end-page: 357 article-title: Relationships between pre‐rift structure and rift architecture in Lakes Tanganyika and Malawi, East Africa publication-title: Nature – volume: 109 year: 2004 article-title: Crystallographic controls on the frictional behavior of dry and water‐saturated sheet structure minerals publication-title: Journal of Geophysical Research – volume: 18 start-page: 835 issue: 6 year: 1996 end-page: 845 article-title: Variation in fault‐slip directions along active and segmented normal fault systems publication-title: Journal of Structural Geology – year: 1968 – volume: 121 start-page: 49 issue: 1 year: 1995 end-page: 62 article-title: East African earthquakes below 20 km depth and their implications for crustal structure publication-title: Geophysical Journal International – volume: 114 start-page: 43 year: 2018 end-page: 54 article-title: Frictional properties and 3‐D stress analysis of the southern Alpine Fault, New Zealand publication-title: Journal of Structural Geology – volume: 185 start-page: 403 issue: 1 year: 2011 end-page: 434 article-title: Earthquake distribution patterns in Africa: Their relationship to variations in lithospheric and geological structure, and their rheological implications publication-title: Geophysical Journal International – volume: 32 start-page: 1576 issue: 11 year: 2010 end-page: 1589 article-title: Internal structure, fault rocks, and inferences regarding deformation, fluid flow, and mineralization in the seismogenic Stillwater normal fault, Dixie Valley, Nevada publication-title: Journal of Structural Geology – year: 1963 – volume: 16 start-page: 137 issue: 1 year: 1997 end-page: 150 article-title: The Bilila‐Mtakataka fault in Malawi: An active, 100‐km long, normal fault segment in thick seismogenic crust publication-title: Tectonics – volume: 34 start-page: 2399 year: 2015 end-page: 2417 article-title: Hierarchical segmentation of the Malawi Rift: The influence of inherited lithospheric heterogeneity and kinematics in the evolution of continental rifts publication-title: Tectonics – volume: 731‐732 start-page: 172 year: 2018 end-page: 180 article-title: Constraints on fault and crustal strength of the Main Ethiopian Rift from formal inversion of earthquake focal mechanism data publication-title: Tectonophysics – volume: 76 start-page: 1781 issue: 3 year: 2015 end-page: 1806 article-title: Assessing infrequent large earthquakes using geomorphology and geodesy: The Malawi Rift publication-title: Natural Hazards – volume: 116 start-page: 615 issue: 4–5 year: 1978 end-page: 626 article-title: Friction of rocks publication-title: Pure and Applied Geophysics PAGEOPH – volume: 7 start-page: 459 issue: 3–4 year: 1985 end-page: 476 article-title: Loading paths to joint propagation during a tectonic cycle: An example from the Appalachian Plateau, U.S.A publication-title: Journal of Structural Geology – volume: 191 start-page: 55 issue: 1–2 year: 1991 end-page: 73 article-title: Post‐Pan‐African tectonic evolution of South Malawi in relation to the Karroo and recent East African rift systems publication-title: Tectonophysics – volume: 212 start-page: 75 issue: 1 year: 2003 end-page: 100 article-title: New aspects of tectonic stress inversion with reference to the TENSOR program publication-title: Geological Society, London, Special Publications – year: 2017 – volume: 5 start-page: 289 issue: 4 year: 2012 end-page: 294 article-title: Initiation of the western branch of the East African Rift coeval with the eastern branch publication-title: Nature Geoscience – volume: 307 start-page: 233 issue: 1–2 year: 2011 end-page: 239 article-title: Misoriented faults in exhumed metamorphic complexes: Rule or exception? publication-title: Earth and Planetary Science Letters – volume: 91 start-page: 1753 issue: B2 year: 1986 article-title: Tectonics of the Jemez lineament in the Jemez Mountains and Rio Grande Rift (USA) publication-title: Journal of Geophysical Research – volume: 74 start-page: 45 year: 2015 end-page: 63 article-title: Evolution of a major segmented normal fault during multiphase rifting: The origin of plan‐view zigzag geometry publication-title: Journal of Structural Geology – volume: 35 year: 2008 article-title: A kinematic model for the East African Rift publication-title: Geophysical Research Letters – volume: 20 start-page: 655 issue: 5 year: 1998 end-page: 660 article-title: Brittle failure mode plots for compressional and extensional tectonic regimes publication-title: Journal of Structural Geology – ident: e_1_2_10_38_1 doi: 10.1093/gji/ggz119 – ident: e_1_2_10_98_1 doi: 10.1029/98JB00612 – ident: e_1_2_10_23_1 doi: 10.1111/j.1365-246X.2011.04950.x – ident: e_1_2_10_61_1 doi: 10.1016/j.jsg.2006.03.012 – ident: e_1_2_10_84_1 doi: 10.1130/0091-7613(1992)020<1015:NVSSFD>2.3.CO;2 – ident: e_1_2_10_8_1 doi: 10.1029/2010GL043179 – ident: e_1_2_10_16_1 doi: 10.1007/BF00876528 – ident: e_1_2_10_33_1 doi: 10.1016/0191-8141(85)90049-5 – ident: e_1_2_10_49_1 doi: 10.1029/2018GL077343 – ident: e_1_2_10_91_1 doi: 10.1016/S0191-8141(98)00116-3 – ident: e_1_2_10_15_1 doi: 10.1002/2014GC005446 – ident: e_1_2_10_32_1 doi: 10.1016/0899-5362(95)00054-W – ident: e_1_2_10_70_1 doi: 10.1029/2003JB002582 – ident: e_1_2_10_81_1 doi: 10.1130/G36208.1 – ident: e_1_2_10_6_1 doi: 10.2113/gssgfbull.S7-XIX.6.1309 – ident: e_1_2_10_60_1 doi: 10.1016/j.jsg.2012.11.004 – ident: e_1_2_10_100_1 doi: 10.1038/337354a0 – ident: e_1_2_10_43_1 doi: 10.1016/S0301-9268(03)00066-4 – ident: e_1_2_10_102_1 doi: 10.1086/625831 – ident: e_1_2_10_42_1 doi: 10.1130/G33927.1 – ident: e_1_2_10_103_1 – ident: e_1_2_10_2_1 doi: 10.1046/j.1365-3121.1999.00238.x – ident: e_1_2_10_78_1 doi: 10.1130/0016-7606(1995)107<0231:OOSSSA>2.3.CO;2 – ident: e_1_2_10_45_1 doi: 10.31223/OSF.IO/NU7RQ – ident: e_1_2_10_39_1 – ident: e_1_2_10_97_1 doi: 10.1029/2005JB004122 – ident: e_1_2_10_17_1 doi: 10.1016/j.jsg.2010.03.004 – ident: e_1_2_10_92_1 doi: 10.1046/j.1365-246X.2003.01965.x – ident: e_1_2_10_77_1 – ident: e_1_2_10_65_1 doi: 10.1016/j.gr.2018.11.004 – ident: e_1_2_10_20_1 doi: 10.1130/0016-7606(1992)104<1015:OETITM>2.3.CO;2 – ident: e_1_2_10_54_1 doi: 10.1029/2006TC001977 – ident: e_1_2_10_40_1 – ident: e_1_2_10_96_1 doi: 10.1130/G33614.1 – ident: e_1_2_10_95_1 doi: 10.1038/s41598-017-19097-w – ident: e_1_2_10_24_1 – ident: e_1_2_10_12_1 doi: 10.1017/S0016756800059987 – ident: e_1_2_10_48_1 doi: 10.1007/s11069-014-1572-y – ident: e_1_2_10_14_1 doi: 10.1007/BF00876057 – ident: e_1_2_10_4_1 doi: 10.1017/CBO9780511920202 – ident: e_1_2_10_9_1 – ident: e_1_2_10_56_1 doi: 10.1002/2017TC004628 – ident: e_1_2_10_41_1 doi: 10.1111/j.1365-246X.2012.05673.x – ident: e_1_2_10_87_1 doi: 10.1029/2011EO280002 – ident: e_1_2_10_85_1 doi: 10.1038/ngeo1432 – ident: e_1_2_10_82_1 doi: 10.1016/0191-8141(93)90176-B – ident: e_1_2_10_11_1 – ident: e_1_2_10_31_1 doi: 10.1016/0040-1951(87)90187-9 – ident: e_1_2_10_72_1 doi: 10.1016/j.jsg.2004.02.014 – ident: e_1_2_10_52_1 doi: 10.1029/96TC02494 – ident: e_1_2_10_104_1 doi: 10.31223/OSF.IO/UJCHX – ident: e_1_2_10_37_1 doi: 10.1016/j.jafrearsci.2013.06.004 – ident: e_1_2_10_44_1 doi: 10.1016/j.jsg.2015.08.013 – ident: e_1_2_10_59_1 doi: 10.1029/2018TC005379 – ident: e_1_2_10_71_1 doi: 10.1016/j.epsl.2010.07.022 – ident: e_1_2_10_13_1 doi: 10.1016/j.jsg.2018.06.003 – ident: e_1_2_10_79_1 doi: 10.1111/j.1365-246X.1995.tb03510.x – ident: e_1_2_10_28_1 doi: 10.1144/GSL.SP.2003.212.01.06 – ident: e_1_2_10_66_1 – ident: e_1_2_10_68_1 doi: 10.1016/0264-8172(95)92835-K – ident: e_1_2_10_58_1 doi: 10.1002/2015TC003953 – ident: e_1_2_10_34_1 doi: 10.1098/rsta.1986.0031 – ident: e_1_2_10_30_1 doi: 10.1130/0016-7606(1989)101<0885:TDOTWB>2.3.CO;2 – ident: e_1_2_10_57_1 doi: 10.1016/S0301-9268(01)00150-4 – ident: e_1_2_10_74_1 doi: 10.1016/j.epsl.2016.08.040 – ident: e_1_2_10_89_1 doi: 10.1029/92TC00821 – ident: e_1_2_10_99_1 – ident: e_1_2_10_76_1 doi: 10.1016/j.tecto.2018.03.010 – ident: e_1_2_10_55_1 doi: 10.1029/JZ064i011p01891 – ident: e_1_2_10_75_1 doi: 10.1111/j.1365-2117.2007.00332.x – ident: e_1_2_10_46_1 doi: 10.1016/j.jsg.2015.02.005 – ident: e_1_2_10_67_1 doi: 10.1016/j.epsl.2011.04.041 – ident: e_1_2_10_5_1 doi: 10.1016/0301-9268(84)90031-7 – ident: e_1_2_10_51_1 doi: 10.3319/TAO.2007.18.2.183(TCDP) – ident: e_1_2_10_73_1 doi: 10.1130/0091-7613(1996)024<0275:STAAFR>2.3.CO;2 – ident: e_1_2_10_63_1 doi: 10.1029/RF003p0127 – ident: e_1_2_10_26_1 doi: 10.1016/j.tecto.2009.05.009 – ident: e_1_2_10_10_1 – ident: e_1_2_10_35_1 doi: 10.1016/j.tecto.2013.05.012 – ident: e_1_2_10_18_1 doi: 10.1016/0040-1951(91)90232-H – ident: e_1_2_10_101_1 – ident: e_1_2_10_3_1 doi: 10.1029/JB091iB02p01753 – ident: e_1_2_10_36_1 doi: 10.1016/0899-5362(90)90104-M – ident: e_1_2_10_69_1 – ident: e_1_2_10_88_1 doi: 10.1002/2013JB010901 – ident: e_1_2_10_27_1 doi: 10.1016/j.jsg.2012.01.008 – ident: e_1_2_10_90_1 doi: 10.1016/0191-8141(85)90150-6 – ident: e_1_2_10_105_1 doi: 10.1029/93TC02314 – ident: e_1_2_10_21_1 doi: 10.1016/j.tecto.2011.06.010 – ident: e_1_2_10_62_1 doi: 10.1130/G20408.1 – ident: e_1_2_10_83_1 doi: 10.1017/S0016756800060040 – ident: e_1_2_10_47_1 doi: 10.5194/se-10-27-2019 – ident: e_1_2_10_64_1 doi: 10.1016/j.jsg.2006.03.010 – ident: e_1_2_10_80_1 doi: 10.1029/96TC00624 – ident: e_1_2_10_107_1 doi: 10.1016/0040-1951(86)90222-2 – ident: e_1_2_10_19_1 doi: 10.1029/93JB00190 – ident: e_1_2_10_93_1 doi: 10.1029/92TC01710 – ident: e_1_2_10_86_1 doi: 10.1016/S0191-8141(96)80016-2 – ident: e_1_2_10_25_1 – ident: e_1_2_10_22_1 doi: 10.1111/ter.12049 – ident: e_1_2_10_94_1 doi: 10.1029/2007GL032781 – ident: e_1_2_10_29_1 doi: 10.1016/j.jafrearsci.2017.02.016 – ident: e_1_2_10_7_1 doi: 10.1029/2004TC001626 – ident: e_1_2_10_50_1 doi: 10.1016/j.jsg.2018.10.012 – ident: e_1_2_10_106_1 doi: 10.5194/se-9-469-2018 – volume-title: Fundamentals of rock mechanics year: 2007 ident: e_1_2_10_53_1 contributor: fullname: Jaeger J. C. |
SSID | ssj0014558 |
Score | 2.4654267 |
Snippet | Crustal extension is commonly thought to be accommodated by faults that strike orthogonal and obliquely to the regional trend of the minimum compressive stress... Abstract Crustal extension is commonly thought to be accommodated by faults that strike orthogonal and obliquely to the regional trend of the minimum... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
StartPage | 3588 |
SubjectTerms | continental rift Direction Earth Earth crust East African Rift Fault lines fault reactivation Fault zones Faults Fractures Geological time Joints (timber) normal faults Obliquity Orientation Rifting stress inversions tectonic stress Trends |
Title | How Do Variably Striking Faults Reactivate During Rifting? Insights From Southern Malawi |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2019GC008219 https://www.proquest.com/docview/2270559895 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIiQuiKcoLMgHOIWU1LGT-ITQts1qRXtAu6i3yHGdVUVpEG1By4G_xF9kxnbSrFitWC5V67pW6_k6_mY8D0Je8cikLEkxpoqbkCtRhplWYKWAMaGrVGtua3dOZ8nxGT-Zi3mv97sTtbTblgP988q8kv-RKoyBXDFL9gaSbReFAXgO8oVHkDA8_pOMsR_cqA4-gb2rytUFXjEv0fUdTNRutcUMEExb-A50Mhi5dMSPy8qlOE8wTAAN8w1w1_pLYFvpYVe0qVqpH8suZ80NdtVybeFQIuemdv6QjX_lqkFvrHchb_VI15ODmfzBbNCCBQtnGKdl8KY-E587V0SLJvb3A0aOzAbBSfvB1pWPad0-ddu7LGyWVOOy8FqWiRC9Lu4QumLMq2YWdSCYdvRsLFwzQH9mx4lrnfvXeRAxLKeK3yE_Qrbj1fOlstvtPHHdTHvk53k-hndEeovcZqDZUKVOf43baysubEPY9rf4TAtY_W135cscaG_YdM0jy29O75N73jCh7x3KHpCeWT8kd3Lb-PniEZkD1uiopg3WaIM16rBG91ijDmvUY-0dbZBGEWm0QRp1SHtMzibj06Pj0HflCBUfAqWRMVBgtRhKVbKy0sOMy6FMowq4oypTBYQWKKvmKS8jDWQWhphMhAFib7QUJY-fkIN1vTZPCdVKmoVEFpmVXDMlYW6cRYmuFNNxlfbJ62afiq-u-EphgyaYLLr72SeHzSYW_u-5KRjDQlEyk6JP3tiNvXaNopXts5tNf07u7jF-SA6233bmBRDVbfnSguMPwXGHVg |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+Do+Variably+Striking+Faults+Reactivate+During+Rifting%3F+Insights+From+Southern+Malawi&rft.jtitle=Geochemistry%2C+geophysics%2C+geosystems+%3A+G3&rft.au=Williams%2C+Jack+N.&rft.au=Fagereng%2C+%C3%85ke&rft.au=Wedmore%2C+Luke+N.+J.&rft.au=Biggs%2C+Juliet&rft.date=2019-07-01&rft.issn=1525-2027&rft.eissn=1525-2027&rft.volume=20&rft.issue=7&rft.spage=3588&rft.epage=3607&rft_id=info:doi/10.1029%2F2019GC008219&rft.externalDBID=10.1029%252F2019GC008219&rft.externalDocID=GGGE21957 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1525-2027&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1525-2027&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1525-2027&client=summon |